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Abstract. In this article we deal with the determination of a diffusion coefficient function in
a quasi-linear parabolic system. The motivation comes from a metallurgy setting. The solution
method is based on the output least-squares approach (ols) with minimization applying the
adjoint equation. As the diffusion coefficient has an a-priori unknown form, we apply freeform
determination in which the coefficient is defined by a linear interpolation. To avoid higher order
of interpolation of the coefficient, as well as to enable the use of an adjoint system which is of the
same complexity as the original partial differential equation, a reduced adjoint equation is used,
applying a mapping strategy. This method is compared with a standard Levenberg-Marquardt
approach.

1. Introduction

Diffusion processes in metallurgy are described by Fick’s laws of diffusion, leading to models
described by partial differential equations (pde), see [1]. In practical applications, the material
properties enter the model via the diffusion coefficient and this coefficient can depend nonlinearly
on the solution of the pde. Due to the complicated micro behaviour (phase changes, hole
formation, migration), it is often more straightforward to apply a macro-diffusion coefficient
hiding the underlying processes which are experimentally hard to determine.

In [2] a model and numerical discretisation suitable to the solution of the diffusion process
is proposed, as well as an experimental technique usable in the determination of the unknown
diffusion coefficient by an inverse method. The solution of the diffusion problem can be obtained
by different techniques (e.g. finite differences [3]), however the experiment is fixed: known
concentration distribution over the entire sample at discrete time steps.

The determination of unknown nonlinearities from such experiments is in general an ill-posed

problem. Apart from the question of existence and uniqueness of the determined variables,
the lack of stability implies that small measurement errors may lead to large deviation of the
determined diffusion coefficient from its true value. However, the determination of the unknowns
by inverse modeling in parabolic pde is common practice, see eg [4, 5] and references therein. The
ill-posedness is generally handled by introducing a generalized solution defined by the minimum
of an appropriate error functional, as well as the application of regularization. Stabilization can
furthermore be achieved by doing a discretization of the coefficient space, instead of considering
the infinite dimensional problem.
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Here we will apply the adjoint or costate method to determine the gradient of the penalty
functional, see eg. [6]. The adjoint method however has the disadvantage that the resulting
adjoint equation can be of a different form than the original equation, hence requiring a different
solution method. We consider a pure diffusion problem, of which the common adjoint equation is
a convection-diffusion problem. Furthermore, in the adjoint equation derivatives of the unknown
coefficient function can appear, making a linear interpolation scheme for the determination of
the coefficient function not ideal (ie. a discontinuous derivate can increase the computation time
drastically).

To avoid these complications, we propose a mapping strategy, which correlates the changes of
the unknown parameters to the change of the diffusion coefficient in specific space-time points.
This yields the possibility of using a reduced adjoint equation consisting solely of a pure diffusion
problem, and without the appearance of derivatives of the unknown diffusion coefficient.

The use of a freeform or unbiased determination of a coefficient function has been proposed
in eg. [7] for a diffusion problem arising in soil sciences. The weak smoothness of a piecewise
linear parametrization there leads to the use of a piecewise cubic Hermite interpolation, which
will not be needed in our method. The problem of the amount of degrees of freedom and the
optimal position of the interpolation points is not considered in our work. We restrict ourselves
to the one dimensional case and the application of the mapping strategy; questions related to
the selection of the number and position of the unknowns will be addressed in a later paper.

Application of the reduced adjoint equation has some correspondance to the technique
of linearization of the original problem, as done in [4]. However, by only considering the
linearization in the adjoint problem, we avoid the complications in determining the unknown
nonlinear diffusion coefficient from the linearized diffusion coefficient. This means of course that
a nonlinear forward problem must be solved, but this is not necessarly as problematic as it is
sometimes claimed. Note that having discrete time measurements that are far apart, makes
neither techniques relying on knowledge of the change over time applicable, eg. [5], nor equation
error methods as in [8].

In Section 2 we give our setting: diffusion of a component in an iron bar. We also describe the
experiments that are possible in order to determine the unknown diffusion coefficient, and briefly
sketch the numerical discretization used to solve the forward problem. In the next section we
give the standard solution of the inverse problem. In Section 4 we present our mapping strategy,
and we end this article with section 5 comparing the different inverse methods based on an
analytical example. We close this article with our conclusions and with ideas on how this idea
can be applied to the two dimension problem arising in a ternary diffusion problem.

2. Nonlinear diffusion

When considering heat induced diffusion of a surface coating into a steel substrate, we only
need to consider a one dimensional model. When the coating consists of several components,
a multicomponent diffusion model is required. In this case, a common model reduction uses
an effective binary diffusion coefficient, [1]. An n-component system is thereby reduced to a
binary system by choosing one specific component, i, and a fictitious second component acting
on behalf of all the other real components, n 6= i. This leads to the nonlinear diffusion equation

for x ∈ Ω ≡ (0,W ) and t ∈ I ≡ (0, T ):

∂tc(x, t) − ∂x (D(c(x, t))∂xc(x, t)) = 0 (1)

c(x, 0) = c0(x) (2)

∂xc(0, t) = 0 = ∂xc(W, t), (3)

where W is the width of the sample and T is the end time of the experiment. c(x, t) denotes
the concentration of the component we are interested in, and c0 is a given smooth initial
concentration. The boundary condition (3) indicates no flow boundaries.
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Measurements of the sample are done as follows, [9]. The sample is cooled, effectively
stopping the diffusion process. It is cut, so that the internal composition can be measured in a
Scanning Electron Microscope (sem) equipped with eds (Energy Dispersive Spectroscopy). This
gives the concentration expressed in atomic percentage, which can be converted to a standard
concentration (mol/mm3).

As the measurement destroys the sample, one starts with a batch of identical samples (same
intial condition), and measures at specific time steps. This translates in additional conditions,

c(x, tj) = cj(x), j = 1, 2, . . . ,M. (4)

Many solution methods have been proposed for problem (1)-(3). Here we follow a method of

lines approach. The space discretization is done by finite volumes, in which the interval is split
in N cells, and the value of the concentration in the midpoint of the cell follows from the inflow
and outflow balance, ie. the fluxD(c)∂xc on the edges. We obtain an ode system of N equations,
which is then solved by a stiff ode solver (we have used the Netlib lsoda implementation, [10]).

3. Solution of the inverse problem

3.1. Set-up

The inverse problem aims at determining the diffusion coefficient D, using the information given
by the measurements (4). It is clear that the domain in which D can be identified is limited by
the attained values. Hence the best we can achieve is to reconstruct D over (cmin, cmax) with
cmin = minj=0,...,M ;x∈(0,W ) cj(x), and cmax = maxj=0,...,M ;x∈(0,W ) cj(x). Due to the nature of the
diffusion process, the maximum and minimum value will only be reached for a small time period,
making the inverse determination at those points unstable.

The measurements (4) are discrete in time, and in practice are not continuous in space. As a
consequence, consider the observations as a finite dimensional vector of observations, m ∈ R

n.
Denote by m(D) the observations obtained by solving the direct problem for a given diffusion
coefficient D. The measurements, usually disturbed by measurement errors, are denoted by m∗.

The inverse problem reads: find the diffusion coefficient D, which solves

m(D) = m∗. (5)

A solution of (5) does not generally exist because of errors due to an inexact model or
measurement deviation. Therefore, one defines a generalized solution by a least squares
approach: Find D∗ which minimizes

J(D) =
1

2
‖m(D) − m∗‖2

2, (6)

where ‖ · ‖2 denotes the Euclician vector norm. Eq. (6) is also called the cost functional or
penalty function.

When few parameters need to be determined by an inverse method, the above strategy is
feasable, often leading to good results. However, in this case we want to determine a coefficient
function of which no a priori information is known. Some sort of regularization will be needed
in order to select the optimal generalized solution. Many techniques are possible, see eg. [11].
Here we choose to regularize by a discretization of the coefficient space, in which a finite number
of parameters is used, with a minimum of correlation. If few parameters are used, no further
regularization is needed, however, if many parameters are used, a total variation regularization of
the diffusion coefficient makes sense in this setting. We now discuss in details the parametrisation
of the coefficient function D.
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3.2. Parametrisation of D
We replace the diffusion coefficient D(c) by a parametrization Dp(c) which is continuous and
piecewise analytic on [cmin, cmax] and is defined as follows. Let

cmin = c1 < c2 < · · · < cr−1 < cr = cmax, (7)

be a partition on the domain where each node cj has an accompanying degree of freedom pj

(j = 1, . . . , r). These values are used as values at the nodes. We set

Dp(cj) := pj for j = 1, . . . , r. (8)

For c ∈ (cj , cj+1), j = 1, . . . , r − 1, the value of Dp(c) is determined by linear interpolation
between pj and pj+1, so

D(c) = pjLj(c) + pj+1Lj+1(c), ∀c ∈ [cj , cj+1], (9)

with










Lj(c) = 0, ∀c /∈ [cj−1, cj+1]

Lj(c) =
c−cj−1

cj−cj−1
, ∀c ∈ [cj−1, cj ]

Lj(c) =
cj+1−c

cj+1−cj
, ∀c ∈ (cj , cj+1]

(10)

The use of linear interpolation is important here. Indeed, it guarantees that the change of one
paremeter pj has a minimal influence on the coefficient function, i.e. if pj changes, then Dp(c)
changes over (cj−1, cj+1). Most interpolation methods do not have this property and show a
global dependance, with the advantage however that the first, or even the second derivative can
be continuous. In [7] a piecewise cubic Hermite interpolation is used for a coefficient function
which exibits a local behaviour. This is feasable there as the coefficient function is monotone,
allowing for an interpolation with continuous first derivative and local character, however a
selection algorithm is needed to determine an optimal interpolation, which indicates a degree of
freedom which is not controlled in the inverse problem.

For our non-monotone data, we could use the cubic Hermite interpolation by dividing the
domain in monotonic pieces with homogeneous Neumann border conditions A change of a
parameter can have local character if the piecewise monotone structure is preserved. As we
adopt a strategy that does not depend on the derivative of the diffusion coefficient, we choose
the simple linear interpolation instead of the above technique.

The inverse problem then reads: Find p∗ which minimizes

J(p) =
1

2
‖m(Dp) − m∗‖2

2. (11)

This functional J is minimized by constructing an adjoint problem to calculate its gradient.

3.3. The adjoint problem

Use of an adjoint problem is a standard method to solve the inverse problem. In this case, we
consider a continuous version of the least squares functional,

J(p) =
1

2

∥

∥

∥

∥

∥

∥

∥





∑

j=1,...,M

δ(t− tj)





1

2

(c(Dp) − c∗)

∥

∥

∥

∥

∥

∥

∥

2

L2(Ω×I)

, (12)

where δ is the Dirac measure, and c∗(x, t) is a suitable interpolation of the measurement over the
entire domain. The diffusion coefficient depends on the concentration and on the parameters,
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so Dp ≡ D(c,p). The ajoint equation corresponding to (1) and (12) satisfies the end value
problem:

∂tψ(x, t) + ∂x (Dp∂xψ(x, t)) −D′

p
∂xc∂xu = (c(x, t) − c∗)

∑

j=1,...,M δ(t− tj) (13)

ψ(x, T ) = 0 (14)

∂x (D(c)ψ(0, t)) = 0 = ∂x (D(c)ψ(W, t)) , (15)

with x ∈ Ω and t ∈ I and D′

p
= dD(c,p)

dc
. The solutions c(x, t) and ψ(x, t) yield the gradient of

(12)

∂pj
J(p) =

∫ T

0

∫ W

0
∂pj

Dp∂xc∂xψ dxdt. (16)

The inverse problem is hence usually solved by the following algorithm

(i) Choose a valid starting value p1, j = 1.

(ii) Obtain solution cj(x, t) of the direct problem (1)-(3) for pj

(iii) Solve adjoint problem (13)-(15) for pj and cj .

(iv) Determine the gradient of the cost functional with (16).

(v) Determine a new value pj+1 by application of a suitable gradient optimization method (eg.
conjugate gradient method).

(vi) Stop if stopping criterium is satisfied, otherwise: j = j + 1 and go to (ii).

As stopping criterium several choices are possible. Here we opt for the easily implemented
discrepancy principle, [12].

However, the above algorithm has the following problems:

• The adjoint problem (13) is of convection-diffusion type, which means that a suitable
numerical method must be used.

• The derivate of the diffusion coefficient D′

p
must be well defined and must be a good

approximation of the real derivative.

To avoid the above problems, we propose in the next section a different strategy.

4. A mapping strategy

Let φ be the solution of the following adjoint problem, which we will call the reduced adjoint
problem:

∂tφ(x, t) + ∂x (Dp∂xφ(x, t)) = (c(x, t) − c∗)
∑

j=1,...,M δ(t− tj) (17)

φ(x, T ) = 0 (18)

∂x (D(c)φ(0, t)) = 0 = ∂x (D(c)φ(W, t)) . (19)

The variation of the least squares functional (12) can be expressed as

δJ(p) =

∫ T

0

∫ W

0
δDp∂xc∂xφdxdt. (20)

Here δDp corresponds to the variation in the diffusion coefficient by a change δp in the
parameters p. Discretization of the variation leads to the approximation:

δJ(p) =

K−1
∑

k=0

L−1
∑

l=0

δDp(xk+ 1

2

, tl)∂xc(xk+ 1

2

, tl)∂xφ(xk+ 1

2

, tl)∆k∆t, (21)
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where we have used the following partitions: let {xk}
K
k=0 be a partition of Ω, ∆k = xk+1−xk > 0,

x0 = 0, xK = W , xk+ 1

2

=
xk+xk+1

2 , and {tl}
L
l=0 a partition of I with tl = l∆t, ∆t = T/L

In order to calculate (4) we need to determine the variation in the diffusion coefficient on
specific space and time points. We have that

δDp(xk+ 1

2

, tl) = δD(c(xk+ 1

2

, tl),p)

= δpjLj(c(xk+ 1

2

, tl)) + δpj+1Lj+1(c(xk+ 1

2

, tl)) with c(xk+ 1

2

, tl) ∈ [cj , cj+1]

=
∑

j

ml
jkδpj =

(

δpT Ml
)

k
,

here the mapping matrix M l ∈ R
r×K for every time step tl is a sparse matrix with two non-zero

elements in every column. This matrix allows us to determine δDp. The supscript T indicates
the transpose operation.

To approximate the derivative in space of a function in the midpoints by the values of the
function in the midpoints themselves introduce the notation, L ∈ R

K×K:

L =























−1
∆ 1

2

1
∆ 1

2
−1

∆ 1
2

+∆ 3
2

0 1
∆ 1

2

+∆ 3
2

. . .
. . .

−1
∆

K−

5
2

+∆
K−

3
2

0 1
∆

K−

5
2

+∆
K−

3
2

−1
∆

K−

3
2

1
∆

K−

3
2























, (22)

with ∆k+ 1

2

= 1
2(∆k + ∆k+1). The remaining terms in () can now be calculated. We have

that ∂xc(xk+ 1

2

) = (Lc)k, where c is the vector with elements c(xk+ 1

2

), and the same for φ, so

∂xφ(xk+ 1

2

) = (L f)k, where f is the vector with elements φ(xk+ 1

2

). If we next introduce the

vector gl with elements gi = (Lc)i(L f )i∆i∆t taken at t = tl, we obtain for the variation of the
functional

δJ(p) =

L−1
∑

l=0

K−1
∑

k=0

(

δpT Ml
)

k
gl

k =

L−1
∑

l=0

δpT Mlgl. (23)

It follows that the gradient of the functional can be calculated by

∂pj
J(p) =

L−1
∑

l=0

(Mlgl)j . (24)

The inverse algorithm is then

(i) Choose a valid starting value p1, j = 1.

(ii) Obtain solution cj(x, t) of the direct problem (1)-(3) for pj

(iii) Solve adjoint problem (17)-(19) for pj and cj .

(iv) Calculate Ml and gl

(v) Determine the gradient of the cost functional with (24).

(vi) Determine a new value pj+1 by application of a suitable gradient optimization method (eg.
conjugate gradient method).

(vii) Stop if stopping criterium is satisfied, otherwise: j = j + 1 and go to (ii).
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Figure 1. Concentration profiles at t = 0, 300, 1500 and 3000 seconds, and the diffusion profile
D(c) that generates these.

As the adjoint equation (17) is of the same form of the direct problem (but now a linear
variable coefficient diffusion problem), the same solution method can be used as for the direct
problem. The reaction term on the right hand side must be treated carefully due to the
appearance of a Dirac measure. One has to solve the problem over the interval (tj , tj+1), starting
from tj+1 without reaction, from which one obtains the value φ̄(x, tj). Next one has to apply
the reaction as

φ(x, tj) = φ̄(x, tj) + (c(x, tj) − c∗).

This is then the end condition for the next time slice (tj−1, tj).

5. Numerical Example

In Section 3 we have presented the standard adjoint method for the nonlinear diffusion problem,
and in Section 4 the reduced adjoint method. In the following numerical example we will
compare the results of a steepest descent search using the calculated gradient, with the results
obtained by the Levenberg-Marquardt problem, see [13], which is a trust region method based on
finite difference determination of the gradient by means of many solutions of the direct problem.
Netlib, [10], contains a reference implementation in Fortran that can be used.

We take the following initial condition, x ∈ (0, 500):

c0(x) =







0.5 10−5(1 + cos( πx
100 )) + 8 10−6, x ≤ 100

8 10−6, 100 < x < 400

0.5 10−5(1 + cos(−π(x−500)
100 )) + 8 10−6, x ≥ 400.

We solve the direct problem for a diffusion coefficient given by

D(c) = 8 exp

(

−

(

105c− 1.2

0.2

)2
)

+ 0.5,

and consider the solution at t = 300, 1500 and 3000 seconds as the experimental values c∗, see
Fig. 1. This example resembles the experimental setup, albeit with reduced times (expermental
times can be up to 3 hours) to limit the computational time (especially for Levenberg-Marquardt
that needs many solution of the direct nonlinear problem).

For the inverse problem, we consider the following partition of the concentration interval:

10−5{0.79, 0.85, 0.9, 0.95, 1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.7, 1.85},
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Figure 2. Results of the reduced adjoint method. The x-axis denotes the number of solutions
of the direct problem. The boxes donote the 16 iterations where the gradient was calculated,
the top curve is the cost funcional expressed in log scale, and the lower curve the discrepancy.

where we have taken the minimum and maximum value outside of the interval [cmin, cmax], ie.
0.79 10−5 < 0.8 10−5 = cmin. To deal with stability problems we have taken larger steps towards
cmax. We have also taken a big step after c = 10−5 in order to break the equidistant steps. The
partition has 17 nodes, hence there will be 17 unknown parameters in the inverse problem, that
is, p ∈ R

17. As starting value for the inverse algorithm we take pi = 1.
To measure the performance of the different methods, we calculate the discrepancy between

the retrieved parameters p∗, and the exact values D(ci). This discrepancy is the vector norm of
the distance between these two vectors.

In Fig. 2 the results as obtained by the reduced adjoint method are shown. The x-axis denotes
the number of solutions of the direct problem. In this, 16 evaluations of the adjoint system were
needed, the rest of the time was spent doing a line search in the gradient direction. The top
curve is the value of the cost functional, which is used in the determination of the diffusion
coefficient. The peaks are a consequence of the line search that overshoots the minimum. The
bottom line shows the discrepancy. As is common in this type of method, the line search takes
a large amount of the computational time. The result however clearly validates the approach of
using the reduced adjoint equation to calculate the gradient.

The resulting diffusion coefficient is depicted in Fig. 3 (Left). The result after 145 and 380
direct evaluations are given. For 145 iterations, this corresponds to 15 evaluations of the adjoint
problem. Good identification is retrieved for the lower concentration values, with the discrepancy
getting larger towards the maximum concentration values.

Next we recover the diffusion coefficient applying the Levenberg-Marquardt method. To avoid
problems with negative diffusion values, we optimize for parameters qi defined as qi = ln(pi).
The resulting cost and discrepancy are given in Fig. 4. The left figure gives the first 22 cost
functional evaluations. As there are 5 bad evaluation, this means there have been 17 gradient
evaluations, or a total of 294 evaluations of the direct problem. The right of Fig. 4 shows the
typical long time behaviour of inverse methods if no stopping criterium is used: improvement
of cost while the discrepancy increases again.

The right of Fig. 3 shows the retrieved diffusion coefficient for the LM method.
Comparing the two methods, we need to compare the LM on iteration 8 to the reduced

adjoint method on iteration 145, which corresponds to equal computational effort. Both give
comparable results.

4th AIP International Conference and the 1st Congress of the IPIA IOP Publishing
Journal of Physics: Conference Series 124 (2008) 012032 doi:10.1088/1742-6596/124/1/012032

8



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 8e-06  1e-05  1.2e-05  1.4e-05  1.6e-05  1.8e-05  2e-05

D(c)
Retrieved par - iter 380
Retrieved par - iter 145

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 8e-06  1e-05  1.2e-05  1.4e-05  1.6e-05  1.8e-05  2e-05

D(c)
Retrieved par - iter 8

Retrieved par - iter 22
Retrieved par - iter 300
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Figure 4. Results of the Levenberg-Marquardt method. The x-axis denotes the number of cost
functional evaluations, where each reduced cost, leads to an extra 17 evaluations of the direct
problem (gradient determination). The top curve is the cost funcional expressed in log scale,
and the lower curve the discrepancy.

6. Conclusion

We have explained how a reduced adjoint method can be used in a diffusion coefficient
optimization process. The obtained results are comparable to existing methods like the
Levenberg-Marquardt method. The advantage of the method is that it has all benefits of an
adjoint method (no penalty on number of parameters, that is, usable for higer dimensional
diffusion coefficients), while still avoiding some of the drawbacks of applying the full adjoint
equation: different pde than the direct equation, regularity of the diffusion coefficient needed.

Having shown the feasability of the method, we plan to apply it to metallurgy experiments
with ternary alloys, where the diffusion coefficient is a two-dimensional surface.
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