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Abstract: This paper presents the application of predictive control to drug dosing
during anesthesia in patients undergoing surgery. A single-input (Propofol) single-
output (Bispectral index) model of the patient has been assumed which includes
the variable dead time caused by the measurement of the Bispectral index. A
set of 12 patient models were studied. Inter-patient variability, varying dead time
and disturbances are used to assess robustness of the controller. Furthermore, the
controller guarantees stability under the operation conditions. Simulation results
illustrate the use of the proposed controller.
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1. INTRODUCTION

During the last decade, control technology has
successfully influenced modern medicine through
robotic surgery, electrophysiological system life
support and image-guided therapy and surgery
(Bailey and Haddad; 2005). Another area of
medicine suited for applications of control is clini-
cal pharmacology in general and a particular case
is the anesthesia and critical care unit medicine.
Within this particular group of applications, mon-
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itoring and controlling the depth of anesthesia
for patients during surgery offers interesting chal-
lenges to the modern engineer (Haddad et al.;
2003).

This topic captured the attention of engineers and
clinicians already a decade ago (O’Hara et al.;
1992), starting with expert systems that offer ad-
vice to the anesthesiologist upon optimal drug in-
fusion rate during clinical trials (Greenhow et al.;
1993). It soon became clear that control of anes-
thesia poses a manifold of challenges, with multi-
variable characteristics (Zbinden et al.; 1995),
time delay between drug administration and the
clinical effect which can lead to system oscillations
(Bailey and Haddad; 2005), different dynamics
depending on anesthetics substances (Absalom
and Struys; 2005) and stability problems (Asbury;
1997). Further investigations proved Propofol to
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be an anesthetic tackled well in control problems
(Kenny and Mantzaridis; 1999), while recent stud-
ies showed that the control performance may also
depend on the controlled variable (Ting et al.;
2004).

Automatic feedback control of drug administra-
tion is ideally suited to anesthetized surgical pa-
tients since drugs with rapid onset times and short
duration of action are frequently used (such as
Propofol). The application of a closed-loop tech-
nology to drug delivery will assist physicians in
avoiding both excessive over-dosages and under-
dosages in their patients. Ideally, a robust con-
troller would then tackle over-dosing and under-
dosing by compensating for nonlinear drug re-
sponses, varying time delay, as well as inter- and
intra-patient variation. Therefore, from control
engineering standpoint, Model Predictive Control
(MPC) plays a crucial role in solving such complex
problems.

In this work, a predictive control strategy based
on Smith predictor (Normey-Rico and Camacho;
2007), is applied to control the depth of anesthesia
with promising results. In addition, it is studied
a simple way to prove the system stability and
to improve robustness under input saturation for
this application case. An overview of the models
used for prediction and for control is given in the
next section. The MPC algorithm is described
in section III and stability and robustness are
analyzed in the IV th section. At the end of the
paper some simulation results and the conclusions
are presented.

2. A REALISTIC PATIENT MODEL

During anesthesia, when predictive control is in-
tended for a precise administration of drugs, the
model used in prediction becomes of vital im-
portance. Such model must capture well-enough
the dynamics of the patient in response to the
specific drug considered (in our case Propofol).
The relationship between drug infusion rate and
the desired drug effect can be described with
pharmacokinetic and pharmacodynamic models.
Pharmacokinetic models describe the distribution
of the drugs in the body and pharmacodynamic
models describe the relationship between blood
concentration of a drug and its clinical effect. Nor-
mally, these models can be identified for different
kind of drugs by using a family of patients. For
most anesthetic agents exist already several mod-
els (Absalom and Struys; 2005). When considering
Propofol as the manipulated drug, the pharma-
cokinetics can be described by a 3-compartment
model (Figure 1) (Absalom and Struys; 2005):

ẋ1(t) = −[k11 + k12 + k13]x1(t) + k21x2(t)
+ k31x3(t) + u(t),

ẋ2(t) = k12x1(t)− k21x2(t),
ẋ3(t) = k13x1(t)− k31x3(t),

(1)

where x1 (or Cp) denotes the concentration of
drug in the central compartment (blood). The
peripheral compartments x2 and x3 model the
drug exchange of the blood with well and poorly
perfused body times. The constants kji for i 6= j,
denote the transfer rate of drug from jth com-
partment to the ith compartment. The constant
k11 is the rate of drug metabolism and u(t) is
the infusion rate of the anesthetic drug (Propo-
fol) into the central compartment (blood). The
pharmacodynamics are characterized by a first-
order function related to the central compartment
concentration Cp in blood:

Ċe(t) = −keCe(t) + keCp(t) (2)

where ke is a constant and Ce is called effect site
concentration.
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Fig. 1. Compartmental model.

For quantifying Ce during real time monitoring,
some commercial devices can be used. A recent
device used by clinicians gives the Bispectral
Index (BIS) that can be used as a measure of the
depth of anethesia. The BIS is computed based on
the electrical activity measure of brain, obtained
through an Electroencephalograph. The BIS can
vary from 0 to 100 and the device needs 15-30
seconds to process the data. Zero means that the
patient does not have cerebral activity (dead) and
100 denotes that the patient is fully awake and
consciousness (e.g. for BIS = 70, the patient is
awake but not consciousness). When undergoing
surgery, the desired BIS target is 50 and must
remain between 40 and 60 given an adequate
sedation for the anesthesiologist. The BIS variable
can be related to drug effect concentration Ce by
the empirical static nonlinear relationship (Bailey
and Haddad; 2005), called also the Sigmoid curve:

BIS(t) =
(

E0 − Emax
Ce(t− l)γ

Ce(t− l)γ + Cγ
50

)
(3)

where E0 denotes the baseline (state without
drug) value, which, by convention, is typically
assigned a value of 100%; E0 −Emax denotes the
minimum achievable BIS; C50 is the drug concen-
tration at half maximal effect and represents the
patient’s sensitivity to the drug; l is the real time
monitoring delay; and γ determines the steepness
of the curve in (3).

The constants present in the 3-compartment
model (1) and pharmacodynamic model (2) are
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computed using the following equations for the
Propofol drug (Absalom and Struys; 2005):

Vc = 4.27, V2 = 18.9−0.39(age− 53), V3 = 238, ke = 0.46

k12 =
Cl2

Vc
, k13 =

Cl3

Vc
, k21 =

Cl2

V2
, k31 =

Cl3

V3
,

k11 =
Cl1

Vc
, Cl3 = 0.836, Cl2 = 1.29− 0.024 (age− 53),

Cl1 = 0.0456 (weight− 77)− 0.0681 (lbm− 59)
0.0264 (height− 177) + 1.89,

with LBMMALE: lbm = 1.1 weight − 128weight2

height2
,

LBMFEMALE: lbm = 1.07 weight − 148 weight2

height2
,

where the units of the weight, height and age are
kilograms, centimeters and years respectively.

3. APPROACH TO MODEL PREDICTIVE
CONTROL

Generally, an MPC algorithm consists of applying
a control sequence that minimizes a multistage
cost function (J) of the form:

N2∑
k=N1

[y(t + k|t)-w(t + k)]2 +

Nu−1∑
k=0

λ[∆u(t + k|t)]2 (4)

subject to:
∆umin ≤ ∆u(t + k|t) ≤ ∆umax ∀ k = 0, ..., Nu−1

umin ≤ u(t + k|t) ≤ umax ∀ k = 0, ..., Nu − 1,
ymin ≤ y(t + k|t) ≤ ymax ∀ k = N1, ..., N2,

where N1 and N2 are the minimum and maximum
costing horizon, Nu is the control horizon, λ is the
control weight, w(t+k) is a future set-point or ref-
erence sequence, ∆u(t) is the incremental control
action (∆ = 1− q−1; with q−1 the backward shift
operator) and y(t + k | t) is the optimum k-step
ahead prediction of the system output y(t) on data
up to time t.

3.1 Computing the predictions
The process output can be represented as:

y(t) = x(t) + n(t) (5)

where: x(t) is the model output when a control
input u(t) is applied and n(t) represents the effect
of the disturbances and modelling errors.

In the linear case, the model output x(t) is given
by the generic dynamic system model:

x(t) = (B(q−1)/A(q−1))u(t− d− 1) (6)

where d is the discrete time delay. The disturbance
n(t) can be modeled by:

n(t) = C(q−1)/D(q−1)e(t), (7)

where e(t) is uncorrelated (white) noise with zero
mean value. A(q−1), B(q−1), C(q−1) and D(q−1)
are polynomials.

The fundamental step in MPC methodology
consists in predicting the process output at
time instant t, indicated by {y(t + k|t), k =
N1 . . . N2}, over the prediction horizon. This pre-
diction is based on: (a) the measurements avail-
able at sampling time instant t: {y(t), y(t −

1), · · · , u(t− 1), u(t− 2), · · · }; and (b) the future
values of the input signal, calculated at time t:
{u(t|t), u(t + 1|t), · · ·} .

Using the generic process model (5), the predicted
values of the output are:

y(t + k|t) = x(t + k|t) + n(t + k|t). (8)

The prediction of x(t + k|t) and n(t + k|t) can
be done respectively by recursion of the process
model, by using filtering techniques, or based
on the diophantine equations (De Keyser; 2003;
Camacho and Bordons; 2004).

3.2 Nonlinearity Compensation
The nonlinearity introduced by the BIS variable is
compensated by using the inverse of the nominal
Sigmoid curve (3). As a result, a linear model for
the MPC controller is obtained (Figure 2). The
error on the nonlinearity compensation is assumed
as an uncertainty on the linear model gain.

PATIENT

x(t)

of the static

BIS(t)infusion

drug

nonlinearity

y(t)compensation

Linear

Model n(t)

+

−Delay

Fig. 2. Linear Structure.

In the prediction model, the controller uses the
nominal Sigmoid curve for compensating the non-
linearity, independent on the patients which are
tested in simulation. This assumes therefore that
the controller must be robust enough to be able
to compensate the inter-patient variability. Notice
that external disturbances like surgical stimula-
tion and blood loss are also present.

3.3 Optimization Procedure
The optimization procedure is a crucial step in
MPC algorithms. The numerical complexity de-
pends on the characteristics of the models in terms
of linearity, constraints, number of manipulated
and controlled variables, etc. For linear models
without constraints there are some MPC tech-
niques that solve the optimization procedure an-
alytically (De Keyser; 2003). Moreover for dead-
time processes the solution can be reduced to a lin-
ear controller of two degree of freedom plus a pre-
dictor (Normey-Rico and Camacho; 2007) and it
is important when analysis is performed. For non-
linear and linear models with constraints, it is not
possible to find an analytical solution. However,
there are several powerful optimization methods
to solve the optimization problem using itera-
tive procedures (Gauss-Newton and Levenberg-
Marquardt methods or Sequential Quadratic Pro-
gramming) (Biegler; 1998).

Either analytically, either by using iterative pro-
cedures, the optimal input sequence can be com-
puted along the input horizon Nu. Nevertheless,
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due to the receding strategy of MPC, only the op-
timal input u(t) at the present moment is applied
to the process and for the next sample period the
optimization problem is solved again.

From controller analysis standpoint an analytical
solution is important. In the linear unconstrained
case, the solution can be written as (Camacho and
Bordons; 2004):

∆u(t) = k(w − f), (9)

where k is a constant matrix with dimension 1×
N (where N = N2 − N1 + 1), w is a vector
which contains the future reference, f = [f(t +
N1|t), ..., f(t+N2|t)]T (or free response) is a vector
which contains the output prediction for an input
u(t + k|t) = u(k− 1), ∀ k = 0, ..., N − 1. Based on
diophantine equations, the input can be expressed
as (Normey-Rico and Camacho; 2007):

∆u(t) = kw − F B(z-1)

B(z-1)
[x(t + d) + R(z)(y(t)-x(t))], (10)

where R(z) = B(z−1)F C(z−1)
F B(z−1)C(z−1)

, FB(z−1) and
FC(z−1) are polynomials which depend on the
predictor model.

3.4 Robust Model Predictive Controler (rmpc)

As has been demonstrated by Normey-Rico and
Camacho (2007) R(z) can be used as a tuning
parameter if an appropriate predictor structure
is considered. In the nominal case, the tuning of
R(z) does not affect the set-point performance
and only the disturbance rejection. To improve
the robustness R(z) must be a low pass filter.
The tuning is performed using the denominator
of R(z) to achieve the desired low pass charac-
teristics and the numerator of R(z) to improve
the closed loop response characteristics. In this
application a second order filter of the form:

R(z) =
(1− α)2

(1− β)
(1− βz−1)
(1− αz−1)2

(11)

is used, where β is chosen to eliminate the unde-
sired root of B(z−1) and α is a tuning parameter
chosen for a desired trade off between the robust-
ness and disturbance rejection.

4. ROBUSTNESS AND STABILITY
ANALYSIS

Several approaches on stability and robustness
analysis can be found in literature for MPC con-
trollers. However, the analysis is not so trivial
when constraints apply or nonlinear models are
used.

In this application, a specific case with constraints
on the input (u ≥ 0) is studied, for the con-
trol horizon Nu = 1 and the prediction horizons
N1 = 1 + d and N2 = N + 1 + d where N used
as tuning parameter. Notice that for Nu = 1, the

constrained MPC controller is equivalent to clip-
ping, a case valid only for monovariable systems
(De Keyser; 2003). The term clipping assumes
that the predictive controller does not take into
account constraints while computing the optimal
input rate to the process, but only afterwards,
performing hard-limitations if constraints are vi-
olated.

To study the stability and robustness, the block
diagram of Figure 3 is considered, since a lin-
ear MPC can be reduced in a block diagram
containing a filtered Smith predictor for analy-
sis purposes (Normey-Rico and Camacho; 1999).
H(z) = FB(z−1)/B(z−1), L(z) is the loop trans-

fer function of the system, kw =
N∑

i=1

k(i), that is,

the reference is considered w(t + k) = w(t) and
equal to the current set-point r(t). Additionally
there is a saturation nonlinearity at the input
of the process (Figure 3). For stability analysis,
the nonlinear element can be approximated by a
describing function (φ). It is valid for most of the
processes with low pass filter characteristics as is
the case of the patient models.

z−dG(z)

−

− +

++

+w

R(z)

y

q

+

+
process

yp(t)

−

+

kw sat

z−1

zoh

L(z)

H(z)

Fig. 3. Block diagram control scheme of the mpc.

For the case of saturation nonlinearity, the de-
scribing function is:

φ =
2
π


sin−1

(
sat

X

)
+

sat

X

√
1−

(
sat

X

)2

, (12)

where sat is the amplitude of the saturation and
X the amplitude of a wave input of the form
X sin(ωt).

From Figure 3, the closed-loop frequency response
is: y

w′ = φL(jω)
1+φL(jω) , where the characteristic equa-

tion is 1 + φL(jω) = 0 or L(jω) = −1/φ.

When L is minimum phase (as is the case for this
drug dosing control application), according to the
stability criteria, if the locus of L(jω) does not
intersect the locus of −1/φ, then the closed loop
system is stable. Otherwise the system is unstable
or presents a limit-cycle.

Figure 4 shows the locus of −1/φ, L(jω) or
Nyquist plot in the nominal case (continuous line)
and when ±10s delay and ±50% gain uncertain-
ties are considered (dotted lines) for the set of
patients and mpc controller from section 5. The
locus of −1/φ is plotted for the case of saturation
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nonlinearity, it starts at −1 and goes to −∞.
There is a critical point at−1 that must be consid-
ered for stability analysis. Notice that if the locus
of L(jω) does not encircle the critical point then
it will not intersect −1/φ. Thus, if the closed-loop
system without input saturation is stable, then it
will remain stable under input saturation.

−2.5 −2 −1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

 Im

 Re

 Nyquist Plot 

−

1

φ 1

Ms

Fig. 4. Nyquist Plot considering the mpc con-
troller, gain uncertainties and ±10s varying
time delay.

In the case of modelling uncertainties, maximum
and minimum limits on the parameter uncertain-
ties must be considered for which the system must
remain stable. That is, the locus of L(jω) must
not encircle -1, for the system to be robustly sta-
ble. One way to define the robustness is through
the maximum sensitivity (Ms), Ms = max

ω
|1 +

L(jω)|−1, where Ms can vary from 1 to ∞ and
values between 1.5 and 2.5 are normally used
(Normey-Rico and Camacho; 2007). Lower values
of Ms give higher robustness. For the studied case,
using the Nyquist criteria, also it is possible to
find the following sufficient stability condition of
the system:

|∆P (ejω)| < |G(ejω)H(ejω) + 1− e−jω|
|H(ejω)R(ejω)| , (13)

where ∆P is the additive modelling uncertainty.
Notice that the low pass filter R increases the
right side term of (13). This confirms that the
robustness of the proposed controller is improved
compared to a standard mpc for time delay sys-
tems.

5. RESULTS

In this section, a set of 12 patient-models are
studied and robustness of the controller analyzed.

5.1 Patients

The characteristics of these patients are given in
Table 1. The mpc controller design parameters
are chosen as: Nu = 1, N1 = 6, N2 = 16 and
the sample time Ts = 5s. Additionally for the
rmpc controller are chosen the filter parameters

P Age L W G C50 E0 Emax γ
1 40 163 54 F 6.33 98.80 94.10 2.24
2 36 163 50 F 6.76 98.60 86.00 4.29
3 28 164 52 F 8.44 91.20 80.70 4.1
4 50 163 83 F 6.44 95.90 102.00 2.18
5 28 164 60 M 4.93 94.70 85.30 2.46
6 43 163 59 F 12.1 90.20 147.00 2.42
7 37 187 75 M 8.02 92.00 104.00 2.10
8 38 174 80 F 6.56 95.50 76.40 4.12
9 41 170 70 F 6.15 89.20 63.80 6.89
10 37 167 58 F 13.7 83.10 151.00 1.65
11 42 179 78 M 4.82 91.80 77.90 1.85
12 34 172 58 F 4.95 96.20 90.80 1.84

Table 1. Patients characteristics (P=patient,

L=length, W=weight and G=gender).

α = 0.87 and β = −0.96. For control purposes a
maximum identification error of 10% is considered
in the parameters Length and Weight, whereas the
Age of the patient is considered to be well iden-
tified. These three parameters define the dynamic
part of the model. The nominal Sigmoid curve
parameters are chosen: C50 = 7.43, γ = 3.01,
E0 = 100, Emax = 100 (C50 and γ as the mean
values of the patients). Additionally, a delay of
25s is considered with ±10s of uncertainty (also
a hypothetical case with ±25s of uncertainty is
studied) between the effect site concentration and
BIS measure. The variability of the Sigmoid curve
between the modelled patients and the prediction
model in the controller can be seen as a variation
in the gain. In the operating region (BIS:[40,60])
the gain varies from 1.5K to 0.5K, where K is the
gain of the model.

In order to ensure for all the patients a stable
closed-loop response, the controller must be ro-
bust enough to guarantee the stability under iden-
tification parameters error and gain variability.

For the set of patients considered in this investi-
gation, Table 2 shows the maximum sensitivity
for the previously specified uncertainties using
mpc and rmpc controllers. As expected the rmpc
has better robustness than the mpc, specially for
bigger uncertainties on the delay estimation.

mpc ±10s rmpc±10s mpc±25s rmpc±25s

Ms 1.47 1.2 4 1.3

Table 2. Maximum sensitivity considering

±10s and ±25s delay uncertainty, gain, length

and weight uncertainties.

5.2 Closed-loop simulations

To enhance the advantages of using the rmpc over
the classical control mpc technique, a comparative
study is performed in simulations. Figures 5
and 6 show the closed-loop simulations for the
controlled output (BIS). It is assumed that the
model delay is 25s and the patients delay 35s
(+10s error). The performance over the family of
patients is affected due to the delay error and due
to inter-patient variability, when using a nominal
model for prediction in the controller strategies.
The settling time has been defined here as the
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Fig. 5. Closed loop response for rmpc strategy.
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Fig. 6. Closed loop response for mpc strategy.

time needed by the controller to reach the set-
point (50 BIS) and stay within the accepted BIS
limits (40; 60). It can be observed that the rmpc
strategy needs 190s and the mpc strategy 238s to
achieve the desired BIS and stay within the safety
limits. The undershoot in the worst case for the
rmpc is 23.5% and for the mpc 35% respectively.
Finally, it can be observed that the closed-loop
response variability has been reduced with the
rmpc strategy.

6. CONCLUSIONS

In this contribution, a Robust Model Predictive
Controler strategy which can tackle in a robust
manner the depth of anesthesia for patients un-
dergoing surgery has been described and tested.
Due to the fact that there is variation of time
delay and the nonlinearity of the system consists
of a static nonlinear gain, the closed-loop stability
is guaranteed for the range where the time delay

and gain varies due to real time monitoring and
inter-patient variability respectively.

As a general remark, the tuning rules of the con-
troller are intuitive to attain some performance
specifications and are therefore suitable for clini-
cal use.
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