
xStreamer: Modular Multimedia Streaming

Alexis Rombaut Nicolas Staelens Nick Vercammen

Brecht Vermeulen Piet Demeester

Ghent University - IBBT, Department of Information Technology (INTEC)
G. Crommenlaan 8, Bus 201

B-9050 Ghent, Belgium
+32 9 331 49 79

{alexis.rombaut, nicolas.staelens, nick.vercammen, brecht.vermeulen, piet.demeester}@intec.ugent.be

Categories and Subject Descriptors: D.0 [Software]:
GENERAL

General Terms: Design, Experimentation

Keywords: Streaming, Modular, Multmedia, Open Source

1. INTRODUCTION
The xStreamer intends to be a flexible and modular open

source streamer. The selection of current open source stream-
ers which support both video and audio is limited, with VLC
Media Player [1], Darwin Streaming Server [2] and Helix
DNA Server [5] being the foremost solutions. The xStreamer
distinguishes itself by providing a modularity that goes be-
yond the mere modular programming offered by the current
open source solutions and that manifests itself in how the
user controls and configures the streamer.

The distribution of the program is available at [6], a newly
launched web site. How to the build the program is on var-
ious platforms is described in INSTALL.txt. The document
(doc/demo.pdf ) supplements this short introduction to the
xStreamer by demonstrating the applications of the program
in five demos. Furthermore, the distribution contains a de-
tailed practical manual (doc/manual.pdf ) on how to build
configurations together with a complete overview of every
component and its parameters.

1.1 Modularity
The modularity is inspired by the Click Modular Router

project [4] and operates by offering components which per-
form basic functions such as reading video frames from a
file, classifying packets based on their frame type or ran-
domly discarding packets with a given probability, etc. The
user builds the streamer by combining a collection of these
components in a directed graph: the vertices form the com-
ponents and the directed edges form flows of packets from
one component to another. Figure 1a shows as an example
the graph of a simple streaming solution: a reader parsing
a video file and outputting one packet per frame, a pack-
etizer splitting each packet into a series of packets, each
smaller than for example 1500 bytes, a scheduler releasing
each packet at the instant corresponding with the timestamp

Copyright is held by the author/owner(s).
MM’09, October 19–24, 2009, Beijing, China.
ACM 978-1-60558-608-3/09/10.

of the packet and finally, a transmitter adding network head-
ers and sending the packet over the network. By means of
simple changes to the graph, the streamer performs addi-
tional or similar functions, providing a part of the flexibil-
ity of the xStreamer. For example, the streamer in figure
1b performs a similar function to figure 1a, but instead of
sending the packets over a single connection, the component
classifier splits the flow of packets into three flows based on
for example the frame type (I, P or B), with each flow sent
over a separate network connection.

Additionally, the xStreamer has components performing
the reverse operations of streaming, such as receiving, un-
packetizing and writing, allowing it to offer a proxy function
which redirects for example the three connections from figure
1b into a single new connection or a capture function which
redirects the received packets to a file. Figure 2 shows a
configuration performing the reverse operation from figure
1b and providing a proxy as well as a capture function.

Since the scheduler component introduces real time be-
haviour to the passing flow of packets, without such a com-
ponent, the program can function as a video tool, working
offline, for example in order to impair a video bit stream
with a given packet loss rate as shown in figure 3. The
program works as fast as possible in this case, processing
a stream in a fraction of the actual duration of the bit
stream. Video tool possibilities include controlled or ran-
dom impairment, elementary stream extraction, statistics
(average bit rate, packet size, etc.), plots of the bit rate evo-
lution and transcoding (experimental but future work will
improve this).

In addition, the scheduler component can introduce sim-
ulated time behaviour, allowing the streamer to function as
simulator where time increases with arbitrary increments of
for example 1 ms. This choice between real time, simulation
and offline function, provides the xStreamer with further
flexibility.

2. FEATURES
The supported codecs, containers and network protocols

form a crucial aspect of a streamer. The program can han-
dle any container which the underlying library avformat [3]
supports. Nevertheless, the program cannot packetize the
extracted streams from these containers if the corresponding
packetizer is not supported. The internal generic packetizer
of the xStreamer can handle such streams but this pack-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55867722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


READER PACKETIZER TRANSMITTERSCHEDULER

(a) Basic streamer

READER PACKETIZER CLASSIFIERSCHEDULER
TRANSMITTER

2

TRANSMITTER

1

TRANSMITTER

3

(b) Differentiated streamer

Figure 1: Directed graph configuring the xStreamer,
showing in (a) a basic streamer and in (b) a dif-
ferentiated streamer where the component classifier
splits the video stream into three based on for ex-
ample the frame type.

WRITERUNPACKETIZER

TRANSMITTER

SCHEDULER
RECEIVER

2

RECEIVER

1

RECEIVER

3

Figure 2: Directed graph configuring the xStreamer
to rejoin the stream from figure 1b, sent over three
connections, into one and afterwards sending it over
a single connection (proxy function) as well as writ-
ing it to a file (capture function).

READER PACKETIZER UNPACKETIZERDISCARD WRITER

Figure 3: Directed graph configuring the xStreamer
as impairment tool which drops parts of frames. The
component discard drops the packets it receives with
a given probability.

etization is not supported by other programs and players.
However, a standardized packetizer is available for any of
the codecs listed below. The program supports RTP (Real-
time Transport Protocol), an important protocol for stream-
ing, together with RTSP (Real Time Streaming Protocol)
which manages a collection of RTP connections. In addi-
tion, the program supports the standard transport protocols
UDP and TCP. The manual provides a detailed overview of

Figure 4: Bit rate evolution: (1) scheduling the
packets per frame, (2) scheduling the packets over
a fixed window of 1000 ms and (3) scheduling the
packets over a sliding window of 1000 ms.

the supported codecs and containers.
Features of the xStreamer include modularity, flexibility

and differentiated streaming as demonstrated in the intro-
duction. Furthermore, the program offers SVC (Scalable
Video Coding) support, which distinguishes it from the cur-
rent open source solutions. Additionally, the xStreamer
has a wide selection of schedulers, each offering a different
smoothing of the bit rate. These schedulers offer for exam-
ple smoothing per frame, GOP, fixed window, etc. Figure 4
shows the effect of smoothing per frame, over a fixed window
(1000 ms) and over a sliding window (1000 ms) respectively
for the same sequence by plotting the instant bit rate at
40 ms intervals.

3. CONCLUSION
The public release of the xStreamer, under the open source

license GPL (GNU Public License), coincides with the sub-
mission to the Open Source Software Competition. The
xStreamer distinguishes itself from current solutions by of-
fering a novel configuration method based on graphs of com-
ponents performing elementary video functions.

4. REFERENCES
[1] L. Aimar, G. Bazin, et al. VLC media player.

http://www.videolan.org/vlc/, 2009.

[2] Apple Inc. Darwin Streaming Server.
http://dss.macosforge.org/, 2008.

[3] F. Bellard, M. Niedermayer, et al. FFmpeg.
http://www.ffmpeg.org/, 2009.

[4] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.
The Click modular router. SIGOPS Oper. Syst. Rev.,
33(5):217–231, 1999.

[5] RealNetworks. The Helix DNA Server.
https://helix-server.helixcommunity.org/, 2008.

[6] A. Rombaut. xStreamer: Modular Multimedia
Streaming. http://xstreamer.atlantis.ugent.be,
2009.


