

Faster Potential Energy Surfaces: The *art* of Making Force Fields

<u>Toon Verstraelen</u>

Center for Molecular Modeling, Ghent University, Belgium

IPAM Workshop IV: Physical Frameworks for Sampling Chemical Compound Space

May 2011, Los Angeles

Overview

Introduction	Exploring Chemical Compounds Force Field 101 Making Force Fields
Atoms in Molecules	Partitioning of Electron Density Iterative Hirshfeld ESP Fitted charges Benchmarks
The Hydrogen Bond	AIM Application to FF development Charge Transfer Matters!
Split Charge Equilibration	Partitioning of Polarization Split Charges Benchmarks
Harmonic Models	Force Constants & Rest Values

Conclusion

Exploring Chemical Compounds

Introduction

Slide 3/69

Work of Catlow & Lewis

Application of interest: Zeolite synthesis

Which silica oligomers are promoted by template molecules during the prenucleation phase?

Exploring Chemical Compounds

Introduction

Exploring Chemical Compounds

Force Field (FF) 101

(1,2,3,4) Valence Force Fields

$$\sum_{k} \frac{1}{2} K \left(q_k - q_k^{(0)} \right)^2$$

(5) Electrostatics

$$\sum_{i>j} \frac{q_i q_j}{r_{ij}}$$

(6) London Dispersion & Pauli Repulsion

$$\sum_{i>j} A_{ij}^{(p)} \exp\left(-\frac{r_{ij}}{B_{ij}^{(p)}}\right) - C_{ij}^{(6)} r_{ij}^{-6}$$

(7) Hydrogen Bonding

$$\sum_{i>j} -A^{(hb)}_{ij} \exp\left(-\frac{r_{ij}}{B^{(hb)}_{ij}}\right)$$

Chemical bonds are fixed during an FF simulation!

- * Terms in the valence FF
- * Exclusion rules for non-bonding interactions
- Is chemical sampling possible?

Enveloping Distribution Sampling

FF Interpolation

 Use empirical model for the bond order

Reactive FF's

- Computationally more expensive than traditional FF
- e.g. Tersoff, Brenner, ReaxFF, ...

Christ et al, *JCP* **2007,** 126, p184110

 $\log(\exp(-\beta V_1) + \exp(-\beta V_2))$

$$(1-\lambda)V_1(\mathbf{r}^N) \ +\lambda V_2(\mathbf{r}^N)$$

(e.g. alchemical change)

Reference energy may be included in FF.

Making FF's

Old school approach:

* Start from known parameters or make a guess

* Try and fix parameters repetitively until some target is reached

Drawbacks: labor intensive & boring

Better approach:

* Define an objective function that measures the FF quality

* Minimize the objective numerically

Drawbacks: no physical insight & rank deficiency

Even better:

- * Associate FF parameters with QM 'observables' (where possible, avoid parameter fitting)
- * Carefully designed cost functions

Overview

Introduction	Exploring Chemical Compounds Force Field 101 Making Force Fields
Atoms in Molecules	Partitioning of Electron Density Iterative Hirshfeld ESP Fitted charges Benchmarks
The Hydrogen Bond	AIM Application to FF development Charge Transfer Matters!
Split Charge Equilibration	Partitioning of Polarization Split Charges Benchmarks
Harmonic Models	Force Constants & Rest Values

Conclusion

Strict **definition is not possible**, but several *partitioning schemes* exist.

1955: Mulliken Population Analysis
1970: Löwdin Population Analysis
1977: Hirshfeld Partitioning
1985: Natural Population Analysis
1994: Bader Partitioning
2007: Iterative Hirshfeld Partitioning

Properties that can be derived:

- * Atomic charges (& multipole expansion)
- * Bond orders
- * Pairwise electrostatic interactions
- * Atomic spin density
- * Overlap of atomic densities
- * Condensed reactivity descriptors

* ...

Density partitioning in general:

$$ho_A(\mathbf{r}) = w_A(\mathbf{r})
ho_{mol}(\mathbf{r}) \qquad \sum_A w_A(\mathbf{r}) = 1 \qquad N_A = \int
ho_A(\mathbf{r})d\mathbf{r}$$

Hirshfeld partitioning:

Hirshfeld, Theoret. Chim. Act. 1977, 44, p129

Density partitioning in general:

$$\rho_A(\mathbf{r}) = w_A(\mathbf{r})\rho_{\text{mol}}(\mathbf{r}) \qquad \sum_A w_A(\mathbf{r}) = 1 \qquad N_A = \int \rho_A(\mathbf{r})d\mathbf{r}$$

Hirshfeld-I partitioning:

$$w_{A}(\mathbf{r}) = \frac{\rho_{0,A}'(|\mathbf{r} - \mathbf{R}_{A}|, N_{A})}{\sum_{B} \rho_{0,B}'(|\mathbf{r} - \mathbf{R}_{B}|, N_{B})} \xrightarrow{\text{CO}_{2} \text{HF/6-31G*}} \\ \rho_{0,A}'(r, N_{A}) = \\ (N_{A} - \lfloor N_{A} \rfloor)\rho_{0,A}'(r, \lfloor N_{A} \rfloor) + \\ (\lceil N_{A} \rceil - N_{A})\rho_{0,A}'(r, \lceil N_{A} \rceil) \xrightarrow{\text{CO}_{2} \text{HF/6-31G*}} \\ (\neg 0 - 1.5 - 1.0 - 0.5 - 0.0 - 0.5 - 1.0 - 1.5 - 2.0 - 0.603 -$$

Bultinck et al., *JCP* **2007**, 126, p144111

O-C-O axis [A]

Other Properties

Hir	shfeld				H	irshfela	-		
Atom	ic multip	ole expa	ansion [a	.u.]					
01 C2 03	c -0.212 0.424 -0.212	dz -0.114 0.0 0.114	qzz 0.036 -1.160 0.036	ozzz 0.506 0.0	01 C2 03	C -0.603 1.206 -0.603	dz 0.217 0.0 -0.217	qzz -0.001 -0.292 -0.001	OZZZ 0.219 0.00 0.0
Pairw	ise atom	ic Coulo	mb inter	action [E	,]		ſſ	$\dot{\rho}_A({f r}) ho_B$	$_{\rm B}({\bf r}')$ $_{\rm loc}$ $_{\rm loc}'$
C2 03	01 -0.771 0.023	C2 -0.771			C2 03	01 -0.783 0.093	C2	$ \mathbf{r}-\mathbf{r} $	$\frac{ \mathbf{r}' }{ \mathbf{r}' }$
Overlap of atomic densities [a.u.]									
62	01	C2	-		62	01	C2	$\int \rho_A($	$\mathbf{r}) ho_B(\mathbf{r})d\mathbf{r}$
03	0.253	0.253			03	0.214 0.004	0.214		
Bond	orders			$\int \int [$	$ ho^{(2)}$ (1	$(\mathbf{r},\mathbf{r}')- ho$	$ ho({f r}) ho({f r}')]$	$w_A(\mathbf{r})w_B$	$_{B}(\mathbf{r}')d\mathbf{r}d\mathbf{r}'$
60	01	C2		JJ	60	01	C2		
03	2.46 0.30	2.46			03	2.08 0.39	2.08		

Why Hirshfeld-I?

Pragmatic reasons (benchmarks on large sets of molecules)

* Charges reproduce the ESP

some small molecules (like CO₂) are exceptions

10% to 20% error on ESP with charges

5% to 10% error on ESP with charges and dipoles

- * Not sensitive to basis set (e.g. diffuse functions)
- * Robust with respect to conformational changes
- * Does not suffer from buried atom problem (like ESP charges)
- * 'Easy' to compute

Conceptual reason

* Hirshfeld-I atoms are very similar to atoms in vacuum

Don't get too enthusiastic! Hirshfeld-I is still just a scheme.

Bultinck et al, *CPL* **2007**, 444, p205 Van Damme et al, *JCTC* **2009**, 5, p334 Catak et al, *JOC* **2010**, 75, p4530

Atoms in Molecules

ESP Fitted charges minimize:

$$\chi^2 = \sum_{g=1}^{N_g} w_g \left(V_{\text{AI}}(\mathbf{r}_g) - \sum_{a=1}^{N_a} \frac{q_a}{\|\mathbf{r}_a - \mathbf{r}_g\|} \right)^2 + \text{some penalty}$$

Often used for FF development (e.g. RESP for AMBER)

but ...

1) Buried charges are ill-defined, sensitive to choice of grid

2) Sensitive to conformational changes

because ...

1) Ill-conditioned least-squares system

2) Atomic multipole expansions are truncated after the monopole.

This error is compensated by overfitting the charges.

This is also just a scheme, i.e. one to partition the ESP.

Francl et al, *Rev. Comput. Chem.* **2000**, 14, p1

Computational details

- 1) Random penta alanine conformers
 - * 103 Terminally blocked
 - * 134 Zwitterionic
- 2) B3LYP/6-31Gd geometry optimizations
- 3) MP2/Aug-cc-pVTZ single point computations
- 4) Charges derived with a selection of schemes:
 - * Merz-Kollman
 - * Hirhsfeld-I

Benchmarks

- 1) Comparison of MP2 dipole with charge-derived dipole
- 2) Sensitivity of charges to conformational changes

One limitation observed so far ...

Poor point charge ESP's in very polar systems:

- Zeolites
- Oxide part in metal-organic frameworks

Hirshfeld-I is still young, and needs more testing

Overview

Introduction	Exploring Chemical Compounds Force Field 101 Making Force Fields
Atoms in Molecules	Partitioning of Electron Density Iterative Hirshfeld ESP Fitted charges Benchmarks
The Hydrogen Bond	AIM Application to FF development Charge Transfer Matters!
Split Charge Equilibration	Partitioning of Polarization Split Charges Benchmarks
Harmonic Models	Force Constants & Rest Values

Conclusion

Hirshfeld-I & FF development

Atomic densities (or weight functions) provide...

- 1) Breakdown of the electrostatic interactions
 - MM charges
 - Polarizable FF's (charge equilibration, inducible dipoles)
 - Intermolecular charge-transfer

2) Pauli repulsion ~ overlap of (singlet state) densities

- Overlap of partitioned atoms -> pairwise potentials

3) Bond order in dimers

- Pairwise breakdown of weak covalent bonding

4) Partitioning of linear response

- Changes in charges/dipoles due to external field
 - => Second order parameters in polarizable FF

cfr. WOFF: Rotenberg, B. et al *PRL* **2010**, 104, 138301

 $q_A, d_{A,x}, d_{A,y}, d_{A,z}, \dots$ $\iint \frac{\rho_A(\mathbf{r})\rho_B(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$

 $ho_A({f r})
ho_B({f r})d{f r}$

$$\iint [\rho^{(2)}(\mathbf{r},\mathbf{r}') - \rho(\mathbf{r})\rho(\mathbf{r}')]w_A(\mathbf{r})w_B(\mathbf{r}')d\mathbf{r}d\mathbf{r}'$$

Water dimer

Two scans of the water dimer

- * Both go through optimal geometry
- * PBE/DGTZVP
- * cp. cor. Interaction energies

AIM properties computed at each point

* Charges

AIM pairwise properties

- * Electrostatic interaction
- * Bond orders
- * Pauli Overlap

Electrostatic Interactions

- * Electrostatic interactions OK at long distances
- * Hirshfeld-I dipoles (& multipoles) are needed at short distance.
- * Subtle angular variations are missing

Pauli Repulsion

$$O_{ij} = \int \rho_i(\mathbf{r}) \rho_j(\mathbf{r}) d\mathbf{r}$$

XY overlap = sum of overlap integrals over all pairs X and Y OH-bond overlap = overlap integral for O and H in the HBond only

Pauli Repulsion

- * No effect of lone pairs
- * A*exp(-B*R) is a good approximation
- * OH pair in hydrogen bond has angular overlap dependence

Bond order & charge transfer

- * Electrons go from acceptor H₂O to donor H₂O during HBond formation
- * Charge transfer and Bond order are similar but not identical
- * OH overlap ~ (Bond order)²
- * Large relative fluctuations in charge transfer

Model for the interaction energy

- * Insightful, but still using AIM data from DFT computations.
- * Pairwise repulsion parameters are trivial to extract.
- * Explicit exchange term (~ bond order) is not helpful.
- * Should be combined with EDA (Morokuma) or SAPT

Overview

Introduction	Exploring Chemical Compounds Force Field 101 Making Force Fields
Atoms in Molecules	Partitioning of Electron Density Iterative Hirshfeld ESP Fitted charges Benchmarks
The Hydrogen Bond	AIM Application to FF development Charge Transfer Matters!
Split Charge Equilibration	Partitioning of Polarization Split Charges Benchmarks
Harmonic Models	Force Constants & Rest Values

Conclusion

Dipole Polarizability

Definit	cion:
$P_{\alpha\beta} =$	$rac{\partial d_{lpha}^{(mol)}}{\partial E_{eta}}$

A few examples computed with PBE/DGTZVP:

- water
- benzene
- alaninedipeptide

(values in a.u.)

Definition

Empirical model for the linear response (of the e⁻ density to a change in the external field)

Basic mathematical form is quadratic

$$E = \frac{1}{2}q^{T}J^{(qq)}q + q^{T}J^{(qd)}d + \frac{1}{2}d^{T}J^{(dd)}d$$

$$+q^{T}x^{(q)} + d^{T}x^{(d)}$$

$$+q^{T}\Delta V_{\text{ext}} + d^{T}\Delta E_{\text{ext}}$$
e.g. $J_{ij}^{(qq)} = \frac{1}{r_{ij}}$

Partitioning of Induced Dipole Moment

Krishtal et al, *JCP* **2006**, 125, p034312.

Partitioning of Induced Dipole Moment

Charge co	ontributi	on to Ρ _{αβ}	Dipole co	ntributi	on to $P_{_{\mathfrak{a}\beta}}$
[0	0	0]	[4.28	0	0]
[0	6.8	0]	[0	1.39	0]
[0	0	4.92]	[0	0	1.86]
[70.13	-0.03	0]	[7.14	0.01	0.03]
[0.34	70.38	0]	[-0.45	7.1	-0.05]
[0.05	0.51	0]	[-0.03	-0.54	34.16]
[101.7	2.63	-0.14]	[21.68	1.61	-1.22]
[2.63	69.05	-12.97]	[0.97	20.58	7.73]
[-0.17	-12.9	45.07]	[-1.04	7.62	28.78]

7

Electronegativity Equalization Method (EEM)

Mathematical form for the 'Electronic energy'

$$E_{\text{EEM}} = \left(\sum_{i} \chi_{i} q_{i} + \frac{1}{2} \eta_{i} q_{i}^{2}\right) + \left(\frac{1}{2} \sum_{i,j \neq i} \frac{q_{i} q_{j}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}\right) + \left(\sum_{i} V_{\text{ext}}(\mathbf{r}_{i}) q_{i}\right)$$

Variables: q_i Parameters: $\chi_i, \eta_i, \overline{r}_i$

Charges minimize E_{EEM} (with total charge constraint)

$$\frac{\partial E_{\text{EEM}}}{\partial q_i} = \sum_i \left(\chi_i + V_{\text{ext}}(\mathbf{r}) + \eta_i q_i + \sum_{j \neq i} \frac{q_j}{|\mathbf{r}_i - \mathbf{r}_j|} \right) = \chi_{\text{mol}}$$

Mortier, W.; Ghosh, S.; Shankar, S. JACS 1986, 108, 4315-4320.

Split Charge Equilibration

Superlinear Scaling of Polarizability

Warren et al, *JCP* **2008**, 128, p144110

Split Charge Equilibration

Electronic energy (EEM)

$$E_{\text{EEM}} = \frac{1}{2}q^T J q + x^T q \quad \text{with} \quad \sum_i q_i = 0$$
$$J_{ij} = \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \quad \text{when} \quad i \neq j$$
$$J_{ii} = \eta_i$$
$$x_i = \chi_i + V_{\text{ext}}(\mathbf{r}_i)$$

Second order contributions

Electronic energy (EEM)

$$E_{\text{EEM}} = \frac{1}{2} p^T T^T J T p + x^T T p \quad \text{with} \quad q = T p$$
$$J_{ij} = \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \quad \text{when} \quad i \neq j$$
$$J_{ii} = \eta_i$$
$$x_i = \chi_i + V_{\text{ext}}(\mathbf{r}_i)$$

Second order contributions

Electronic energy (SQE)

$$E_{SQE} = \frac{1}{2}p^T T^T J T p + \frac{1}{2}p^T J' p + x^T T p \quad \text{with} \quad q = T p$$
$$J_{ij} = \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \quad \text{when} \quad i \neq j \qquad J'_{kl} = \delta_{kl} \kappa_k \quad \text{bond hardness}$$
$$J_{ii} = \eta_i$$
$$x_i = \chi_i + V_{ext}(\mathbf{r}_i)$$

Second order contributions

hardness parameters

coulomb interaction

Nistor et al, *JCP* **2006**, 125, p094108

Superlinear Scaling of Polarizability

Warren et al, *JCP* **2008**, 128, p144110

SQE/EEM calibration for organic systems

Training set

- * 500 small organic molecules
- * Algorithmic selection from Pubchem
 - maximized diversity
 - constraints on atom types and number of atoms

Calibration of EEM/SQE in 12 different ways

- * 3 charge schemes: Mulliken, Natural, Hirshfeld-I
- * 2 atom types: elements & elements+number of bonds
- * 2 cost functions: with and without linear response data

Conclusions (limited to small molecules)

- * SQE outperforms EEM in all tests
- * Cross validation confirms transferability of parameters
- * Hirshfeld-I based calibrations are most useful
- * SQE model gives good dipole polarizabilities

Verstraelen, T et al JCP 2009, 131, p044127

SQE/EEM calibration for organic systems

Comparison of dipole polarizability eigenvalues

(500 small organic molecules)

Verstraelen, T et al *JCP* **2009**, 131, p044127

Split Charge Equilibration

Charged molecules (and zwitter ions) are problematic.

$$NH_{3}^{+} - CH_{2} - CH_{2}$$

SQE model:
$$q = Tp$$

 \rightarrow electronegativities of endpoints depend on chain length

Charged molecules (and zwitter ions) are problematic.

$$NH_{3}^{+} - CH_{2} - CH_{2}$$

Better choice (for transferable parameters): $q = Tp + q_0$

→ More parameters. How to model the reference charges?

Overview

Introduction	Exploring Chemical Compounds Force Field 101 Making Force Fields
Atoms in Molecules	Partitioning of Electron Density Iterative Hirshfeld ESP Fitted charges Benchmarks
The Hydrogen Bond	AIM Application to FF development Charge Transfer Matters!
Split Charge Equilibration	Partitioning of Polarization Split Charges Benchmarks
Harmonic Models	Force Constants & Rest Values

Conclusion

Mathematical form

$$E_{\text{harm}} = \frac{1}{2} \sum_{i=1}^{N_q} \sum_{j=1}^{N_q} K_{ij} (q_i - q_i^{(0)}) (q_j - q_j^{(0)})$$

where q_i are a series of internal coordinates (distances, angles, ...)

Purpose of the harmonic model

- Reproduce geometries and vibrational frequencies
- To be included in FF model, next to electrostatics and others
- Should represent the covalent interactions

Traditional approach to get parameters

- set $q_i^{(0)}$ to the internal coordinates of a QM/XRD optimized structure
- Invert the QM Hessian, i.e. find **a** solution for

$$\frac{\partial^2 E^{(\text{QM})}}{\partial x_k \partial x_l} = H_{kl} = \sum_{i=1}^{N_q} \sum_{j=1}^{N_q} K_{ij} \frac{\partial q_i}{\partial x_k} \frac{\partial q_j}{\partial x_l} \qquad \text{or} \qquad H = J^T K J$$

Ermoshin et al, *Chem. Phys.* **1996**, 202, p53

Valence Force Fields

The Harmonic Model (2)

Problems with the traditional approach

- * **Not optimal:** which Jacobian inverse is best?
- * **Not optimal:** it is common to neglect many cross terms
- * One assumes that other terms (electrostatics, ...) do not affect geometry ⇒ requires 1-2, 1-3 or 1-4 exclusion rules

However ...

- * 1-2, 1-3 and 1-4 electrostatics are real
- * For EEM or SQE, all electrostatic terms must be present

Calibration of valence parameters must be reinvented!

- * Turns out to be more complicated than expected
- * Demo with a 2T silica cluster
- * QM training data
 - PBE/DGTZVP

 - geometry optimization
 - frequency computation

142.493°

Bare-bones FF model for 2T

Valence Part (without cross terms)

Harmonic bond stretch terms: Si-H; Si-O

$$\frac{1}{2}K_b\left(d-d_b^{(0)}\right)^2$$

Harmonic Cosine terms: H-Si-H, H-Si-O, Si-O-Si

$$\frac{1}{2}K_a \left(\cos(\alpha) - \cos\left(\alpha_a^{(0)}\right) \right)^2$$
Electrostatics
Fixed charge transfer: Si-H, Si-O

$$\frac{1}{2}\sum_{i\neq j}\frac{q_i q_j}{r_{ij}}$$

(with or without exclusion rules, both cases will be considered)

Charge transfers are ESP-fitted: $q_{Si-H} = -0.118e q_{Si-H} = -0.229e$

Method A

Traditional approach

* Force constants

- Use Moore-Penrose inverse of Jacobian.
- Neglect cross terms.
- * Rest values
 - Optimal internal coordinates
- * 1-3 exclusion lists (bonds and bends are excluded)

Fitted parameters

- * Numbers in red are compromises
- * Many significant off-diagonal K_{ii} (mainly H-Si-H)

C : 11	Force constant	Rest value
SI-H	1636.7 KJ MOL ' A '	1.50 A
Si-O	2876.1 kJ mol ⁻¹ Å ⁻²	1.67 Å
H-Si-H	344.0 kJ mol ⁻¹	109.38 °
H-Si-O	265.2 kJ mol ⁻¹	109.56 °
Si-O-Si	159.0 kJ mol ⁻¹	142.49 °

Results for Method A

Optimized internal coordinates

Si-O-Si	angle	125.055 °
Si-O	bond	1.655 Å

Comments

- Si-O-Si angle is wrong due to 1-4 and 1-5 electrostatics
- FF Spectrum is reasonable
- Only way to improve is "trial and error"

Method B

Least-squares approach

No Exclusion lists

1) Guess force constants: 'approximate' least-squares fit

$$\frac{\partial^2 E^{(\text{QM})}}{\partial x_k \partial x_l} = \frac{\partial^2 E^{(\text{ES})}}{\partial x_k \partial x_l} + \sum_{i=1}^{N_q} K_{ii} \frac{\partial q_i}{\partial x_k} \frac{\partial q_i}{\partial x_l}$$

2) Rest values: least squares fit of (zero gradient)

$$0 = \frac{\partial E^{(\text{QM})}}{\partial x_k} = \frac{\partial E^{(\text{ES})}}{\partial x_k} + \sum_{i=1}^{N_q} K_{ii}(q_i - q_i^{(o)}) \frac{\partial q_i}{\partial x_k}$$

3) Redo force constants: 'correct' least-squares fit

$$\frac{\partial^2 E^{(\text{QM})}}{\partial x_k \partial x_l} = \frac{\partial^2 E^{(\text{ES})}}{\partial x_k \partial x_l} + \sum_{i=1}^{N_q} K_{ii} \frac{\partial q_i}{\partial x_k} \frac{\partial q_i}{\partial x_l} + \sum_{i=1}^{N_q} K_{ii} (q_i - q_i^{(0)}) \frac{\partial^2 q_i}{\partial x_k \partial x_l}$$

Least-squares approach

After step 2:

	Force constant	Rest value
Si-H	1664.3 kJ mol ⁻¹ Å ⁻²	1.51 Å
Si-O	2713.8 kJ mol ⁻¹ Å ⁻²	1.70 Å
H-Si-H	287.9 kJ mol ⁻¹	140.69 °
H-Si-O	374.7 kJ mol ⁻¹	131.95 °
Si-O-Si	24.6 kJ mol ⁻¹	23.12 °

Traditional f.c.'s			
Si-O	1636.7		
Si-O	2876.1		
H-Si-H	344.0		
H-Si-O	265.2		
Si-O-Si	159.0		

- * Poor rest values for angles
- * Bending f.c.'s change a lot
- * Bond rest values increase to compensate electrostatics

Least-squares approach

After step 3:

	Force constant	Rest value
Si-H	1659.2 kJ mol ⁻¹ Å ⁻²	1.51 Å
Si-O	2709.9 kJ mol ⁻¹ Å ⁻²	1.70 Å
H-Si-H	172.6 kJ mol ⁻¹	140.69 °
H-Si-O	250.3 kJ mol ⁻¹	131.95 °
Si-O-Si	0.0 kJ mol ⁻¹	23.12 °

Traditional f.c.'s	
Si-O	1636.7
Si-O	2876.1
H-Si-H	344.0
H-Si-O	265.2
Si-O-Si	159.0

* This step is supposed to fine-tune the f.c.'s, but...* Bending f.c.'s values do not become more realistic.

In general: parameters are not encouraging

Results for Method B(2)

Optimized internal coordinates

Si-O-Si	angle	108.204 °
Si-O	bond	1.668 Å

Comments

- Si-O-Si angle is wrong because a small error in the gradient along a low modes causes a large error in geometry
- Bond length is better
- FF Spectrum is worse

Results for Method B(3)

Optimized internal coordinates

Si-O-Si	angle	180.00 °
Si-O	bond	1.666 Å

Comments

• Pfff...

Improved least-squares approach

- * Still no exclusion lists
- * Try to fix all the issues encountered in B

Problem 1: the computation of the Cartesian gradient is a projection

N_a derivatives of FF energy terms \rightarrow 3N-6 independent

⇒ rest values for H-Si-H and H-Si-O are ill-defined

6 angles 5 independent

Improved least-squares approach

- * Still no exclusion lists
- * Try to fix all the issues encountered in B

Problem 1: the computation of the Cartesian gradient is a projection

N_a derivatives of FF energy terms \rightarrow 3N-6 independent

⇒ rest values for **H-Si-H** and **H-Si-O** are ill-defined

6 angles 5 independent

(paper in preparation)

Improved least-squares approach

- * Still no exclusion lists
- * Try to fix all the issues encountered in B

Problem 2: gradient along low modes should be more accurate

Solution: use a transformed gradient in LS fit, as follows

 $\Delta X = H_{\rm QM}^{-1}G$

Related transformation for Hessian fit:

$$H' = H_{\rm QM}^{-\frac{1}{2}} H H_{\rm QM}^{-\frac{1}{2}}$$

Improved least-squares approach

- * Still no exclusion lists
- * Try to fix all the issues encountered in B

Problem 3: not entirely optimal

The last step (3) should optimize all parameters with one total cost function

$$X_{\text{total}} = \frac{X_{\text{grad}} + \lambda_1 X_{\text{hess}}}{1 + \lambda_1} + \lambda_2 X_{\text{penalty}}$$

λ₂ can be set relatively high, does not hurt
 λ₁ must be scanned over a few orders of magnitude:
 * Good compromise between X_{grad} and X_{hess}
 * Low condition number

Tuning $\lambda 1$ in Method C

(paper in preparation)

Slide 63/69

Parameters for Method C

Traditional approach (method A)

	Force constant	Rest value
Si-H	1636.7 kJ mol ⁻¹ Å ⁻²	1.50 Å
Si-O	2876.1 kJ mol ⁻¹ Å ⁻²	1.67 Å
H-Si-H	344.0 kJ mol ⁻¹	109.38°
H-Si-O	265.2 kJ mol ⁻¹	109.56 °
Si-O-Si	159.0 kJ mol ⁻¹	142.49 °

Results for Method C

Optimized internal coordinates

Si-O-Si	angle	143.146 °
Si-O	bond	1.663 Å

Comments

- Best so far
- To improve further:
 - 1. Cross terms
 - 2. Improved electrostatics (e.g. atomic dipoles)
 - 3. Inclusion of repulsion (and dispersion)

There is more...

Implemented (FFit2 Code), but not demonstrated in the 2T example

- * Use Hessian & gradient data from a large set of molecules
- * Use charge equilibration models for the electrostatics
- * Account for repulsion/dispersion terms calibrated earlier
- * Possibility to ignore parts of molecules (e.g. weird terminations)

Application to MIL-53

Cell optimization

 * Experimental (HT phase): Loiseau et al, Chem. Eur. J. 2004, 10, p1373 a=16.675 Å b=6.609 Å c=12.813 Å
 * Cell optimization with FF a=16.120 Å b=7.417 Å c=13.093 Å

Testing sets of dispersion parameters to reproduce breathing

Closed form (LT)

Conclusion

Major advances in FF's calibration are on the way!

Atoms in Molecules	Iterative Hirshfeld is a very neat partitioning scheme: - Robust (conformational, basis) - ESP is OK - AIM very similar to isolated atoms
The Hydrogen Bond	AIM → FF parameters without fitting e.g. Charge Transfer in Hydrogen Bond (cfr. work Morokuma)
Split Charge Equilibration	e- Linear Response is ruled by charges SQE fixes polarizability scaling in EEM SQE only good for locally neutral systems
Harmonic Models	Improved calibration scheme → Accurate models, without manual tweaking

Acknowledgements

Software used: Gaussian09, HiPart, FFit2, Yaff, Python, VMD, POVRay

MIL-53: L. Vanduyfhuys

Funding: Fund for Scientific Research - Flanders (FWO), the Research Board of Ghent University (BOF) and BELSPO in the frame of IAP/6/27, European Research Council under the European Community's Seventh Framework Programme (FP7(2007-2013) ERC grant agreement number 240483).

Computing facilities: Ghent University (Stevin Supercomputer Infrastructure).