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Abstract—OpenFlow has disruptive potential in designing a
flexible network that fosters innovation, reduces complexity, and
delivers the right economics. The core idea of OpenFlow is
to decouple the control plane functionality from switches, and
to embed it into one or more servers called controllers. One
of the challenges of OpenFlow is to deploy a network where
control and data traffic are transmitted on the same channel.
Implementing such a network is complex, since switches have
to search and establish a path to the controller (bootstrapping)
through the other switches in the network. We implemented
this automatic bootstrapping of switches by using an algorithm
where the controller establishes a path through the neighbor
switches that are connected to it by the OpenFlow protocol.
In the demonstration, we show this by using a GUI (Graphical
User Interface) placed at the controller. Additionally, in the GUI,
the OpenFlow switch topology gathered during bootstrapping is
shown. During the demonstration, we insert a failure condition
in one of the links in the topology and show failure recovery by
a change in the GUL

I. INTRODUCTION

In a conventional router or switch, fast packet forwarding
(data plane) and high level routing decisions (control plane)
occur on the same device. OpenFlow [1] separates these
two functions. The data plane portion resides on the same
device, while the control plane portion is moved to one or
more servers called controllers. Hence, direct programming of
routers/switches is realised from the controllers. This makes
routers/switches inexpensive and imparts network flexibility,
as the control plane functionality is moved to the controllers,
while only forwarding is required to be done in hardware.

OpenFlow is based on the fact that most modern
routers/switches contain a proprietary FIB (Forwarding Infor-
mation Base) which is implemented in the forwarding hard-
ware using TCAMs (Ternary Content Addressable Memory).
OpenFlow provides the concept of a FlowTable that is an
abstraction of the FIB. Additionally, it provides a protocol to
program the FIB via adding/deleting/modifying entries in the
FlowTable.

At present, OpenFlow has gained significant interest from
many research communities, and many of the research chal-
lenges behind it have been investigated in a number of
projects all around the globe. We investigate two challenges
of OpenFlow: the first one is to deploy an OpenFlow network
where control and data traffic are transmitted on the same
channel (in-band network), and the second one is to provide
reliability in such an in-band network. Deploying the in-
band network is complex, since switches have to search and
establish a path to the controller (bootstrapping) through the

other switches in the network. Therefore, we implemented a
method that facilitates automatic bootstrapping of switches.
In automatic bootstrapping, the controller establishes its own
control network through the switches that are connected to it
by the OpenFlow protocol.

For the reliability challenge in an in-band OpenFlow
network, we implemented two well-known mechanisms of
failure recovery: restoration and protection [2]. In the case
of restoration, alternative paths are not established until a
failure occurs. In the case of protection, alternative paths are
established before the failure occurs in the network.

In the demonstration, we show automatic bootstrapping and
failure recovery by using a GUI (Graphical User Interface)
placed at the controller. A switch is shown in the GUI
once it completes bootstrapping. Additionally, in the GUI, the
OpenFlow switch topology gathered during bootstrapping is
shown. During the demonstration, we insert a failure condition
in one of the links in the topology and show failure recovery
by using restoration and protection mechanisms.

II. AUTOMATIC BOOTSTRAPPING AND EXPERIMENTS ON
A HIGH SPEED TESTBED

In this section, we introduce our bootstrapping approach,
and present the conclusion of experiments performed on our
testbed.

A. Automatic bootstrapping of OpenFlow switches

Bootstrapping of OpenFlow switches requires at least two
steps:

1)  Assignment of connection identifiers for connecting
a switch to the controller. The identifiers required are
at least the address of the switch and the address of
the controller.

2) Instantiation of an OpenFlow session with the con-
troller.

The first step can be accomplished by using a protocol
such as DHCP (Dynamic Host Configuration Protocol) or OF-
config (OpenFlow management and configuration protocol).
These protocols can assign a unique address to each switch,
and can allow it to know the address of the controller. We used
DHCEP for this purpose, and assumed that either the DHCP
server is located in the controller node or it is the neighbor of
the OpenFlow switch that is directly connected (physically) to
the controller.

For bootstrapping, each switch runs a DHCP client and
therefore keep on transmitting DHCP messages to its neighbors
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until it receives a reply from the DHCP server. If a neighbor
is the DHCP server, it replies to the switches. In the case
the neighbor is a switch connected to the controller by the
OpenFlow protocol, the controller allows the switch to forward
messages to the DHCP server. In the case the neighbor switch
is not connected to the controller, the messages are dropped.

Once a switch has an address and it knows the address
of the controller (i.e. after the first step), it establishes an
OpenFlow session with the controller. The switch is able to
establish the session in at least one of the following cases:
(1) the controller is directly connected (physically) to the
switch, (2) a neighbor switch has an OpenFlow session with the
controller. Bootstrapping of an OpenFlow network completes
when each switch in the network has an OpenFlow session
with the controller.

During bootstrapping, the controller also builds the topol-
ogy in its database by parsing the source MAC address of
the DHCP messages, and by flooding a special kind of probe
message from the recently connected switches and then by
receiving the same probe messages from the neighbor switches.
The controller uses this topology to find a path to any switch
and to the DHCP server during bootstrapping.

B. Experiments on a high speed testbed

We performed bootstrapping and failure recovery exper-
iments on our virtual-wall testbed which is a generic test
environment for advanced network, distributive software and
service evaluation. We measured suitability of the imple-
mented bootstrapping mechanism by performing experiments
on different types of topologies: linear, ring, star and mesh
topologies. The experimental results showed that OpenFlow
switches can be bootstrapped in a network where control
and data traffic are transmitted on the same channel (in-band
network). With our bootstrapping approach, we found a linear
relationship between the bootstrapping time of a switch and
the shortest distance (number of hops) between the switch and
the controller.

For failure recovery, we implemented restoration and pro-
tection to achieve carrier-grade quality in in-band OpenFlow
networks [2]. To achieve carrier-grade quality, a network
should be able to recover from a failure within 50 ms.
With restoration experiments, we conclude that Openflow can
restore traffic, but its dependency on the controller means
that it will be hard to achieve 50 ms restoration in a large-
scale network. With protection experiments, we conclude that
protection is a way in OpenFlow to achieve carrier-grade
recovery requirements, even in a large-scale network serving
many flows [2], [3].

III. DEMONSTRATION

We demonstrate our proposed bootstrapping and failure re-
covery mechanisms for an in-band OpenFlow network. For the
demonstration, we create an OpenFlow network by generating
a German backbone topology on two laptops (Fig. 1). The
laptops in our demonstration are connected by two Ethernet
cables, shown in Fig. 1. We generate half of the topology on
the first laptop and the other half on the second laptop. The
topology is generated by using Linux processes in different
network namespaces. In the demonstration, the DHCP server
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Fig. 1. The demonstration network topology, including the on-site portable
testbed and the GUI for the demonstration

is located on the controller node, and one controller connected
to the Nurnberg switch controls all the forwarding switches
including the switches on the other laptop. A GUI is shown
in Fig. 1. When a switch completes bootstrapping, it is shown
in the GUI. The GUI in the demonstration also shows the
OpenFlow topology gathered during bootstrapping.

In the demonstration, we show both restoration and protec-
tion in the emulated German backbone topology by performing
two different experiments on the same laptops. During the
demonstration, we pull out one of the cables between the
laptops and show that the topology changes in the GUIL.

With our protection mechanism, failure recovery happens
before the controller detects the failure. This is because
switches in our protection mechanism use the concept of
a GroupTable [4] to redirect the traffic from the working
path to the protection path without contacting the controller.
Therefore, in the case of protection, the GUI does not show
disappearance of the switches after the failure condition. How-
ever, in the case of restoration, the controller starts recovery
after detecting a failure and recovery itself takes some time
after the failure detection. Therefore, in the case of restoration,
the GUI shows disappearance of switches for a very small
interval.
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