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Abstract

Abscisic acid (ABA) is a plant hormone well known to regulate abiotic stress responses. ABA
is also recognised for its role in biotic defence, but there is currently a lack of consensus
on whether it plays a positive or negative role. Here, we used supervised machine learning
to analyse experimental observations on the defensive role of ABA to identify the most
influential factors determining disease phenotypes. ABA concentration, plant age and pathogen
lifestyle were identified as important modulators of defence behaviour in our computational
predictions. We explored these predictions with new experiments in tomato, demonstrating
that phenotypes after ABA treatment were indeed highly dependent on plant age and pathogen
lifestyle. Integration of these new results into the statistical analysis refined the quantitative
model of ABA influence, suggesting a framework for proposing and exploiting further research
to make more progress on this complex question. Our approach provides a unifying road map
to guide future studies involving the role of ABA in defence.

1. Introduction

Abiotic and biotic defence responses are important evolutionary mechanisms that allow plants
to adapt to their dynamic environments (Peck & Mittler, 2020). A variety of sophisticated sig-
nalling networks modulate plant responses to challenges, helping to enhance survival. Hormone
signalling and crosstalk play major roles in these responses, which can also be influenced by
plant age, organ type and environment (Berens et al., 2017). However, as plants encounter many
biotic challenges, including pathogens with varying lifestyles and methods of attack, there is no
one-size-fits-all approach to defence. Therefore, hormones have unique roles in multiple, often
antagonistic, complex defence pathways (Robert-Seilaniantz et al., 2011).

Abscisic acid (ABA) is an essential hormone involved in both biotic and abiotic stress
signalling (Lee & Luan, 2012). ABA is found universally across vascular plants and is involved in
a wide range of physiological processes. For instance, through interaction with developmental
hormones, ABA modulates plant growth, seed germination, stomata closure and development
and embryo maturation (Vishwakarma et al., 2017). Moreover, ABA is essential for adaptation to
drought and salt stress (Casson & Hetherington, 2010; Sah et al., 2016) and has a positive role in
ensuring plant survival during abiotic stress. For example, water supply limitation is associated
with an increase in ABA across the entire plant that leads to reduced stomatal conductance
(Vishwakarma et al., 2017). However, the function of ABA in defence against biotic challenges,
including pathogens, is varied, which has led to mounting controversy in the field of plant biology
(Asselbergh et al., 2008a; Cao et al., 2011; Ton et al., 2009).

ABA is widely considered to be a positive influence against early pathogen invasion due
to its essential role in stomatal closure (Melotto et al., 2006). However, controversy arises in
the later infection process. On one hand, ABA is known to be involved in multiple defence
pathways and often interacts antagonistically with other hormones such as salicylic acid (SA),
jasmonic acid (JA) and ethylene (ET) through ‘hormone crosstalk’ (Anderson et al., 2004; De
Torres Zabala et al., 2009; Oide et al., 2013). SA is involved in resistance against biotrophs
and its production is enhanced following colonisation with the bacterial biotroph Pseudomonas
syringae (Delaney et al., 1995). However, SA has a negative role in resistance to necrotrophs
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such as Botrytis cinerea (El Oirdi et al., 2011). In contrast, JA
and ET display the reverse effect of SA and enhance resistance
against necrotrophs and herbivory (Mcdowell & Dangl, 2000).
These hormones therefore behave antagonistically, and ABA is
typically shown to have a negative influence on resistance as it can
disrupt SA-, JA- and ET-mediated defence signalling (Anderson
et al., 2004; Audenaert et al., 2002). On the other hand, ABA has
been linked to the expression of defence responses controlled by
these plant hormones, including deposition of callose and reac-
tive oxygen species production, which mediate resistance against
biotrophic and necrotrophic pathogens (Asselbergh et al., 2007).
In addition, crucially, a positive role of ABA in defence has been
linked to the requirement of an intact ABA signalling pathway for
direct and priming of callose deposition (Flors et al., 2005; 2008;
Luna et al., 2011; Schwarzenbacher et al., 2020; Ton & Mauch-
Mani, 2004; Vicedo et al., 2009). Therefore, the role of ABA in the
expression of defence mechanisms appears highly varied, with pos-
itive and negative effects via different mechanisms during different
circumstances.

The effect of ABA has not previously appeared to be associated
with plant species or pathogen lifestyle (Asselbergh et al., 2008b),
and contradictions have been shown even within a single model
plant pathosystem. For example, whereas ABA-treated Arabidopsis
plants display enhanced susceptibility against P. syringae (Melotto
et al., 2006, Mohr & Cahill, 2007), ABA-deficient aba3–1 Ara-
bidopsis mutant displays enhanced susceptibility against P. syringae
(Melotto et al., 2006). In economically important crops such as
tomatoes, ABA deficient sitiens tomato mutants have enhanced
resistance against B. cinerea, Odium neolycopersici and Erwinia
chrysanthemi (Achuo et al., 2006; Asselbergh et al., 2007; 2008b;
Audenaert et al., 2002). In contrast, long-lasting induced resistance
in tomato fruit is marked by an accumulation of ABA (Wilkinson
et al., 2018). ABA is therefore a key component of defence at all
phases of infection, yet its influence remains to be understood.

To make progress in our understanding of such complex ques-
tions, machine learning (ML) and supervised learning techniques
are increasingly being used for studying plant pathogen interac-
tions, specially motivated by the increased production of large-
omics datasets and imaging capabilities (Sperschneider, 2020; Sun
et al., 2020; van Dijk et al., 2021). For instance, ML has facilitated
analysis of gene networks in immune response (Dong et al., 2015),
pathogen effector protein localisation (Sperschneider et al., 2018)
and plant disease diagnostics using image-based learning (Mishra
et al., 2019). Here, we have used ML strategies to investigate the
contrasting effects of ABA in resistance against pathogens. Through
the collection of hundreds of data points from a total of 30 scientific
peer-reviewed publications, we used tools from ML to attempt to
unpick the complex interplay of effects shaping heterogeneous ABA
influences, combined with new experiments to further explore
these data-driven findings. Overall, our study highlights key factors
that influence the effect of ABA in resistance and provides a tool for
future studies towards facilitating the understanding of the role of
ABA in plant responses against biotic stresses.

2. Methods

2.1. Data collection and preparation

Quantitative data regarding disease resistance were collected
during March–June 2020 from literature involving ABA (Sup-
plementary Table S1). We searched Web of Science using broad
search terms including ‘abscisic acid’, ‘plant pathogen’ and ‘disease

resistance’. Papers were selected if they included quantitative
data regarding disease susceptibility from experiments directly
involving pathogen infection and manipulation of ABA either
through the use of ABA signalling and biosynthesis mutants,
exogenous application of ABA, and/or ABA inhibitors. From
those papers, 13 shared variables were recorded from the three
general classes of plant, ABA treatment, and pathogen. From
the plant, we recorded the species, variety, genotype, mutant,
mutant type, plant age and tissue. From ABA, we recorded the
treatment, application method, and concentration applied. From
the pathogen, we recorded the type, lifestyle and species. All
variable information was taken directly from papers used; however,
values of plant age for orange, grape and pepper were imputed
based on known cultivar information.

A large number of disease scoring methods were used across
publications such as lesion diameter (mm), % spreading lesions,
and categorical scoring. A disease severity index (DSI) was there-
fore used in an attempt to unify the heterogeneity of disease scoring
in our dataset. All observations involving ABA (ABAphenotype)
were compared to the level of resistance in control treatments
(Controlphenotype) for each individual publication. DSI was rep-
resented as a ‘percentage resistance change’ of all data points,
forming a continuous measure of positive and negative percentage
resistance changes as a result of ABA, as described below (Sup-
plementary Table S1, Figure 1). For example, the observations of
lesion diameter of 5 mm in the Controlphenotype and 8 mm in
the ABAphenotype would result a DSI of −60%, thus indicating a
susceptible phenotype for our data input.

‘Percentage resistance change’ =
100−(ABAphenotype∗100/Controlphenotype) = x%

2.2. Computational meta-analysis

Two supervised learning approaches, described below, were used
to identify the most important factors to predict disease resistance
(Breiman et al., 1984). All analysis was conducted in R (version
4.1.1). For each method of classification, data were randomly split
into training (75%) and test (25%) data. Models were generated
using the training data and model accuracy was assessed using
test data. Final models were generated using all data available.
Two models were created: a decision tree (DT) predicting a binary
response of resistance ‘susceptible’ or ‘resistant’, depending on if the
percentage resistance change was a positive or negative value, and
a random forest (RF) model. The same variables and parameters
were used for both DT and RF. To decide which variables to
include in our models and guard against overfitting, the Akaike
information criterion (AIC) score was used, providing a trade-off
between the maximum likelihood fit of the model on the training
data set and the complexity of the model, reflected by the number
of parameters. The model with the lowest AIC score was selected.

2.3. Classification and regression tree

DTs were constructed using the package rpart (version 4.1–15)
(Therneau et al., 2015) with the data described in Supplementary
Tables S1 and S2. DT1 describes data collected from existing
literature exclusively (Supplementary Table S1), DT2 includes
observations from new experiments described in this study in
an attempt to refine our original model (Supplementary Table
S2). Rpart uses the classification and regression tree (CART)
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Fig. 1. Characteristics of our amalgamated dataset. Proportion of plant species (a), plant tissue (b), mutant type (c), count distribution of plant ages (weeks) (d), pathogen

lifestyle (e), pathogen type (f), and count distribution of exogenous ABA concentration range (g). (h) Distribution of percentage resistance value. Data are described in

Supplementary Table S1.

algorithm to construct trees based on recursive binary partitioning,
which splits the data based on the best predictive variable.
The chosen variables and specific splits are determined by the
Gini impurity index which measures the disorder in a set of
data points. Gini impurity is calculated as the probability of
incorrectly labelling a data point assuming random labelling
according to the distribution of all classes in the set (Breiman
et al., 1984). Splits in trees therefore aim to maximise the decrease
in impurity; this process is repeated to build the tree. Seven
variables were selected for DT analysis based on the optimal AIC
score. Trees produced via the CART algorithm are typically large
and overfitted, to reduce complexity trees are pruned. Pruning
is determined by the rpart ‘complexity parameter’ value of the
smallest tree with the smallest cross-validation error (Therneau
et al., 2015). The CART algorithm additionally provides a measure
of variable importance. Variable importance is determined by
the accumulated contribution of each variable across all nodes
and trees where it is used (Breiman, 2001; Breiman et al., 1984).
Precision and recall statistics of all models were calculated from
true-positive (TP), false-positive (FP), true-negative (TN) and
false-negative (FN) values. The final model predictive performance

was determined by creating receiver-operating characteristic
(ROC) plots and obtaining area under curve (AUC) values. ROC
plots and AUC values were made using the package ROCR (version
1.0–11) (Sing et al., 2005).

2.4. Random forest

RF analysis was performed using the package randomforest (ver-
sion 4.6–14) (Liaw & Wiener, 2002) using the data described in
Supplementary Tables S3 and S4. RF uses the CART algorithm,
as described above, to construct a set of different individual trees,
which are assembled into a ‘forest’. Here, each tree provides a
classification ‘vote’, and the average vote of all trees in the forest is
selected. Through resampling with replacement, RFs guard against
overfitting, and RFs can improve accuracy and predictive abilities
in classification compared to singular CART trees (Breiman, 2001).
In our approach, the number of trees and cross-validation was
optimised to provide the lowest out-of-bag (OOB) estimate of error
rate. The final RF model used in this study contained 400 trees and
10 folds cross-validation.
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2.5. Simplified machine learning models

Further DT and RF analysis were performed to test the impor-
tance of specific variables using the following minimised datasets:
DText/RFext–entire dataset minus extreme exogenous concentra-
tions of ABA (i.e., above 750μM) and DTage/RFage – entire dataset
minus plant age over 6 weeks.

2.6. Plant materials and growth conditions

Tomato seeds (cultivar micro-tom) were maintained in damp,
humid, dark conditions to stimulate germination. Germinated
seeds were transferred to individual 80 mL pots containing Scott’s
Levington M3 soil. For analysis of older plants, 3-week-old plants
were transplanted into 3 l pots until experiments were performed.
Plants were grown in greenhouses under a daily light integral of
8.64 mol m−2 d−1 and 25○C /20○C temperatures. Experiments were
performed between July and November 2020.

2.7. Abscisic acid treatment

Leaf material was treated with a freshly prepared stock of 20-mM
ABA (De Torres Zabala et al.) (Sigma Catalogue number A1049)
dissolved in ethanol. The ABA stock was diluted in water to the
different concentrations used in this study: 20, 50, 100, and 500μM.
The control treatment was made by applying water. All treatment
solutions were adjusted to the amount of ethanol present, deter-
mined by the highest concentration of ABA. Leaves from 4-week
and 8-week-old plants were excised and placed in a plastic tray, laid
flat, with stems wrapped in wet paper as previously described (Luna
et al., 2015; Worrall et al., 2012). Two leaves per plant and a total
of six plants (six biological replicates) were used to test the effect
of ABA in leaves. ABA treatment was performed by spraying the
treatment solutions onto leaves. Leaves were then allowed to dry
before moving trays to 100% humidity in the dark for 24 h before
pathogen infection.

2.8. Botrytis cinerea cultivation and infection

Botrytis cinerea (isolate BcI16) was grown on plates of potato
dextrose agar (PDA;Difco) and plates were kept in the dark at room
temperature for 4 weeks. Infections of leaves with B. cinerea were
performed as previously described (Luna et al., 2015) by applying
droplets of 5 μL inoculum containing 5x105 spores/ml. Leaves
were incubated in the dark at 100% humidity and 20 ○C. Disease
severity was recorded at 3 days’ post-infection (dpi) by measuring
the diameter of the necrotic lesions using a Vernier calliper.

2.9. Phytophthora infestans cultivation and infection

Phytophthora infestans 88069td10 was grown on rye medium
supplemented with geneticin for 2–3 weeks at 20○C as previously
described (Whisson et al., 2007). Plates were flooded with 10 mL
water and spores scraped from the plate surface and incubated
at 4○C for 1–3 hours. Zoospores released from sporangia were
decanted. A desired concentration of 5 x 104 spores/ml was
obtained. The underside of each leaf was infected with six droplets
of 10 μL inoculum. Plants were incubated at 100% humidity,
16 hr/8 hr light/dark cycles and 18○C /15○C temperature cycle.
Disease severity was recorded at 7 days’ post-infection. Scoring was
done by classifying lesions into different categories of colonisation.
Class I: healthy, Class II; lesions on leaf underside only, Class III;

lesions in under and upper leaf surface, Class IV: prominent lesions
on both leaf sides, Class V: spreading lesions causing tissue damage,
Class VI: total leaf collapse. Category distributions were used to
calculate DSIs by using the following formula (Chiang et al., 2017):

Disease severity index =

∑
(Class frequency × score of rating class)

(Total number of observations × maximal disease index)

2.10. Statistical analysis

Data from the experiments with B. cinerea and P. infestans were
analysed using R (version 4.1.1). In the analysis of lesion diameter
and DSI, normality of distributions was assessed through qq plots
and Shapiro–Wilk tests, and homogeneity of variance was assessed
through Levene’s tests. Data for which the null hypothesis of nor-
mality was not rejected were analysed through one-way analysis of
variance (ANOVA) data; cases where normality was rejected were
analysed with Kruskal–Wallis tests. Distributions with homoge-
nous variances were analysed through least significant differences
(LSD) post-hoc tests. Distributions with non-homogeneous vari-
ances were analysed with Dunnett’s post-hoc tests. When data did
not support rejection of normality, two-tailed t-tests were used to
compare differences between water control and grouped treatments
of different ABA concentrations. Experiments were repeated twice
with similar results.

3. Results

3.1. Data exploration and sorting

A total of 224 data points were collected from a total of 30 peer peer-
reviewed papers directly reporting resistance phenotypes (Figure
1, Supplementary Table S1). A total of 194 data points were from
studies using Arabidopsis or tomato as the experimental species,
representing 58% and 29% of the data, respectively (Figure 1a). The
majority of data represented experiments conducted in leaves, with
only 14/225 data points in fruit tissue (Figure 1b). There were 55
total different genotypes in this dataset that were categorised by
type of mutation into three classes: wildtype (WT), ABA mutant
(including signalling and synthesis variants), and ‘Other’ (primarily
callose or other hormone-disrupted mutants). ABA mutants repre-
sented 46% of the data points (Figure 1c). Regarding plant age, 94%
of data points were obtained in plants of the age of or younger than
6 weeks (Figure 1d). Approximately 23%, 49% and 28% of the data
points correspond to biotrophic, necrotrophic and hemibiotrophic
pathogens, respectively (Figure 1e). Fungi represented the majority
of the data with 66% of the points, while bacteria made up 30% and
oomycetes made up 4% (Figure 1f). Exogenous concentrations of
ABA ranged from 0 to 100,000μM, although 95% of the data points
were between 10 and 750 μM (Figure 1g). A total of 109 data points
had an exogenous ABA concentration value of 0 due to experiments
involving ABA mutants rather than external application. In this
dataset, the level of ‘percentage resistance change’ varied from−800
to 91. A total of 132 data points were labelled ‘Susceptible’ (negative
change in resistance) and 93 data points ‘Resistant’ (positive change
in resistance) (Figure 1h).

3.2. CART models

The CART algorithm was used to produce a DT to unpick which
variables are involved in, and the most influential in, determining
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Table 1. Importance of variables in DT and RF determined by rpart and RF

Model Variable Predictive importance

DT Exogenous ABA concentration (μM) 21.7

Plant age (weeks) 13.54

Plant mutant 12.98

Plant species 11.87

Pathogen lifestyle 9.89

RF Exogenous ABA concentration (μM) 35.02

Plant species 15.34

Pathogen lifestyle 14.55

Plant age (weeks) 12.7

Note. Data described in Supplementary Tables S1 and S3.

Abbreviations: DT, decision tree; RF, random forest.

resistance phenotypes linked to ABA. A DT predicting a binary
response of resistance had a predictive accuracy on unseen data
of 76% and an AUC value of 77%; the ROC curve is displayed in
Supplementary Figure S1. DT had a precision score of 69% and
a recall score of 78% (further details in Supplementary Table S6).
Rpart determined the most important variables in DT (Table 1).
ABA concentration (in μM) was determined as the most important
variable. Plant age (in weeks), plant species and mutant type were
also determined as important predictive variables.

3.3. Random forest models

An RF model was created for predicting a binary resistance output.
Increasing the number of trees used in the forest increased the
predictive accuracy of the model; however, beyond 400 trees the
predictive capabilities of our model did not improve. The final RF
model was therefore generated by using 400 trees. This model had
an out-of-bag (OOB) estimate of error rate of 21%. The error rate
in unseen data for predicting ‘resistance’ was 27%, the error rate
for predicting ‘susceptibility’ was 15%, (further details in Supple-
mentary Table S6). As in the DT model, ABA concentration (μM)
was considered the most important variable in the RF model (Table
1). Similar to DT models, RF predicts plant age (in weeks), plant
species and pathogen lifestyle as important variables.

3.4. Simplified decision trees and random forest analysis

DTs were reconstructed using minimised datasets to assess if
accuracy could be improved from 76% and whether alternative
predictions would be produced (Supplementary Figure S2; Supple-
mentary Table S5). Removing extreme exogenous concentrations
of ABA (i.e., above 750 μM) created a different DT, which we
labelled DText. DText predictive accuracy was reduced to 61% and
its AUC value was 77% (further details in Supplementary Table
S6). DText has minimal structural changes with a single change
in node positioning shifting the plant age threshold from 5.3 to
5.5 weeks (Supplementary Figure S2; Supplementary Table S5).
Removing extreme age data points of plants over 6 weeks, creating
a different DT labelled DTage, reduced predictive accuracy to 69%
and produced a more simplified tree with the root node split
of concentration changed to <90 μM (Supplementary Figure S2;
Supplementary Table S5). DTage had a relatively unchanged AUC
value of 76% (further details in Supplementary Table S6).

We then tested whether the RF OOB estimate of error could be
improved. RFext, constructed by removing extreme concentrations
as for DText, marginally increased the OOB error rate to 22%
demonstrating that inclusion of these data points in the RF analysis

gives us the best possible prediction within the noise of the data.
Finally, the OOB error rate was unchanged in RFage, constructed
after removing extreme age points as for DTage (further details for
RFext and RFage in Supplementary Table S6).

3.5. Decision-tree predictions

The DT (Figure 2) predicted that exogenous ABA concentrations
above 38 μM more frequently lead to susceptibility. This tree pre-
dicted that exogenous concentrations below 38 μM infected with
biotrophic pathogens display resistance and those with exogenous
ABA concentrations below 38 μM infected with non-biotrophic
pathogens tomato plants display resistance. The DT predicts that
exogenous ABA concentrations above 38 μM infected with non-
fungal pathogens display susceptibility. This DT shows the impact
of age in resistance: it predicts that with exogenous ABA concentra-
tions above 38 μM, during fungal infections ‘other’ mutant plants
younger than 5.3 weeks display greater resistance than plants over
5.3 weeks.

3.6. Effect of ABA on disease resistance against Botrytis cinerea
and Phytophthora infestans

Our RF and DT results highlighted that exogenous ABA concen-
tration, pathogen lifestyle and plant age are important variables in
resistance predictions. Seeking to refine our quantitative under-
standing of these influences, we therefore experimentally tested
these specific variables. Tomato was used as the experimental plant
species as it appears as a split in our DT (Figure 2) and is one of the
most represented species in our data (Supplementary Table S1).

The effect of exogenous ABA application at different con-
centrations on susceptibility against B. cinerea was assessed in
tomato plants of different ages (i.e., 4-week and 8-week-old). ABA
treatment had a statistically significant effect on the phenotype
in leaves from 4-week-old plants against B. cinerea (Figure 3a;
ANOVA, p = .04), with ABA generally causing an increase in
susceptibility, although post-hoc test (Least Significant Difference -
LSD) does not show any specific statistically significant differences.
In contrast, in older plants, ABA concentrations of 50 μM
and above enhanced resistance against B. cinerea (Figure 3b;
Kruskal–Wallis, p = .001). The concentration of 100 μM led to
a significant, dramatic reduction in disease severity (Figure 3b).
These results suggest that the effect of ABA on susceptibility
against B. cinerea is influenced by ABA concentration and the
plant age.

The effect of ABA application was also studied against the
biotrophic pathogen P. infestans. In young leaves, ABA had a sta-
tistically significant effect on susceptibility against this pathogen
(Figure 3c; ANOVA, p = .012), with the concentration 500 μM
causing increased susceptibility in 4-week-old leaves (p = .029). In
older leaves, ABA treatment increased susceptibility in all instances
(Figure 3d; ANOVA, p = .04). However, lower range concentrations
had a more severe effect on disease incidence, with 20 μM leading
to statistically significant increase in susceptibility (p = .003).

3.7. Decision trees with extended experimental data

Comparing our DT predictions (Figure 2) to our experimental
results (Figure 3) highlighted similarities and differences in our
model. Our DT predicted only 1/8 of our B. cinerea infection
results correctly. The prediction for P. infestans infected plants was
more accurate with 6/8 experimental results being predicted by DT
correctly. In an attempt to refine an initially imperfect model, data
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Fig. 2. Decision tree (DT) predicting a binary resistance response of ‘Susceptible’ or ‘Resistant’. Yellow boxes indicate resistance and blue boxes indicate susceptibility. Percentage

number in box represents proportion of dataset remaining following node split. DT is read from top root node to bottom leaf nodes, if the question asked at a node is ‘yes’ the left

side is followed. Data are described in Supplementary Table S1.

were included from new and rationally chosen experiments (Sup-
plementary Tables S2 and S4). We thus added our experimental
findings to our dataset, forming DT2 (Figure 4). The predictive
abilities of DT2 remained relatively unchanged, with a predictive
accuracy on unseen data of 70%, and an increased AUC value of
85%. DT2 had precision and recall values of 83% and 58%, respec-
tively demonstrating increased precision however lower power
(Supplementary Table S6). However, DT2 is now capable of better
capturing the new experiments above. For B. cinerea infections 6/8
of our experimental results were predicted correctly from DT2,
6/8 were predicted correctly from P. infestans infection. The most
important variable in DT2 was maintained as exogenous ABA
concentration. Addition of our experimental data to our model
altered some later splits in the DT2 compared to DT1 leading to
differences in the overall topology. The split of age was lowered
from 5.3 weeks to 4.5 weeks and an additional node was created. For
concentrations higher than 38 μM a node was created splitting for
specific plant species (Arabidopsis, orange, rice, and tomato) and
further predicted that exogenous ABA concentrations greater than
375 μM lead to resistance (Figure 4). These changes subsequently
increased the number of final leaf nodes from 10 in DT1 to 11 in
DT2, potentially allowing a more fine-grained classification.

4. Discussion

The role of ABA in pathogen defence has remained highly ambigu-
ous (Ton et al., 2009). In this study we used supervised ML tech-
niques to attempt to resolve these relationships and determine
the most influential factors in ABA resistance phenotypes. In our
predictions and experiments, overall, we can observe pronounced
roles for ABA on susceptibility to pathogens. Exogenous ABA
concentration, pathogen lifestyle and plant age were shown to
be important influencers of resistance, therefore illustrating ABA’s

regulatory role in the activation of major defence pathways and its
specificity in individual pathosystems.

4.1. Importance of the concentration

DTs and RF analyses predict the exogenous concentration as the
primary determinant factor on the role of ABA. Our DT predicts
that exogenous concentrations higher than 38 μM result in suscep-
tibility (Figure 2). Our experimental work showed in general terms
that ABA application at high concentrations is associated with
susceptibility (Figure 3). However, our experimental work did not
show a consistent pattern of susceptibility as exogenous concentra-
tion of ABA was increased or as it passed a particular concentration
threshold. For instance, we were unable to observe changes at the
threshold concentration predicted and instead variable levels of
susceptibility were observed (Figure 3). Moreover, whereas increas-
ing exogenous concentrations of ABA led to enhanced suscep-
tibility, the concentration of 100 μM was extremely effective in
triggering resistance against B. cinerea (Figure 3c). The differences
observed between the predictions and the experimental work may
be in part due to differences in the basal levels of ABA in plants.
Achuo et al., demonstrated major discrepancies in the endogenous
ABA levels found in Moneymaker tomato plants. Basal quantities
varied within identical experimental setups from 4.08 × 10−4 μM
(408 picomol) g−1 FW to approximately 2.5 × 10−3 μM (2,500
picomol) g−1 FW (Achuo et al., 2006). Therefore, basal concen-
trations of ABA can be different depending on the experimental
conditions and could explain discrepancies between predictions
and observations.

4.2. Importance of the plant age and pathogen lifestyle

DT analysis allowed us to explore the effect of plant age and
pathogen lifestyle. Generally, DT predicted that ABA triggers
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a b
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Fig. 3. Disease resistance phenotypes in tomato. Four and 8-week-old tomato leaves were sprayed with 20, 50, 100, and 500 μM of ABA 24 hours pre-inoculation. (a) Lesion

diameters in 4-week-old tomato leaves caused by Botrytis cinerea at 3 dpi. (b) Lesion diameters in 8-week-old tomato leaves caused by B. cinerea at 3 dpi. (c) Disease severity

index in 4-week-old tomato leaves converted from the percentage of lesions in six disease categories at 7dpi with Phytophthora infestans. (d) Disease severity index in 8-week-old

tomato leaves converted from the percentage of lesions in 6 disease categories at 7dpi with P. infestans. Boxes denote 25th and 75th percentile, bars display min and max values.

Asterisks indicate statistically significant differences at each specific age and treatment (ANOVA for a, c and d, Kruskal–Wallis for b; p < .05; n = 6). Different letters denote

significant differences among treatment groups (LSD for a and d and Dunnets’ for b and c post hoc tests; p < .05; n = 6).

resistance against biotrophic pathogens with low exogenous
ABA concentrations. When it comes to the effect against fungal
pathogens, DT predicts that ABA affects the resistance phenotype
in an age-dependent manner. Our DT predicts susceptibility in
older plants; however, experimental work has confirmed that ABA
triggers resistance to the necrotrophic fungal pathogen B. cinerea
only in older leaves.

The reasons behind the enhanced resistance observed after ABA
treatments in older plants may be due to age-related resistance
(ARR). It is well reported that plant age influences pathogen resis-
tance, with young juvenile leaves displaying enhanced susceptibility
(Kus et al., 2002). This is often due to important defence functions,
such as PR gene expression, being upregulated in older leaves (Kus
et al., 2002; Li et al., 2020). Moreover, different developmental
stages, such as the transition to floral stage, are associated with
increased resistance in a range of species including Arabidopsis,
tobacco and tomato (Develey-Rivière & Galiana, 2007; Hu & Yang,

2019). This resistance has been linked to a positive correlation
between development and defence-related processes such as phy-
toalexin production and resistance gene expression (Bell, 1969; Li
et al., 2020). The DT model produced in this study however did
not predict this ARR. This is likely due to the small age interval of
our data, as 3–6 weeks seems to be the most popular age range for
infection studies (Figure 1, Supplementary Table S1). Furthermore,
a limitation of our data collection could also be responsible for the
lack of ARR in the DT predictions, mostly based on a threshold of
age. Whereas we have recorded and assumed that below ~4 weeks
old is considered ‘young’ and ~8 weeks is considered ‘old’, this may
not be true for all plant species studied. For instance, a 4-week-
old Arabidopsis plant may no longer be considered young, and an
8-week-old orange tree cannot be considered old. A more accurate
assessment of ARR would therefore come from the analysis of the
impact of ABA in resistance at different developmental stages for
each plant species.
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Fig. 4. Decision tree (DT) including our experimental data predicting a binary resistance response of ‘Susceptible’ or ‘Resistant’. Yellow boxes indicate resistance and blue boxes

indicate susceptibility. Percentage number in box represents proportion of dataset remaining following node split. DT is read from top root node to bottom leaf nodes, if the

question asked at a node is ‘yes’, the left side is followed. Data are described in Supplementary Table S2.

Our results show that pathogen lifestyle determines the effect
of ABA in resistance; this can be linked to the modulation of
major defence networks associated with the infection strategies. It
is well characterised that whereas biotrophic pathogens result in
the activation of SA-dependent defences (Mohr & Cahill, 2007),
the plant activates JA and ET-dependent defences in response
to necrotrophic pathogens (Mcdowell & Dangl, 2000). Moreover,
there is a comprehensively understood antagonistic interaction
between SA and JA (Anderson et al., 2004, De Torres Zabala
et al., 2009). It is known that B. cinerea produces a virulence
factor, EPS, that directly modulates the JA/SA antagonism. EPS
suppresses JA defences, reduces proteinase inhibitor I and II (PI
I and PI II) expression and leads to the accumulation of SA and
NPR1 expression (El Oirdi et al., 2011). Tomato hosts resistance to
P. infestans can occur through production of defence proteins that
have been shown to be ET and SA dependent (Smart et al., 2003).
Importantly, it is also known that there are multiple antagonistic
responses between ABA and SA, JA, and ET. Therefore, it is easy to
speculate that the effect of ABA in resistance against pathogens with
different lifestyles is the result of ABA impacting the activation of
those hormone-dependent signalling pathways. To the best of our
knowledge, this is the first example of the impact of exogenous ABA
application on tomato resistance against the biotroph P. infestans.
Previous studies have been carried out on potato slices against this
pathogen demonstrating that ABA treatments increase suscepti-
bility (Henfling et al., 1980; Liu et al., 2020). Our experimental
work also demonstrates that treatments with 500 μM ABA result in
susceptibility against P. infestans (Figure 3c). Therefore, it is likely
that this phenotype is due to disruption of SA defence signalling
by ABA. Future studies analysing both genotypes altered in SA and
JA signalling will help confirm if ABA application is contributing
to susceptibility due to the direct activation or repression of these
essential defence pathways.

4.3. Application of machine learning tools to complex
biological mechanisms

We suggest that tools from ML (here particularly DT and
RF classification approaches) provide an approach for further
clarification of the role of ABA. This approach is, unsurprisingly,
limited by the amount of data available—-as demonstrated by our
original DT, which had reasonable predictive performance on test
data but failed to capture behaviour in several new experiments,
and the reduced performance of our minimised DTs and RFs.
For instance, DT predicts resistance in 4-week-old leaves against
B. cinerea (Figure 2); however, susceptibility is observed exper-
imentally (Figure 3). Additional analyses were conducted to
assess how robust our models were with respect to outliers.
This demonstrated that extreme ABA concentrations do not
dramatically change the structure or predictive capacity of our DT
(Supplementary Figure S2). Removing the most extreme age values
had a greater structural effect on our DTs: whilst the root node
remained as ‘exogenous ABA concentration’ the value increased
to 90 μM. This indicates that the threshold for susceptibility is
dependent on plant age and or tissue type. Later nodes were
altered more substantially, though this is not unexpected as an
age split appears in the DTs trained on the full dataset, already
indicating that higher ages lead to different behaviour. As this
outlier-removed analysis removes experiments from fruit material,
it is easy to speculate that the observation on the change in ABA
concentration may be a tissue-specific effect related to the known
tight link between ABA and fruit development and ripening.

These approaches are not proposed as an immediate solution,
but rather as a framework for iteratively refining and improving
our understanding. Hence, in an attempt to improve the prediction
of the initial data we added our experimental data to the
model (Figure 4). This improved our DT predictions in the

https://doi.org/10.1017/qpb.2023.1 Published online by Cambridge University Press

https://doi.org/10.1017/qpb.2023.1


Quantitative Plant Biology 9

tomato-B. cinerea pathosystem, increasing correct predictions from
1/8 to 6/8. Therefore, the addition of only 16 new data points (i.e.,
7.1% change in the original data) led to changes in DT predictions
and far greater accuracy against our own experimental results.
This improvement points to the importance of adding under-
represented data to the model. Here, the capacity for improvement
can likely be attributed to the limited current dataset, in particular
the narrow age range represented in tomatoes with no data points
included in leaves from plants older than 5.5 weeks. We believe
that these ML approaches can both help unify and interpret
observations from heterogeneous studies and to identify relevant
characteristics in the role of ABA in defence. As more data are
added, particularly on sparsely represented cases and surrounding
key tree-splitting points, further clarity and prediction refinement
will be achieved. Thus, we invite researchers to input their results
into the model, especially from data in under-represented groups,
to improve its prediction capacity. This could allow production
of refined species-specific predictive models to determine the
threshold level of ABA concentration and test specific questions
such as if our findings of the age-dependent effect of ABA against
necrotrophs is specific to tomatoes or can be extrapolated to other
plant species.

4.4. Moving forward with experimental work on the role
of ABA in defence

Due to its essential role in abiotic defences, ABA signalling is a
common target for engineering stress tolerant plants. Therefore,
greater understanding of its controversial role in biotic defences is
essential to ensure phenotypes are resistant to both abiotic stress
and pathogen challenge. Methodologies used in ABA research vary
significantly and this is testament to the many functions of ABA and
physiological processes in which it is involved. For example, data
examined from literature in this study included repeated ABA spray
application, root soaking, biosynthesis mutants, signalling mutants
and salt stress treatment, all of which will lead to variable contri-
butions to resistance (Achuo et al., 2006; Audenaert et al., 2002;
Song et al., 2011). Despite these, we have been able to identify key
characteristics that could determine phenotypes. Whereas it is clear
that ABA triggers susceptibility against biotrophic pathogens in
a concentration-dependent manner, this is not as straightforward
against necrotrophic pathogens, where plant age and specific con-
centrations are relevant. It is important to understand the function
of hormone crosstalk in evolution and survival, as they are an essen-
tial characteristic to prevent singular resource allocation against a
single stressor (Vos et al., 2015). ABA has been demonstrated to
be fully involved in the expression of priming of defence, which
does not result in the direct activation of defence mechanisms but
the fine-tuning of the response upon subsequent challenges. Due
to the key role of ABA in defence crosstalk and priming, it could be
hypothesised that ABA plays a central role in buffering any single
effort, contributing to noisiness, and therefore playing a central role
in the evolution of defence strategies. Therefore, this study can serve
as a tool to test that hypothesis and to guide future studies involving
the role of ABA in disease resistance.
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