
Possibilistic Answer Set Programming Revisited

Kim Bauters∗, Steven Schockaert†

Dept. of Applied Mathematics
and Computer Science

Universiteit Gent
Krijgslaan 281

9000 Gent, Belgium

Martine De Cock‡

Institute of Technology
University of Washington

1900 Commerce Street
WA-98402 Tacoma, USA

Dirk Vermeir
Dept. of Computer Science
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

Abstract

Possibilistic answer set programming (PASP)
extends answer set programming (ASP) by
attaching to each rule a degree of certainty.
While such an extension is important from
an application point of view, existing seman-
tics are not well-motivated, and do not al-
ways yield intuitive results. To develop a
more suitable semantics, we first introduce
a characterization of answer sets of classi-
cal ASP programs in terms of possibilistic
logic where an ASP program specifies a set of
constraints on possibility distributions. This
characterization is then naturally generalized
to define answer sets of PASP programs. We
furthermore provide a syntactic counterpart,
leading to a possibilistic generalization of the
well-known Gelfond-Lifschitz reduct, and we
show how our framework can readily be im-
plemented using standard ASP solvers.

1 Introduction

Answer set programming (ASP) is a form of declara-
tive programming based on the stable model seman-
tics (Gelfond and Lifzchitz, 1988). ASP has proven
successful as an elegant formalism for commonsense
reasoning in discrete domains and to encode combi-
natorial problems in a purely declarative way. Possi-
bilistic logic (PL), introduced in (Dubois et al., 1994),
emanated from possibility theory (Zadeh, 1978) and
offers a sound and complete logic system for repre-
senting (partial) ignorance or uncertainty in a non-
probabilistic way.

Possibilistic answer set programming (PASP) (Nicolas
et al., 2006) unites ASP and PL and provides a single

∗Funded by a joint FWO project.
†Postdoctoral fellow of the FWO.
‡On leave from Universiteit Gent.

framework that supports declarative programming un-
der uncertainty. In PASP, a certainty value is attached
to each rule of an ASP program. The certainty of a
particular conclusion of that program is then given by
the lowest certainty of the rules that were used, i.e. the
strength of a conclusion is determined by the weakest
piece of information involved. However, for programs
containing negation-as-failure, the semantics proposed
in (Nicolas et al., 2006) often lead to counterintuitive
results. For example, consider the PASP program P1:

1: concertBooked ← (1)

1: longDrive ← concertBooked ,not canceled (2)

0.2: canceled ← . (3)

This program encodes that we are certain that we
booked a concert and we are certain that we have a
long drive ahead of us, unless the concert is canceled.
The last rule encodes that the concert is indeed can-
celled, although this information comes from an unre-
liable source, hence a low certainty degree is attached
to this rule.

The approach from (Nicolas et al., 2006) consists
of first determining the classical answer sets, ignor-
ing the certainty values, and subsequently adding
certainties to atoms in these answer sets based on
which rules are needed to support them. The pro-
gram above only has one classical answer set, namely
{concertBooked, canceled}. After adding the cer-
tainty degrees, we find the possibilistic answer set{

concertBooked1 , canceled0 .2
}

indicating that we are entirely certain that we booked
the concert and that we are somewhat certain that the
concert is canceled. As such, we lose the valuable in-
formation that the certainty of the third rule is limited,
and thus completely ignore the second rule. Nonethe-
less, it seems desirable to derive that longDrive may
hold, with some limited certainty, unless it is com-
pletely certain that we can prove canceled. The intu-
itive meaning of ‘not a’ is then given by “unless it is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55867794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

certain that ‘a’ holds”. However, this behavior cannot
be obtained by adding weights to classical answer sets.

In this paper we take a principled approach to un-
cover an appropriate semantics for PASP. To this end,
we first reveal an important link between ASP and
PL, leading to a novel characterization of the stable
model semantics. In this characterization, the rules
of an ASP program impose constraints on possibility
distributions. The possibility distributions that satisfy
all these constraints then correspond with the answer
sets of the original ASP program. This characteriza-
tion is then extended in a natural way to cover PASP
programs. The resulting semantics will be such that
the unique possibilistic answer set of Pintro is given by{

concertBooked1 , longDrive0 .8 , canceled0 .2
}
.

Because our certainty that the concert is canceled is
so low, i.e. because we have failed to prove with a high
certainty that the concert is canceled, we still derive
with a reasonably high certainty that we have a long
drive ahead of us.

The remainder of this paper is structured as follows.
In Section 2 we start by introducing some background
on ASP, PL and PASP. Subsequently, in Section 3 we
investigate the links between ASP and PL, leading
to an alternative definition of answer sets, in terms
of possibilistic logic. Next, we extend this definition
in Section 4 to the general case of possibilistic ASP. Be-
cause these definitions are formulated at the semantic
level, they cannot readily be implemented. To cope
with this, we present a syntactic counterpart in Sec-
tion 5, introducing a possibilistic generalization of the
Gelfond-Lifschitz reduct. In Section 6 we then demon-
strate how possibilistic answer sets can be computed
using existing ASP solvers, thus verifying the appli-
cability of our new approach. Finally, we provide an
overview of related work and present some conclusions.

2 Preliminaries

2.1 Answer Set Programs (ASP)

Let A be a finite set of atoms. We also consider the
special atom > (or true). A naf-atom is an atom pre-
ceded by not which we call negation-as-failure. Intu-
itively, not a is true when we cannot prove a.

A normal rule is an expression of the form a0 ←
a1, ..., am, not am+1, ..., not an with ai, 0 ≤ i ≤ n,
an atom of A. We call a0 the head of the rule and
a1, ..., am, not am+1, ..., not an the body of the rule. If
no occurrences of not appear in a rule (i.e. m = n), the
rule is called definite. A normal (resp. definite) pro-
gram P is a finite set of normal (resp. definite) rules.
A rule of the form a0 ← is called a fact and is used as

a shorthand for a0 ← >. The Herbrand base BP of a
normal program P is the set of atoms appearing in P .
An interpretation I of P is any set of atoms I ⊆ BP .
The set of interpretations Ω of a normal program P is
given by 2BP .

The satisfaction relation |= is defined for an interpre-
tation I as I |= a iff a = > or a ∈ I. For an inter-
pretation I and A a set of atoms, we define I |= A iff
∀a ∈ A · I |= a. An interpretation I is a model of a
definite rule r = a0 ← a1, ..., am, denoted I |= r, if
I |= a0 or I 6|= {a1, ..., am}. An interpretation I of a
definite program P is a model of P iff ∀r ∈ P · I |= r.

Answer sets are defined using the immediate conse-
quence operator TP of a definite program P , defined
for a set of atoms I as:

TP (I) = I ∪ {a0 | (a0 ← a1, ..., am) ∈ P
∧ (I |= {a1, ..., am})}

We use P ? to denote the fixpoint which is obtained
by repeatedly applying TP starting from the empty
interpretation, i.e. the least fixpoint of TP w.r.t. set
inclusion. An interpretation I is called an answer set
of a definite program P iff I = P ?. Answer sets of nor-
mal programs are defined using the Gelfond-Lifschitz
reduct P I of a normal program P and interpretation
I, defined as

P I ={a0 ← a1, ..., am | ({am+1, ..., an} ∩ I = ∅)
∧ (a0 ← a1, ..., am, not am+1, ..., not an) ∈ P}.

An interpretation I is then called an answer set of the
normal program P iff

(
P I

)?
= I, i.e. if I is the answer

set of the reduct P I .

2.2 Possibilistic Logic

At the semantic level, possibilistic logic is defined in
terms of a possibility distribution π on the universe of
interpretations, i.e. an Ω → [0, 1] mapping which en-
codes for each interpretation, or possible world, I to
what extent it is plausible that I is the actual world.
Intuitively, π(I) represents the compatibility of the in-
terpretation I with available information. By conven-
tion, π(I) = 0 means that I is impossible and π(I) = 1
means that nothing prevents I from being true in the
real world. Note that possibility degrees are mainly
interpreted qualitatively: when π(I) > π(I ′), I is con-
sidered more plausible than I ′.

A possibility distribution π induces two uncertainty
measures. The possibility measure Π is defined by

Π(p) = max {π(I) | I |= p}

and evaluates the extent to which a proposition p is
consistent with the beliefs expressed by π. The dual

necessity measure N is defined by

N(p) = 1−Π(¬p)

and evaluates the extent to which a proposition p is
entailed by the available beliefs (Dubois et al., 1994).
An important property of necessity measures is min-
decomposability: N(p ∧ q) = min(N(p), N(q)) for all
propositions p and q.

At the syntactic level, a possibilistic knowledge base
consists of pairs (p, c) where p is a proposition and
c ∈ [0, 1] expresses the certainty that p is the case. A
formula (p, c) is interpreted as the constraintN(p) ≥ c.
A possibilistic knowledge base Σ thus corresponds to
a set of constraints on possibility distributions. Typi-
cally, there will be many possibility distributions that
satisfy these constraints. In practice, we are usually
only interested in those that make minimal commit-
ments, called the least specific possibility distributions.
Formally, a possibility distribution π is a least specific
possibility distribution compatible with Σ if there is
no possibility distribution π′ with π′ 6= π compatible
with Σ, such that ∀I ∈ Ω ·π′(I) ≥ π(I). Thus the least
specific possibility distribution is the least informative
possibility distribution.

In the remainder of this paper, we assume that all cer-
tainty weights are taken from a finite subset C of [0, 1].

2.3 Possibilistic ASP (PASP)

PASP combines ASP and possibility theory by associ-
ating a necessity value with atoms and rules. A val-
uation is a function V : A → C. The intuition is
that for an atom a ∈ A, V (a) = c means that we
can derive with certainty c that is a is true. For
notational convenience, we also use the set notation
V = {ac , . . .}. In accordance with this set notation,
we write V = ∅ to denote the valuation in which each
atom is mapped to 0. For c ∈ C and a valuation
V , we use V c to denote the classical interpretation
V c = {a | a ∈ A, V (a) ≥ c}. We use V c to denote the
classical interpretation V c = {a | a ∈ A, V (a) > c},
i.e. those atoms for which we can derive with cer-
tainty strictly greater than c that they are true. A
possibilistic normal (resp. definite) program is a set
of pairs p = (r, n(r)) with r a normal (resp. defi-
nite) rule and n(r) ∈ C a certainty associated with
r. We write a pair p = (r, n(r)) with r = a0 ←
a1, ..., am, not am+1, ..., not an as:

n(r): a0 ← a1, ..., am, not am+1, ..., not an.

The c-cut Pc of a possibilistic normal program P with
c ∈ C is defined as

Pc = {(r, n(r)) | (r, n(r)) ∈ P ;n(r) ≥ c} .

Similar as for classical definite programs, the unique
answer set of a possibilistic definite program can be
found using a syntactic transformation based on a fix-
point operator.

Definition 1. Let P be a possibilistic definite program
and V a valuation. The immediate consequence oper-
ator TP is defined for c ∈ C as:

TP (V)(a0) = max{c |V c |= a1, ..., am

∧ (a0 ← a1, ..., am) ∈ Pc}

The immediate consequence operator from Definition 1
is equivalent to the one proposed in (Nicolas et al.,
2006), although our formulation is slightly different.

We use P ? to denote the fixpoint obtained by repeat-
edly applying TP starting from the minimal valuation
V = ∅, i.e. the least fixpoint of TP w.r.t. set inclusion.
A valuation V is called an answer set of a possibilistic
definite program if V = P ?.

Answer sets of possibilistic normal programs are de-
fined using a reduct. In (Nicolas et al., 2006) the
reduct PA of a possibilistic normal program P and
a set of atoms A is defined as

PA ={((a0 ← a1, ..., am), n(r)) | (r, n(r)) ∈ P
∧ r = a0 ← a1, ..., am, not am+1, ..., not an

∧ {am+1, ..., an} ∩A = ∅}. (4)

A valuation V is then called an answer set of the pos-

sibilistic normal program P iff
(
P (V 0)

)?

= V , i.e. if V

is the answer set of the reduct P (V 0).

3 Possibilistic semantics of ASP

In this section we introduce a new characterization
of classical answer sets using possibility theory. Al-
though many equivalent definitions have already been
proposed (Lifschitz, 2008), studying alternative defini-
tions often leads to new insights. In particular, as we
will see in the next section, our possibilistic approach
to ASP can be naturally generalized to PASP.

The core of our idea is to translate a normal pro-
gram to a set of constraints on possibility distribu-
tions. The least specific possibility distributions that
are compatible with these constraints will then cor-
respond to the answer sets of the program. For ex-
ample, a fact of the form ‘a0 ←’ expresses the con-
straint that only interpretations in which ‘a0’ is true
should be possible. More precisely, the rule ‘a0 ←’ im-
poses the constraint N(a0) ≥ N(>) where N(>) = 1
by definition, i.e. it is necessarily the case that a0 is
true. Similarly, a rule such as ‘a0 ← a1’ translates

to the constraint N(a0) ≥ N(a1): a0 is at least as
certain as a1. Finally, a rule ‘a0 ← a1, ..., am’ trans-
lates to N(a0) ≥ N(a1 ∧ ... ∧ am) which is equivalent
to N(a0) ≥ min(N(a1), ..., N(am)) due to the min-
decomposability property of necessity measures.

Definition 2. Let P be a definite program and π :
Ω → [0, 1] a possibility distribution. For every r ∈ P ,
the constraint γ(r) imposed by r = (a0 ← a1, ..., am)
is given by

N(a0) ≥ min(N(a1), ..., N(am)).

Let CP = {γ(r) | r ∈ P} be the set of constraints im-
posed by program P . If π satisfies the constraints in
CP , π is said to be a possibilistic model of CP , writ-
ten π |= CP . A possibilistic model of CP will also be
called a possibilistic model of P . We write SP for the
set of all least specific possibilistic models of P , i.e. for
π ∈ SP there is no possibilistic model π′ 6= π of P such
that ∀I ∈ Ω · π′(I) ≥ π(I).

Proposition 1. Let P be a definite program. If π ∈
SP then M = {a | N(a) = 1, a ∈ BP } is an answer set
of P .

Proposition 2. Let P be a definite program. If M is
an answer set of P then the possibility distribution π
defined by π(I) = 1 iff M ⊆ I and π(I) = 0 otherwise
is contained in SP .

Note that because definite programs always have ex-
actly one answer set, it follows that SP is a singleton.

Now we take a closer look at programs with negation-
as-failure. Intuitively not b is true if we have no proof
for b. However, the proof for b may depend on other
naf-atoms whose truth value, in turn, depends on b.
To cope with this, the characterization of answer sets
in terms of the Gelfond-Lifschitz reduct involves a
guess: first, we guess for each naf-atom not b whether
a proof for b will be found and subsequently we verify
whether our guess was correct. In our possibilistic ap-
proach, a similar strategy is possible. Specifically, for
each naf-atom not b we guess with what certainty we
will not find a proof for b, i.e. we guess the value of
1−N(b) = Π(¬b), for N and Π the necessity and possi-
bility measures induced by a least specific possibilistic
model of P . Intuitively, g(b) reflects the certainty that
“it is consistent to assume that b is not true’.

Definition 3. Let P be a normal program and
let g be a mapping from BP to [0, 1]. For every
r ∈ P , the constraint γg(r) induced by r = (a0 ←
a1, ..., am, not am+1, ..., not an) and g is given by

N(a0) ≥ min (N(a1), ..., N(am), g(am+1), ..., g(an)) .
(5)

C(P,g) = {γg(r) | r ∈ P} is the set of constraints im-
posed by program P and g, and S(P,g) is the set of all
least specific possibilistic models of C(P,g).

Before we prove the correspondence between the an-
swer sets of P and the possibility distributions in
S(P,g), we illustrate the intuition in the following ex-
ample.

Example 1. Consider the program P with the rules

a← b← b c← a, not b.

The set of constraints C(P,g) is given by

N(a) ≥ N(>) = 1

N(b) ≥ N(b)

N(c) ≥ min (N(a), g(b)) .

We can rewrite the first constraint as 1 − Π(¬a) ≥ 1
and thus Π(¬a) = 0. The second constraint is always
satisfied and can be dropped. The last constraint can be
rewritten as Π(¬c) ≤ 1−min(1− Π(¬a), g(b)), which
imposes an upper bound on the value that Π(¬c) can
assume. This inequality can be further simplified since
we already concluded that Π(¬a) = 0. Hence we have
Π(¬c) ≤ 1−min(1−0, g(b)) = 1−g(b). In conclusion,
the program imposes the constraints

Π(¬a) = 0 Π(¬c) ≤ 1− g(b).

The set S(P,g) contains exactly one element, which is
defined by

π({a, b, c}) = 1 π({b, c}) = 0

π({a, b}) = 1− g(b) π({b}) = 0

π({a, c}) = 1 π({c}) = 0

π({a}) = 1− g(b) π({}) = 0.

Note that this possibility distribution is independent of
the choice for g(a) and g(c) since there are no occur-
rences of not a and not c in P . In particular, we can
now establish for which choices of g(b) it holds that
g(b) = Π(¬b):

g(b) = Π(¬b) = max {π(I) | I |= ¬b} = 1

and thus we have that π({a, b}) = π({a}) = 0.

To find out whether a, b and c are necessarily true
(i.e. belong to the corresponding answer set), we need
to verify whether N(a) = 1, for N the necessity mea-
sure induced by this particular least specific possibil-
ity distribution π. We have N(a) = 1 − Π(¬a) = 1,
N(c) = 1−Π(¬c) = 1 and N(b) = 1−Π(¬b) = 0. The
unique answer set of P is therefore {a, c}.
Proposition 3. Let P be a normal program and let g
be a mapping from BP to [0, 1]. Let π ∈ S(P,g) be such
that

∀a ∈ BP · g(a) = Π(¬a) (6)

and that

∀a ∈ BP ·N(a) ∈ {0, 1} (7)

then M = {a | N(a) = 1, a ∈ BP } is an answer set of
the normal program P .

Proposition 4. Let P be a normal program. If M
is an answer set of P , there is a mapping g from BP
to [0, 1] and a possibility distribution π ∈ S(P,g) such
that ∀a ∈ BP · g(a) = Π(¬a), ∀a ∈ M ·N(a) = 1 and
∀a ∈ (BP \M) ·N(a) = 0.

4 Semantics of possibilistic ASP

In the previous section we have introduced a possibilis-
tic semantics for ASP. These semantics can easily be
extended to the case of PASP. Consider a rule of the
form

n(r): a0 ← a1 , ..., am ,not am+1 , ...,not an

we have already discussed that a0 ←
a1, ..., am, not am+1, ..., not an imposes a set of
restrictions on the possibility distribution. Intuitively,
the certainty of the head a0 depends both on the
certainty that the body is true and the certainty that
the rule is actually valid. The former certainty can
be calculated as for normal rules, and is given by
the right-hand side of (5). The latter certainty is
explicitly asserted to be n(r). Because the necessity
of a conjunctive statement is equal to the minimum
of the necessities of its conjuncts, we arrive at the
following semantics.

Definition 4. Let P be a possibilistic normal pro-
gram and g a mapping from BP to [0, 1]. For every
p ∈ P , the constraint γg(p) induced by p = (r, n(r))
with r = (a0 ← a1, ..., am, not am+1, ..., not an) and g
is given by

N(a0) ≥ min(N(a1), ..., N(am),

g(am+1), ..., g(an), n(r)).

C(P,g) = {γg(p) | p ∈ P} is the set of constraints im-
posed by program P , and S(P,g) is the set of all least
specific possibilistic models of C(P,g).

We can now easily generalize the characterization from
Section 3 to define the semantics of possibilistic normal
programs.

Definition 5. Let P be a possibilistic normal program
and let g be a mapping from BP to [0, 1]. Let π ∈ S(P,g)

be such that

∀a ∈ BP · g(a) = Π(¬a)

then V =
{
aN (a) | a ∈ BP

}
is called a possibilistic an-

swer set of P .

This natural generalization of our characterization of
classical answer sets precisely captures the intuition
that ‘not a’ should be interpreted as “it cannot be
established that a is certain”, as illustrated in the next
example.

Example 2. Consider program P1 from Section 1.
For compactness, we use cB to denote concertBooked,
lD to denote longDrive and can to denote canceled.
The set of constraints C(P1,g) is given by

N(cB) ≥ min (N(>), 1)

N(lD) ≥ min (N(cB), g(can), 1)

N(can) ≥ min (N(>), 0.2) .

We know that N(>) = 1. Hence the first con-
straint can be rewritten as N(cB) = 1 or equivalently
Π(¬cB) = 0. Since N(cB) = 1, the second constraint
can be simplified to Π(¬lD) ≤ 1 − g(can). The last
constraint can be simplified to Π(¬can) ≤ 0.8. The
program thus imposes the constraints

Π(¬cB) = 0

Π(¬lD) ≤ 1− g(can)

Π(¬can) ≤ 0.8.

The set S(P1,g) contains just one element defined by

π({cB, lD, can}) = 1 π({lD, can}) = 0

π({cB, lD}) = 0.8 π({lD}) = 0

π({cB, can}) = 1− g(can) π({can}) = 0

π({cB}) = min (0.8, 1− g(can)) π({}) = 0.

We can now establish for which choices of g(can) it
holds that g(can) = Π(¬can) :

g(can) = Π(¬can) = max {π(I) | I |= ¬can} = 0.8

and thus we have π({cB, can}) = π({cB}) = 0.2.
We have N(cB) = 1 − Π(¬cB) = 1, N(lD) = 1 −
Π(¬lD) = 1− 0.2 = 0.8 and N(can) = 1−Π(¬can) =
1 − 0.8 = 0.2. The unique possibilistic answer set of
P1 is therefore

{
cB1 , lD0 .8 , can0 .2

}
.

It is important to note that under the semantics pro-
posed in this paper there is no longer a 1-on-1 mapping
between the classical answer sets of a normal program
and the possibilistic answer sets of that same normal
program with certainty 1 attached to each of the rules.
Indeed, comparing Definition 5 with Proposition 3, we
can see that no equivalent to (7) is imposed for possi-
bilistic answer sets.

Example 3. Consider the normal program with the
single rule a ← not a. This program has no classi-
cal answer sets. Now consider the possibilistic normal
program P with the rule

1: a ← not a.

The set of constraints C(P,g) is given by

N(a) ≥ min(g(a), 1).

This constraint can be rewritten as Π(¬a) ≤ 1− g(a).
The set S(P,g) contains just a single element defined by
π({a}) = 1 and π({}) = 1−g(a). We can now establish
for which choices of g(a) it holds that g(a) = Π(¬a):

g(a) = Π(¬a) = 1− g(a)

and thus π({}) = 0.5. The unique possibilistic answer
set of P is therefore

{
a0 .5

}
. This should come as no

surprise. In classical ASP we are limited to conclu-
sions with absolute certainty, a limitation that we do
not have in PASP. In the same way, one may verify
that the program

1: a ← not b 1: b ← not a

has an infinite number of possibilistic answer sets, i.e.{
ac, b1−c

}
for every c ∈ [0, 1].

5 Possibilistic reduct

In the previous section, we have defined answer sets
for PASP at the semantic level, in terms of possibil-
ity distributions satisfying certain constraints. This
definition is a natural generalization of the characteri-
zation of answer sets in ASP from Section 3, but quite
different from how answer sets are traditionally de-
fined, namely through the Gelfond-Lifschitz reduct.
In this section, we close this gap by introducing a
generalization of the Gelfond-Lifschitz reduct, leading
to a purely syntactic procedure for finding possibilis-
tic answer sets. In contrast to (4), our reduct is de-
fined w.r.t. a valuation and not simply a set of atoms.
Hence, the certainty weights are taken into account
when determining the reduct of a possibilistic normal
program.

Definition 6. Let V be a valuation. The reduct PV

of a possibilistic normal program P is defined as:

PV ={((a0 ← a1, ..., am),min(c1, c2)) | min(c1, c2) > 0

∧ c2 = max{c | {am+1, ..., an} ∩ V 1−c = ∅, c ∈ [0, 1]}
∧ ((a0 ← a1, ..., am, not am+1, ..., not an), c1) ∈ P}.

Note that PV is a possibilistic definite program.

Example 4. Consider the program P1. Let V be a val-
uation such that V =

{
cB1 , lD0 .8 , can0 .2

}
. The first

rule of P1 is found unchanged in (P1)
V

since we only
need to consider the body > which clearly has no naf-
atoms. Hence min(c1, c2) = 1 with c1 = c2 = 1 and

thus (cB ←, 1) ∈ (P1)
V

. A similar line of though can
be followed for the last rule, though this rule can only

be found as (can←, 0.2) ∈ P . Hence min(0.2, 1) = 0.2

and we have that (can ←, 0.2) ∈ (P1)
V

. For the sec-
ond rule, which has a non-empty body, we find that
{can} ∩ V 1−c = ∅ for c ≤ 0.8. We obtain that
min(1, 0.8) = 0.8 and thus that (lD ← cB, 0.8) ∈
(P1)

V
.

Interestingly, the reduct we obtain here is equivalent
to the reduct that has been proposed in (Madridás
and Aciego, 2008) for residuated logic programs, in
the special case where conjunction is modeled us-
ing the minimum. Both approaches are different in
spirit, however, in the same way that possibilistic logic
(which deals with uncertainty or priority) is differ-
ent from Gödel logic (which deals with graded truth).
This formal correspondence with residuated logic pro-
grams is due to the fact that necessity measures are
min-decomposable. As possibilistic logic is not truth-
functional in general, it is easy to see that possibilistic
ASP diverges from residuated logic programming as
soon as disjunction and strict negation are considered.

Before we can show how to find possibilistic answer
sets using this reduct, we need to determine the syn-
tactic least fixpoint operator that corresponds with our
proposed semantics. For definite programs, it is easy
to see that our semantics is equivalent to the one from
(Nicolas et al., 2006), hence the least fixpoint operator
from Definition 1 can be used to this end.

Proposition 5. Let P be a possibilistic normal pro-
gram. If V is an answer set of P then V =

(
PV

)?
.

Proposition 6. Let P be a possibilistic normal pro-
gram and V a valuation. If V =

(
PV

)?
then V is an

answer set of P .

Example 5. Once again consider the possibilistic pro-
gram P1 from Section 1. Let V be a valuation such that
V =

{
cB1 , lD0 .8 , can0 .2

}
. We can now easily verify

that V is an answer set of P1. From Example 4 we
know that

(P1)
V

= {(cB ←, 1), (lD ← cB, 0.8), (can←, 0.2)}

for which it is easy to verify that
(

(P1)
V
)?

= V . We

can also easily verify that V ′ =
{
cB1 , can0 .2

}
is not

an answer set. We obtain the same reduct as before

and clearly
(

(P1)
V ′)?

=
(

(P1)
V
)?

6= V ′.

6 Simulation with classical ASP

The definition of the reduct from the previous section
suggests a technique to simulate PASP using classical
ASP. This is important, as it allows to straightfor-
wardly implement PASP using existing ASP solvers.

Specifically, a possibilistic normal program P is simu-
lated by the normal program Q containing the rules

{a0c′ ← a1c
′, ..., amc

′, not am+1c
′′, ..., not anc

′′ |
((a0 ← a1, ..., am, not am+1, ..., not an), c) ∈ P,
0 < c′ ≤ c, c′ ∈ C,
c′′ = min {d | d > 1− c′, d ∈ C}}

where we introduce a fresh atom ac for each a in the
original program and c ∈ C.

Example 6. Consider P1 from Section 1. For com-
pactness, let C = {0, 0.2, 0.4, 0.6, 0.8, 1}. The classi-
cal normal program Q1 that simulates P1 contains the
rules

cB(1)← cB(0.8)← cB(0.6)←
cB(0.4)← cB(0.2)← can(0.2)←

lD(1)← cB(1), not can(0.2)

lD(0.8)← cB(0.8), not can(0.4)

lD(0.6)← cB(0.6), not can(0.6)

lD(0.4)← cB(0.4), not can(0.8)

lD(0.2)← cB(0.2), not can(1.0).

Q1 has the answer set

M = {cB(1), cB(0.8), cB(0.6), cB(0.4), cB(0.2)}
∪ {lD(0.8), lD(0.6), lD(0.4), lD(0.2)} ∪ {can(0.2)}

which indeed corresponds to the possibilistic answer set{
cB1 , lD0 .8 , can0 .2

}
of P1.

The next two propositions confirm that this simulation
is indeed correct and that we can use a classical normal
program to obtain the possibilistic answer sets of our
possibilistic normal program.

Proposition 7. Let P be a possibilistic normal pro-
gram and Q the simulation of P defined above. Let V
be the valuation defined by V (a) = max {c | ac ∈M}.
If M is a classical answer set of Q, then V is a possi-
bilistic answer set of P .

Proposition 8. Let P be a possibilistic normal pro-
gram and Q the simulation of P defined above, and
M = {ac | c ≤ V (a) = c′, c ∈ C}. If V is a possibilis-
tic answer set of P such that V (a) ∈ C for all a ∈ BP ,
then M is a classical answer set of Q.

Only those possibilistic answer sets for which V (a) ∈ C
are found using our simulation. In particular, thus
only a finite number of answer sets can be found.

7 Related Work

A large body of research has been devoted to com-
bining ASP with uncertainty. This uncertainty can

either be interpreted in a qualitative or in a quanti-
tative way. In the latter case, probability theory is
most often used. For example, in (Baral et al., 2009)
uncertainty is encoded by means of probability atoms.
Intuitively, a probability atom describes the probabil-
ity that the atom will take on a certain value in some
random selection given other known evidence.

Instead of probability theory, some approaches use ev-
idence theory as the underlying model of uncertainty.
For instance, (Wan, 2009) uses belief functions to al-
low intervals of certainty degrees to be attached to
rules, instead of a single value. A similar approach
can already be found in Fril (Baldwin et al., 1995)
where fuzzy set theory is employed to derive certainty
degrees from linguistic variables.

The most popular approach to deal with uncertainties
in a qualitative fashion is possibility theory. Adopting
possibility theory in logic programming was an idea
pioneered in (Dubois et al., 1991), although default
negation was not considered in this early work. One
of the first papers to explore this idea in the context
of ASP was (Nicolas et al., 2006) in which the au-
thors present a framework that combines possibility
theory with ASP. This approach was later extended
to disjunctive programs (Nieves et al., 2007). Alterna-
tive semantics for PASP have been proposed based on
pstable models (Confalonieri et al., 2009). However,
pstable models (Osorio et al., 2006) are closer to clas-
sical models than they are to stable models, i.e. answer
sets. The semantics based on pstable models capture a
different intuition, focusing more on finding reasonable
results in the face of inconsistency. For instance, the
program containing the rule c: a ← not a has (a, c)
as its unique possibilistic pstable model, which is not
compatible with a reading of ‘not a’ as “it cannot be
established that a is certain”.

The constraint-based view on ASP we take in this
paper is somewhat reminiscent of the idea of using
SAT-based solvers to find answer sets (Lin and Zhao,
2002). Our approach also has some similarities to the
one presented in (Benferhat et al., 1997) where default
rules induce constraints on the possibility distribution.
Specifically, a default rule “if a then b” is interpreted
as Π(a ∧ b) > Π(a ∧ ¬b), which captures the intu-
ition that when a is known to hold, b is more plausible
than ¬b, unless information to the contrary becomes
available. Similarly, they define entailment by looking
at the least specific possibility distributions (although
the notion of least specific possibility distribution is
defined, in this context, w.r.t. the plausibility order-
ing on interpretations induced by the possibility de-
grees). Our approach also has some resemblance with
the characterization of answer sets in auto-epistemic
logic. Indeed, an ASP rule such as a ← not b can be

interpreted by the formula ¬Lb→ a in auto-epistemic
logic, where Lb reflects the intuition “it is not believed
(certain) that b” underlying our semantics.

From an applications perspective, the purpose of com-
bining ASP with uncertainty theories is often to deal
with inconsistencies. Handling inconsistencies is by it-
self a well-studied field within the ASP community.
Of particular interest are approaches that deal with
preferences. Indeed, in possibilistic logic necessity de-
grees are commonly interpreted as preferences between
rules. One example of preferences in classical ASP
is (Nieuwenborgh and Vermeir, 2002), where ordered
logic programs are used. Ordered logic programs as-
sume a partial order among rules, allowing less impor-
tant rules to be violated in order to satisfy rules with
higher importance. In some sense, the use of such
preferences among rules is related to using certainty
weights, although the resulting semantics is closer in
spirit to the approach from (Nicolas et al., 2006) than
to the semantics we have developed in this paper.
Quite a number of other works also deal with pref-
erence handling in non-monotonic reasoning; we refer
to (Delgrande et al., 2004) for a good overview.

8 Conclusions

We have introduced a new characterization of classical
answer sets using possibility theory. Under these se-
mantics, rules in a classical normal program impose a
set of constraints on possibility distributions. The clas-
sical answer sets then correspond with the least specific
possibilistic distributions that satisfy these constraints
and adhere to some general restrictions. Subsequently,
we have extended this idea to cover possibilistic ASP.
The central observation was that the certainty of the
conclusion of a rule should be given by the certainty
that both the body of the rule is valid and that the
rule itself is valid. We have also introduced a syntac-
tic reduct that precisely corresponds to the proposed
semantics for PASP. Finally, to demonstrate the ap-
plicability of our approach, we have shown how possi-
bilistic normal programs can be simulated by classical
normal programs.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their useful comments, in particular for
pointing out the link between our work and residuated
logic programs.

References

Baldwin, J., Martin, T., and Pilsworth, B. (1995). Fril
- Fuzzy and Evidential Reasoning in Artificial Intel-

ligence. John Wiley & Sons, Inc.

Baral, C., Gelfond, M., and Rushton, N. (2009). Prob-
abilistic reasoning with answer sets. Theory and
Practice of Logic Programming, 9(1):57–144.

Benferhat, S., Dubois, D., and Prade, H. (1997). Non-
monotonic reasoning, conditional objects and possi-
bility theory. Artif. Intell., 92(1–2):259–276.

Confalonieri, R., Nieves, J. C., and Vázquez-Salceda,
J. (2009). Pstable semantics for logic programs with
possibilistic ordered disjunction. In Conference of
AI*IA, pages 52–61.

Delgrande, J. P., Schaub, T., Tompits, H., and Wang,
K. (2004). A classification and survey of prefer-
ence handling approaches in nonmonotonic reason-
ing. Computational Intelligence, 20(2):308–334.

Dubois, D., Lang, J., and Prade, H. (1991). Towards
possibilistic logic programming. In Proc. of ICLP,
pages 581–595.

Dubois, D., Lang, J., and Prade, H. (1994). Possibilis-
tic logic. Handbook of Logic for Artificial Intelligence
and Logic Programming, pages 439–513.

Gelfond, M. and Lifzchitz, V. (1988). The stable model
semantics for logic programming. In Proc. of ICLP,
pages 1081–1086.

Lifschitz, V. (2008). Twelve definitions of a stable
model. In Proc. of ICLP, pages 37–51.

Lin, F. and Zhao, Y. (2002). Assat: computing answer
sets of a logic program by sat solvers. In Proc. 18th
AAAI conf., pages 112–117.

Madridás, N. and Aciego, O.-M. (2008). Towards a
fuzzy answer set semantics for residuated logic pro-
grams. In Proc. of WI-IAT ’08, pages 260–264.

Nicolas, P., Garcia, L., Stéphan, I., and Lefèvre, C.
(2006). Possibilistic uncertainty handling for answer
set programming. Annals of Mathematics and Arti-
ficial Intelligence, 47(1–2):139–181.

Nieuwenborgh, D. V. and Vermeir, D. (2002). Pre-
ferred answer sets for ordered logic programs. In
Proc. of JELIA, pages 432–443.

Nieves, J. C., Osorio, M., and Cortés, U. (2007). Se-
mantics for possibilistic disjunctive programs. In
Proc. of LPNMR, pages 315–320.

Osorio, M., Pérez, J. A. N., Ramı́rez, J. R. A., and
Maćıas, V. B. (2006). Logics with common weak
completions. J. of Logic and Comp., 16(6):867–890.

Wan, H. (2009). Belief logic programming. In Proc. of
ICLP, pages 547–548.

Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory
of possibility. Fuzzy Sets and Systems, pages 3–28.

