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Abstract: Silicon-organic hybrid (SOH) integration allows overcoming insufficient nonlinear
optical properties of silicon-on-insulator waveguides. We discuss 100 Gbit/s electro-optic
modulation and demonstrate 120 Gbit/s all-optical signal processing with SOH devices.
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1. Introduction: SOH waveguides

Silicon-on-insulator (SOI) is a promising material system for dense on-chip integration of both silicon photonic and
electronic devices, thereby overcoming the electronic bottleneck in short-reach high-volume data interconnects.
However, certain devices are difficult to realize when relying solely on the intrinsic properties of silicon: Because of
crystal symmetry, the material does not exhibit an appreciable second-order nonlinear optic effect. Silicon electro-
optic modulators can therefore only be realized using free-carrier dispersion, and bandwidths of 30 GHz have been
achieved in devices of 1 mm active length [1]. In addition, third-order nonlinear interaction in silicon nanophotonic
waveguides is impeded by two-photon absorption and requires measures to remove free carriers [2].

These limitations can be overcome by combining SOl waveguides with dedicated low-index cladding materi-
als [3]. In particular, organic materials offer the possibility to engineer their optical properties as desired by modify-
ing their molecular structure. In this paper, we discuss electro-optic modulation and Kerr-type ultrafast all-optical
signal processing in integrated silicon-organic hybrid (SOH) devices.

2. Second-order nonlinearities: Electro-optic modulators
Figure 1(a) shows a cross section of an electro-optic SOH waveguide. The waveguide core consists of two silicon
strips on a Si0, buffer layer and is covered by a low-index electro-optic cladding material (EO). Field discontinuities
at the core-cladding interfaces provide strong interaction of the guided mode with the electro-optic material, see field
plot in Fig. 1(a). Both Si strips and the adjacent thin slabs are doped and connected to aluminum electrodes. A volt-
age applied to the electrodes induces a large electric field in the narrow gap between the strips. The design shows
potential for efficient electro-optic modulation at more than 100 GHz in 1.2 mm long devices [4]. The conductive Si
slabs can be replaced by photonic crystal (PhC) structures. Fig. 1(b) shows a schematic of an SOH-PhC-based Mach-
Zehnder modulator. By appropriate design, the optical group velocity in the PhC-sections can be reduced to 4 % of
the vacuum speed of light with flat dispersion over an optical bandwidth of 1 THz. For 1V modulation amplitude, a
bandwidth of 78 GHz is predicted for 80pum long PhC sections, allowing for 100 Gbit/s transmission [5].
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Fig. 1 (a) Cross section of an SOH waveguide for electro-optic phase modulation. (b) PhC-based SOH Mach-Zehnder modulator. (¢} Effective
area as a function of the linear refractive index n of the nonlinear cover material. Strip width w and waveguide height s optimized for fixed slot
widths wy,. Inser: Field plot of the horizontal E-field component. (d) Cross section of fabricated slot waveguide functionalized with organic film.

3. Third-order nonlinearities: All-optical signal processing

For all-optical signal processing, the optical mode has to be confined to a small effective area within the nonlinear
cover material. This can be achieved by using slot waveguides [6]. By optimizing the waveguide dimensions, effec-
tive cross sections smaller than 0.1pm? can be obtained, see Fig. 1(c) [7]. We functionalized SOI strip waveguides by
molecular beam deposition of an amorphous organic film of DDMEBT (derivative 2 in [9], nonlinear index
m = 2 x 1077'm%W), These waveguides exhibit nonlinearities of y= 10°W'km™ at 1= 1.55 um and were used in a
proof-of-principle experiment to demonstrate all-optical demultiplexing of a 120 Gbit/s data stream to 10 Gbit/s [8].
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