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Abstract: This paper treats the three dimensional full-wave inverse scattering problem. The goal is to reconstruct
the complex permittivity within an investigation domain that is embedded in a homogeneous background medium.
This reconstruction is treated as an optimization problem for the discretized permittivity profile only and no other
unknowns are introduced. Therefore the fields in the investigation domain are eliminated from the problem by solving
a multiview forward scattering problem in every step of the optimization whereby efficient algorithms such as the FFT-
method and the marching-on-in-angle method are used. A Gauss-Newton optimization algorithm is applied to a new
type of regularized cost function and yields rapid convergence. Several inversions from simulated data are presented.
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1. Introduction

During the last two decades quantitative imaging techniques in the microwave region - providing recon-
structions of electromagnetic parameters, such as permittivity and conductivity - were mainly developed for
2D configurations [1–6], mostly TM-polarized. The development of efficient forward and inverse scattering
algorithms in the 2D framework, together with the advent of more powerfull PC’s is now facilitating the
transition to full-wave 3D quantitative imaging [2,7–11].

Due to the non-linearity of the inverse scattering problem, an iterative reconstruction algorithm, in which
a cost function is minimized, is mandatory. The scattered field depends on two types of unknowns, the
complex permittivity and the total field inside the object, which are related by a domain integral equation
constraint. With respect to these unkowns, most reconstruction methods can be divided in two categories.
In the first, “conventional” approach, the total field unknown is eliminated from the problem, by means of
solving a full forward problem in each iteration of the optimization algorithm, such that the cost function
only depends on the complex permittivity [1–3,5]. In the second “modified gradient” approach the domain
integral equation constraint is added as a second term to the cost function, which is then minimized for both
types of unknowns using a conjugate-gradient optimization scheme [4,6,8,9]. In this contribution we have
chosen to work with the conventional approach, which is implemented with an efficient forward solver and
an efficient Gauss-Newton optimization procedure that converges very rapidly.

23rd Annual Review of Progress in Applied Computational Electromagnetics March 19-23, 2007 - Verona, Italy  '2007 ACES

667

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55867524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


rA
r

rA
t

ûA
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Figure 1: The 3D geometry for the inverse problem.

To handle the ill-posedness of the inverse scattering problem, a multiplicative-additive type of regular-
ization is employed. This suppresses the effect of noise on the reconstructions and is believed to have its
benefits in dealing with the non-linearity of the problem [16,17].

Reconstructions from simulated data will be used to show the effectiveness of the proposed method.

2. Formulation of the Inverse Problem

Consider a 3D inhomogeneous lossy dielectric object situated in an infinite homogeneous and isotropic
background (Fig. 1). For a fixed frequencyf = ω/2π and from a number of transmitter pointsrA

t , t =
1 . . .NT , the object is illuminated by electric dipoles oriented along the directionsûA

t,p, p = 1 . . .NP ≤ 3.
For every such excitation, the scattered field is measured in the set ofNR

t receiver pointsrA
r , along the

directionsûA
r,p, p = 1 . . .NP

t ≤ 3, where the set{r} and possiblyNR
t can be different for each illuminationt.

The objective is to reconstruct the complex permittivity distributionǫ(r) = ǫ′(r) − jǫ′′(r) within the volume
D that encloses the object and that is sitting in a homogeneous background withpermittivity ǫb.

It is well known that this inverse scattering problem is ill-posed, i.e. the existence, uniqueness and
stability of the solution are not simultaneously guaranteed. Nonexistence is coped with by redefining the
solution as the minimizer of a cost functional. Usually a least squares cost functional is applied:

F(ǫ) =
1

F0
‖es(ǫ) − em‖2, (1)

whereem is a vector that contains the data andes(ǫ) contains the calculated values of the field, scattered by
a permittivity distributionǫ(r). The normalization factorF0 is the squared norm of the data:F0 = ‖em‖2.
Nonuniqueness is remedied by using “complete data”, i.e. fields measured in points that form a good
sampling of the sphere aroundD for a sufficient number of different illuminations. Finally the solution of
the inverse scattering problem as the minimizer of (1) is known to be very sensitive to noise on the data.
Because of this, a regularization of the problem is necessary and this will be discussed in more detail in
section 5..

3. Contrast Source Integral Equation

A contrast source integral equation is used to describe the scattering from the inhomogeneous object
when it is illuminated by an incident fieldEinc(r) (the time dependencye jωt is omitted). Once the electric
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field E(r) in the object is known, the scattered fieldEscat(r) is calculated as the field, generated by the
so-called contrast current, sitting in free space:

J scat(r) = jω [ǫ(r) − ǫb] E(r) = jωχ(r)E(r), (2)

Escat(r) = − jωµb

[

I +
1
kb
∇∇

]

·

∫

D

Gb(r − r′)J scat(r′)dr′, (3)

wherekb is the background wavenumber andµb the background permeability.Gb(r − r′) is the Green
function of the infinite background medium:

Gb(r − r′) =
e− jkb‖r−r′‖

4π‖r − r′‖
. (4)

To know the total fieldE(r) inD and thus the contrast currents, the following integral equation is solved

E(r) = Einc(r) + Escat(r), ∀r ∈ D, (5)

which is referred to as thedomain equation. Equation (3) is used to calculate the scattered field in the
receiver points and is called theobservation equation.

The inversion domainD is discretized using a uniform cuboidal grid ofF ×G × H cells. On this grid,
ǫ(r) is approximated by a piecewise constant function that has one value in each cuboidal cell:

ǫ(r) =
F−1
∑

f=0

G−1
∑

g=0

H−1
∑

h=0

ǫ f ,g,hǫbΦ f ,g,h(r), (6)

whereΦ f ,g,h(r) = 1 in cell (f , g, h) and zero elsewhere. As for the fields in the domainD that are needed in
the forward problem, the electric flux densityD(r) = ǫ(r)E(r) rather thanE(r) is expanded in 3D rooftop
functions on the same grid or on a finer grid.

4. Multiview Forward Problem

To calculate the value of the cost function and its derivatives with respectto the permitivity unknowns,
a multiview forward scattering problem has to be solved in every iteration of the optimization process: for
every excitation alonĝuA

t,p in rA
t the fieldEt,p(r) inD has to be known to calculateEscat

t,p (rA
r ) · ûA

r,p′ . Also the
derivatives of these fields with respect to the optimization parametersǫ f ,g,h are needed for the optimization.
Analytical expressions for the derivatives can be obtained

∂Escat
t,p

∂ǫ f ,g,h
(rA

r ) · ûA
r,p′ = jωǫb

∫

D

Φ f ,g,h(r′)Et,p(r′) · Er,p′(r′)dr′, (7)

where Er,p′(r) is the field inD due to a dipole excitation alonĝuA
r,p′ in rA

r . This means that for every
antenna, wether source or receiver, a forward problem must be solved. Since the solution of a full-vectorial
3D scattering problem is a computationally demanding task, two accelerating techniques are used. TheFFT
method [12–14] uses the convolution structure of (3) to accelarate the calculationof the scattered electric
field inD. In conjunction with an iterative solver this allows for rapid solution of (5). TheMarching on in
Angle method is an application of an extrapolation procedure described in [15]. The idea is to find a better
initial estimate for the iterative solution of a linear system based on a number of previous solutions.
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5. Regularization

To reduce the effect of noise on the reconstruction, we propose to minimize an alternative cost functional
FR(ǫ) = F(ǫ)(1+ ασ(ǫ)). The functionalσ(ǫ) is always positive and penalizes strong local variations in the
permittivity distribution. In discretized form it is given by

σ(ǫ) =
∑

f

∑

g

∑

h

(

∣

∣

∣ǫ f ,g,h − ǫ f−1,g,h

∣

∣

∣

2
+

∣

∣

∣ǫ f ,g,h − ǫ f ,g−1,h

∣

∣

∣

2
+

∣

∣

∣ǫ f ,g,h − ǫ f ,g,h−1

∣

∣

∣

2
)

. (8)

α is a positive real parameter that is chosen based on very general a priori knowledge, such as the maximal
size of the object (already used to choose a domainD) and an upper limit for the permittivity (already used
to choose a mesh size for the forward problem). The fact that the regularization term is not only added to the
least squares cost function, but also multiplied by it has a positive influence on the convergence and makes
the choice ofα less critical.

6. The Gauss-Newton Method

Let ε be the vector containing the coefficientsǫ f ,g,h from (6). Expressions for the gradient vector and the
hessian matrix of the regularized cost functionFR(ε, ε∗) as a function ofε and its complex conjugateε∗ are:

g(ε, ε∗) =

[

∂F
∂ǫ
∂F
∂ǫ∗

]

=
1

F0

[

JT [es − em]∗ (1+ ασ) + αF0FΩ
JH [es − em] (1+ ασ) + αF0FΩ∗

]

(9)

H(ε, ε∗) =













∂2F
∂ǫ∂ǫ

∂2F
∂ǫ∂ǫ∗

∂2F
∂ǫ∗∂ǫ

∂2F
∂ǫ∗∂ǫ∗













=
1

F0

[

B′ A∗

A B′∗

]

, (10)

with

B′ = B(1+ ασ) + αJT [

es − em]∗
Ω

T
+ αΩ

[

es − em]T J (11)

A = JH J(1+ ασ) + αJH [

es − em]

Ω
T
+ αΩ∗

[

es − em]H J + αF0FΣ (12)

and where

Ji j =
∂es

i

∂ǫ j
, Bi j =

(

∂2es

∂ǫi∂ǫ j

)T
[

es − em]∗
, Σi j =

∂2σ

∂ǫi∂ǫ
∗
j

and Ωi =
∂σ

∂ǫi
. (13)

Linearizing the scattered fieldEscat, as a function of the permittivity-vectorε, around the current iterateεk

and applying Newton’s method with some additional simplifications, one gets following update formula:

εk+1 − εk = ∆ε = −
(

JH J(1+ ασ) + αF0FΣ
)−1 (

JH [

es − em]

(1+ ασ) + αF0FΩ∗
)

, (14)

where all the quantaties in the right hand side are calculated forεk. In practice, this update vector is used as
a search direction along which a line search is performed to find the next iterate. Together with the fact that
(14) always produces descent directions, this ensures decreasingvalues of the cost function.

It can be argued that the effect of the regularization termαFσ on the optimization process is the fol-
lowing: it improves the conditioning of the linear system (14), it bounds the update directions away from
orthogonality to the steepest descent direction, it controls the smoothness of the permittivity profile in every
iteration and it controls the steplength. The latter effect improves the validity of the linearization of the
scattered field.
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7. Numerical Examples

Figure 2 shows the reconstruction of a homogeneous dielectric sphere withradius 0.25λb an with ǫ =
2ǫb. The antenna configuration for this example consists of 6 meridional circular arrays, centered on the
center of the sphere, with a radiusR = λb and each containing 12 antennas in azimuthal directions and 12
antennas along the meridional circle. All antennas act as both transmitter andreceiver, so a total number
of 20736 datapoints is obtained. The data are generated by analytical solution of the forward scattering
problem. For the inversion domain a cube with sideλb is chosen, which is discretized using 20× 20× 20=
8000 permittivity cells. The discretization noise results in an SNR of 27 dB. When the squared data error
or the least squares cost functionF (see (1)) reachesF ≤ 2 · 10−3, which corresponds to the noise level,
the optimization is stopped. With a regularization parameterα = 10−4 the result is obtained in only three
iterations and within 73 minutes on a computer with 2 GHz Dual Core AMD Opteron processor and 8
Gbytes of RAM.

A second example is the reconstruction of the permittivity profile, shown in Figure 3. The background
medium is water with a permittivity ofǫw = (77.3 − j21.2)ǫ0 at 1 GHz. A cube with side 0.6λb and
permittivity ǫ f = (9.5− j7.19)ǫ0 (fatty tissue) is submersed in this medium. Inside this cube is a smaller one
with tumor-like propertiesǫt = (50− j71.9)ǫ0. The result is a highly contrasted permittivity profile which
is not easy to reconstruct. The antenna configuration now consists of 6 meridional circular arrays, centered
on the center of the sphere, with a radiusR = 2λb and each containing 12 antennas along the meridional
circle, which results in 5184 datapoints. Figure 4 shows the reconstructionfor an SNR of 50 dB and Figure
5 corresponds to an SNR of 30 dB. Both reconstructions were obtained with α = 5 · 10−4.

8. Conclusions

A modified Gauss-Newton method has been proposed to solve the three dimensional inverse scattering
problem. It minimizes a regularized cost function and provides good reconstructions after only a small
number of iterations. As a consequence, the total execution time of the algorithm remains reasonable, even
though in every step of the optimization a full multiview forward problem is solved. Numerical examples
were shown to prove the validity of the method and to illustrate its performance.
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(a) Real part ofǫ-profile. (b) Imaginary part ofǫ-profile.

Figure 2: Reconstruction of a sphere with radius 0.25λb from analytic data. The white contour shows the
boundaries of the actual sphere.

(a) Real part (b) Imaginary part

Figure 3: The exact permittivity profile. The plotted values areǫ(r)/ǫ0.

(a) Real part (b) Imaginary part

Figure 4: The reconstructed permittivity profile for an SNR of 50 dB.
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(a) Real part (b) Imaginary part

Figure 5: The reconstructed permittivity profile for an SNR of 30 dB.
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