1-systems of $Q^+(7,q)$ and trialities

Deirdre Luyckx¹

Ghent University, Dept. of Pure Mathematics and Computer Algebra, Galglaan 2, B–9000 Ghent, Belgium

Joint work with: J. A. Thas

A 1-system \mathcal{M} of the hyperbolic quadric $Q^+(7,q)$ in $\mathsf{PG}(7,q)$ is a set $\{L_0, L_1, \ldots, L_{q^3}\}$ consisting of $q^3 + 1$ lines on $Q^+(7,q)$ with the property that the tangent space of $Q^+(7,q)$ at L_i has no point in common with $(L_0 \cup L_1 \cup \ldots \cup L_{q^3}) \setminus L_i$, for $i = 0, 1, \ldots, q^3$. If \mathcal{M} consists of q^2 reguli through a common line $L_i \in \mathcal{M}$, then the 1-system is called *locally hermitian* at L_i . We will consider the action of a triality τ of $Q^+(7,q)$ on a 1-system \mathcal{M} of an in-

We will consider the action of a triality τ of $Q^+(7,q)$ on a 1-system \mathcal{M} of an induced $Q(6,q) \subseteq Q^+(7,q)$. Special attention will be paid to the case of a locally hermitian, semiclassical 1-system of Q(6,q). In particular, it will be explained that its image under a triality is again locally hermitian and semiclassical and that it is contained in a hyperplane of PG(7,q) if and only if \mathcal{M} is a spread of a classical generalized hexagon H(q) on Q(6,q). Since we are able to show that whenever \mathcal{M} is not a spread of some $Q^-(5,q) \subseteq Q(6,q)$, nor a spread of a classical generalized hexagon H(q) on Q(6,q), the 1-system \mathcal{M}^{τ} was not previously known, this construction using a triality yields new examples of locally hermitian, semiclassical 1-systems of $Q^+(7,q)$.

 $^{^1\}mathrm{The}$ author is Research Assistant of the Fund for Scientific Research – Flanders (Belgium) (F.W.O.)