

Tutorial: Scalable Models for Efficient Design in EMC and SI Applications

Scalable Compact Models for Efficient Design in EMC and SI Applications

F. Ferranti*, T. Dhaene*, L. Knockaert*, G. Antonini**, A. Ciccomancini Scogna[†]

* Department of Information Technology (INTEC), Ghent University – IBBT
** Dipartimento di Ingegneria Elettrica e dell'Informazione, Università degli Studi dell'Aquila
[†] CST of America

Outline

Introduction

Scalable Macromodels

Numerical examples

- EMC example
- SI example

Conclusions

Outline

Introduction

Scalable Macromodels

Numerical examples

- EMC example
- SI example

Conclusions

FACULTY OF ENGINEERING

automotive

Design process

- several decisions
 - materials
 - geometrical dimensions
 - shape
 - constraints
 - space
 - cost
 - performance

Simulators

- implementation of models
- describe systems behavior
- help designers

Measurements

- post tuning
- verification
- help designers

A typical design process requires

- design space optimization
- design space exploration
- sensitivity analysis
 - multiple simulations (measurements)
 - different design parameters values (e.g. layout features)

A typical design process requires

- Multiple simulations (measurements)
 - computationally expensive (time and memory)
- Can we do better?
- Yes
 - By scalable macromodels

Outline

Introduction

Scalable Macromodels

Numerical examples

- EMC example
- SI example

Conclusions

PMOR concepts

Two design space grids are used in the modeling process

- estimation grid
- validation grid

Design space

$$g = (g^{(n)})_{n=1}^{N}$$

Features

- each design space cell has its own model
- local approach
- independent from a specific state-space realization
- stability and passivity guaranteed over the design space
- suitable to robust adaptive sampling
- different flavours

$$\min_{\alpha_{1,k}(\mathbf{g}_{j}^{\widehat{\Omega}}),\alpha_{2,k}(\mathbf{g}_{j}^{\widehat{\Omega}})} Err(\widetilde{\mathbf{R}}(s, \mathbf{g}_{k}^{\widehat{\Omega}}), \mathbf{R}(s, \mathbf{g}_{j}^{\widehat{\Omega}}))$$

$$\widetilde{\mathbf{R}}(s, \boldsymbol{g}_{k}^{\widehat{\Omega}}) = \alpha_{1,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}}) \mathbf{R}(s\alpha_{2,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}}), \boldsymbol{g}_{k}^{\widehat{\Omega}})$$
$$\alpha_{1,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}}) = \alpha_{2,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}}) = 1, \ j = k$$

$$\widehat{\mathbf{R}}(\mathbf{x}, \widehat{\mathbf{g}}^{\widehat{\mathbf{n}}}) = \sum_{k_1=1}^2 \sum_{k_2=1}^2 \widetilde{\mathbf{R}}(\mathbf{x}, (g_{k_1}^{(1)}, g_{k_2}^{(2)})^{\widehat{\mathbf{n}}}) \ell_{k_1}(g^{(1)})\ell_{k_2}(g^{(2)})$$

$$\mathbf{FCULTY OF ENGINEERING}$$

Outline

Introduction

Scalable Macromodels

Numerical examples

- EMC example
- SI example

Conclusions

3D example: Enclosure

Step	CPU time
Estimation grid by solver (6×6) (L,W)	2 h 25 min 48 s
Validation grid by solver (5×5) (L,W)	1 h 41 min 15 s
Building model	3.08 s
Validating model	0.9 s
Evaluating solver (one frequency response)	4 min 3 s
Evaluating model (one frequency response)	7.2 ms

Step	CPU time
Estimation grid by solver (6×6) (L,W)	2 h 25 min 48 s
Validation grid by solver (5×5) (L,W)	1 h 41 min 15 s
Building model	3.08 s
Validating model	0.9 s
Evaluating solver (one frequency response)	4 min 3 s
Evaluating model (one frequency response)	7.2 ms

Speed-up 33750 x

💵 ibbt

Outline

Introduction

Scalable Macromodels

Numerical examples

- EMC example
- SI example

Conclusions

3D example: PCB

Parameter	Min	Max
Frequency (freq)	0 Hz	20 GHz
Antipads radius (R)	0.4826 mm	0.6026 mm
Distance (D)	1.2525 mm	2.4525 mm

3D example: PCB

Parameter	Min	Max
Frequency (freq)	0 Hz	20 GHz
Antipads radius (R)	0.4826 mm	0.6026 mm
Distance (D)	1.2525 mm	2.4525 mm

Step	CPU time
Estimation grid by solver (4×6) (R,D)	3 h 6 min
Validation grid by solver (3×5) (R,D)	1 h 56 min 15 s
Building model	5 min 49 s
Validating model	11 s
Evaluating solver (one frequency response)	7 min 45 s
Evaluating model (one frequency response)	0.1 s

Step	CPU time
Estimation grid by solver (4×6) (R,D)	3 h 6 min
Validation grid by solver (3×5) (R,D)	1 h 56 min 15 s
Building model	5 min 49 s
Validating model	11 s
Evaluating solver (one frequency response)	7 min 45 s
Evaluating model (one frequency response)	0.1 s

D=1.8525 mm

R=0.543 mm

D=1.8525 mm

R=0.543 mm

Outline

Introduction

Scalable Macromodels

Numerical examples

- EMC example
- SI example

Conclusions

FACULTY OF ENGINEERING

automotive

Scalable macromodels

Multiple design variables

scalable macromodel

Compact models

Efficient design activities (excellent speed-ups)

- Multiple simulations (measurements)
 - Design space optimization, exploration, sensitivity analysis

Scalable macromodels

Time-domain simulations

• Non-linear drivers and receivers

Stochastic modeling

impact of manufacturing tolerances

Models from measurements

• noise to handle

Applications in different domains

scalable macromodel

Contact info: francesco.ferranti@ugent.be

Recent publications

F. Ferranti, L. Knockaert, T. Dhaene, "Passivity-Preserving Parametric Macromodeling by Means of Scaled and Shifted State-Space Systems", IEEE Trans. on Microwave Theory and Techniques, vol. 59, no. 10, pp.2394-2403, October 2011.

F. Ferranti, T. Dhaene, L. Knockaert, G. Antonini and A. Ciccomancini Scogna, "Scalable Compact Models for Fast Design Optimization of Complex Electromagnetic Systems", International Journal of RF and Microwave Computer-Aided Engineering, vol. 22, no. 1, pp. 20-29, January 2012.

F. Ferranti, M. Nakhla, G. Antonini, T. Dhaene, L. Knockaert, A. E. Ruehli, "Interpolationbased Parameterized Model Order Reduction of Delayed Systems", IEEE Trans. on Microwave Theory and Techniques, vol. 60, no. 3, pp. 431-440, March 2012.

Contact info: francesco.ferranti@ugent.be

