

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

Low Delay Personal Content Storage in a Multi-service Access Network

Koert Vlaeminck, Filip De Turck, Bart Dhoedt, Piet Demeester
Department of Information Technology, Ghent University - IBBT - IMEC

Gaston Crommenlaan 8 bus 201, B-9050 Gent, Belgium.
Tel: +32 9 33 14942, Fax: +32 9 33 14899
E-mail: koert.vlaeminck@intec.ugent.be

Abstract

A current important trend is the introduction of new
services in the access and aggregation network, close to the
end user. A major opportunity for such service enabled
access networks is providing users with fast and reliable
storage, allowing them to transparently access and share
their personal data anytime, anywhere, while guaranteeing
data retention. An important issue in deploying such a
service is where to put the storage servers, minimizing the
deployment cost without sacrificing performance. This
paper presents and evaluates an optimization algorithm for
solving this storage server placement problem, respecting
the bandwidth constraints of the access and aggregation
network while guaranteeing a low delay for accessing the
storage service from any access node. It will be shown that
the algorithm produces close to optimal results relatively
fast.

Introduction
The implementation of the “broadband for all” objective

and the large-scale introduction of new services, such as
(interactive) digital television, has triggered an evolution of
the access network infrastructure [1]. Where current access
networks are often separated per service, telecom research
envisions offering a myriad of broadband services over a
converged access network, as depicted in Figure 1, bringing
IP-awareness closer to the end user and increasing
functional intelligence of the access and aggregation nodes
[2].

Figure 1: Evolution towards a converged, IP aware, full

service access network.

A major opportunity of such multi-service access
networks is providing anytime, anywhere access to fast and
reliable storage. End users have an increasing amount of
digital data (digital photo albums, digital home videos, a
digital music and movie collection, etc), while harddisks are

failure prone and recordable optical media only have
limited archival lifespan [3]. A high speed network storage
service, enabling a user to access his personal data at all
times, wherever he is, while relieving him of the burden of
meticulously backing up all his precious photos, home
videos and other important files, would make life a lot
easier. When designing such a storage service, an important
question that needs answering is where to put the storage
servers.

This paper presents and evaluates an optimization
algorithm for determining the best locations for placing
storage servers, minimizing the deployment cost while
guaranteeing fast access from any access node. Both access
and aggregation nodes are candidate storage server
locations. A user can be served from any storage server.
This requires a pervasive replication mechanism, as
introduced in [13], creating a replica of a user’s data
wherever and whenever it is accessed. In this paper, it is
assumed that server nodes have enough processing power
and storage capacity to handle all requests. Furthermore, a
read mostly data storage service is assumed. In many
typical end user applications, such as a digital media
library, data is read much more often than it is written. Read
mostly data implies no strong consistency is required
between the different replicas. Updates can be propagated
periodically, at the same time deciding whether a replica
should be retained or deleted (e.g. based on last access time,
access frequency, etc), taking into account that a minimum
set of replicas should be maintained at all times in order to
ensure resilience. Since this kind of read mostly data
storage service puts most strain on downstream traffic, only
downstream traffic measures are considered when
determining the best locations for placing a storage server.

The remainder of this paper is structured as follows:
first, related work is presented. Then, the next section
formalizes the problem description, after which the storage
server placement algorithm is detailed. Next, the algorithm
is evaluated using two typical access and aggregation
network topologies. Finally concluding remarks are
presented and some future work is discussed.

Related work
Many distributed filesystems exist today, ranging from

client-server systems such as NFS [4], AFS [5] and Coda
[6] over cluster filesystems (e.g. Lustre [7], GPFS [8] and
the Google File System [9]) to global scale peer-to-peer
filesystems (e.g. OceanStore [10], FARSITE [12] and
Pangaea [13]).

Deployment of a transparent, fast, scalable and reliable
storage service in the access and aggregation network is a
new idea, triggered by the increased functional intelligence

 Page 1 of 6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55865528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

in emerging service aware access networks. At first glance,
such a service is very similar to content distribution
networks (CDNs), where streaming content, which is very
sensitive to jitter and packet loss, is replicated to so-called
surrogate servers at the edge of the network in order to
tackle the performance issues of the classical client-server
approach [14]. However, CDNs are designed to distribute a
limited amount of very popular content, while a personal
content storage service stores a huge amount of relatively
unpopular data. For such a service, where each user adds
his own data, storage requirements are far larger and replica
management a lot more complex. Furthermore,
guaranteeing low latency and high bandwidth in an
environment where end users each access different files
simultaneously, requires data to be replicated even closer to
the end user.

None of the distributed file systems enumerated above,
were designed for large-scale deployment in an access and
aggregation network environment. However, OceanStore,
for which a prototype (Pond [11]) is being developed,
seems a good candidate for this purpose. The OceanStore
core system is composed of a multitude of highly connected
pools, among which data is allowed to flow freely [10]. A
pool could for instance be associated with an access and
aggregation network. Most of the time, data will be
accessed from within the pool, but when a user is traveling,
his data is still accessible. Pangaea [13], with its pervasive
replication mechanism that replicates data based on user
activity, also seems a good candidate. Data that is only
accessed from within the access and aggregation network
will be kept locally. Users on the move will trigger
replication of their data in other access and aggregation
networks.

Before trying to deploy such a storage service and
selecting the appropriate technology, however, the storage
placement problem should be studied: how can a storage
service be deployed in the access and aggregation network,
using a minimum set of servers while guaranteeing fast
access from any access node. This is the topic of this paper.
The placement problem was introduced in [15] in a web
server environment.

Model description
Before presenting the storage server placement

algorithm in the next section, this section introduces some
definitions and formalizes the problem description by
presenting it as a Binary Integer Linear Programming
(BILP) problem [16]. The goal is to find a minimum set of
storage server locations that can service storage requests
from users connected through any access node within a
specified time (maximum delay constraint), respecting the
maximum available bandwidth of each network link
(bandwidth constraint).

Define N={N1,…,Nn} as the set of all nodes and
A={A1,…,Am} as the set of access nodes (A ⊂ N). dij
represents the total delay from Ni to Aj. The maximum
allowable delay for accessing a storage server is defined as
d. Furthermore, define D as the bandwidth demand of

access node Aj. Then is the total demand in

the access and aggregation network. Finally, define

E={E1,…,Eo} as the set of all edges. The cost (delay) of
edge El is defined as cl and its bandwidth is bl.

The problem can be formalized as a BILP problem as
follows: define n boolean variables si (si = 1 if node Ni
represents a server location, 0 otherwise). Furthermore
introduce a set of continuous path variables: define Pij as
the set of all paths from node Ni to access node Aj and fijk as
the flow on the kth path Pijk from Ni to Aj. Then fij represents
the total flow from Ni to Aj.

Minimize:

subject to:

j

∑ == m
j jDD 1

∑
∈

=
NN

i
i

sz

ijijkji
PE

l PPAANNdc
ijkl

∈∀∈∀∈∀≤∑
∈

,,,

AANNDsff jiji
PP

ijkij
ijijk

∈∀∈∀×≤= ∑
∈

,,

AADf jj
NN

ij
i

∈∀=∑
∈

,

EEbf ll
EP
ijk
lijk

∈∀≤∑
∋∀

,

The first set of constraints ensures that only paths with a
total delay ≤ d are considered. The second set of constraints
makes sure si is set to 1 if Ni provides flow to at least one
access node Aj. The third set of constraints ensures that the
demand of each access node is met. The final set of
constraints makes sure the bandwidth constraint of each
edge El is respected.

Storage server placement algorithm
For determining the minimum set of servers required for

providing all users with a fast storage service from any
access node within the bandwidth constraints of the access
and aggregation network, a three-phase algorithm, was
designed. This algorithm is described in pseudo-code in
Figure 3 and explained below.

Phase 1: Transformation to a minimum cost flow problem.
As stated in the introduction, a pervasive replication

algorithm ensures all user requests can be handled by any
server. Furthermore, due to the nature of the storage
service, not all requests coming from a single access node
have to be handled by the same storage server. Therefore,
the problem can be transformed to a single-commodity
minimum cost flow problem [17]. This transformation,
which is the first phase of the algorithm, is illustrated in
Figure 2 and detailed below. First connect all access nodes
Aj to a virtual super target node T with edge cost 0 and edge
capacity Dj. In the example in Figure 2, A1 has a demand of
2 Mbps and A2 has a demand of 3 Mbps, so edges

and have capacity 2 and 3 respectively.

Next connect a virtual super source node S to all
candidate server locations (i.e. all nodes Ni that can reach at
least one access node Aj with delay ≤ d) with infinite edge
capacity. Since each edge will carry at most D flow, the
total demand, this value can be used to represent infinity.

TAE 1

TAE 2

 Page 2 of 6

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

The total demand in Figure 3 is 5 Mbps, so edges from S
have capacity 5. Note that S is not connected to N1 in the
example, since the total delay from N1 to access node A1 or
A2 is 5 ms, which is larger than the maximum allowable
delay of 3 ms.

Figure 2: Transformation to a minimum cost flow

problem. Access node A1 has a demand of 2 Mbps, A2 has a
demand of 3 Mbps. The maximum delay is 3 ms, hence no
connection from S to N1 is available. The edge labels represent
[residual bandwidth (Mbps), delay (ms)], a dash represents a
dynamic value.

Now determine the minimum cost flow with demand D
(5 in the example) from S to T. Since edges from an access
node Aj to T have bandwidth Dj, the only way to solve the
minimum cost flow problem with demand D is by routing
the appropriate demand through each access node. The cost
of the edges from S is adapted dynamically, making sure a
server is used to its maximum, once a server location is
chosen, as will be explained in the next subsection. In
Figure 2, the dynamic costs are represented by a dash.

The transformation to a minimum cost flow problem is
done in lines 7 to 18 of Figure 3. As shown in line 16, the
initial candidate server edge cost for node Ni is a function of
Bi (the outgoing bandwidth of Ni), Ci, (the number of access
nodes Ni has in range) and d (the maximum delay). The
function f(Ci, Bi, d) is defined such that candidate server
edges have an initial cost between d and 2d. Higher values
of B and Ci result in lower values for the initial cost of

. This initial cost of represents the cost of

installing a server at node Ni.
Access nodes are treated differently from other

candidate server nodes, cf. line 11 of Figure 3. The initial
cost of an access node Aj also depends on the demand Dj
and the total incoming bandwidth (B′i, where Aj = Ni). If the
demand of an access node exceeds its total incoming
bandwidth (Dj > B′i), a server must be installed at that
location. In that case:

Figure

algorithm
providing
nodes, res
links. S2 ⊂
phase 2 o
locations t
defined as
from Ni wi

(delay) of
bandwidth
of node N
realized by
successive
during the

1
2
3
4
5
6
7
8
9

10

11

12

13

14
15

16

17
18
19
20
21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43i

iSNE iSNE

ddDBBCf jiii =),,',,('
: S2 ← empty set
: S3 ← empty set
: F ← 0
: P ← empty set
: calculate Ci and Bi, ∀ Ni ∈ N
: calculate B’i, ∀ Ni ∈ N ∩ A
: add S and T to N
: for ∀ Ni ∈ N do
: if ∃ j: N = A (Ni ∈ A) then
: add to E

: ← D, ← f’(Ci, Bi, B’i, Dj, d)

: add to E

: ← 0, ← 0

: else if C × B > 0 then
: add to E

: ← D, ← f(Ci, Bi, d)

: end if
: end for
: while F < D do
: p ← shortest augmenting path from S to T
: s ← Ni ∈ p

: if

i j

 iSNE

iSNb iSNc

 TjAE

TjAb TjAc

i i

iSNE

iSNb iSNc

 : iSNE

∑ ∈ +>pE Ssll
cdc then

: cSs ← +∞
: else
: if s ∉ S2 then
: add s to S2
: cSs ← 0
: end if
: f ← min{min{bl, El ∈ p},(D - F)}
: bl ← bl - f for edges El along p
: F ← F + f
: add p to P
: end if
: end while
: while P not empty do
: p ← last p from P
: if p does not contain s ∈ S3 do
: Aj ← access node where ∈ p

: select s ∈ S2 closest to Aj on p
: add s to S3
: end if
: remove p from P
: end while

TjAE
Page 3 of 6

 3: Storage server placement algorithm: 3-phase
for determining the minimum set of servers

a storage service with guaranteed delay to all access
pecting the available bandwidth of the network
 N is defined as the set of server locations selected in
f the algorithm and S3 ⊂ S2 as the set of server
hat remain after phase 3 of the algorithm. Ci is
 the number of access nodes A that can be served
th delay dij ≤ d, i.e. and cl as the cost

a single edge El. Bi is defined as the total outgoing
 of node Ni and B′i as the total incoming bandwidth

i. F represents the total flow that has already been
 the servers currently in the set S2. P is the set of
shortest augmenting paths that are computed

 second phase of the algorithm.

j

∑ == m
j iji CC 1 ,

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

If Dj ≤ B′i and the access node also has other access
nodes in range (Ci > 1, since Ci includes the access node
itself), it is treated as any other candidate server:

),,(),,',,(' dDBCfdDBBCf jiijiii +=

Else, selecting the access node as server location should
be avoided when possible:

The algorithm always finds a solution respecting the
maximum delay constraint and bandwidth constraints: worst
case a server is installed at each access node. Since the
initial cost of all edges , hence the cost of installing a

server at Ni, is at least d, an algorithm solving the minimum
cost flow problem will first add flows to access nodes in
range from already installed servers (additional cost ≤ d),
before installing a new server.

Phase 2: Solving the minimum cost flow problem
The second phase of the algorithm is solving this

minimum cost flow problem, using a (modified) successive
shortest path algorithm, as introduced by Busacker and
Gowen [18]. The cost of candidate server edges is adapted
dynamically in order to promote already installed servers
and to ensure a maximum delay for accessing a server from
any access node.

At each iteration of the modified successive shortest
path algorithm, a flow along the current shortest path from
S to T is added. Since S is only connected to candidate
server locations and only access nodes are connected to T,
this implies a flow is added from the current best candidate
server node Ni (lowest cost of), to the access node Aj

nodes
selected first, since they hav west initial cost for
edge

When a node Ni is selected as server location, the cost
of is set to zero, making sure this server is used as

much as possible: the cost of adding a flow from an
installed Ni to an access node Aj in range from Ni (≤ d) will
always be lower than the cost of installing a new server,
which is at least d augmented with the cost of the path from
this new server to the closest access node. The only
exception is when the network contains access nodes that
have a demand larger than their incoming bandwidth. The
total cost of a flow from S to T through such an access node
is d. The minimum cost flow problem will start by installing
servers at those access nodes.

Once no more access nodes Aj can be reached from Ni
with delay dij ≤ d, the cost of the edge from S to Ni is set to
infinity, forcing the successive shortest path algorithm to
select another server location.

Lines 19 to 34 of Figure 3 show the modified successive
shortest path algorithm, where line 27 sets the cost of a
candidate server edge to zero, once a server is installed at
that location and line 23 sets the cost of a candidate server
edge to infinity when a server at that location no longer has
any access nodes in range. After each iteration, the residual

bandwidth of the edges along the path is decreased with the
amount of flow (f) that was added (cf. line 30).

Phase 3:Redistributing the flow
It is possible that at some iteration of the successive

shortest path algorithm, a new server is added that is closer
to some access node Aj that was already assigned a server in
an earlier iteration. It is even possible that already selected
server locations are obsoleted by some later server location
additions. This is illustrated in Figure 4 using a simple tree
topology access and aggregation network. Assume each
access node has a demand of 5 Mbps, with a maximum
allowable delay of 5 ms. The modified successive shortest
path algorithm will first select node N1 as server location,
since it has the highest total outgoing bandwidth and all
access nodes in range. However, the 8 Mbps links from N1
can not carry all demand and nodes N2 and N3 are also
added as server locations (access nodes are avoided),
obsoleting N1.

13),,',,(' += ddDBBCf jiii

iSNE

iSNE
closest to it. Candidate server nodes with a lot of access

in range and a large outgoing bandwidth will be
e the lo

iSNE .

iSNE

Figure 4: Each access node has a demand of 5 Mbps, with

a maximum allowable delay of 5 ms. The successive shortest
path algorithm will first select node N1 as server location.
However, the 8 Mbps links from N1 can not carry all demand,
resulting in the addition of N2 and N3 as server locations,
obsoleting N1. Again, the edge labels represent [residual
bandwidth (Mbps), delay (ms)].

To resolve this problem, the third and final phase of the
algorithm redistributes flows among the selected server
locations in such a way that each access node is served by
the closest server. Server locations that provide zero
remaining flow are removed from the list. This can easily
be done by traversing the set of shortest augmenting paths
P, selected during the second phase, in reverse order. At
each iteration, the server closest to the access node is
selected, unless the path contains a server previously
selected during phase 3. This is shown in lines 35 to 43 of
Figure 3.

Implementation and evaluation
The algorithm was implemented using the Telecom

Research Software library (TRS) [19], developed at the
broadband communications research group of Ghent
University. It is a Java network library, aiding in the
representation of (multilayer) networks and related
concepts.

Use cases

 Page 4 of 6

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

For evaluating the algorithm, the number of storage
servers required for providing a fast storage service was
computed for different demands and maximum allowable
delay in two typical access and aggregation network
topologies: a mesh of trees topology, typically used in DSL
deployment, and a ring of rings topology, used in cable
Internet access deployment. Both topologies were
downscaled to 250 access nodes in order to keep the
simulation results verifiable. For simplicity, the hopcount
was used as a delay measure.

The example mesh of trees topology is depicted in
Figure 5. The 250 access nodes are at the leaf nodes of 5
trees of depth 2, aggregated per 10 at depth 2 and per 5 at
depth 1. The available bandwidth between the access nodes
and the first aggregation node is 600 Mbps. Those
aggregation nodes are connected to the root of a tree by a
1.2 Gbps link each. The five trees are interconnected by a
full mesh of 3 Gbps links.

Figure 5: Use case 1: a downscaled mesh of trees access

and aggregation network topology, used for DSL deployment.

The example ring of rings topology, is depicted in
Figure 6. It consists of five unidirectional 6-node secondary
rings of 2 Gbps. One node connects the secondary ring to a
primary ring of 10 Gbps (also unidirectional). The other 5
secondary ring nodes each connect to 10 access nodes
trough a shared medium of 2 Gbps, resulting in a total of
250 access nodes.

Figure 6: Use case 2: a downscaled ring of rings access and

aggregation network topology, used for cable Internet access
deployment. The markings B, S and T are used in the
discussion of the simulation results.

Simulation results
Results from the simulations of the example mesh of

trees access and aggregation network topology are
summarized in the Table 1. Due to the full mesh, a root
node of one of the trees can reach any access node in at
most 3 hops. Up to a demand of 60 Mbps per access node,

the access and aggregation network has sufficient
bandwidth available to handle all requests and the number
of servers required, is determined by the maximum delay
constraint. The table clearly shows that for higher demands
per access node, the benefit of allowing a larger maximum
delay decreases. This is caused by the statistical
multiplexation of bandwidth on upstream links (e.g. in the
topology of Figure 5, ten 600 Mbps access node links are
multiplexed on a single 1.2 Gbps link). For demands greater
than 600 Mbps per access node, a server is to be installed at
each access node, due to bandwidth constraints of the
access nodes’ uplinks. It can easily be verified that the
algorithm finds the optimal result on this rather simple
topology. As a reference, the optimal delay only results,
calculated by hand using Figure 5, were added to Table 1.

Table 1: Simulation results for the mesh of trees access and
aggregation network topology, depicted in Figure 5. The table
gives the required number of servers for a varying demand
per access node and increasing maximum delay. As a
reference, the optimal delay only results were added to the
table.
 max. 1 hop max. 2 hops max. 3 hops

0 - 60 Mbps 25 5 1
61 - 120 Mbps 25 5 2

121 - 600 Mbps 25 25 25
> 600 Mbps 250 250 250

delay only 25 5 1

Results from the simulations on the example ring of
rings topology are depicted in Figure 7. For comparison, the
optimal delay only results of the server placement problem
were added to the graph. These can easily be calculated
using Figure 6: a server installed at the primary ring node
following S can reach all access nodes (the access nodes
connected to T are furthest away) in at most 10 hops, a
maximum delay of 8 or 9 hops requires at least two servers
on the primary ring, etc.

25

 20

 15

 10

 5

 0
10 9 8 7 6 5 4 3 2 1

St

or
ag

e
se

rv
er

s

Maximum delay (hops)

delay only
0 - 40 Mbps

41 - 50 Mbps
51 - 100 Mbps

101 - 200 Mbps

Figure 7: Simulation results for the ring of rings access and

aggregation network topology, as depicted in Fig. 6. The delay
only results can easily be obtained by hand. For demands >
200 Mbps per access node, the shared medium connecting the
access nodes to the secondary rings becomes a bottleneck and
multiple servers per secondary ring aggregation node are
required, i.e. ⎣ ⎦ADGbps /210 − server nodes, with DA the
average demand per access node connected to the shared
medium.

 Page 5 of 6

BroadBand Europe Geneva, Switzerland
 11-14 December 2006

Again, the simulation results clearly show that for
higher demands per access nodes, the benefit of allowing a
larger maximum delay decreases. The example ring of rings
network topology has enough bandwidth available to
handle demands of up to 40 Mbps per access node before
bandwidth constraints of the links begin to influence the
result.

However, for a maximum delay of 5 hops, the graph in
Figure 7 shows a small deviation between the calculated
result for low bandwidth demands (≤ 40 Mbps) and the
optimal delay only result. This is caused by the nature of the
heuristic: the storage server placement algorithm assigns a
quality to each candidate server node, based on the number
of access nodes it has in range and its total outgoing
bandwidth. While the node marked by B in Figure 6 can
serve all nodes connected to its secondary ring, resulting in
a total of 5 servers, the algorithm will first select the node
marked by S. S has a total of 100 access nodes in range,
while B only has 50 access nodes in range. Furthermore,
since it’s a primary ring node, S has a larger outgoing
bandwidth than node B. However, access nodes connected
to T are out of range from S, resulting in a suboptimal
solution. To allow the algorithm to break free from such
suboptimal solutions, a stochastic parameter was added to
the node quality, producing close to optimal results.

The graph of Figure 7 plots the result after 10 iterations,
each iteration taking under a minute on modern PC
hardware1. For a demand > 200 Mbps per access node, the
shared medium connecting the access nodes to the
secondary ring becomes a bottleneck, requiring multiple
servers per secondary ring aggregation node, i.e.

⎦ servers. In this equation, As is the number
the shared medium, DA is the

nd of those access nodes and bs is the
e shared medium. In the example topology,
 ⎦ access nodes per

secondary ring aggregation node, for DA > 200 Mbps. In
order to keep the graph readable, this is not plotted in
Figure 7.

Conclusions and future work
This paper presented and evaluated an optimization

algorithm for determining a minimum set of storage server
locations in the access and aggregation network that can
service the read-mostly storage requests of for instance a
digital media library service from users connected through
any access node within a specified time. This algorithm
takes into account a maximum delay constraint for
guaranteeing fast access and respects the bandwidth
constraints of the network links.

The two typical access and aggregation network
topologies were used for evaluating the algorithm: a mesh
of trees, used in DSL deployment, and a ring of rings, used
for cable Internet access deployment. The algorithm is
shown to produce close to optimal results relatively fast. An
important trend that can be noticed from the simulations is
that, due to the statistical multiplexation of bandwidth on

⎣ Ass DbA /−
of access nodes connected to
average dema
bandwidth of th
this results in ⎣ ADGbps /210 −

1 The simulations were executed on an AMD64 3000+ with 512 MB of

memory, running Linux and the Sun J2SE 5.0 Runtime Environment

upstream links, the benefit of allowing a larger maximum
delay decreases for increasing demand.

Work is in progress to extend the storage server
placement algorithm to finding a minimum set of storage
servers for servicing read-write storage requests from any
access node within a specified time. In this case, read and
write requests from a user in a single session are to be
redirected to the same storage server. Future plans include
extending the presented algorithm to deal with additional
constraints, more accurately modeling storage server
limitations.

References
1. T. Wauters, K. Vlaeminck, et al, IPTV Deployment: Trigger for

Advanced Network Services!, FITCE’06, Athens, Greece, August /
September 2006.

2. T. Stevens, K. Vlaeminck, et al, Deployment of service aware access
networks through IPv6, 8th ConTEL’05, Zagreb, Croatia, June 2005,
Vol. 1, p. 7-14.

3. T. Vitale, Digital Imaging in Conservation: File Storage, AIC News,
Vol. 31, Nr. 1, January 2006.

4. B. Callaghan, B. Pawlowski, et al, RFC1813: NFS version 3 protocol
specification, June 1995,
http://www.faqs.org/rfcs/rfc1813.html.

5. J. Howard, M. Kazar, et al, Scale and performance in a distributed file
system, ACM TOCS, Vol. 6, Nr. 1, 1988.

6. L B. Mummert, Maria R. Ebling, et al, Exploiting weak connectivity
for mobile file access, SOSP’95, Copper Mountain, CO, USA,
Dec.ember 1995, p. 143-155.

7. Cluster File Systems Inc, Lustre: A Scalable, High-Performance File
System, white paper, November 2002,
http://www.lustre.org/docs/whitepaper.pdf.

8. T. Jones, A. Koniges, et al, Performance of the IBM general parallel
file system, IPDPS’00, May 2000, p. 673-681.

9. S. Ghemawat, H. Gobioff, et al, The Google File System, SOSP’03,
Bolgon Landing, New York, USA, October 2003, p. 29-43.

10. J. Kubiatowicz, D. Bindel, et al, OceanStore: An Architecture for
Global-Scale Persistent Storage, ASPLOS’00, November 2000.

11. S. Rhea, P. Eaton, et al, Pond: the OceanStore Prototype, FAST’03,
March 2003.

12. W. J. Bolosky, J. R. Douceur, et al, Feasibility of a serverless
distributed file system deployed on an existing set of desktop PCs,
ACM SIGMETRICS, June 2000, p. 34-43.

13. Y. Saito, C. Karamanolis, et al, Taming aggressive replication in the
Pangaea wide-area file system, OSDI’02, December 2002, p. 15-30.

14. J. Coppens, T. Wauters, et al, Evaluation of replica placement and
retrieval algorithms in self-organizing CDNs, SELFMAN’05, Nice,
France, May 2005.

15. L. Qiu, V. Padmanabhan, et al, On the placement of web server
replicas, InfoCom’01, Anchorage, Alaska, April 2001, p. 1587-1596.

16. E. L. Johnson, G. L. Nemhauser, et al, Progress in Linear
Programming-Based Algorithms for Integer Programming: An
Exposition, INFORMS Journal on Computing, Vol. 12, Nr. 1, January
2000, p. 2-23.

17. R. K. Ahuja, T. L. Magnanti, et al, Network Flows: Theory,
Algorithms, and Applications, Prentice Hall, Englewood Cliffs, NJ,
1993.

18. R. G. Busacker, P. J. Gowen, A Procedure for Determining a Family of
Minimum-Cost Network Flow Patterns, Technical Paper ORO-TP-15,
Operations Research Office, The Johns Hopkins University, Bethesda,
Maryland, 1961.

19. K. Casier, S. Verbrugge, et al, Using aspect-oriented programming for
event-handling in a telecom research softwave library, ICSR-8,
Madrid, Spain, July 2004.

 Page 6 of 6

