
Towards a Tighter Integration of Generated and
Custom-Made Hardware

Harald Devos, Wim Meeus, and Dirk Stroobandt

Hardware and Embedded Systems Group, ELIS Dept., Ghent University,
Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium

{harald.devos|wim.meeus|dirk.stroobandt}@elis.UGent.be

Abstract. Most of today’s high-level synthesis tools offer a fixed set
of interfaces to communicate with the outer world. A direct integration
of custom IP in the datapath would often be more beneficial than an
integration using such communication interfaces. If a certain interface
protocol is not offered by the tool, either translation blocks (wrappers)
are needed or the code should be written at a lower level. The former so-
lution may hurt the performance, while the latter one is often impossible
using an untimed high-level description.
In this paper interface protocols or sets of IP core accesses are first
described at a low level as sets of operations with scheduling information
(macros). During the synthesis process, corresponding function calls are
mapped to these macros. This facilitates the integration of custom-made
hardware and hardware generated by high-level synthesis tools.

1 Introduction

The increasing number of transistors that can be put on a single chip, has led to a
growing design gap. Therefore, hardware design has to be lifted to a higher level,
as exemplified by the growing interest in high-level synthesis (HLS) techniques
[5]. However, hardware designers like to have full control over critical design
parts, which hinders the adoption of current HLS environments.

In the software world high-level languages have become mainstream since
long. However, for critical pieces of code, manually written assembler code may
still outperform compiled high-level code. In-line assembler allows to exploit
the full power of certain processor instructions while still enjoying the benefits
of high-level languages for the less critical program code. It would be very inter-
esting to have a similar option for hardware design. The limitations of current
HLS tools will be more tolerable if the designer can take over control for those
parts of a design where the synthesis results are not satisfactory.

Many HLS tools offer a built-in library of macros to communicate with the
outer world. The inclusion of a custom-made block should typically be specified
as communication with an external block, that has to fit a certain interface. A
translator block, called a wrapper, may be used to translate one interface into
another (Fig. 1), but this may create an overhead (see Sect. 4). Describing the
communication at a lower level, e.g., using multiple statements in the high-level

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55867778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IF2
FU

IF1
IO

Fig. 1. An IO hardware block translates the interface of the functional unit (IF1) to
the desired interface (IF2).

clk

clk

clk

@mem@_ad<=ad

return_val:=@mem@_q

clk

clk

clk

/
@mem@_ad<=ad

/
return_val:=@mem@_q

(a) (b) Alternative representation of (a)

defaults (
@mem@ ad <= (others => ’−’);
@mem@ d <= (others => ’−’);
@mem@ we <= ’0’;
)

schedule:
@mem@ ad <= ad;
<nc>
<nc>
return val := @mem@ q;
<end>

(c) Default values of outputs (d) Textual schedule representation

Fig. 2. Protocol description for a single cycle memory read. The @mem@ substring is a
placeholder for the name of the memory instance. <nc>= new cycle.

input language to describe one external transaction, may often be impossible
since the concurrency of signal assignments cannot be forced in untimed C code.

This paper presents a method to describe interface protocols as a sequence
of schedule1 steps with transition information (Sect. 2), such that it can be
dealt with on equal terms with the built-in macros or interfaces of the HLS tool.
Macros may also be used to interact with custom-made IP blocks in a more
integrated way. Our scheduler is able to pipeline transactions and operations
without specific directives (Sect. 3). Hereby, we still have the advantages of
a modular design flow: portability and a clear separation for the designer of
communication and functional behavior, but with less overhead thanks to the
tighter integration of these two in the generated hardware.

2 Macro Schedule Description

A macro is a set of operations described at a cycle- and pin-accurate level that
together with the external hardware it communicates with implements a func-
tionality corresponding to one high-level construct, e.g., a memory access, a
1 Scheduling in HLS is the task of assigning operations to clock cycles (or control

steps) in a static way, i.e. in the hardware generation process.

clk

clk

clk

clk

@mem@_wr_req<=’0’
[@mem@_ack=’1’] /

@mem@_wr_req<=’1’
@mem@_d<=value;
@mem@_ad<=ad;

[@mem@_ack=’0’] /

[@mem@_ack=’0’]/
@mem@_wr_req<=’1’
@mem@_ad<=ad
@mem@_d<=value

[@mem@_ack=’1’]

Fig. 3. Protocol description for a memory write with a full handshake.

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

t

(c)

��
��
��
��

��
��
��
��

��
��
��
��

t

(b)

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

t

(d)
��������

��
��
��
��

���
���
���
���

A_d

A_we

A_ad

A_q

t

(a)

Fig. 4. Occupation of ports for single-cycle memory transactions (a) read, (b) write.
Both reads and writes can be pipelined with initiation interval 1 (c), but also a mix of
reads and writes (d).

mathematical operation performed by an IP core, . . . (In this section we restrict
ourselves to well known memory examples. Real IP-cores are used in Sect. 4.2).
Such a macro can be described as a finite state machine (Fig. 2 and Fig. 3). The
area between two dashed lines corresponds to one state. Transitions, indicated
with arrows, are triggered by events (clk ↑), possibly guarded by conditions put
between []. Operations that are executed at a state transition are put behind
a ‘/’. State charts only execute operations at state transitions. We use a more
compact notation where operations inside a state represent operations that are
executed at each outgoing transition as explicitly shown in Fig. 2(a and b). For
each macro a corresponding C function is written. During synthesis, calls to
these functions are mapped to the corresponding macros.

From this information, our scheduler derives which signals are used by a
macro instance in which cycles (Fig. 4(a and b)). It is able to overlap several
instances of one macro (Fig. 4(c)), but also instances of different macros sharing
ports (Fig. 4(d)). If in a clock cycle a macro does not apply a value to an output,
that output can be used by another macro execution. Else, it receives a default
safe value (Fig. 2(c)). That these default values are not forced by macros that
do not use a certain output is essential to the ability of automatically pipelining
macro instances.

Conditional state transitions (Fig. 3) result in an indeterministic execution
time. Our scheduler is able to combine macros (and built-in constructs) with
both deterministic and non-deterministic execution time (Sect. 3).

clk
clk

clk

clk

clk

clk

clk

clk

[B_ack=’0’] /
B_ad<=tmp0;

[B_ack=’1’] /
tmp1:=B_q;

B_rd_req<=’1’

B_rd_req<=’0’tmp3:=tmp2+tmp1

A_d<=tmp3;A_ad<=i; A_we<=’1’

[B_ack=’1’]

[B_ack=’0’]/
B_ad<=tmp0
B_rd_req<=’1’

tmp2:=A_q

A_ad<=itmp0:=i+1

(a) Schedule for A[i]=A[i]+B[i+1]

clk

clk

clk

clk

clk
clkclk

tmp2:=A_q

tmp3:=tmp2+tmp1

A_d<=tmp3;A_ad<=i; A_we<=’1’

tmp1:=B_q; B_rd_req<=’0’
[B_ack=’1’] /A_ad<=tmp0;B_rd_req<=’1’

B_ad<=i;
[B_ack=’0’]/ B_ad<=i; B_rd_req<=’1’

[B_ack=’0’] /tmp0:=i+1;[B_ack=’1’]

(b) Schedule for A[i]=A[i+1]+B[i]

Fig. 5. Behavioral templates (boxes) take care of the relative schedule constraints
(offsets) of different operations of a macro during the scheduling process.

3 The Scheduling Algorithm

Scheduling operations with fixed time intervals can be done using behavioral
templates [11]. A behavioral template is a set of nodes of a control data flow
graph (CDFG) coupled with cycle offsets. If one of the nodes of the template
is scheduled, the schedules of all the other nodes are defined by the relative
offsets. Behavioral templates for a single cycle read and write are recognized
in the first and last cycle of the schedule in Fig. 5(a). We extended the con-
cept of behavioral templates with conditional state transitions that introduce an
indeterministic execution time (E.g., handshake read of array B in Fig. 5.). A
conditional state transition cannot be scheduled in parallel with a template that
has a fixed cycle offset, unless some kind of micro-threading is used (which is
kept as future work). This is regarded as a conflicting resource constraint. How-
ever, single cycle operations can be made on the conditional state transitions
that are taken exactly once, e.g., tmp0:=i+1 in Fig. 5(b).

Our scheduling algorithm (Fig. 6) schedules operations as soon as possible. If
two operations are ready to be scheduled but have conflicting constraints the one
that comes first in the input C code is selected. In future work we will explore

while nodes remain to be scheduled {
ready list := all nodes that do not depend on unscheduled nodes
for each node in the ready list {

find earliest execution cycle of this node based on dependencies
while conflicting resource constraints

increase execution cycle of this node
schedule this node at the found execution cycle
update consumed resources

}
}

Fig. 6. The scheduling algorithm. A node is a behavioral template consisting of several
CDFG operations, or a single operation that is not included in any behavioral template
(could be regarded as a singleton behavioral template).

more advanced scheduling heuristics. The outer loop does not iterate over cycles,
but over the nodes to be scheduled. This differs from classical algorithms. The
nodes in the algorithm are behavioral templates that may consist out of multiple
operations scheduled together or operations not being part of a behavioral tem-
plate, regarded as singleton behavioral templates (that can be combined with
conditional transitions).

4 Experiments

Our high-level synthesis environment, JCCI [6] (Java C to CLooG [3] Interface),
reads in macro descriptions (in a textual representation, cf. Fig. 2(d)). Function
calls in the C input code that correspond to macros are recognized and replaced
with the scheduling information of the corresponding macros.

4.1 Memory and FIFO Interfaces for a Sobel Edge Detector

The kernel of the Sobel edge detector [8] algorithm contains a 3 × 3 sliding
window operation. Five conceptually different designs were described in C.

1: The standard textbook algorithm. 2: Variables store the input values that
are reused in the next two column iterations. This reduces the number of memory
reads with a factor three. 3: Vertical reuses are exploited by storing two lines of
the image in FIFO buffers. This reduces the memory reads with roughly another
factor three. The FIFO buffers are created as IP cores (Altera MegaWizard) and
accessed using macros. Designs 2 and 3 are similar to the designs listed in [7,
12]. 4: similar to 3, but the FIFO is made using single port memory blocks, with
a macro that implements the address increments with wrap around. 5: no FIFO
macros used. A C description of FIFOs is used to buffer the two lines of pixels.

For each of these designs we generated three variants with a different memory
interface (Fig. 7). A first variant uses a single-cycle memory (cf. Fig. 2). A second
one uses a memory with a full handshake protocol (cf. Fig. 3). A third variant is

 0

 2

 4

 6

 8

 10

1 2 3 4 5

M
ill

io
ns

 o
f C

lo
ck

 C
yc

le
s

Design

Single-cycle
Handshake

Convert

 1600

 1800

 2000

 2200

 2400

1 2 3 4 5

N
um

be
r

of
 A

LU
T

s

Design

 100

 120

 140

 160

 180

 200

1 2 3 4 5

f (
M

H
z)

Design

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

T
im

e
(m

s)

Design

Fig. 7. Simulation and synthesis results for 5 implementations of a Sobel edge detector
on an Altera Stratix III (EP3SL150F1152C2) for different interfaces. ALUT = Adaptive
Look-Up-Table. Execution time and number of clock cycles for a 320×320 input image.
The number of DSP and memory blocks used are not plotted since they do not depend
on the IO interface.

identical to the second extended with a block that converts the full handshake
protocol into a single-cycle protocol, similar to Fig. 1 (with IF1 the handshaking
and IF2 the single-cycle protocol). This mimics the situation where a protocol
is not part of the HLS tool’s library and a wrapper is inserted.

Results and Discussion The interface conversion blocks introduce (on the av-
erage) an overhead in area and clock cycles (Convert vs. Single-cycle in Fig. 7).
In some cases a wrapper augments the clock frequency, but this is counterbal-
anced by the increased number of cycles. It is thus beneficial to include the
proper protocol directly. The usage of macros to describe the FIFOs gives better
results than the equivalent description in C code. Probably, other HLS tools may
generate line buffers in a much more efficient way. However, the point we want
to make here is that the user can take control over the synthesis process when
the HLS techniques do not give satisfactory results.

4.2 Integration of Floating-Point Megacores

The Altera Floating Point Megafunctions [1] implement IEEE 754-compliant
floating-point operations. The cores are pipelined and have a known latency
(add/sub: 7 cycles, mul: 5 cycles, div: 6 cycles). The addition and subtraction
use the same block. A select signal is used to choose between the two. After
writing a macro description (applying the input values in the first cycle and

reading the output a fixed number of cycles later), a C function that performs
one floating-point operation can be synthesized using the corresponding IP core.
Our scheduler is able to pipeline all operations and it knows that a sub and an
add cannot be started at the same time. We tested the macros by implementing
the Newton-Raphson algorithm to find a zero of a fifth degree polynomial:

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
a5x

5
n + a4x

4
n + a3x

3
n + a2x

2
n + a1xn + a0

5a5x4
n + 4a4x3

n + 3a3x2
n + 2a2xn + a1

. (1)

The time needed to set up this design was less than two hours from C-code
to synthesisable VHDL: 15’ to create the Altera floating point megacores with
the Altera QuartusII MegaWizard Plug-In Manager; 15’ to convert all float-
ing point operations in the C code into function calls, such as fp add, fp sub,
. . . (E.g. x2=x*x; becomes x2=fp mul(x,x);); 30’ to describe the macro sched-
ules for each of these floating point operations; some additional time for con-
structing the top-level and testbench, and testing. On an Altera Stratix III
(EP3SL150F1152C2), the design can clock at 150.60 MHz, and does one eval-
uation of (1) in 69 cycles, i.e. 458 ns. The design uses 20 DSP blocks (5% of
the FPGA), 4608 Memory bits (< 1%), 2147 combinational ALUTs (2%), 26
memory ALUTs (< 1%) and 3079 dedicated logic registers (3%). On an Intel
Core2 Quad CPU Q6600 at 2.40 GHz the same computation takes 43 ns or
roughly 90 cycles. The focus of this experiment, however, is not the comparison
of the FPGA and processor implementations, but the ease of integration of the
floating-point cores.

5 Related Work

Some HLS tools focus on the datapath and have little attention for the commu-
nication interface. SPARK [9], e.g., generates 1 port for each array element.
Impulse-C [10] offers a set of macros for the communication with hardware
blocks, e.g., FIFOs and channels, but no user-specified interfaces can be defined.

The approach of Mentor Graphics’ Catapult C [4] is similar to ours. Catapult
C accepts a pure untimed C++ description as its input. The user can define its
own interfaces with a library builder. The interface resource consists of an I/O
hardware block connected to a standard interface (similar to the architecture in
Fig. 1). Property mappings are used to describe the delay (for combinational
logic) or initiation delay (needed for pipelining) of a transaction. This allows
to pipeline different instantiations of the same transaction as in Fig. 4(c). We
doubt, however, if it would be possible to detect a pipeline option as in Fig. 4(d).

Transaction Level Modeling (TLM) using SystemC is used for system-level
design and architecture exploration. TLM-RTL transactors connect blocks with
interfaces at different abstraction levels: a TLM interface, which is a function call,
and an RTL interface. For simulation, this is similar to the concept of macros.
However, our focus is on the hardware generation and not on the modeling.

SpecC has modeling capabilities similar to SystemC but has a designer-
assisted tool flow to RTL [13]. Communication is implemented with protocol
adapters, similar to [2], where an IO block is inserted for interface translation.

6 Conclusions

The growing complexity of digital system design has raised the need for more
flexible HLS tools. This paper presents a method to extend such a tool with the
ability to generate custom interface protocols or IP core integration, without the
overhead that would be caused by wrappers. This enables a tighter integration
of generated and custom-made hardware and may create a design flow in which
the strengths of HLS tools and manual hardware design can be combined.

Acknowledgements This research is supported by the I.W.T. grant 060068.
Our research group at Ghent University is a member of the HiPEAC Network
of Excellence. We would like to thank Altera for donating a Stratix III board.

References

1. Altera. Floating-Point Megafunctions User Guide, 1.0 edition, March 2009.
2. Felice Balarin and Roberto Passerone. Functional verification methodology based

on formal interface specification and transactor generation. In Design, Automation
and Test in Europe (DATE), pages 1013–1018, 2006.

3. Cédric Bastoul. Code generation in the polyhedral model is easier than you think.
In PACT ’04: Proceedings of the 13th International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 7–16, Juan-les-Pins, September 2004.

4. Bryan Darrell Bowyer, Peter Pius Gutberlet, and Simon Joshua Waters. Interactive
interface resource allocation in a behavioral synthesis tool, US Patent 0077906,
March 2008.

5. Philippe Coussy and Adam Morawiec, editors. High-Level Synthesis: From Algo-
rithm to Digital Circuit. Springer, 2008.

6. Harald Devos, Wim Meeus, and Dirk Stroobandt. CLooGVHDL and JCCI. In
DATE University Booth, pages 1–2 (CD–ROM), Nice, France, April 2009.

7. Harald Devos, Jan Van Campenhout, Ingrid Verbauwhede, and Dirk Stroobandt.
Constructing application-specific memory hierarchies on FPGAs. Transactions on
High-Performance Embedded Architectures and Compilers, 3(3), 2008, To appear
in LNCS.

8. Bill Green. Edge detection tutorial. http://www.pages.drexel.edu/∼weg22/

edge.html, 2002. Last Accessed 2009.02.24.
9. Sumit Gupta, Rajesh Gupta, Nikil Dutt, and Alexandru Nicolau. SPARK, A

Parallelizing Approach to the High-Level Synthesis of Digital Circuits. Kluwer
Academic Publishers, 2004.

10. Impulse Accelerated Technologies. Impulse C. http://www.impulsec.com/, Last
Accessed 01.2009.

11. Tai Ly, David Knapp, Ron Miller, and Don MacMillen. Scheduling using behavioral
templates. In Proceedings of the 32nd Design Automation Conference (DAC), pages
101–106. ACM, 1995.

12. Craig Moore, Harald Devos, and Dirk Stroobandt. Optimizing on-chip memory
systems for FPGAs. In International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), 2009.

13. Dongwan Shin, Andreas Gerstlauer, Rainer Dömer, and Daniel D. Gajski. An
interactive design environment for C-based high-level synthesis of RTL processors.
IEEE Trans. on VLSI Systems, 16(4):466–475, April 2008.

