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Abstract: This paper treats the three dimensional full-wave invecsdtering problem. The goal is to reconstruct
the complex permittivity within an investigation domairattis embedded in a homogeneous background medium.
This reconstruction is treated as an optimization problemntlie discretized permittivity profile only and no other
unknowns are introduced. Therefore the fields in the ingattin domain are eliminated from the problem by solving
a multiview forward scattering problem in every step of thémization whereby €icient algorithms such as the FFT-
method and the marching-on-in-angle method are used. Ag=aldewton optimization algorithm is applied to a new
type of regularized cost function and yields rapid conveoge Several inversions from simulated data are presented.

Keywords: Microwave Imaging, , Inverse Scattering, Three DimendioBauss-Newton Optimization, Regulariza-
tion, Multiview Forward Problem, Complex Permittivity

1. Introduction

During the last two decades quantitative imaging techniques in the microwgiee rgoroviding recon-
structions of electromagnetic parameters, such as permittivity and corijuctixere mainly developed for
2D configurations [1-6], mostly TM-polarized. The developmentti€ient forward and inverse scattering
algorithms in the 2D framework, together with the advent of more powerful BChow facilitating the
transition to full-wave 3D guantitative imaging [2, 7-11].

Due to the non-linearity of the inverse scattering problem, an iterative sgcmtion algorithm, in which
a cost function is minimized, is mandatory. The scattered field depends on s ¢f unknowns, the
complex permittivity and the total field inside the object, which are related by aidantagral equation
constraint. With respect to these unkowns, most reconstruction method® aivided in two categories.
In the first, “conventional” approach, the total field unknown is eliminatedchfthe problem, by means of
solving a full forward problem in each iteration of the optimization algorithmhghat the cost function
only depends on the complex permittivity [1-3, 5]. In the second “modifiadignt” approach the domain
integral equation constraint is added as a second term to the cost fumdtich is then minimized for both
types of unknowns using a conjugate-gradient optimization scheme [9]6]8 this contribution we have
chosen to work with the conventional approach, which is implemented witlffiareat forward solver and
an dficient Gauss-Newton optimization procedure that converges very rapidly
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Figure 1: The 3D geometry for the inverse problem.

To handle the ill-posedness of the inverse scattering problem, a multiplicatdiéve type of regular-
ization is employed. This suppresses tfffte& of noise on the reconstructions and is believed to have its
benefits in dealing with the non-linearity of the problem [16,17].

Reconstructions from simulated data will be used to show fifeetiveness of the proposed method.

2. Formulation of the Inver se Problem

Consider a 3D inhomogeneous lossy dielectric object situated in an infinitegesmaous and isotropic
background (Fig. 1). For a fixed frequenéy= w/2r and from a number of transmitter point§, t =
1...NT, the object is illuminated by electric dipoles oriented along the direcﬁré‘gsp =1...NP < 3.
For every such excitation, the scattered field is measured in the 3¢t eéceiver pointsr?, along the
directionsﬂﬁp, p=1...NF < 3, where the seft} and possiblyNR can be dfferent for each illuminatiot
The objective is to reconstruct the complex permittivity distribué@rn = €'(r) — je”’(r) within the volume
D that encloses the object and that is sitting in a homogeneous backgrounukewitfitivity .

It is well known that this inverse scattering problem is ill-posed, i.e. the existeuniqueness and
stability of the solution are not simultaneously guaranteed. Nonexistenceesl @ath by redefining the
solution as the minimizer of a cost functional. Usually a least squares cudidnal is applied:

F(e) = FioueS(e) &P, )

wheree€™ is a vector that contains the data as¥¢k) contains the calculated values of the field, scattered by
a permittivity distributione(r). The normalization factoFg is the squared norm of the datgp = ||€™)%.
Nonuniqueness is remedied by using “complete data”, i.e. fields measuraiints that form a good
sampling of the sphere aroutfd for a suficient number of dferent illuminations. Finally the solution of
the inverse scattering problem as the minimizer of (1) is known to be verjtigerts noise on the data.
Because of this, a regularization of the problem is necessary and thiseadisbussed in more detail in
section 5..

3. Contrast Source Integral Equation

A contrast source integral equation is used to describe the scatteringHeinhomogeneous object
when it is illuminated by an incident fiel#'"(r) (the time dependenag! is omitted). Once the electric
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field E(r) in the object is known, the scattered figk¥®(r) is calculated as the field, generated by the
so-called contrast current, sitting in free space:

IFA(r) = jo [e(r) — ] E(r) = jax(nE(N), (2)

ES(r) = ~jowpp

Lovl|. )3
I+kaV] fDGb(r r')J>(r)dr’, 3

whereky, is the background wavenumber angl the background permeabilityGy(r — r’) is the Green
function of the infinite background medium:

e g ikllr =1l
r—-r)= —. 4
b(r — ') T (4)

To know the total fieldE(r) in D and thus the contrast currents, the following integral equation is solved
E(r) = E™(r) + EX3(r), Vr € D, (5)

which is referred to as thdomain equation. Equation (3) is used to calculate the scattered field in the
receiver points and is called tlobservation equation.

The inversion domaitD is discretized using a uniform cuboidal gridBfx G x H cells. On this grid,
€(r) is approximated by a piecewise constant function that has one valuetirtelagidal cell:

n

1 -1

e(r) = ef.gheb®@s gn(r), (6)
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whered¢ gn(r) = 1in cell (f, g, h) and zero elsewhere. As for the fields in the donfithat are needed in
the forward problem, the electric flux densiB(r) = e(r)E(r) rather tharE(r) is expanded in 3D rooftop
functions on the same grid or on a finer grid.

4. Multiview Forward Problem

To calculate the value of the cost function and its derivatives with reg¢peice permitivity unknowns,
a multiview forward scattering problem has to be solved in every iterationeodptimization process: for
every excitation alongt pin r the fieldE¢ p(r) in D has to be known to calculaﬁfc"’1t rAy- uA Also the
derivatives of these fields with respect to the optimization parametgrsare needed for the optlmlzatlon.
Analytical expressions for the derivatives can be obtained
IETH

T (11 Ty = o [ Orgn(r)Eupr) - Enp(r)dr ™
€f.g.h D

where E; y(r) is the field inD due to a dipole excitation alongﬁ . in rA. This means that for every
antenna, wether source or receiver, a forward problem must bedscﬂimce the solution of a full-vectorial
3D scattering problem is a computationally demanding task, two acceleratimggeeb are used. THe-T
method [12—-14] uses the convolution structure of (3) to accelarate the calculattitre scattered electric
field in D. In conjunction with an iterative solver this allows for rapid solution of (SheMarching on in
Angle method is an application of an extrapolation procedure described in [hg]idEa is to find a better
initial estimate for the iterative solution of a linear system based on a numbeswbps solutions.
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5. Regularization

To reduce thefect of noise on the reconstruction, we propose to minimize an alternativieinosonal
Fr(e) = F(e)(1 + ao(€)). The functionab-(e¢) is always positive and penalizes strong local variations in the
permittivity distribution. In discretized form it is given by

o(e) = Z Z Z (|6f,g,h - 5f—1,g,h|2 + |et.gh - 6f,g—1,h)2 + |ef.gh — 6f,g,h—1|2)- 8)
9 n

«a is a positive real parameter that is chosen based on very generatikkpowledge, such as the maximal
size of the object (already used to choose a dorgiand an upper limit for the permittivity (already used
to choose a mesh size for the forward problem). The fact that the reggiian term is not only added to the
least squares cost function, but also multiplied by it has a positive influem¢he convergence and makes
the choice ofx less critical.

6. The Gauss-Newton Method

Let & be the vector containing the dfieientser g from (6). Expressions for the gradient vector and the
hessian matrix of the regularized cost functfag(e, £*) as a function ot and its complex conjugat are:

9B 1 [3T[eS- e (1+ o) + aFgFQ
*y — | de | = —
o(e, &) = [g—F} = [JH [e5— &M (1 +ao) + a/FoFQ*] ©)
192_F 62F l B/ A*
H(e. &%) = [%%%f e ] == ] (10)
Oe*de  Oe*Oe* FO A B
with
B = Bl+ao)+ad"[e8-€" QT +eQ[e’- €M J (11)
A = JHI1+e0)+ad"[e-eMQT +aQ [e°- €M J + aFoFZ (12)
and where N
oe’ %€ 5o do
Ji=—, Bij= S_@"r, %= and Q= —. 13
=5 O ((%iﬁej) =€ % dade '~ e (13)

Linearizing the scattered field>, as a function of the permittivity-vecter, around the current iterags
and applying Newton’s method with some additional simplifications, one gets fojowpdate formula:

ek — ek = As = = (I"I(1+ a0) + aFon)‘l (37 [ - €M (1 + ao) + aFoF L"), (14)

where all the quantaties in the right hand side are calculateskfdn practice, this update vector is used as
a search direction along which a line search is performed to find the nexteitdiogether with the fact that
(14) always produces descent directions, this ensures decreatieg of the cost function.

It can be argued that thdfect of the regularization termFo on the optimization process is the fol-
lowing: it improves the conditioning of the linear system (14), it bounds thaatgdirections away from
orthogonality to the steepest descent direction, it controls the smoothrtbsspermittivity profile in every
iteration and it controls the steplength. The lattéeet improves the validity of the linearization of the
scattered field.
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7. Numerical Examples

Figure 2 shows the reconstruction of a homogeneous dielectric sphereaditis 0251, an withe =
2ep. The antenna configuration for this example consists of 6 meridional airatdays, centered on the
center of the sphere, with a radiRs= A, and each containing 12 antennas in azimuthal directions and 12
antennas along the meridional circle. All antennas act as both transmittee@eider, so a total number
of 20736 datapoints is obtained. The data are generated by analyticabisaltithe forward scattering
problem. For the inversion domain a cube with siges chosen, which is discretized using 2@0x 20 =
8000 permittivity cells. The discretization noise results in an SNR of 27 dB.r\itne squared data error
or the least squares cost functin(see (1)) reacheB < 2 - 1073, which corresponds to the noise level,
the optimization is stopped. With a regularization parameter 10~ the result is obtained in only three
iterations and within 73 minutes on a computer with 2 GHz Dual Core AMD Opterooegsor and 8
Gbytes of RAM.

A second example is the reconstruction of the permittivity profile, shown inr&ig§uThe background
medium is water with a permittivity o&, = (77.3 — j212)ey at 1 GHz. A cube with side .81, and
permittivity e; = (9.5— j7.19)e (fatty tissue) is submersed in this medium. Inside this cube is a smaller one
with tumor-like propertieg; = (50— j71.9)ey. The result is a highly contrasted permittivity profile which
is not easy to reconstruct. The antenna configuration now consists afidional circular arrays, centered
on the center of the sphere, with a radRis= 21, and each containing 12 antennas along the meridional
circle, which results in 5184 datapoints. Figure 4 shows the reconstrdotian SNR of 50 dB and Figure
5 corresponds to an SNR of 30 dB. Both reconstructions were obtaiitiedw 5- 1074,

8. Conclusions

A modified Gauss-Newton method has been proposed to solve the three idinaéis/erse scattering
problem. It minimizes a regularized cost function and provides good stéations after only a small
number of iterations. As a consequence, the total execution time of the atgodthains reasonable, even
though in every step of the optimization a full multiview forward problem is sshiMdumerical examples
were shown to prove the validity of the method and to illustrate its performance.
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(a) Real part ot-profile. (b) Imaginary part o-profile.

Figure 2: Reconstruction of a sphere with radiud, from analytic data. The white contour shows the
boundaries of the actual sphere.
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Figure 3: The exact permittivity profile. The plotted values &9/ .
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Figure 4: The reconstructed permittivity profile for an SNR of 50 dB.
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Figure 5: The reconstructed permittivity profile for an SNR of 30 dB.
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