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ABSTRACT

In this paper we present a new method for superresolution of depth video sequences using high resolution
color video. Here we assume that the depth sequence does not contain outlier points which can be present
in the depth images. Our method is based on multiresolution decomposition, and uses multiple frames to
search for a most similar depth segments to improve the resolution of the current frame. First step is the
wavelet decomposition of both color and depth images. Scaling images of the depth wavelet decomposition,
are superresolved using previous and future frames of the depth video sequence, due to their different nature.
On the other side wavelet band are improved using both previous frames of the wavelet bands and wavelet
bands of color images since similar edges might appear in both images. Our method shows significant
improvements over some recent depth images interpolation methods.
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1. INTRODUCTION

Reliable and clean features are neccessary conditions for complex tasks such as object recognition, au-
tonomous navigation of robots, industrial inspection and biometric authentication. Algorithms which aim
to solve these problems often rely on luminance, color and motion information in order to get an interpre-
tation of the scene. The above-mentioned features are often not sufficient for a valid interpretation of the
scene due to the occlusions and the lack of information needed for a unique interpretation.

Scene interpretation can be significantly improved by introducing range data into the feature set. Depth
information makes the task of the scene interpretation more feasible and robust. Various range measuring
techniques exist which are based on usage of multiple cameras. These include triangulation systems such as
stereo vision (or structured light), depth-from-focus, depth-from-shape and depth-from-motion. Most recent
depth sensors are based on the measuring of time of flight of the light beam. This type of depth sensors
offers better accuracy, higher frame rate and lower computational requirements in order to reconstruct
depth image. However the main advantage of the time of flight sensors, is that they physicaly measure
the distance between the camera and the object, while other techniques use image analysis, which is often
prone to errors, to obtain depth images. The main disadvantage of time of flight depth sensors is their
limited spatial resolution which is much below the resolution of modern video cameras. This problem was
first adressed in the papers of Diebel,1 Riemens2 and Schuon.3 In this paper we address this disadvantage
and show that the superresolution can significantly improve the quality of the depth images.
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Time of flight cameras measure depth by emitting a modulated beam of infrared light and measure the
phase difference between reference light beam and the beam reflected from the scene. Since the depth is
sensed physically, the whole measurement proccess is independent of of the texture in the scene (which
is not the case for stereo systems that rely on disparity estimation). Typical resolutions of time-of-flight
cameras available on the market today are at most 320x240 pixels. In addition, depth images obtained
using time-of-flight sensors are often contaminated by noise and other errors, such as outliers.

Depth images usually have resolution which is not better than 176x144 pixels, if they are produced by
time of flight camera, or 90x72 if they are produced using real-time block-matching disparity estimation
algorithm eg. the real time estimator of De Haan.4 For 3D TV transmision that employs on depth image
based rendering, resolutions of color video sequence and corresponding depth have to be the same in order
to have satisfactory quality of the rendered stereo images.

First methods that used high resolution color cameras were presented in the papers of Diebel1 and
Yang.5 There authors assume that depth and luminance discontinuities are aligned, which allowed them
to enhance edges using high resolution luminace or color images, while using smoothing in other regions.
Related recent publications of Riemens2 and Gangwal6 use cross-bilateral filter for improvement of depth
images using high resolution color image. In the recent publication Schuon et. al3 adopt the method of
Farsiu7 based on L1 norm minimization and robust regularization based on a bilateral prior and apply it
directly on a sequence of depth images without introducing information from high resolution color sequence.

Initial approaches used depth upsampling which was regularized using edge consistency term with respect
to the color image. In the approach of Diebel1 authors used Markov random field for regularization of the
superresolved images. Recently in the papers of Yang5 and kopf8 bilateral filtering was used on cost volume
and color image respectively. These methods can recover well high frequency components of depth maps.
However, since the origin of the edge in color sequence is not taken into account, whether an edge originates
from the real discontinuity in depth, like object boundary or from texture alone. Consequently, disturbing
artefacts tend to arise on textured flat regions of the scene. The improved approach of Lindner9 improves
the above mentioned problem by taking into account noise and the edges.

In this paper we present a method that uses multiresolution representation of both depth and color
sequence in order to better asses the existence of edges and locate the most similar patches in the previous
and following frames. Our method builds up on non-local superresolution methods like.10 The main
contribution of this paper is combining information from both domains to improve the resolution of the
depth sequence.

In Section 2, we give an overview of related work on superresolution of depth and color video se-
quences, Section 3 gives a short introduction about multiresolution methods, Section 4 describes the pro-
posed method. Experimental results are given in Section 5 and conclusions in Section 6.

2. RELATED WORK

Superresolution is one of the essential problems in image processing and therefore it has been thoroughly
studied in the last few decades. Only recently these techniques were applied for depth images superresolu-
tion. Common principle for all the methods that were developed is that low resolution images are observed
as degraded (i.e. subsampled and blurred) samples of high-resolution scene as shown in Fig.1, and combined
using correspondences and weights to form high resolution image.
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Figure 1. a.) Superresolution principle

Most of the related methods uses high resolution color images to improve the resolution of the depth
image taken from the same location.

Bilateral filters were introduced by Thomasi and Manduchi.11 Despite their simplicity, these filters offer
good results in denoising and superresolution in subjective and to less extent objective measures. Basic
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bilateral filter definition is

I ′p =

∑
q∈S wp,qIq

∑
q∈S wp,q

, (1)

where Iq and I ′p denote the pixel intensities at positions q and p in the input image I and the proceessed
image I ′ respectively. In this basic configuration of bilateral filter, output image is a weighted average of
pixels, where the weights wp,q = s(||p − q||)r(Ip − Iq) are derived from the color image pixels, and s and
r are Gaussian functions with variances σs and σr. We can see from the Equation (1) that the value of
the resulting pixel depends on the functions of difference in pixel values s and distance of the original and
neighboring pixel r. Usually function s is a 2D convolution filter and r is the function that decreases with
larger intensity differences to preserve the edges.

To apply bilateral filter for enhancement of digital photographs taken with and without flash, Eisemann12

and Petschnigg13 presented independently the cross or joint bilateral filter, which use the properties of one
image to smooth an image with a similar content. Cross bilateral filter was first used for depth images
enhancement by Kopf and Cohen.8 The interpolated depth pixel value using cross bilateral filter is

Dh
p =

∑
q∈S wp,qD

l
q

∑
q∈S wp,q

, (2)

High resolution depth map Dh is obtained by filtering the low resolution depth map Dl where the filter
aperture is S guided by a high resolution texture image.

Many superresolution methods exist for color images, like7 most of which are based on per-pixel motion
estimation and regularization. Precise and consistent motion estimation is essential for these algoriths. Re-
cently, motion-estimation free algorithms for noise reduction and superresolution10 appeared with promising
results.

The method of Schuon et al.3 authors uses slightly displaced depth frames to obtain high resolution depth
image, wwithout making use of the corresponding high resolution image. Superresolved depth images were
calculated from 15 images, slightly translated orthogonally to the viewing direction. This method is derived
from the approach of Farsiu et al.7 developed for 2D digital photographs. Authors make assumption that
the process of forming depth images is analogous to the image formation process of normal photo camera.
Formation process of the depth image Yk can be described by the following equation:

Dh
k = DkHkFkDl

k + Vk (3)

where Dl
k is the one of the low resolution depth images to be interpolated, Fk is a translation operator that

represents the correspondences between the superresololved image and the current low resolution image,
Dk is a decimation operator that models the downsampling from the high resolution image to the size of
the low resolution image, Hk is a blur operator that models the characteristics of the lens and Vk models
additive noise of the sensor. The high resolution image is estimated as follows

D̂h = argmin
X

[
N∑

k=1

||DkHkFkDl
k|| + λΥ(Dl

k)] (4)
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Figure 2. a.) Orthogonal wavelet transform

where Υ(Dl
k) is a regularization term based on bilateral prior, with corresponding weighting factor λ,

Motivated by succesful application of multiresolution techniques on image restoration problems in the
papers of Pižurica14 and Chang15 and succesful combining of multiresolution and methods that use bilateral
regularization of Zhang16 we propose a method that combines these two concepts.

3. MULTIRESOLUTION ANALYSIS

One of the main challenges for superresolution algorithms is preservation of the edges of the objects. Un-
fortunately, many of the traditional superresolution and interpolation algorithms for images assume some
smoothness constraints on the image, which yield blurred results. Quality of the resulting image can be
significantly improved by using more sophisticated image models, that take into account the salient feature
of the images, like edge-directed interpolation. One of the most important features of a signal are the points
of sharp variations, or singularities. These points usually correspond to object edges or region boundaries.
Edges can be efficiently detected using a multiscale analysis. For example it is well known that the Canny
detector17 is equivalent to finding local maxima of wavelet coefficients. We base part of our algorithm on
these principles, since multiscale edge characterization offers convinient analysis of edges and good model
for interpolation. Edges are most often extracted by examining the first derivatives of the signal or its
smoothed version Local extremas of the first derivatives correspond to a regions of large variations in the
image, while small magnitudes correspond to slow transitions in image. If θ(x) is smoothing function which
satisfies the condition that it converges to zero when x converges to ∞ and whose integral is 1. If we denote
the derivative of θ(x) as ψ(x), function ψ(x) can be considered as wavelet. Dilated version of a wavelet
function is defined as ψs(x) = 1

sψ(x
s ) where s is the scale. Wavelet transform of f at scale s and location

x is given as a convolution Wsf(x) = f(x) ∗ (sdθs(x)
dx ) = s d

dx(f ∗ θs)(x). Taking the above definitions into
account the wavelet transform of the signal at scale s is equivalent to taking the first derivative of the
smoothed signal. In practice, wavelet transform is calculated by successive filtering of signal with vertically
and horizontally oriented low and high pass filters as shown in Figure 2

In our method we use the sparsest level of orthogonal wavelet transform for depth sequence, since it
is being interpolated, and all the other scales for color sequence that is used as reference for interpolation
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Figure 3. a.) Scaling coefficients of color image b.) Scaling coefficients of luminance images c.) Horizontal wavelet
band of the luminance image on a second scale d.) Horizontal wavelet band of the depth image on a second scale
e.) Vertical wavelet band of the luminance image on a second scale f.) Vertical wavelet band of the depth image on
a second scale

of depth sequence. Scaling coefficients of depth and color frames are quite different in nature, since they
represent two different phenomenas, so we can not use higher resolution scaling images for improving lower
resolution depth scaling coefficients. On the other hand, wavelet coefficient of color and depth sequence
appear to be quite similar, as shown in Figure 3. The only exceptions are textured parts, which contain
coefficients with high values, althought there is no real edges of objects. If taken without analysis, whether
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they represent real borders of the objects, these high values can produce disturbing artefacts (i.e. non-
existing edges) on flat depth regions. Otherwise, the use of wavelet coefficients significantly improves the
quality of edges in depth images.

4. THE PROPOSED METHOD

In this Section we describe our proposed algorithm for superresolution of depth images. In order to make
objective comparison of the algorithm performance possible, we use high resolution depth maps with cor-
responding luminance images, that are subsampled to obtain low resolution versions. Results of superres-
olution obtained using our algorithm are then compared to reference high resolution depth images. First
step is wavelet decomposition of both depth and luminance information. We keep all three scales and all
orientations of the wavelet decomposition of the luminance, while for depth only coarsest scale wavelet coef-
ficients is kept, to simulate the decimation and blurring process of generating low resolution data. The main
motivation to use multiresolution decomposition was found in recent succesful papers on image interpolation
of Chang,15 Velisavljevic̀18 and Li,19 combination of non-local techniques and multiresolution from Zhang16

and succesful application of wavelet techniques on passive error concealment in paper of Rombaut.20

The algorithm procedes iteratively, i.e., in each iteration resolution is increased two times by calculating
missing pixels. Pixels being superresolved are calculated differently for low frequency coefficients and for
high frequency wavelet coefficients. The main reason is that after wavelet transform, low frequency wavelet
band pixels are much more correlated and superresolution can be carried out in a simpler way, without
significant artefacts. To supperresolve low frequency component of the depth images, we form spatio-
temporal neigbourhood of 7 depth and luminance frames. In order to reduce computational complexity
required for finding most similar neighbourhoods to the current one, we form neighbourhoods of patches of
both sequences, while the size of each patch is 5x5. This is done since the memory requirements for storing
patches grow quadraticaly with the increase of neighborhood. Prior to patch extraction, low pass band
of all 7 depth frames are interpolated using Lancszos interpolation kernel (see the book of Turkowski21).
Kd-tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-
dimensional space, that was first introduced in a paper of Lee.22 They enable the efficient searches involving
a multidimensional search key (e.g. range searches and nearest neighbor searches). Then patches of the
same region from all 7 frames are formed, and k-d tree hierarchy of 50-dimensional points is formed. Then
for each missing point in high resolution low frequncy band, we search for the 2 points with the smallest
Euclidean distance to the current one that is being interpolated. The pixels in the low pass band (i.e. the
scalling coefficients) are interpolated as follows

ŝh
d =

∑
t∈[1,...,T ]

∑
(i,j)∈NL(k,l) w(k, l, i, j, t)sLc

t [i, j]
∑

t∈[1,...,T ]

∑
(i,j)∈NL(k,l) w(k, l, i, j, t)

(5)

where the weights are

w(k, l, i, j) = e
− ||R̂k,lLLLc

t
[k,l]−R̂i,jLLLc

t
[i,j]||22

2σ2
r · f(

√
(k − i)2 + (l − j)2) (6)

where R̂k,l is an operator that extracts the patch from image at location (k, l). We introduce the luminance
values in search because they help finding adequate closest points because they contain patterns that
facilitate search for the nearest neighbourhoods.
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As in the case of reconstruction of low-frequency depth coefficients reconstruction, preliminary recon-
struction of high-frequency coefficients can be carried out using coefficients from neighborhood. For the
HL-subbands, a vertical linear interpolation is a good initial estimate of missing coefficient, since there exist
mainly vertical correlation between coefficients due to horizontal high pass filtering. Similarly for the LH-
subbands, horizontal linear interpolation creates good initial estimate. In the case of HH-band coefficients
are replaced by zero, since most of these coefficients are zero. This replacements did not caused disturbing
artefacts.

Initial interpolation of high frequency content is again refined through search for best matching blocks
in the previous frames. This time for each neigborhood we form integral edge of both luminance and depth
by taking an absolute value of element-wise product. This is done to identify the edges of object and at
the same time to diminish the influence of textured parts. We extract 5x5 patches from all frames of depth
and luminance images and form kd-tree structure from lexograficaly ordered pixels contained in patches.
Then for each pixel of the high frequency coefficients, the closest patches in each frame are found. The
patches of the integral images are formed to avoid the higher dimensionality of the kd-tree, which would
reqire much more memory and calculations for its creation. For high frequency content restoration, we
perform test to detect whether the large coefficient in the current patch originates from the edge or from
texture in luminance frame. If the correlation between luminance and depth is higher than some empiricaly
determined threshold, we use the edge pixels of luminance to interpolate the depth high frequency content,
otherwise we use samples of low frequency depth. We use empirical threshold since the sequences that are
used for the test are of high quality, and do not contain noise. We choose them in order to be able to
quantitatively measure the performance of the proposed algorithm.

The value of high frequency wavelet coefficients of depth is obtained using Eq. 7

d̂h
d =

∑
t∈[1,...,T ]

∑
(i,j)∈NL(k,l) w(k, l, i, j, t)dLic

t [i, j]
∑

t∈[1,...,T ]

∑
(i,j)∈NL(k,l) w(k, l, i, j, t)

(7)

where d̂h
d stands for the estimated value of the wavelet coefficient of depth, dLic

t [i, j] is the preliminary
value of the interpolated pixel, and w(k, l, i, j, t) is the normalized value of the influence of the pixel with
coordinates (i, j) from the frame t on an interpolated pixel at location (k, l). We define interpolation weights
as

w(k, l, i, j) = e
− ||R̂k,lHF Lc

t
[k,l]−R̂i,jHF Lc

t
[i,j]||22

2σ2
r · f(

√
(k − i)2 + (l − j)2) (8)

where HF (i, j) is the value of the high frequency component at location (i, j).

5. EXPERIMENTAL RESULTS

We test the performance of the proposed algorithm on four sequences: “Interview”, “Orbit”, “Cg” and
rendered sequence of a street with global motion and artificial textures. First two sequences represent real
scenes. Resolution of all sequences is 720x576 and correspond to PAL standard resolution. To experimentaly
validate our algorithm, we decimate depth sequences 8 times using db4 wavelets as anti-aliasing filters.
This situation correspond to the depth field estimated using block disparity estimation algorithm e.g.4

with the block size 8. Performance of the proposed method is compared to a depth map obtained using
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nearest neighbor interpolation (equivalent to low resolution depth image), Lanczos inerpolation method21

and superresolution method of Farsiu from7 applied to the sequence of depth images and show significant
improvements in subjective and PSNR term. Quantitative results are given in in Table 1. We have also
made a comparison of artificial views generated using depth maps obtained using different methods. Virtual
view generated by depth map obtained using the proposed method contains the least number of occlusions
as shown in Figure 5. Example of superresolved depth image is shown in Figure. 4. From Figure. 4 we can
see that the depth map was successfuly upsampled withou losing sharpness of the edges.

Table 1. PSNR values of superresolved depth images

Method PSNR value
Low resolution depth image 23.53

Lanczos interpolation 24.6
Farsiu7 27.25

proposed 28.18

6. CONCLUSION

In this paper we present method for superresolution of depth images, based on using luminance images and
non-local processing. Proposed method preserves depth image details, because it takes into account the
most similar patches to the interpolated one. Method avoid implicit motion estimation since those methods
can cause disturbing artefacts in the case of occluded sequence parts. In our future work we plan to use
more sophisticated methods for searching similar contexts in n-dimensional space, to achieve more precise
context modelling.
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Figure 4. a.) Low resolution depth map b.) Depth map obtained by using Lanczos interpolation kernel c.) Depth
map obtained using the superresolution method from Farsiu7 d.) Depth map obtained by superresolution from
proposed method e.) Original high resolution depth map
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Figure 5. Artificial views generated using a.) Low resolution depth map b.) Depth map obtained by using Lanczos
interpolation kernel c.) Depth map obtained using the superresolution method from Farsiu7 d.) Depth map obtained
by superresolution from proposed method e.) Original high resolution depth map
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