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1 Department of Computer Science and Artificial Intelligence, Universidad de
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Abstract. Information in databases can be imperfect and this imperfec-
tion has several forms and causes. In some cases, a single value should be
stored, but it is (partially) unknown. The uncertainty about which value
to store leads to the aforementioned imperfection. In temporal databases,
uncertainty can arise, concerning which temporal notion needs to be
stored. Because in temporal databases, temporal notions influence the
consistency with which the database models the reality, this uncertainty
has a direct impact on the consistency of the model. To represent this
temporal uncertainty, previous works have adapted fuzzy sets with con-
junctive interpretation, an approach that might prove misleading. This
work presents a model that represents the uncertainty using possibility
and necessity measures, which are fuzzy sets with disjunctive interpre-
tations.

Keywords: temporal databases, fuzzy databases, information systems, incom-
pleteness

1 Introduction

Dealing with time in information systems is usually a difficult task [4]. First of all,
the concept of time itself is very complex. More towards information systems,
several proposals have been concerned with obtaining theoretical models that
allow the representation of time in information systems [6]. Notably, temporal
relations between time intervals and to a lesser extent time points, were studied
by Allen [1].

One issue in these attempts at temporal modelling is of course the inherent
complexities of the concept of time. Another is the possible inherent imper-
fections in the description of notions of time. The description of the temporal
notion in a sentence like ‘The Alhambra, which I can see from my room, is a
few hundred years old.’ contains imperfection caused by the vagueness of the
used expression. The description of the temporal notion in a sentence like ‘The
Alhambra was finished somewhere between 1301 A.D. and 1400 A.D.’ contains



imperfection caused by the imprecision in the used expression about the exact
finishing day of the building. Though precise boundaries are given, the exact
day on which the building was finished is unknown. An example of uncertainty
is given by the following sentence: ‘I believe that the Alhambra was finished in
1300 A.D.’

The transition between temporal granularities [17] is also considered as a
source of imprecision in temporal modelling and some proposals consider gran-
ularity as the base of the temporal model [6].

To allow information systems to cope with these imperfections, there are
some approaches that work with probability [7], [21] whereas some other ap-
proaches adopt fuzzy sets for the representation of temporal information [2],[8].
The temporal relations studied by Allen were recently fuzzified by several au-
thors [20],[23].

Next to the issues in temporal modelling, the inclusion of time in a relational
database system leads to several more practical problems, as the modelling of
the temporal aspects of a time-variant object has an impact on the database
consistency. Different models have been proposed [15],[24],[19] that consider time
as a crisp notion. Some of these models uses TSQL [16] (a temporal extension to
SQL) as query language. In some specific works, authors consider the necessity
of allowing imprecision in temporal models [6],[14].

Most of these models use the concepts of fuzzy numbers and fuzzy intervals to
represent imprecise temporal notions and considerable attention has thus been
given to the problem of transforming two fuzzy numbers which represent the
boundaries of an imprecise time interval into one fuzzy interval representing this
interval. There are several proposals for this transformation, but some, like those
presented in [14] are misleading.

In this work we will propose a possibilistic valid-time model for relational
databases, based on the framework presented in [22], which deals with the infer-
ence of uncertainty about the evaluation of sets from the uncertainty about the
exact values used in evaluation.

The remainder of the paper is organized as follows. In section 2, some pre-
liminaries and concepts are presented. Section 3 presents the possibilistic model
for valid-time databases. In this section, both representation and querying are
introduced. Finally, section 4 presents the main conclusions and some lines for
future work in this research.

2 Preliminaries

In this section, some basic concepts are introduced concerning possibilistic vari-
ables and fuzzy numbers and intervals, after which the framework of set eval-
uation by ill-known constraints [22] is explained. The section concludes with a
brief introduction to temporal databases.



2.1 Possibilistic Variables

Possibilistic variables rely on possibility theory [10]. A possibilistic variable is
defined as follows [22].

Definition 1. A possibilistic variable X over a universe U is defined as a vari-
able taking exactly one value in U , but for which this value is (partially) un-
known. Its possibility distribution πX on U models the available knowledge about
the value that X takes: for each u ∈ U , πX(u) represents the possibility that X
takes the value u. In this work, this possibility is interpreted as a measure of how
plausible it is that X takes the value u, given (partial) knowledge about the value
X takes.

The exact value a possibilistic variable takes, which is (partially) unknown,
is called an ill-known value in this work [10].

When a possibilistic variable is defined on the powerset P(R) of some universe
R, the unique value the variable takes will be a crisp set and its possibility
distribution on the powerset P(R) will describe the possibility of each crisp
subset of R to be the value the variable takes. This exact value (a crisp set) the
variable takes, is now called an ill-known set [10].

A specific application of possibilistic variables is obtained when the universe
under consideration is the set of Boolean values B = {T, F}. Indeed, any Boolean
proposition p takes just one value in B. If the knowledge about which value this
proposition p will take is given by a possibility distribution πp, the proposition
can be seen as a possibilistic variable. As the interest lies with the case where
the proposition holds, the possibility and necessity that p = T (the proposition
holds) demand most attention. This possibility and necessity is noted here as:

Possibility that p = T (p holds): Pos(p) = πp(T ) (1)

Necessity that p = T (p holds): Nec(p) = 1− πp(F ) (2)

This work will deal with ill-known intervals. These are ill-known sets, defined
and represented via a start and end point, which will be ill-known values. The
elements of the set are the values between the start and end point. A closed
ill-known interval with start point defined by possibilistic variable X and end
point by possibilistic variable Y is noted here [X,Y ]. The correspondences and
transitions between the representations of ill-known sets, between the represen-
tations of ill-known intervals and between the representations of an ill-known set
and an ill-known interval are part of the authors current research.

2.2 Fuzzy Numbers and Fuzzy Intervals

Among others, Dubois and Prade [9] use fuzzy sets [25] to define a fuzzy interval :

Definition 2. A fuzzy interval is a fuzzy set M , defined by a membership func-
tion µM , on the set of real numbers R such that:

µM : R→ [0, 1]

∀(u, v) ∈ R2 : ∀w ∈ [u, v] : µM (w) ≥ min(µM (u), µM (v)) (3)

∃m ∈ R : µM (m) = 1 (4)



If this modal value m is unique, then M is referred to as a fuzzy number. In
other words, if the core of a fuzzy interval is a singleton, it is referred to as a
fuzzy number.

The most convenient form of the membership function of a fuzzy number is
a triangular form. It can be shown that such a membership function µM for a
fuzzy number M is convex and normalized. Three real values, denoted by a, b
and D, suffice to represent a triangular membership function of a fuzzy number
and in this work, a fuzzy number defined as such will be noted as [D, a, b]. Here:

– D denotes the single value in the core of M
– D − a is then inf{u ∈ R : µM (u) > 0}
– D + b is then sup{u ∈ R : µM (u) > 0}

2.3 Interval Evaluation by Ill-known Constraints

The problem of interval evaluation is more generally explained in [22]: the need
exists to know if all points in a crisp interval I reside between the boundaries
of an ill-known interval [X,Y ]. In [22], the notion of an ill-known constraint is
introduced:

Definition 3. Given a universe U , an ill-known constraint C on a set A ⊆ U
is specified by means of a binary relation R ⊆ U2 and a fixed, ill-known value
denoted by its possibilistic variable V over U , i.e.:

C , (R, V ) (5)

Set A now satisfies the constraint if and only if:

∀a ∈ A : (a, V ) ∈ R (6)

An example of an ill-known constraint is Cex , (<,X). Some set A then
satisfies Cex if ∀a ∈ A : a < X, given possibilistic variable X.

The satisfaction of a constraint C , (R, V ) by a set A is basically still a
Boolean matter, but due to the uncertainty about the ill-known value V , it can
be uncertain whether C is satisfied by A or not [22]. In fact, this satisfaction
now behaves as a proposition. Based on the possibility distribution πV of V ,
the possibility and necessity that A satisfies C can be found. This proposition
can thus be seen as a possibilistic variable on B. The required possibility and
necessity are:

Pos(A satisfies C) = min
a∈A

(
sup

(a,w)∈R
πV (w)

)
(7)

Nec(A satisfies C) = min
a∈A

(
inf

(a,w)/∈R
1− πV (w)

)
(8)

Now, e.g., to check if crisp interval I = [j, k] is included in [X,Y ], 2 ill-known
constraints are constructed:



C1 , (≥, X) (9)

C2 , (≤, Y ) (10)

To calculate the possibility and necessity concerning a conjunction of con-
straints, the min operator can be used. The possibility and necessity of I being
included in [X,Y ] are now:

Pos(I satisfies C1 and C2) = min
a∈I

(
sup
a≥w

πX(w), sup
a≤v

πY (v)

)
(11)

Nec(I satisfies C1 and C2) = min
a∈I

(
inf
a<w

1− πX(w), inf
a>v

1− πY (v)

)
. (12)

2.4 Temporal Databases

A temporal database is a database that manages some aspects of time in its
schema [12]. The reality a temporal database tries to model, contains some tem-
poral notions which have to be handled specifically in order to maintain a consis-
tent modelling behavior. A chronon is the shortest duration of time supported by
the database. Time can be represented either as points [11] or intervals [14],[3]
that may be subject to imperfection.

The temporal notions in temporal databases can be classified into four types
based on their interpretation and modelling purpose. User-defined time has no
specific impact on the database consistency, but the other types do:

– transaction time [15]: time when the fact is stored in the database.
– valid time [24]: time when the fact is true in the modelled reality.
– decision time [19]: time when an event was decided to happen.

Database models can also be classified into bi-temporal (both valid and
transaction-time) or tri-temporal (bi-temporal and decision time) models.

3 Proposal

In this section, a valid-time model, able to handle imperfect valid-time notions,
will be presented. First, the representation and storage of valid-time will be
presented. Next, an approach to query the model is proposed. Finally, an example
is given.

3.1 Valid-time Intervals

Representation A database models real objects by storing the values of an
object for each attribute describing a property of the object. Thus, a valid-time
database following the presented proposal will model the time during which an
object in a certain state is valid, by associating a Possibilistic Valid-time Period
(PVP) to the record describing this object state:



Definition 4. A Possibilistic Valid-time Period is an ill-known interval in time,
which models a time period during which an object in a certain state is valid.

Because a PVP is an ill-known interval, it allows modelling the uncertainty
about the start and/or end point of a time interval (and thus about the time
interval itself) if such uncertainty exists. The interpretation is disjunctive: the
PVP represents exactly one valid-time interval, but precisely which interval is
represented, is (partially) unknown. In the presented model, only PVPs are con-
sidered of which the possibility distributions of the possibilistic variables defining
the start and end point of the ill-known interval have exactly the same charac-
teristics as the membership functions of fuzzy numbers. A perfectly known start
or end point can then be modelled by such an ill-known value defined by a
possibilistic variable P for which ∃!x : µP (x) > 0.

As mentioned in [22], this approach differs from the one where a valid-time
period is represented by one fuzzy set. Such a fuzzy set is seen as a possibility
distribution on R and thus defines just one ill-known value. However, in the
presented approach, a time period is modelled using an ill-known set, which is
defined by a possibility distribution on P(R).

Storage To store a PVP, the possibility distributions defining the ill-known
start and end point are stored. To store such a possibility distribution, the rep-
resentation as used in the fuzzy interface for relational databases FIRST [18],
[13] is used. Using this representation, it is possible to represent not only fuzzy
numbers, but also (fuzzy) constants. To store an ill-known value, four values
(FT, F1, F2 and F3) are stored. They are explained in Table 1. Note that while
NULL denotes the fuzzy constant NULL, N denotes a null value in the database
[18].

Table 1. Relational representation for an ill-known time point. FT denotes Fuzzy
Type. Field FT indicates that the values stored in F1, F2 and F3 denote either NULL,
UNKNOWN, UNDEFINED or a triangular possibility distribution M = [D, a, b].
Fields F1, F2 and F3 contain the actual values.

Value FT F1 F2 F3 µ(x) Description

UNKNOWN 0 N N N 1 Any value is equally possible
UNDEFINED 1 N N N 0 The value is not defined

NULL 2 N N N not defined Nothing is known about the value
M 3 D a b µM Ill-known value

3.2 Querying Ill-known Valid-time Intervals

This subsection discusses a tool for querying. The focus will evidently lie on
the querying of valid-time periods. First, the query structure will be defined,
followed by the evaluation and ranking methods.



Query Structure It is important to notice that every valid-time notion in the
database is represented using a PVP. In the presented framework, a query has
two separate parts:

Definition 5. A query Q̃ is specified by:

Q̃ =
(
Qtime, Q

)
(13)

Here, Q denotes the collection of (possibly fuzzy) non-temporal preferences of
the user and Qtime denotes the temporal constraint given by the user:

Definition 6. Qtime is defined by:

Qtime = (I,AR) (14)

Here, I is a crisp time interval and AR is one of Allen’s relations [1]. The inter-
pretation is that for a record with valid-time period given by a PVP J , the user
requires that I AR J holds.

Query Evaluation In fuzzy querying of regular (relational) databases, the
modelling of query satisfaction is a matter of degree. Usually, the evaluation of
the query requirements for a record results in a satisfaction degree s, where s lies
in [0, 1], where 0 denotes total dissatisfaction and 1 denotes complete satisfaction.
In crisp querying, the evaluation of query requirements for a record results in
the accepting or rejecting of the record as a part of the result set. This can
be modelled using satisfaction degrees, by assigning rejection a degree of 0 and
acceptance a degree of 1 and not using any other value in [0, 1].

The evaluation of a query Q̃ =
(
Qtime, Q

)
, where Qtime = (I, AR) is now

handled as follows. For each record r in the database, with the valid-time notion
of r being specified by a PVP J , two things happen independently:

– The preferences expressed in Q are evaluated, resulting in a satisfaction
degree denoted here eQ(r). The presented model accepts any sound way of
calculating this evaluation, as long as eQ(r) ∈ [0, 1].

– Depending on AR, a specific set of ill-known constraints is considered, which
can be found in Table 2. The possibility and necessity that r fulfills all these
constraints are calculated using formulas based on equations (7) respectively
(8) and aggregated using the min operator.

Ranking and Aggregation In order to present the results to the user, a
crude ranking method is used: for every record r, the sum of PosQtime(r) and
NecQtime(r) gives an evaluation score e′Qtime(r) in interval [0, 2]. Because neces-
sity cannot exceed 0 unless possibility is 1, this gives a natural ranking score.
Some authors [5] mentioned before that the possibility and necessity measures
result in a total order in the set of events. This e′Qtime(r) is then rescaled to the

unit interval, resulting in eQtime(r). The final ranking efinal(r) is now given by
a convex combination:



Table 2. Allen’s relations used in the framework. Here, I = [a, b] denotes the PVP in
the query, J = [X,Y ] denotes the PVP of the record, with πX and πY the possibility
distributions of X and Y respectively. For each of Allen’s relations AR, the correspond-
ing value in column ‘Constraints’ gives the constraints corresponding to AR. The last
column contains the corresponding formula to calculate the possibility that I satisfies
all constraints given in column ‘Constraints’, which are based on equation (7).

Allen Relation
Constraints Pos( I satisfies all constraints

Ci, i = 1, 2, . . .)

I before J C1 , (<,X) supa>w πx(w)

I equal J
C1 , (≥, X),C2 , ( 6=, X) min(supa≤w πx(w), πx(w),

C3 , (≤, Y ),C4 , ( 6=, Y ) supb≥w πY (w), πY (w))

I meets J C1 , (≤, X) ,C2 , ( 6=, X) min(supa≥w πX(w), πX(w))

I overlaps J
C1 , (<, Y ),C2 , (≤, X) min(supb>w πY (w),

C3 , (≥, X) supa≥w πX(w), supa≤w πX(w))

I during J
C1 , (>,X), C2 , (≤, Y ) max(min(supa<w πX(w), supb≥w πY (w)),

C3 , (≥, X) ,C4 , (<, Y ) min(supa≤w πX(w), supb>w πY (w)

I starts J C1 , (≥, X),C2 , ( 6=, X) min(supa≤w πX(w), πX(w))

I finishes J C1 , (≤, Y ), C2 , ( 6=, Y ) min(supb≥w πY (w), πY (w))

efinal(r) = ω ∗ eQ(r) + (1− ω) ∗ eQtime(r), ω ∈ [0, 1] (15)

The use of this convex combination allows a record to make up for a low score
for the temporal constraint by a good score for the non-temporal constraint (or
vice versa). Changing ω also allows granting the temporal constraint more weight
with respect to the non-temporal constraint (or vice versa).

Example 1. Consider the example relation given in Table 3 describing car mod-
els, containing general attributes (model name, manufacturer, car segment) and
one temporal attribute (stored as explained in subsection 3.1) describing the ap-
proximate period of time during which the car model was sold. The value for D
is stored in yyyy format and a and b are represented by an integer. The ID field
identifies a car model while the field Instance ID (IID) identifies the instance for
a car model, thus a car model in a certain state.

Table 3. Example database

ID IID Segment Manufacturer Name Start End

001 1 B Peugeot 205 [1985,2,3] [1997,2,1]
002 1 C Peugeot 305 [1977,2,2] [1989,2,3]
003 1 B Citroen C2 [2002,2,2] [2006,1,1]
001 2 B Peugeot 206 [2000,1,2] [2011,2,1]
001 3 B Peugeot 207 [2006,1,1] [2011,1,1]

Consider the following query:

The user wants to obtain a list of models from segment B, made by
manufacturer Peugeot before the year interval 2001-2005



Using the introduced notations in (13), the query is translated to:

Qtime = ([2001, 2005] , before) (16)

Q = (Segment = B) ∧ (Manufacturer = Peugeot) (17)

Table 4. Result table and ranking

ID IID PosQtime NecQtime eQtime(rescaled) Q efinal (ω = 0.5)

001 1 1 1 1 1 1
002 1 1 1 1 0.5 0.75
003 1 1 0.5 0.75 0 0.375
001 2 1 0 0.5 1 0.75
001 3 0 0 0 1 0.5

Table 4 shows a natural and gradual ranking for the results. The last record,
(ID 001, IID 3) shows also that with ω = 0.5 both temporal and regular criteria
have the same importance.

4 Conclusions and Further Research

We presented a valid-time model to represent and query ill-known temporal
intervals. The framework tries to correctly represent and handle querying of
temporal uncertainty in a database. It is possible to model the Allen’s relations
and also more complex relations. As future work, new ways for aggregation and
ranking are considered.
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