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ABSTRACT 
In this paper, the use of fuzzy ant clustering in classifying a large database of environ-
mental soundscape recordings is outlined. Fuzzy ant clustering is a soft computing 
technique inspired by the clustering behaviour observed in colonies of several ant species. 
Virtual ants or “agents” move through the database, “pick up” soundscape recordings and 
drop them on places where similar recordings are present. Similarity of soundscape 
recordings is expressed by fuzzy resemblance of the shape of the SPL histogram, the 
frequency spectrum and the spectrum of temporal fluctuations, representing loudness, 
spectral and temporal content. The fuzzy IF-THEN rules, governing the behaviour of the 
virtual ants, are optimized using a specially adapted genetic algorithm, in order to achieve 
an optimal set of homogeneous clusters. Advantages of this approach, as compared to 
traditional clustering methods, are that no a priori information, such as the desired number 
of clusters, is needed, and that a more flexible set of indicators can be used. The clustering 
model is validated on a database of acoustic measurements of 1116 soundscapes, made in 
16 urban parks in Stockholm, and results are compared with visitor survey data on 
soundscape quality. 

1 INTRODUCTION 
There is a growing awareness that outdoor areas with a high quality soundscape deserve 

special attention. For example, because rural and urban quiet areas have great potential for 
recreation and psychological restoration, their preservation and management has been 
subscribed in the EC environmental noise directive [1] and in policy intentions of many 
countries. Nevertheless, clear and objective environmental soundscape quality assessment 
procedures are still lacking, because of the multiple dimensions (loudness, spectrum, time, 
context, personal factors etc.) involved in soundscape perception. An active subfield of 
soundscape research is therefore directed towards finding suitable (sets of) quality indicators, 
well grounded in soundscape perception [2]. It is commonly acknowledged that physical, 
contextual and perception-based indicators will have to be combined. 
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A number of methods have been applied to relate physical indicators (derived from 
acoustic measurements and recordings) to soundscape perception and evaluation (often 
derived from questionnaires), most of them involving PCA analysis, data clustering and 
regression. In this paper, an algorithm for automatic classification of soundscape recordings 
is presented, based on several techniques that mimick biological systems – often commonly 
referred to as soft computing techniques. 

The similarity between two soundscapes is determined by the fuzzy resemblance of the 
shape of three statistical distributions derived from the spectrograms of both recordings, i.e. 
the SPL histogram, the frequency spectrum and the spectrum of temporal fluctuations [3]. 
The proposed distance measure (Section 2.1) is purely based on physical measures, but 
obviously goes beyond the use of single-valued indicators such as LAeq or LA95. The clustering 
algorithm (Section 2.2) is inspired by the clustering behaviour observed in colonies of several 
ant species. Compared to well known hierarchical or partitional clustering algorithms, such as 
k-means or the more general fuzzy c-means algorithms, ant clustering has the advantage that 
an initial estimate of the number of clusters does not have to be provided. The behaviour of 
the ants, and as a consequence the number and composition of the resulting clusters, is 
governed by fuzzy IF-THEN rules, optimized using a specially adapted genetic algorithm 
(Section 2.3) in order to achieve an optimal set of homogeneous clusters. 

In Section 3, a validation of the classification algorithm will be given. A large set of 10-
minute soundscape recordings, made in several urban parks in Stockholm [4], will be used as 
a case study database. Finally, the results will be compared with visitor survey data. 

2 METHODOLOGY 

2.1 Soundscape similarity 
A soundscape recording can be fully characterized by its spectrogram, in which the 

frequency spectrum is plotted against time. However, directly comparing two spectrograms is 
not very meaningful, due to the stochastic nature of soundscapes. Also, comparing 
spectrograms of different durations is not trivial. An analysis of several field studies in which 
soundscapes were assessed using semantic differentials [5], has shown that at least three 
principle components seem to arise in most cases: a factor related to the loudness of the 
soundscape, a factor related to the spectral content and a factor related to the temporal 
structure. Therefore, three statistical distributions derived from the spectrogram of the 
soundscape were selected, representing the above mentioned factors: the (A-weighted) SPL 
histogram, the (1/3-octave band) frequency spectrum and the spectrum of temporal 
fluctuations (for a definition, see [3]). Two soundscapes are defined to be similar when these 
distributions are similar. 

To quantify the similarity measure (distance measure), we note that each statistical 
distribution may be interpreted as a fuzzy membership function [6]. More in particular, the 
SPL histogram of a soundscape may be seen as a fuzzy set on the loudness universe of 
discourse, the frequency spectrum as a fuzzy set on the frequency universe of discourse, and 
the spectrum of temporal fluctuations as a fuzzy set on the universe of discourse of temporal 
content. For the spectrum, this is illustrated with an example in Figure 1. The three 
distributions were “vertically” rescaled to the interval [0,1]. Additionally, the SPL histogram 
was shifted “horizontally” to a common centre of gravity. This excludes the influence of the 
average SPL in the clustering algorithm, since it is desired that soundscapes with a similar 
histogram shape end up in the same cluster, rather than soundscapes with the same LAeq. 

The notion of similarity is well-known in fuzzy set theory, and a large number of methods 
exist to quantify the resemblance of two fuzzy sets. Generally, the similarity measure is a 
binary fuzzy relation on the class of fuzzy sets on the universe of discourse considered 
(loudness, frequency and temporal content), which yields a value in [0,1], and which yields 



the value 1 if both sets are equal. In [7], a distinction is made between measures inspired by 
set equality and measures inspired by the degree of overlap. In [8], it is argued that it is often 
most worthwile to use an aggregation of several similarity assessments, and a hybrid 
similarity measure is proposed, which takes into account shape similarity and similarity of 
peak regions. In this work, the similarity measure defined in [8] is considered for the three 
distributions separately, and the resulting values are combined using a fuzzy t-norm (see 
further for an example) to obtain the global similarity measure E(a,b), with a and b two 
soundscapes. 

2.2 Fuzzy ant clustering 
Ants are, because of their limited brain capacity, often assumed to reason only by means 

of rules of thumb [9]. However, the resulting behaviour on the colony-level can be quite 
complex. A particular example is the clustering of the corpses of dead nestmates by taking 
only simple actions and without negotiating on where to gather the corpses. Because of the 
conceptual simplicity of this phenomenon, a computational clustering technique based on ant 
behaviour was introduced by Deneubourg et al. [10], which was later refined by Monmarché 
[11][12]. In this work, a slightly modified version of the algorithm by Schockaert et al. [13] is 
used, which is based on the work by Monmarché. The algorithm in [13] uses fuzzy rules to 
control the behaviour of the ants. Furthermore, no spatial relationship between clusters is 
considered (i.e. the clusters are kept in a list), so the algorithm is suited to cluster database 
records. 

At the start of the algorithm, each soundscape is considered to form a cluster by itself 
(indicated by a cluster index added to the database of distributions associated to the 
soundscapes considered). At each timestep of the algorithm, an artificial ant selects a cluster 
(heap) at random, and undertakes one of the following actions. If it is carrying nothing, it can 
pick up a single item of the selected heap or it can pick up the entire heap. If it is carrying a 
load, it can drop the items it is carrying on the selected heap, thereby moving them to a 
different cluster, it can drop its load in an empty place, or it can decide to do nothing. The 

60

50

40

30

20

10

0

0.0

0.5

1.0

31.5 63 125 250 500 1k 2k 4k 8k 16k

fr
eq

ue
nc

y 
sp

ec
tr

um
 (d

B
A

)
m

em
be

rs
hi

p 
fu

nc
tio

n

frequency (Hz)  
Figure 1: The upper panel shows the frequency spectra of three soundscape recordings. The lower panel shows 

an illustrative fuzzy partition of the frequency universe of discourse; the sets shown may be labeled with the 
linguistic values “low” (dotted), “medium” (dashed) and “high” (solid) frequency. 



decision process is governed by a model of division of labour. A certain stimulus value s and 
a response threshold value ϑ are associated with each task the ant may perform. The response 
threshold value is fixed, but the stimulus can change, and represents the need for someone to 
perform the task. The probability that the ant starts performing the task is given by 

( ),
n

n n n

sp s
s

ϑ
ϑ

=
+

 (1) 

where n is a positive integer [13]. For example, a loaded ant may drop its load, with a 
probability given by 

( ),drop m drop dropP p s ϑ=  (2) 

where m is a positive integer, which differs if the ant is carrying only a single item or several 
items. 

For each cluster H, the center soundscape cH is defined as the soundscape which has the 
highest average similarity E with all other soundscapes of the cluster. Note that this definition 
is independent of the problem at hand. The average similarity AH and the minimal similarity 
MH of a cluster H are defined as 

( )1 ,H H
v H

A E v c
H ∈

= ∑              ( )min ,H Hv H
M E v c

∈
= ⎡ ⎤⎣ ⎦  (3) 

with |H| the number of elements in H. When a load L is considered, the average similarity 
between the center of H and the items of L can be estimated by 

( )( ), , ,L H W L H LB T E c c A=  (4) 

with TW the Łucasiewicz t-norm given by 

( ) ( ) [ ], max 0, 1 , 0,1WT x y x y x y= + − ∈  (5) 

The values of the stimuli are calculated by evaluating a fuzzy rule base, of which the rules 
are constructed as follows (from [13]): 
• Dropping items. The stimulus for a loaded ant to drop its load L on a heap H is based on 

the average similarity AH and the estimation of the inter-cluster similarity BL,H. If BL,H < 
AH, then the stimulus for dropping the load should be low; if BL,H ≥ AH, then the stimulus 
should be high. The rules are summarized in Table 1. 

• Picking up items. An unloaded ant should pick up the most dissimilar item from a heap 
H, if the similarity between this item and cH is far less than the average similarity of the 
heap AH. This means that by loading the item, the heap will become more homogeneous. 
An unloaded ant should only pick up an entire heap, if the heap is already homogeneous. 
Consequently, AH and MH are used to build a rule base similar to Table 1 for picking up 
items. 

For evaluating the fuzzy rules, the Sugeno fuzzy inference system was used because of its 
calculation speed. The linguistic terms as shown in Table 1 are represented by triangular 
fuzzy sets. 
 The clustering algorithm only uses a single ant, since the use of multiple ants has no 
advantages in a non-parallel implementation. However, parts of the clustering can be 
performed by ants with different parameters. More specifically, when q different ants are 
used, each of them will cluster for N/q iterations, with N the total number of iterations. 



2.3 Post-clustering optimization 
The algorithm contains no stop criterion, so a predefined number of time steps N are 

simulated, depending on the number of soundscapes in the database. Since the above 
sketched algorithm is probabilistic in nature, the clustering result will often contain 
“impurities”, such as singleton clusters or clusters that are non-homogeneous due to a single 
item. In a first post-clustering step, all clusters that contain less elements than a given 
threshold number are removed and their elements are relocated to the best suiting remaining 
cluster. In a second post-clustering step, the least fitting item in each cluster is relocated (if 
necessary) to the best fitting cluster. 

To compensate for the stochastic nature of the algorithm, a third optimization step was 
implemented, which merges the clustering results obtained in different clustering runs (10 in 
this algorithm). The merged clusters contain items which were clustered together in more 
than half of the separate clustering runs. This optimization step was found to significantly 
enhance the results. 

2.4 Ant behaviour optimization using a genetic algorithm 
The ant clustering algorithm contains a number of parameters that influence the 

evaluation of the fuzzy rule bases and the behaviour of the ant(s), and as a consequence the 
number and composition of the resulting clusters. Examples are the parameter m in the 
evaluation of the chance for dropping the load, and the various threshold values associated 
with each action. The performance of the clustering algorithm will therefore depend on the 
particular parameter values (11 in total for each ant). 

To find the ant parameters resulting in an optimal clustering, a genetic algorithm (GA) 
[14][15] – a global search heuristic which uses techniques inspired by evolutionary biology – 
was used. Each possible solution of the problem is represented by a genome (the set of ant 
parameters) and a corresponding phenome (the clustering result produced by the ant). 
Roughly, the algorithm works as follows. At the start, a generation of random solutions is 
created. At each iteration, a new generation of solutions is produced, which tries to combine 
the positive elements of the previous generation. Each solution of the new generation (the 
offspring) is generated by selecting at random one or two solutions of the previous generation 
(the parents) taking into account their quality or “fitness” (see further), and by applying the 
genetic operators of crossover and mutation on their genomes. Usually the algorithm is 
terminated when the variance of the fitness within the current generation has become small, 
indicating that the algorithm has converged, when the best solution’s fitness has reached a 
plateau such that successive iterations no longer produce better results, or when a maximum 
number of iterations is reached. 

It has to be noted that a GA is a stochastic search algorithm, which implies that the 
optimal solution is not guaranteed to be found. However, GA’s are applicable to a broad 
range of problems, and usually reach a good solution relatively fast. Instead of giving a 
detailed specification of the algorithm implemented in this work, we highlight the most 
important aspects: 

Table 1: Stimulus for dropping the load. The linguistic terms are very very high (VVH), very high (VH), 
high (H), rather high (RH), medium (M), rather low (RL), low (L), very low (VL) and very very low (VVL).  
BL,H \ AH VH H M L VL 

VH RH H VH VVH VVH 
H L RH H VH VVH 
M VVL L RH H VH 
L VVL VVL L RH H 

VL VVL VVL VVL L RH 
      



• Coding of the genome. The genome of a solution simply consists of the set of parameters 
of the clustering ant(s), coded as floating point numbers. Since a variable number of ants 
may be used, the genome has a variable length, and consists of separate segments, each 
corresponding to the parameters of a single antf. 

• Fitness evaluation. The quality of a solution corresponds to the quality of the clustering 
result, and is evaluated using a fuzzy rule base. An optimal clustering will have the 
following qualities: (i) the average similarity within clusters is high; (ii) the average 
similarity between clusters is low; (iii) the number and size of the clusters is within 
reasonable bounds, relative to the number of soundscapes in the database. Note that the 
fitness function is not deterministic – the same ant may produce clustering of different  
quality when used again – due the stochastic nature of the ant clustering. 

• Selection. Parents are selected for reproduction based on their fitness. A tournament 
selection procedure was used: a subgroup of k solutions is selected at random, and the 
best solution of this subgroup is elected to be a parent. The tournament size k determines 
the selection pressure; a value of 2 was used. 

• Reproduction. Offspring is produced from parents by applying crossover (2 parents 
needed) or mutation (1 parent needed) operators. Each operator has the same probability 
to be used. Various crossover operations included exchanging single ant parameters or 
exchanging whole ants. Various mutation operations included randomly changing a single 
parameter, inserting a random ant or removing an ant, if the solution uses multiple ants. 

• Survival. An elitism survival mechanism is used: the next generation consists for 2/3 of 
offspring, and for 1/3 of the best solutions of the previous generation (the elitists). 

3 VALIDATION 

3.1 Data set 
The classification algorithm was validated on a database of acoustic measurements, made 

in 16 urban parks in Stockholm [4]. The measurements were conducted in the framework of a 
questionnaire survey. In total 1116 respondents answered questions on perceived soundscape 
quality and road traffic annoyance. While the questionnaires were conducted, the 1/3-octave 
band spectrogram was recorded at about the same location, resulting in a database of 1116 
sound spectrogram registrations with associated quality assessments. The SPL histogram, 
frequency spectrum and the spectrum of temporal fluctuations was calculated for each 
soundscape, based on the recorded spectrograms, and formed the input for our clustering 
algorithm. 

3.2 Convergence of the genetic algorithm 
The ant parameters for clustering were optimized using the described genetic algorithm. 

A single generation consisted of 100 solutions, and the GA was run for 65 generations. 
Figure 2 shows the average and maximum clustering fitness within each generation. From the 
graph it could be concluded that the algorithm did not converge: generation 65 still consisted 
of a broad range of good and less good clustering results, reflected in the difference between 
maximum and average fitness. The maximum fitness reached a plateau at about the 40th 
generation. However, most solutions in the 65th generation had about the same genome; 
small variations resulted in a drop in fitness, explaining the lower average. The best solution 
encountered (in generation 56) made use of 3 ants, of which 2 were very similar (only 1 
parameter differing slightly), and was used to produce the clustering results described in the 
next section. A total of 49 clusters were obtained, with an average of 23 soundscapes in each 
cluster. 

                                                 
fThe total number of clustering iterations N is kept constant, independent of the number of ants used, in 

order not to favor the use of a large number of different ants. 



3.3 Clustering results 
Classical regression analysis results, relating physical indicators (LAeq, LA50, LA95 etc.) to 

soundscape perception and evaluation for the same dataset, can be found in [4]. In this work, 
we will focus on results in light of the clustering algorithm introduced above. Figure 3 shows 
graphs relating LAeq and LA50 to road traffic noise annoyance and perception of quietness. The 
graphs show the expected trends in exposure and effect; however, there is a high spread. 

Plotting results clustered with the above described algorithm has the main advantage that 
cluster dots aggregate soundscapes with similar statistical loudness, spectral and temporal 
features. Outlier clusters can be used to trace for specific physical features of the soundscape 
that may have modified perception. Figure 4 shows the fuzzy membership functions based on 
the A-weighted SPL histogram for several outlier clusters, marked A-D on panel (a) of Figure 
3, together with the average histogram of the remaining clusters. Note that the SPL levels are 
relative, since the histograms were shifted horizontally to have a common centre of gravity. 
Clusters A and B aggregate soundscapes which were found to be more annoying due to road 
traffic noise than can be expected on the basis of the LAeq; clusters C and D aggregate 
soundscapes which were found to be less annoying. Compared to the mean, the histogram of 
clusters A and B is narrower. This indicates a “grey” or low fidelity soundscape [16], with 
few dynamics, foreground and background. Compared to the mean, the histograms of clusters 
C and D are much wider, and show a peak at lower levels. This indicates a (relatively) low 
background noise level with noise events which can have a high level (high fidelity 
soundscape). If anything, this analysis shows that LAeq or LA50 on themselves are not 
sufficient to predict annoyance or perception of quietness. 
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Figure 2: Maximum (solid line) and average (dashed line) fitness in the GA. 

(a)

0

1

2

3

4

5

35 40 45 50 55 60 65

L Aeq

ro
ad

 tr
af

fic
 n

oi
se

 a
nn

oy
an

ce

A

B

C

D

 (b) 

0

1

2

3

4

5

6

7

8

9

30 35 40 45 50 55 60

L A50

qu
ie

tn
es

s

 
Figure 3: Scatter plots of road traffic noise annoyance (assessed on a 5-point scale) and perception of quietness 

(assessed on a 9-point scale) as a function of resp.  LAeq and LA50, averaged within clusters shown as dots. 
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Figure 4: Fuzzy membership function based on the A-weighted SPL histogram of several outlier clusters 

(colored), compared to the mean histogram of the remaining clusters (black). 
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Figure 5: Scatter plots of various perceptual soundscape indicators, averaged within clusters shown as dots. 

Soundscape quality, capacity for psychological restoration, presence of natural sound and presence of 
mechanical sound were assessed on a 5-point scale, quietness on a 9-point scale. 



Figure 5 shows graphs relating various perceptual soundscape indicators, averaged over 
all soundscapes within each cluster. From the trends, some expected conclusions can be 
drawn, e.g. soundscape quality in urban parks is strongly related to the presence of natural 
sound (r2 = 0.36) and the absence of mechanical sound (r2 = 0.66). The broad variance in the 
position of the dots corresponding to various clusters show that clustering based on physical 
parameters alone can reproduce (part of) the variation between soundscapes observed in 
survey results. 

4 CONCLUSIONS 
In this paper a novel approach was outlined for clustering soundscapes. Virtual ants sort a 

soundscape database based on similarity of the A-weighted SPL histogram, the frequency 
spectrum and the spectrum of temporal fluctuations. Parameters of the ants are optimized 
using a genetic algorithm, in order to obtain ants that produce a well balanced clustering 
result. Compared to classical clustering algorithms, the ant clustering algorithm has the 
advantage that no a priori information is needed, such as the number of clusters, and that a 
flexible set of indicators can be used to assess soundscape similarity. The algorithm was 
validated on a database of 1116 soundscapes with associated quality assessments, which were 
recorded in 16 urban parks in Stockholm. Since clusters aggregate soundscapes with similar 
loudness, spectral and temporal features, outliers in graphs relating quality assessment 
indicators can be used to trace for specific features which may have caused the anomaly. This 
technique was used to show that LAeq or LA50 on themselves are not sufficient to predict 
annoyance or perception of quietness, and that clustering based on physical parameters alone 
can reproduce (part of) the variation between soundscapes observed in survey results. 
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