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Abstract. This work focuses on a ternary diffusion model, with unknown nonlinear
interdiffusion coefficients. Multicomponent diffusion processes are important in metallurgy, eg
for the production of high Si-steel by diffusion annealing. A least-squares approach is applied,
using the adjoint equation to drive the optimization process. To speed up computations further,
freeform determination of the unknown coefficients Dij(u, v) is used in 2 dimensions, combined
with a mapping strategy to space coordinates. This results in a reduced adjoint equation of the
same form as the direct equation.

1. Introduction

Diffusion processes in metallurgy are described by Fick’s laws of diffusion, leading to models
described by partial differential equations (pde), see [1]. In practical applications, the material
properties enter the model via the diffusion coefficient and this coefficient can depend nonlinearly
on the solution of the pde. Due to the complicated micro behaviour (phase changes, hole
formation, migration), it is often more straightforward to apply a macro-diffusion coefficient
hiding the underlying processes which are experimentally hard to determine.

In [2] a model and numerical discretisation suitable to the solution of the diffusion process
is proposed, as well as an experimental technique usable in the determination of the unknown
diffusion coefficient by an inverse method. The solution of the diffusion problem can be obtained
by different techniques (e.g. finite differences [3]), however the experiment is fixed: known
concentration distribution over the entire sample at discrete time steps.

The determination of unknown coefficients from such experiments is in general an ill-posed

problem. Apart from the question of existence and uniqueness of the determined variables,
the lack of stability implies that small measurement errors may lead to large deviation of the
determined diffusion from its true value. However, the determination of the unknowns by inverse
modeling in parabolic pde is common practice, see eg [4, 5] and references therein. The ill-
posedness is generally handled by introducing a generalized solution defined by the minimum of
an appropriate error functional, as well as the application of regularization. Stabilization can
furthermore be achieved by doing a discretization of the coefficient space, instead of considering
the infinite dimensional problem.

Here we will apply the adjoint or costate method to determine the gradient of the penalty
functional, see eg. [6]. The adjoint method has the disadvantage that the resulting adjoint
equation can be of a different form than the original equation, hence requiring a different solution
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method. We consider a nonlinear diffusion problem, of which the common adjoint equation is
a variable coefficient linear convection-diffusion problem. Furthermore, in the adjoint equation
derivatives of the unknown coefficient function can appear, making a linear interpolation scheme
for the determination of the coefficient function not ideal (ie. a discontinuous derivate can
increase the computation time drastically).

To avoid these complications, we apply a mapping strategy, which correlates the changes of
the unknown parameters to the change of the diffusion coefficient in specific space-time points.
This yields the possibility of using a reduced adjoint equation consisting solely of a variable
coefficient diffusion problem, without the appearance of derivatives of the unknown diffusion
coefficient.

The use of a freeform or unbiased determination of a coefficient function has been proposed
in eg. [7] for a 1D-diffusion problem arising in soil sciences. The weak smoothness of a piecewise
linear parametrization there leads to the use of a piecewise cubic Hermite interpolation, which
is not readily extended to 2D. The problem of the amount of degrees of freedom and the optimal
position of the interpolation points is also not considered in our work.

Application of the reduced adjoint equation has some correspondance to the technique
of linearization of the original problem, as done in [4]. However, by only considering the
linearization in the adjoint problem, we avoid the complications in determining the unknown
nonlinear diffusion coefficient from the linearized diffusion coefficient. This means of course
that a nonlinear forward problem must be solved, but this is not necessarly problematic. Note
that having discrete time measurements that are far apart, makes neither techniques relying on
knowledge of the change over time applicable, eg. [5], nor equation error methods as in [8].

In Section 2 we give our setting: diffusion of a multicomponent coating in an iron steel bar.
We also describe the experiments that are possible in order to determine the unknown diffusion
coefficient, and briefly sketch the numerical discretization used to solve the forward problem. In
the next section we give the set-up for the inverse problem. In Section 4 we present the adjoint
system and our mapping strategy, and we end this article in section 5 with a numerical example.

2. Multicomponent diffusion example

When considering heat induced diffusion of a surface coating into a steel substrate, we only
need to consider a one dimensional model. When the coating consists of several components,
a multicomponent diffusion model is required. This leads for two components to the nonlinear

diffusion equation for x ∈ Ξ ≡ (0,W ) and t ∈ I ≡ (0, T ):

∂tu(x, t) − ∂x (D11(u, v)∂xu(x, t) +D12(u, v)∂xv(x, t)) = 0 (1)

∂tv(x, t) − ∂x (D21(u, v)∂xu(x, t) +D22(u, v)∂xv(x, t)) = 0

u(x, 0) = u0(x), v(x, 0) = v0(x) (2)

∂xu(0, t) = 0 = ∂xu(W, t), ∂xv(0, t) = 0 = ∂xv(W, t), (3)

where W is the width of the sample and T is the end time of the experiment. u(x, t), v(x, t) are
the two components diffusing into our substrate, and u0, v0 are smooth initial concentrations.
The boundary condition (3) indicates no-flow boundaries.

Measurements of the practical sample are done as follows, [9]. The sample is cooled, effectively
stopping the diffusion process. It is cut, so that the internal composition can be measured in a
Scanning Electron Microscope (sem) equipped with eds (Energy Dispersive Spectroscopy). This
gives the concentration expressed in atomic percentage, which can be converted to a standard
concentration (mol/mm3).

As the measurement destroys the sample, one starts with a batch of identical samples (same
initial condition), and takes measurements at specific time steps. This translates in additional
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conditions,
u(x, tm) = uk(x), v(x, tm) = vm(x), m = 1, 2, . . . ,M. (4)

Many solution methods have been proposed for problem (1)-(3). We follow a method of lines

approach. The space discretization is done by finite volumes, in which the interval is split in
N cells, and the value of the concentration in the midpoint of the cell follows from the inflow
and outflow balance, ie. the flux Dij(u)∂xu and Dij(v)∂xv on the edges. We obtain an ode

system of 2N equations, which is then solved by a stiff ode solver (we have used the Netlib
lsoda implementation, [10]).

3. Least squares approach and parametrization

The experiments can in general not be obtained continuously in space. So assume the data is
given as a finite dimensional vector m ∈ R

n. Let f be the vector of coefficient functions, which
is to be determined. Denote by m(f) the corresponding observation computed by solving the
direct problem for given f , and by m∗ the experimental observations, possibly disturbed by
measurement errors.

The inverse problem reads: find a coefficient function f , which solves

m(f) = m∗. (5)

The solution does not exist in general, so we define a generalized solution by a least squares
approach: find f∗ which minimizes

J(f) =
1

2
‖m(f) − m∗‖2

2. (6)

Here, ‖ · ‖ denotes the Euclidian norm.
The coefficient functions are given as multi-valued functions f(u, v) . It is sufficient to describe

them on over the effective solution path in the solution space. For simplicity though, we will
determine them over a rectangle Ω = [umin, umax] × [vmin, vmax], keeping in mind that only in
the limited subdomain which the solution of the direct problem attains, the coefficient functions
can be identified, Ωsol ⊂ Ω.

A coefficient function f , which is continuous and piecewise analytic on Ω, is replaced
by a parametrization f(u, v) = fp(u), which is defined by a finite number of parameters
p. For this we define a rectangular mesh over Ω with rs nodes, and consider the finite
element space χ with piecewise bilinear polynomials as basis functions. Given a partition
umin = u1 < u2 < · · · < ur−1 < ur = umax and equally for v, with vmax = vs, an element
is given by Ωe = [ui, ui+1] × [vi, vi+1] with width a = ui+1 − ui and height b = vi+1 − vi. The
basis functions corresponding to a node of the mesh in this element are then given by

φi+1,j+1 =
1

4
(1 + ξ)(1 + η), φi,j+1 =

1

4
(1 − ξ)(1 + η), (7)

φi,j =
1

4
(1 − ξ)(1 − η), φi+1,j =

1

4
(1 + ξ)(1 + η), (8)

ξ = 2
u− ui

a
, η = 2

v − vi

b
, (u, v) ∈ Ωe. (9)

Denoting by ψi,j the global node function constructed by collecting the basisfunctions
corresponding to node i, j in all adjacent elements, our parametrisation of f is given by

f(u, v) =
∑

i,j

pi,jψi,j(u, v), (u, v) ∈ Ω, (10)
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or considering only one element

f(u, v) = pi,jφi,j(u, v) + pi+1,jφi+1,j(u, v) + pi,j+1φi,j+1(u, v) + pi+1,j+1φi+1,j+1(u, v), (11)

(u, v) ∈ Ωe.
Additionaly, in the case of positive coefficients, we restrict the parameters to

pi,j > 0. (12)

The interpolation method based on bilinear basis functions is only continuous, and not
continuously differentiable. This restricts how it can be used in the inverse algorithm. The
computational time of constructing and using the interpolation on the other hand is considerably
lower than the alternative of using more elaborate 2D-interpolations. The use of linear
interpolation is important for another reason. It guarantees that the change of one parameter
pi,j has a minimal influence on the coefficient function, i.e. if pi,j changes, then f only changes
in the elements where node i, j is a corner of. Spline based interpolation methods do not have
this property and show a global dependance.

The inverse problem is now reduced to finding the parameter vector in the coefficient space,

p ∈ R
ν·(rs)
+ , where ν is the number of unknown coefficient functions. The problem can be

summarized as: Find p∗ ∈ R
ν·(rs)
+ which minimizes

J(p) =
1

2
‖m(p) −m∗‖2

2. (13)

This functional J is minimized by constructing an adjoint problem to calculate its gradient. As
this depends on the direct problem formulation, we return to the formulation given in Sec. 2.

4. The adjoint problem

Use of an adjoint problem is a standard method to solve inverse problems. For problem (1)-(4)
it is derived by considering the variation in the diffusion coefficients as arising from a variation
in the parameters. This is used to determine the resulting variation of the functional J .

To simplify the setup, consider the L2 least squares function

J(p) =
1

2

∥

∥

∥

∥

∥

∥

√

∑

j

δ(t− tj) (u(p) − u∗)

∥

∥

∥

∥

∥

∥

2

L2(Ξ×I)

+
1

2

∥

∥

∥

∥

∥

∥

√

∑

j=1

δ(t− tj) (v(p) − v∗)

∥

∥

∥

∥

∥

∥

2

L2(Ω×I)

, (14)

where δ is the Dirac measure, and u∗(x, t), v∗(x, t) are suitable interpolations of the measurement
over the entire domain. It is straightforward to determine the variation of (14), and rewrite it
using the sensitivity equation of (1)-(3). The reduced ajoint equation resulting from this is the
end value problem:

∂tψu(x, t) + ∂x (D11,p∂xψu(x, t) +D21,p∂xψv(x, t)) = (u(x, t) − u∗)
∑

j=1,...,M δ(t− tj) (15)

∂tψv(x, t) + ∂x (D12,p∂xψu(x, t) +D22,p∂xψv(x, t)) = (v(x, t) − v∗)
∑

j=1,...,M δ(t− tj) (16)

−∂x (D11,pψu(0, t) +D21,pψv(0, t)) = 0 = −∂x (D11,pψu(W, t) +D21,pψv(W, t)) ,

−∂x (D12,pψu(0, t) +D22,pψv(0, t)) = 0 = −∂x (D12,pψu(W, t) +D22,pψv(W, t)) , (17)

ψu(x, T ) = 0, ψv(x, T ) = 0 .(18)

Remember that for the adjoint equation, u(x, t) and v(x, t) are known input functions resulting
from the solution of the direct problem with a given paremeter p, and hence the diffusion
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coefficients Dij,p can also be viewed as functions over Ξ × I, Dij,p ≡ Dij(x, t), making the
adjoint equation a variable coefficient linear parabolic system with a source term at discrete
time steps.

If ψu, ψv are the solution of the above adjoint sythem, we can write the variation of the cost
functional J as

δJ(p) =

∫

T

∫

Ξ
δD11∂xu∂xψu + δD12∂xv∂xψu + δD21∂xu∂xψv + δD22∂xv∂xψv . (19)

Eq. (19) does not yet allow to determine the gradient ∇pJ as δDij is still unknown. Using
the expression

δDij = ∂uDijδu+ ∂vDijδv + ∇pDij · δp,

is no option as the variations δu, δv are unknown. The terms arising with these variations are
precily the terms we want to avoid. Handling them is only possible by adding the terms resulting
from them to the reduced adjoint equation to obtain the full adjoint equation.

The solution to calculating (19) is by using a mapping strategy which maps δDij to δp.
First let us note that in the right-hand side of (19) we need the variation of the coefficient at
a specific space-time point (xk+ 1

2

, tl), where we indicate with k + 1
2 the midpoint of our space

discretization, as that is where we calculate concentrations with the finite volume method used
in the direct problem. We have that

δD(xk+ 1

2

, tl) = δD(u(xk+ 1

2

, tl), v(xk+ 1

2

, tl),p)

= δpijψij(ukl, vkl) + δpi+1,jψi+1,j(ukl, vkl) + δpi,j+1ψi,j+1(ukl, vkl)

+δpi+1,j+1ψi+1,j+1(ukl, vkl) with (u(xk+ 1

2

, tl), v(xk+ 1

2

, tl)) ∈ Ωe

=
∑

ij

ml
ijkδpij =

(

δpT Ml
)

k
,

which defines the mapping matrix Ml ∈ R
rs×K for every time step tl as a sparse matrix with

four non-zero elements in every column. The supscript T indicates the transpose operation. In
the above, K, is the number of cells in our space grid {xk}

K
k=0 over Ξ.

We have a mapping matrix at every timestep for every coefficient function,
M11,M12,M21,M22,. These matrices allow us to determine δD11, δD12, δD21, δD22, and can
be calculated after the direct problem has been solved for a specific parameter set p =
(p11,p12,p21,p22), where we have indicated that the full parameter consists of the parame-
ter sets of every coefficient function separately.

As noted, the choice of a finite volume solution method means the data is obtained in the
midpoints of the control volumes, so at xk+ 1

2

, and not in the nodes. To approximate the

derivative in space of a function in the midpoints by the values of the function in the midpoints
themselves introduce the notation, L ∈ R

K×K:

L =























−1
∆ 1

2

1
∆ 1

2
−1

∆ 1
2

+∆ 3
2

0 1
∆ 1

2

+∆ 3
2

. . .
. . .

−1
∆

K−

5
2

+∆
K−

3
2

0 1
∆

K−

5
2

+∆
K−

3
2

−1
∆

K−

3
2

1
∆

K−

3
2























, (20)

with ∆k+ 1

2

= 1
2 (∆k + ∆k+1), ∆k = xk+1 − xk.
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We can now numerically determine the value of (19) as

δJ(p) =

K−1
∑

k=0

L−1
∑

l=0

(δD11∂xu∂xψu + δD12∂xv∂xψu + δD21∂xu∂xψv

+δD22∂xv∂xψv)|x=x
k+1

2

,t=tl
∆x∆t, (21)

where the remaining unknowns in (21) can be calculated as follows. We have that ∂xu(xk+ 1

2

) =

(Lu)k, where u is the vector with elements u(xk+ 1

2

), and the same for ψu, ψv and v. If we next

introduce the vector gl
11 with elements gi = (Lu)i(Lψu)i∆i∆t taken at t = tl, and similarly for

the other terms, we obtain for the variation of the functional

δJ(p) =

L−1
∑

l=0

K−1
∑

k=0

[(

δpT
11M

l
11

)

k
gl

11,k +
(

δpT
12M

l
12

)

k
gl

12,k +
(

δpT
21M

l
21

)

k
gl

21,k

+
(

δpT
22M

l
22

)

k
gl

22,k

]

=

L−1
∑

l=0

[

δpT
11M

l
11g

l
11 + δpT

12M
l
12g

l
12 + δpT

21M
l
21g

l
21 + δpT

22M
l
22g

l
22

]

. (22)

It follows that the gradient of the functional can be calculated by

∂pij ,rJ(p) =

L−1
∑

l=0

(Ml
ijg

l
ij)r. (23)

The inverse algorithm is then

(i) Choose a valid starting value p1, i = 1.

(ii) Obtain solution ui(x, t), vi(x, t) of the direct problem (1)-(3) for pi

(iii) Solve adjoint problem (15)-(18) for pi and ui, vi.

(iv) Calculate Ml
11,M

l
12,M

l
21,M

l
22 and gl

11,g
l
12,g

l
21,g

l
22 for all l.

(v) Determine the gradient of the cost functional with (23).

(vi) Determine a new value pi+1 by application of a suitable gradient optimization method (eg.
conjugate gradient method).

(vii) Stop if stopping criterium is satisfied, otherwise: i = i+ 1 and go to (ii).

As the adjoint equation is of the same form of the direct problem (but now a linear variable
coefficient diffusion problem), the same solution method can be used as for the direct problem.
The reaction term on the right hand side must be treated carefully due to the appearance of
a Dirac measure. One has to solve the problem over the interval (tj , tj+1), starting from tj+1

without reaction, from which one obtains the solution ψ̄u(x, tj), ψ̄v(x, tj). Next one has to apply
the reaction as

ψu(x, tj) = ψ̄u(x, tj) + (u(x, tj) − u∗),

ψv(x, tj) = ψ̄v(x, tj) + (v(x, tj) − v∗).

This is then the end condition for the next time slice (tj−1, tj).
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Figure 1. Concentration profiles at t = 0, 300, 1500 and 3000 seconds.

5. Numerical Example

The numerical code developed to implement the inverse method as outlined in this paper is still
in the process of being validated. Some temporary results can however already be given.

We take the following initial condition, x ∈ (0, 500):

u0(x) =







10−5(1 + cos( πx
100 )) + 10−10, x ≤ 100

10−10, 100 < x < 400

10−5(1 + cos(−π(x−500)
100 )) + 10−10, x ≥ 400.

v0(x) =







0.5 10−5(1 + cos( πx
100 )) + 8 10−6, x ≤ 100

8 10−6, 100 < x < 400

0.5 10−5(1 + cos(−π(x−500)
100 )) + 8 10−6, x ≥ 400.

We solve the direct problem for diffusion coefficients given by

D11(u, v) = 8 exp
(

−
(

(105u− 2)2/0.2 + (105v − 1.2)2/0.2
))

+ 0.5, D12(u, v) = −10−7,

D22(u, v) = 10 sin

(

105v − .8

1.65 − .8

π

2

)

sin

(

105u

4

π

2

)

+ 0.5, D21(u, v) = −10−7,

and consider the solution at t = 300, 1500 and 3000 seconds as the experimental values u∗, v∗, see
Fig. 1. This example resembles the experimental setup, albeit with reduced times (expermental
times can be up to 3 hours) to limit the computational time.

For the inverse problem, we consider Ω = [0, 4.1 10−5] × [.7 10−5, 1.9 10−5], which we mesh
with a 15 × 15 rectangular grid. This gives us 225 parameters per diffusion coefficient. We will
only inversely determine D11 and D22, and as starting value for the the inverse algorithm we
take a constant profile, pi = 0.2. The results of the inverse method are given in Fig. 2. Only
the values that have undergone change from the starting value of pi = 0.2 have been plotted.
Those values correspond to the diffusion path of attained concentration values ((u, v) ∈ Ωsol).

As can be expected, the values at largest concentrations are not well determined as they have
little influence on the final diffusion profiles. The closer to the diffusion path, the better the
values have been inversely determined. The concentration profiles obtained with the determined
parameters are almost indistinguishable from the ones given in Fig. 1.

Further tests are needed, especially to determine the optimal number of parameters and to
determine the sensitivity of the method, however these first results already indicate the method
is capable of inversely determining multicomponent diffusion coefficients on the diffusion path.
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Figure 2. Results of the determined diffusion coefficients. Left: D11, Right: D22. Crosses
indicate the exact diffusion coefficient, boxes the determined values.
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