Semipartial geometries from 1-systems of $W_5(q)$

Deirdre Luyckx

Ghent University

(Joint work with J. A. Thas)

A 1-system of $W_5(q)$ is a set \mathcal{M} of $q^3 + 1$ lines $L_0, L_1, \ldots, L_{q^3}$ of $W_5(q)$ such that every generator of $W_5(q)$ which contains a line $L_i \in \mathcal{M}$, is disjoint from all lines $L_j \in \mathcal{M} \setminus \{L_i\}$.

Let \mathcal{M} be a 1-system of $W_5(q)$ in $\mathsf{PG}(5,q)$ and embed $\mathsf{PG}(5,q) := H$ as a hyperplane in $\mathsf{PG}(6,q)$. Let \mathcal{P} be the set of all points of $\mathsf{PG}(6,q) \setminus H$, \mathcal{L} the set of planes of $\mathsf{PG}(6,q)$, not in H, which meet H in a line of \mathcal{M} , and I the natural incidence of $\mathsf{PG}(6,q)$. Then $\mathsf{SPG}(\mathcal{M}) := (\mathcal{P}, \mathcal{L}, I)$ is a semipartial geometry with parameters $s = q^2 - 1$, $t = q^3$, $\alpha = q$ and $\mu = q^2(q^2 - 1)$.

A strong regulus of $W_5(q)$ is a regulus of lines of $W_5(q)$, the opposite regulus of which entirely consists of lines of $W_5(q)$. If q is odd, then $W_5(q)$ does not have strong reguli, so let q be even. A 1-system \mathcal{M} of $W_5(q)$, q even, is *locally hermitian* at a line $L \in \mathcal{M}$ if and only if for every line $M \in \mathcal{M} \setminus \{L\}$, the unique strong regulus containing L and M, is contained in \mathcal{M} .

A class of locally hermitian 1-systems of $W_5(q)$ is known to exist for all q even with q > 2, see [1]^{*}. Concerning their semipartial geometries, the following theorem can be shown.

Theorem 1 Let \mathcal{M}_1 and \mathcal{M}_2 be two locally hermitian 1-systems of $W_5(q)$, q even and q > 2. Then $\mathsf{SPG}(\mathcal{M}_1)$ and $\mathsf{SPG}(\mathcal{M}_2)$ are isomorphic if and only if \mathcal{M}_1 and \mathcal{M}_2 are isomorphic for the stabilizer of $W_5(q)$ in $\mathsf{PFL}(6,q)$.

From every locally hermitian 1-system of $W_5(q)$, q even, one can construct a new 1-system, which is not locally hermitian, by replacing a strong regulus by its opposite regulus. In this context, the following result holds.

Theorem 2 Let \mathcal{M} be a 1-system of $W_5(q)$, q even, which is locally hermitian at $L \in \mathcal{M}$. Let \mathcal{M}' be obtained from \mathcal{M} by replacing a strong regulus of \mathcal{M} through L by its opposite regulus. Then $SPG(\mathcal{M})$ and $SPG(\mathcal{M}')$ are not isomorphic.

From the above theorems, the existence of several new examples of semipartial geometries follows.

^{*[1]} D. Luyckx and J. A. Thas, On 1-systems of Q(6,q), q even. To appear in *Designs*, Codes and Cryptography, 2002.