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ABSTRACT

Dynamic hardware generation is a powerful technique that

can substantially reduce both the required hardware resour-

ces and the time needed to perform a calculation, reflected

in an improved functional density. This performance im-

provement is a result of additional run-time optimizations

enabled by the knowledge of values at certain inputs at run-

time. However, due to the large overhead conventional hard-

ware generation tools incur, the usability of dynamic hard-

ware generation is limited. We present a dual approach that

combines compile-time generation of generic hardware and

run-time specialization. This drastically decreases the dy-

namic generation overhead. Our approach is used for dy-

namic generation of FIR filters and compared to a static and

a conventional dynamic implementation. The experiments

clearly show that the dual approach improves the usability

of dynamic hardware generation.

1. INTRODUCTION

During the design process of a hardware component design-

ers aim at an optimal implementation, taking into account

the specific conditions of the application. While a broad

range of optimizations is possible at design time many more

emerge only at run-time when even more information about

the specific application becomes available. One of these op-

timizations is constant propagation of specific parameters

and/or inputs which leads to a more efficient use of the Field

Programmable Gate Array (FPGA) fabric.

In this paper we use the design of the FIR filter shown

in figure 1 as a running example. At design time the number

of filter taps is known as well as the word length of its coef-

ficients. The word length of the input data is also a design

constraint. This specification leads to an implementation us-

ing generic multipliers. If the designer would also know the

exact values of the coefficients, these values could be prop-

agated into the design leading to a specific implementation
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Fig. 1. Finite Impulse Response Filter

which is more compact and possibly faster. In applications

where the filter coefficients are not fixed, constant propaga-

tion is only possible at run-time.

Run-time switching between specific implementations is

possible due to the reconfigurability of FPGAs. For applica-

tions where all possible configurations can be generated at

design time, this run-time switching is a sufficient solution.

In this paper we focus on applications where more flexibil-

ity is needed. The number of specific implementations be-

comes unmanageable for these applications. Hence it might

be more efficient to generate the specific implementations at

run-time.

Run-time optimization improves the quality of the gen-

erated hardware, but also incurs an overhead. Functional

density, introduced in section 2, is a measure for how ef-

ficient the FPGA fabric is used. Functional density takes

both intrinsic hardware properties and run-time optimiza-

tion overhead into account. Using functional density we

can show under which conditions the optimization gain out-

weighs the hardware generation overhead.

Standard hardware synthesis tools are very slow, which

makes these conditions too stringent for many practical sit-

uations. To alleviate these conditions we propose a faster

method for hardware generation at run-time in section 3. We

achieve this by splitting up the hardware generation in an

offline initial compilation and a fast run-time refinement of

this compilation. A profound description of two techniques

we use for this refinement is given in section 4.

Experimental results for the optimization of FIR filters

in section 5 show that our method can effectively increase

the functional density.
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We situate our work in the broad field of run-time hard-

ware generation in section 6 and formulate some conclu-

sions in section 7.

2. FUNCTIONAL DENSITY

We claim run-time generated circuits can use the FPGA fab-

ric more efficiently than generic, offline generated circuits.

A metric to measure this efficiency is the functional den-

sity D. This metric combines two important properties of a

calculation in hardware: the number of hardware resources,

reflected in the area A, and the time T needed to perform

this calculation. Functional density is defined as follows:

D =
1

AT
. (1)

For the static case where generic hardware is generated

at compile-time, As is the total hardware cost and ts,exec is

the execution time of the hardware:

Dstatic =
1

AT
=

1
Asts,exec

. (2)

For dynamically generated hardware as we propose in

this paper, T consists of the execution time of the hard-

ware (td,exec) and the time needed to generate the hardware

(tgenerate) and to configure the FPGA (tconf ). The area is

denoted Ad. This leads to the dynamic functional density

Ddynamic, introduced by Wirthlin et al [1].

Ddynamic =
1

AT
=

1
Ad(td,exec + tgenerate + tconf )

(3)

When the generated hardware component is reused sev-

eral times (n), the overhead of generating this component is

amortized over several executions. This results in:

Ddynamic =
1

Ad

(
td,exec + tgenerate+tconf

n

) . (4)

For large n the overhead of run-time hardware genera-

tion becomes negligible:

Ddynamic ≈ 1
Adtd,exec

. (5)

At run-time more optimization possibilities emerge re-

sulting in potentially smaller and faster hardware:

Adtd,exec < Asts,exec. (6)

Under this condition, we can see that Ddynamic over-

takes Dstatic for large n. We can calculate the break even

point N as:

N =
Ad(tconf + tgenerate)
Asts,exec − Adtd,exec

. (7)
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Fig. 2. Method for run time hardware generation

As can be seen in section 5, the hardware generation

time tgenerate is very large for a conventional hardware syn-

thesis tool chain. The break even point N can be reduced

by speeding up run-time synthesis. This enables the use of

run-time hardware generation in a new range of applications

where n is relatively small.

3. DUAL APPROACH

Dynamic hardware generation enables exploitation of opti-

mizations that only emerge at run-time. For some applica-

tions, optimizing for specific parameters, requires a com-

pletely different design. We aim for another class of ap-

plications where the optimizations can be seen as a trans-

formation of an existing design. In this paper we focus on

constant propagation. Example applications are: adaptive

filtering, key-specific encryption and many others.

These applications enable our dual approach where we

combine compile-time generation of generic hardware with

run-time specialization as shown in figure 2. As the optimiz-

ing transformations are far less complicated than a complete

redesign, large speed-ups can be achieved over a conven-

tional hardware synthesis approach. By shifting hardware

generation time from run-time to compile-time, we improve

the functional density where tgenerate was the obstructing

factor as can be seen from equation 4.

For the offline generation of the generic design, we start

with a high level description of the generic problem. This

description is synthesized with a conventional tool chain

consisting of three consecutive steps: Synthesis, Placement

and Routing. This results in a generic netlist, and generic

placement and routing information used as a headstart for

the online specialization steps.

At run-time we perform the following steps: constant

propagation, compaction and incremental routing. Each of

these online steps corresponds to an offline preparation step
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and builds on its results.

The constant propagation step uses the run-time infor-

mation about constant input values to transform the generic

netlist into a specialized netlist. This is done by propagating

the constants into the circuit and simultaneously simplify-

ing the circuit. Some logic blocks are removed due to this

simplification.

The compaction step combines the generic placement

and the specialized netlist and produces a compact special-

ized placement. This is done in two steps. First the generic

placement is pruned only retaining the logic blocks present

in the specialized netlist. The emerging free space is frag-

mented and therefore cannot be used efficiently. Secondly

this sparse placement is compacted to reduce the fragmen-

tation, while trying to preserve the placement quality. Be-

cause compaction decreases the bounding box area, func-

tional density is improved as can be deduced from equa-

tion 4.

Optimally compacting a sparse placement is as hard as

finding the optimal placement itself. There is no strict corre-

lation between the place of a logic block in the sparse place-

ment and its place in the optimal placement. Nevertheless

we can use the sparse placement as a headstart for a new

suboptimal placement considering the generic placement as

a condensed representation of the connectivity information

of logic blocks. Based on this observation we designed a

fast and efficient online heuristic for compaction, presented

in section 4.2.

The incremental routing step concludes the online hard-

ware generation. Only those interconnections that were bro-

ken during constant propagation and compaction are rerout-

ed.

The bitstream resulting from our online hardware spe-

cialization can be used to configure the FPGA after which

the hardware component can start executing. During execu-

tion the dynamic input is processed by the hardware compo-

nent generating the desired output.

4. ALGORITHMS

4.1. Constant propagation

The constant propagator takes a netlist and a list of the con-

stant inputs and their constant values. In the netlist logic

blocks are annotated with the truth tables of their Look Up

Tables (LUTs). The output is a specialized netlist.

First we read the generic netlist and build an internal

data structure containing information about logic blocks –

consisting of LUTs and Flip Flops (FF) – inputs, outputs

and nets. This representation facilitates complex transfor-

mations on the circuit.

Secondly we propagate constant inputs one by one in

the circuit. The truth tables are simplified simultaneously.

In some cases this leads to opportunities to prune the circuit.

We use eight simple pruning rules:

1. If a LUT becomes independent of one of its inputs,

this input is removed from the sink list of the driving

net.

2. If a net has no sinks, its driving LUT or FF is removed.

3. If a LUT is removed, its inputs are removed from the

sink list of its respective input nets.

4. If a FF is removed, its input is removed from the sink

list of its input net.

5. If a LUT becomes a constant generator, it is removed

except for when it drives an output. The constant out-

put of the LUT is propagated.

6. If a FF has a constant input it is removed and the con-

stant input is propagated.

7. If a LUT has only one input and it simply transfers the

value to the output, the input net and the output net are

merged and the LUT is removed.

8. If all LUTs and FFs of a logic block are removed the

logic block itself is removed.

The eighth rule removes logic blocks from the circuit.

These blocks are pruned from the netlist but are still present

in the generic placement file. The compaction step will solve

this problem by removing them from the placement.

Another important property to note is that none of the

rules create extra logic blocks. This proves that the set of

logic blocks in the specialized circuit after constant prop-

agation will be a subset of the logic blocks in the original

design. As a consequence, each logic block in the special-

ized netlist is still linked to a place in the generic placement.

This results in a valid initial placement for all logic blocks,

which will be optimized by our compaction algorithm.

4.2. Replacement via Compaction

Some logic blocks have become redundant after constant

propagation. Removing these blocks from the generic place-

ment, results in a sparse specialized placement that uses less

hardware resources than the original placement. Because of

fragmentation the vacant logic blocks do not contribute to

an improved functional density.

This sparse specialized placement is transformed into

a compacted version by our compaction algorithm. The

resulting placement can effectively improve the functional

density if it has a reduced bounding box and still a good

placement quality. Important factors are routability and the

length of the resulting critical path.
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Fig. 3. Principles of Compaction

As stated in section 3 we designed a fast online heuris-

tic for compacting while trying to preserve the placement

quality. The generic placement is used as a condensed rep-

resentation of the connectivity information of logic blocks.

This placement is produced by a placement algorithm that

obtains good quality by placing strongly connected blocks

closely together. We assume that this property still holds for

the sparse placement. Hence good placement quality can be

achieved by keeping blocks that are closely together in the

original placement closely together during compaction.

Our compaction algorithm is a fast heuristic for achiev-

ing this goal. The pseudo code is shown in figure 4. We first

calculate the bounding box of the sparse placement. Then

we iterate over all logic blocks on the border of this bound-

ing box and shift them into the bounding box. This is done

by finding the closest free space in the bounding box and

then shifting the logic blocks that are in between at a right

angle (figure 3). By shifting a logic block over not more than

one position every iteration, logic blocks that were closely

together stay closely together during an iteration.

BoundingBox b = findBoundingBox();
LogicBlock l = b.firstLogicBlock();
while (b.freeSpace() != 0) {

Place f = b.findClosestFreeSpace(l);
shift(l, f);
l = b.nextLogicBlock();
if (l == null) {

b = findBoundingBox();
l = b.firstLogicBlock();

}
}

Fig. 4. Pseudo code of the compaction algorithm

As can be intuitively seen this algorithm is very fast

compared to more conventional placement algorithms based

on simulated annealing. In section 5 we also show the place-

ment quality can be preserved.

5. RESULTS

Our implementation is based on VPR (Versatile Place and

Route) [2]. After synthesis we use Vplace for placing the

generic circuit in the offline phase. For the online specializa-

tion we use our own constant propagation and compaction

algorithms, described in sections 4.1 and 4.2 respectively.

Currently we have not yet implemented an incremental rout-

ing algorithm. Therefore the specialized circuit is fully rout-

ed at run-time with Vroute, the VPR router.

Although the approach proposed in this paper is archi-

tecture independent, we focus on an implementation for a

specific FPGA in this section. We have chosen a simple ar-

chitecture1 with logic blocks containing one 4-LUT and a

FF. In the interconnection network the wire segments only

span one logic block and the channel width is fixed to 20.

FIR filtering is used for validation of our dual approach.

In our experiments we use a generic 16 tap FIR filter with

8 bit coefficients and an 8 bit input, shown in figure 1. The

generic multipliers are ripple carry array multipliers.

A generic netlist for this FIR filter was manually con-

structed. It contains 2704 logic blocks, 137 inputs (one for

the clock, 8 for the input, and 16 times 8 for the coefficients)

and 31 outputs. In the netlist every LUT was annotated with

its truth table. Vplace was used with default settings for the

offline placement of the generic design.

In order to test the online specialization and constant

propagation, we randomly generated 100 different sets of

16 coefficients. The next subsections present results of ex-

periments with these 100 FIR filters.

All experiments were executed on an Intel Core 2 pro-

cessor running at 2.13 GHz with 2 GiB of memory.

5.1. Experiment 1: Compaction

Our compaction algorithm can produce a placement of equal

quality compared to Vplace in a much shorter time. We use

the critical path length after routing as the quality measure.

Vplace can be tuned to trade quality for execution time

with the inner num parameter. We ran Vplace for this pa-

rameter ranging from 0.2 to 10 (default Vplace setting) for

all coefficient sets. The critical path length and the place-

ment time were averaged over these FIR filters. The result-

ing data points are plotted in figure 5.

The compaction algorithm was also run for all 100 co-

efficient sets. The results were averaged over all FIR fil-

ters. The resulting data point is shown in figure 5. Our com-

paction algorithm on average takes 43 ms and produces FIR

filters with an average critical path length of 119.3 ns.

The figure clearly shows that our compaction algorithm

can produce a placement with equal quality to VPR in a

shorter time. We measure an average speedup of 45.8 for

an average critical path of 119.3 ns.

We can also see that our compaction algorithm produces

FIR filters with a critical path length that is 36.1% longer on

average compared to Vplace.

1A description of this architecture is provided with the VPR tool suite

in 4lut sanitized.arch.
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Note that Vplace cannot produce routable placements

for our FIR filters if inner num is smaller than 0.2.
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Fig. 5. Placement quality versus generation time

5.2. Experiment 2: Intrinsic hardware properties

In our second experiment we compare the intrinsic hardware

properties of the hardware produced by three different de-

sign methods: our dual approach, a full online FPGA tool

chain and a static implementation.

In the dual approach the hardware is generated online in

three steps: constant propagation, compaction, and Vroute.

The full online FPGA tool chain also produces the special-

ized hardware in three steps: Synthesis, Vplace and Vroute.

Because we did not have a synthesis tool available that fits in

the VPR tool chain we replaced it with the constant propaga-

tor. No online hardware generation is done by the static im-

plementation. To achieve the same functionality, the static

hardware implements a generic FIR filter.

Table 1 shows the average area and critical path length

for these three design methods. We see that on average the

static implementation uses 81.4% more logic blocks than

the two dynamic implementations. On average the hardware

produced by the dual approach is 5.3% faster than the static

implementation and 36.1% slower than the hardware pro-

duced by the online VPR tool chain.

Table 1. Properties of the generated hardware

Dual Approach VPR Static

Area (logic blocks) 1491 1491 2704

Critical path (ns) 119.3 87.6 126.0

5.3. Experiment 3: Hardware generation time

In the third experiment we compare the generation times of

the dynamic design methods described in section 5.2

Table 2 gives the average total hardware generation time

and its decomposition. We see that the dual approach is on

average 12 times faster than the full VPR tool chain and that

the bulk of the generation time of this approach is routing

time. Incremental routing could reduce this routing time and

make our method even faster.

Table 2. Duration of the hardware generation process

Dual Approach VPR

Constant propagation (ms) 128 —

Compact / Place (ms) 43 47557

Route (ms) 3889 2275

Total generation time (ms) 3932 49832

Note that no measurements are filled out for the synthe-

sis time because we did not have a synthesis tool available

that fits in the VPR tool chain. Adding the synthesis time

will increase the total time needed for the online VPR ap-

proach, thus enhancing the performance advantage of our

dual approach.

5.4. Experiment 4: Functional Density

Finally we compare the functional density of the three de-

sign methods described in section 5.2. We calculated the

functional density as shown in section 2 for several values

of n and averaged the resulting functional densities over all

100 FIR filters. The result is shown in figure 6. In our FIR

filter example n denotes the number of input samples that

are filtered in between coefficient changes.

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400 1600 1800 2000

hardware reuse (n) [millions]

fu
n

ct
io

n
al

 d
en

si
ty

 [
kH

z/
lo

g
ic

 b
lo

ck
]

VPR

dual approach

static

Fig. 6. Functional density versus hardware reuse

For (n > 40 million), our dual approach outperforms

the static approach because of the improved area and timing

with a relatively low overhead. The VPR flow has an even
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better performance — in area and timing — but with a much

larger overhead. Therefore only for very large reuse values

(n > 1.5 billion) its functional density is higher than the one

for our approach.

The range where our dual approach is beneficial can be

split up into two subranges. In the range (40 million <
n < 360 million) dynamic hardware generation is not ben-

eficial without our new approach. In this range our special-

ization technique enables dynamic hardware generation for

a new range of applications. In the second range (360 mil-

lion < n < 1.5 billion) the functional density for online

hardware generation is improved by our method.

6. RELATED WORK

The exploitation of the reconfigurability of FPGAs to im-

prove performance has been studied intensively in the past

decade.

Run-time reconfiguration of the FPGA by switching be-

tween several statically generated bitstreams has lead to in-

teresting results in the field of neural networks, template

matching, DNA sequencing and many others [1, 3]. Be-

cause the hardware is generated offline, in contrast to our

approach, only the reconfiguration incurs an overhead. Of

course, offline generation provides less optimization oppor-

tunities.

Other related work was done in the field of hardware

generation at run-time. For applications with a quasi-static

behavior a full hardware generation with a conventional tool

flow was successfully used to improve overall performance.

Examples are key-specific DES [4], the subgraph isomor-

phism problem [5], boolean satisfiability [6] and many oth-

ers. This approach cannot be extended for applications with

a more dynamic behavior — the applications focused on

in our work — because the conventional hardware gener-

ation process is far too slow. In the WARP processor [7]

frequently used code is dynamically moved from processor

to FPGA. The hardware generation is done by lean versions

of the conventional FPGA tool chain.

Several authors proposed run-time hardware specializa-

tion on the netlist level based on partial evaluation [4, 8].

McKay et al [9] also reuse placement and routing informa-

tion but do not compact the sparse placement obtained after

constant propagation.

7. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a dual approach for run-time hard-

ware generation. Our approach combines the generation of

generic hardware at compile-time with run-time specializa-

tion. This allows us to use fast tools at run-time while main-

taining the hardware quality. Hence the hardware generation

overhead can be reduced extensively. We described two of

those tools: the constant propagator and the compactor. The

incremental router in our approach is not yet implemented.

We validated our approach on FIR filters with changing

coefficients. A static generic implementation is compared

to run-time hardware generation, both with a full tool chain

at run-time (VPR) and our faster dual approach. We have

shown that run-time hardware generation can effectively im-

prove functional density if the generated hardware is suffi-

ciently reused. By reducing the hardware generation over-

head our dual approach makes run-time hardware generation

profitable for a new range of applications.

Although the tools we have implemented are sufficient

for proving the concept of our dual approach many improve-

ments can be made. The next step in our research is there-

fore the implementation of an incremental router. This could

substantially improve functional density because the bulk of

the run-time generation time is due to routing. We also plan

an in depth study of constant propagators and compaction

algorithms.
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