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ABSTRACT

The imaging performance of an active mm-wave imag-
ing system can be studied using accurate numerical elec-
tromagnetic simulations. We present an exact forward
solver to calculate the three-dimensional (3D) scattered
fields of a two-dimensional (2D) inhomogeneous dielec-
tric object which is illuminated with a given 3D time-
harmonic incident field. Since the size of the scattering
objects can be very large with respect to the wavelength, a
2.5D configuration is adopted. This reduces the computa-
tional cost while it maintains the capability of accurately
studying the system performance. The 3D scattered fields
are calculated by discretizing a contrast source integral
equation with the Method of Moments. The resulting lin-
ear system is solved iteratively with a stabilized biconju-
gate gradient Fast Fourier Transform method.

Key words: Forward solver; millimeter waves; volume
integral equation technique.

1. INTRODUCTION

There are two different techniques for active millimeter
wave imaging. The optical approach gives rise to a sys-
tem which uses lenses for beam and image formation.
These lenses produce artifacts in the image that can be re-
duced by using non-coherent illumination and averaging
the obtained images. This method is a qualitative tech-
nique. Another imaging mode is a quantitative technique,
which is derived from microwave imaging principles and
is largely based on the exact solution of Maxwell’s equa-
tions.
In both cases, an exact model of the wave-field propaga-
tion and scattering is indispensable to carefully study sys-
tem performance and imaging capabilities. Therefore we
developed an exact forward solver for two-dimensional
(2D) inhomogeneous dielectric objects embedded in a
homogeneous background medium.
The objects are illuminated with a given three-
dimensional (3D) time-harmonic incident field and the

3D scattered field is computed. This 2.5D configura-
tion is adopted since it reduces the computational burden
while maintaining the capability of accurately studying
the system performance. A volume integral equation ap-
proach is used, whereby a contrast source integral equa-
tion is discretized with the Method of Moments (MoM)
and solved iteratively with a stabilized biconjugate gradi-
ent Fast Fourier Transform (BiCGS-FFT) method. The
formulation of the algorithm is given in section 2 and
comparisons of simulation results to analytic solutions
for TE and TM polarizations and to measurements are
presented in section 3.

2. FORMULATION

The 2.5D solver presented in this paper is an extension of
the 2D-TE CG-FFT forward solver developed by [1].
The problem is formulated in the frequency domain and
the time dependence exp(−jωt) is omitted. We consider
a 2D inhomogeneous dielectric object embedded in free
space with complex permittivity

ε(r) = εr(r)ε0 = ε′(r) + jε′′(r), (1)

with ε′(r) and ε′′(r) representing the real and imaginary
part of ε(r) and r = (x, y) the position vector. The imag-
inary part of the relative complex permittivity εr(r) is
given by ε′′r (r) = σ

ωε0
, with ω the angular frequency, ε0

the permittivity of vacuum and σ the electric conductiv-
ity. The object is illuminated with a 3D time-harmonic
incident field

Ei(r, z) = [Ei
1(r, z), Ei

2(r, z), Ei
3(r, z)] (2)

and the resulting scattered field is defined as

Es(r, z) = E(r, z)− Ei(r, z), (3)

with E(r, z) the total field.
The problem is formulated in terms of the unknown elec-
tric flux density

D(r, z) = [D1(r, z), D2(r, z), D3(r, z)]. (4)
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When Ei(r, z) is expanded as Ei(r, β)ejβz , the integral
equation over the object domain S takes the following
form
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(5)

where k0 = ω
√

ε0µ0. The vector potential A(r, β) can
be calculated as

A(r, β) = F−1

[
F[G(r, β)] F [χ(r)

D(r, β)
ε(r)

]
]

(6)

withF the forward 2D spatial Fourier transform andF−1

the inverse 2D spatial Fourier transform.
The scalar 2D Green’s function is given by

G(r, β) =
j

4
H

(1)
0 (

√
k2
0 − β2|r|) (7)

and the normalized contrast function χ(r) is defined as

χ(r) =
ε(r)− ε0

ε(r)
. (8)

The β-dependence is assumed in the following.
The spatial coordinate r is discretized by means of a rect-
angular 2D grid with a cell size of ∆ in both directions
and with N cells in the x-direction and M cells in the y-
direction. We introduce the following staggered grids for
n = 0 . . . N and m = 0 . . .M :

r(0)
n,m = (n∆,m∆) (9a)

r(1)
n,m = ((n− 1

2
)∆,m∆) (9b)

r(2)
n,m = (n∆, (m− 1

2
)∆) (9c)

r(3)
n,m = ((n− 1

2
)∆, (m− 1

2
)∆). (9d)

In each cell with center r(0)
n,m the complex permittivity

ε(r) is assumed constant. Vectorial testing functions

Ψ(p)(r(p)
n,m − r) = ψ(p)(r(p)

n,m − r)u(p) (10)

are introduced for p = 1, 2, 3. u(1), u(2) and u(3) repre-
sent the unit vectors in the x, y and z-direction. Multipli-
cation of Eq. 5 with these vectorial testing functions and
integration over the object domain S yields:

∫

S

ψ(p)(r(p)
n,m − r)Ei

p(r)dr =
∫

S

ψ(p)(r(p)
n,m − r)

Dp(r)
ε(r)

dr

− k2
0

∫

S

ψ(p)(r(p)
n,m − r)Ap(r)dr

+
∫

S

∂pψ
(p)(r(p)

n,m − r)∇ · A(r)dr, p = 1, 2 (11a)

∫

S

ψ(3)(r(3)
n,m − r)Ei

3(r)dr =
∫

S

ψ(3)(r(3)
n,m − r)

D3(r)
ε(r)

dr

− k2
0

∫

S

ψ(3)(r(3)
n,m − r)A3(r)dr

− jβ

∫

S

ψ(3)(r(3)
n,m − r)∇ · A(r)dr (11b)

In the derivation of these equations it was assumed that
ψ(p)(r(p)

n,m − r) = 0 for r ∈ ∂S. ∂1 and ∂2 represent the
partial derivatives with respect to x and y. The electric
flux density D(r), the incident field Ei(r) and the vector
potential A(r) are expanded as:

Dp(r) = ε0

N∑

k=1

M∑

l=1

dp;k,l ψ(p)(r− r(p)
k,l ), (12a)

Ei
p(r) =

N∑

k=1

M∑

l=1

ei
p;k,l ψ(p)(r− r(p)

k,l ), (12b)

Ap(r) =
N∑

k=1

M∑

l=1

ap;k,l ψ(p)(r− r(p)
k,l ). (12c)

When inserting Eq. 12 in Eq. 11 and carrying out the
divergence operator as well as interchanging the order of
integration and summation, the weak form of the integral
equation is obtained for every r(p)

n,m ∈ S (p = 1, 2, 3).
The functions ψ(p)(r), p = 1, 2, 3 are defined as:

ψ(1)(r) = Λ(x; 2∆)Π(y;∆), (13a)

ψ(2)(r) = Π(x;∆)Λ(y; 2∆), (13b)

ψ(3)(r) = Λ(x; 2∆)Λ(y; 2∆), (13c)

in which Λ(x; 2∆) represents a one-dimensional triangle
function in the x-direction of support 2∆ and Π(y; ∆)
represents a one-dimensional pulse function in the y-
direction of support ∆.
In Eq. 6 the field values of D(r) are replaced by the dis-
crete values dp;n,m and 2D spatial discrete Fourier trans-
forms are used. Therefore the Green’s function is inte-
grated over a circle with center r(0)

n,m and radius ∆
2 . The

resulting value is then divided by the surface of that cir-
cle:

gn,m =
{

( j
∆k0

)J1(k0
∆
2 )H(1)

0 (k0∆
√

n2 + m2)

( j
∆k0

)
[
H

(1)
1 (k0

∆
2 ) + 4j

π∆k0

]
n = m = 0.

(14)

This procedure gives no problem in handling the singu-
larity of the Green’s function at r = 0 [2]. This leads
to

ap;n,m = ∆2DFT−1
[
DFT [gn,m]DFT [χ(p)

n,mdp;n,m]
]

(15)



for p = 1, 2, 3 in which

χ(1)
n,m =

1
2
(χ((n− 1)∆,m∆) + χ(n∆,m∆)), (16a)

χ(2)
n,m =

1
2
(χ(n∆, (m− 1)∆) + χ(n∆,m∆)), (16b)

χ(3)
n,m =

1
4
(χ((n−1)∆, (m−1)∆)+χ((n−1)∆,m∆)

+ χ(n∆x, (m− 1)∆x) + χ(n∆x,m∆x)). (16c)

The system of Eqs. 11 and 15 is solved iteratively for the
unknowns dp;n,m using a BiCGS-scheme ([3], [4]).

3. NUMERICAL AND EXPERIMENTAL RE-
SULTS

3.1. Comparison to analytic solutions for TM and
TE polarizations

In the simulations with our 2.5D BiCGS-FFT forward
solver the initial estimate for dp ( p = 1, 2, 3) is cho-
sen zero and the BiCGS iterations are stopped when the
relative error drops below 10−8. The object is a dielec-
tric cylinder with relative permittivity εr = 2 and with a
radius equal to one wavelength (λ0 = 1 mm, f = 300
GHz).
We first consider TM polarization. The incident field
Ei(r) = Ei

3(r) (β = 0) is a line source at a distance
of 10λ0 from the cylinder. The scattered fields Es

3(r)
are calculated for 256 points on a circle with a radius of
10λ0 (Fig. 1 and Fig. 2). The simulation results are
compared to the analytic solution and the normalized root
mean square error (NRMSE) is determined:

error =

√∑N
k=1 |Es

sim(k)− Es
exact(k)|2

√∑N
k=1 |Es

exact(k)|2
(17)

where N = 256 denotes the number of detector points.
Tab. 1 shows the different parameters of this simulation
and Tab. 2 indicates that the error decreases as O(∆).
Next, we consider TE polarization. The incident field
Ei(r) = Ei

1(r) (β = 0) is a plane wave propagating in
the y-direction, which is polarized along the x-direction.
The scattered fields Es

1(r) and Es
2(r) are calculated in the

same points as before (Fig. 3, Fig. 4, Fig. 5 and Fig. 6).
The simulation results are again compared to the analytic
solution and the NRMSE for Es

1(r) and Es
2(r) is indi-

cated in Tab. 3. The error decreases as O(∆1.3).
The differences between the numerical results and the an-
alytic solution are due to the discretization and by con-
sequence, the staircase approximation of the circle. An-
other inaccuracy lies in the averaging of the Green’s func-
tion in (14) instead of an exact integration of the Green’s
function over each cell domain. Furthermore, the incident
field is expanded in basis functions, multiplied by a test-
ing function and then integrated over the object domain

S ((11) and (12)). A more accurate result can be obtained
if the integral over S of the incident field (not expanded),
multiplied by the vectorial testing function, is calculated
analytically.

Table 1. Parameters for TM and TE simulation

grid size # unknowns # it. TM # it. TE
32x32 3072 47 34
64x64 12288 49 32

128x128 49152 51 30
256x256 196608 49 32
512x512 786432 51 38

1024x1024 3.145728e6 53 43
2048x2048 12.58291e6 54 41

Table 2. NRMSE for TM polarization

cells per λ grid size error Es
3

10 32x32 0.4604
20 64x64 0.2369
40 128x128 0.1129
80 256x256 0.0587

100 512x512 0.0429
200 1024x1024 0.0225
500 2048x2048 0.0085

Table 3. NRMSE for TE polarization

cells per λ grid size error Es
1 error Es

2

10 32x32 0.1198 0.1063
20 64x64 0.0440 0.0385
40 128x128 0.0173 0.0163
80 256x256 0.0084 0.0084

100 512x512 0.0045 0.0039
200 1024x1024 0.0025 0.0022
500 2048x2048 0.00069 0.00055

3.2. Comparison to measurements

Fig. 7 represents the measurement setup used to validate
our model. A W-band BWO (Backward Wave Oscillator)
emits a 94GHz wave which is modulated by a lock-in
amplifier with a 20 kHz signal and which is focused
into a gaussian beam. The object is positioned along the
beam axis to scatter the field. At the detecting side, an



open WR10 waveguide probe is used as the receiving
antenna. To detect the received signal power, a W-band
planar detector with a sensitivity of 550 mV/mW is
applied. Its output voltage is fed back into the lock-in
amplifier. A 30dB Faraday isolator is placed between the
probe and the detector to eliminate the reflection from
the planar detector side. The probe, isolator and detector
are mounted together on a computer-controlled sled,
which is able to move both parallel and perpendicular to
the beam axis in a horizontal plane.

Lock-in
Amplifier

Computer

W-band
BWO

Planar
Detector

Faraday
Isolator

Lens Horn
Antenna

Object

Motor
Stage Optical

Table

20 kHz Modulation Signal

Open
Waveguide
Probe

Absorber
Chamber

Figure 7. Schematic diagram of scattering measurement
setup

The object is a metal cylinder with a diameter of 37.74
mm (which is about 11.5λ0, f = 94 GHz). In our model
we choose ε′r = 1 and ε′′r = 100, which corresponds
to σ = 523. No higher values for ε′′r are chosen be-
cause the convergence of the BiCGS algorithm signifi-
cantly slows down. The object is discretized using 10
cells per λ0, yielding in a grid size of 256x256 cells. The
incident field is a gaussian beam which illuminates the
object completely. The distance between the source and
the object is 45 cm. The total field amplitude is mea-
sured on a line of length 8 cm at a distance of 22.5 cm
away from the center of the cylinder in 81 points, spaced
1 mm. Fig. 8 shows a comparison of a simulation with
a measurement. There is a good agreement in the center
of the line. At the edges the difference is probably due
to the low value chosen for ε′′r = 100 in our model. In
the future, measurements will be performed at the VUB
with a millimeter wave vector network analyzer so that
amplitude and phase can be measured and compared to
simulations.

Figure 8. Amplitude of total field

4. CONCLUSIONS

A weak formulation of the BiCGS-FFT method for di-
electric scatterers is presented. The simulated field curves
are in very good agreement with the analytical solutions
for TM and TE polarizations. A first comparison to mea-
surements indicates that PEC materials are demanding
test objects. More measurements will be done on vari-
ous dielectric objects.
The convolution structure in the vector potential allows
the application of FFT’s, yielding a fast and efficient
method for solving scattering problems.
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Figure 1. Amplitude of Es
3 for TM polarization
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Figure 2. Phase of Es
3 for TM polarization

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

index detector point

A
m

pl
itu

de
 E

s1

 

 

exact
solver: 20 cells per wavelength

Figure 3. Amplitude of Es
1 for TE polarization
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Figure 4. Phase of Es
1 for TE polarization
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Figure 5. Amplitude of Es
2 for TE polarization
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Figure 6. Phase of Es
2 for TE polarization
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