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Abstract 

A current important trend is the introduction of new 
services in the access and aggregation network, close to the 
end user. A major opportunity for such service enabled 
access networks is providing users with fast and reliable 
storage, allowing them to transparently access and share 
their personal data anytime, anywhere, while guaranteeing 
data retention. An important issue in deploying such a 
service is where to put the storage servers, minimizing the 
deployment cost without sacrificing performance. This 
paper presents and evaluates an optimization algorithm for 
solving this storage server placement problem, respecting 
the bandwidth constraints of the access and aggregation 
network while guaranteeing a low delay for accessing the 
storage service from any access node. It will be shown that 
the algorithm produces close to optimal results relatively 
fast. 

Introduction 
The implementation of the “broadband for all” objective 

and the large-scale introduction of new services, such as 
(interactive) digital television, has triggered an evolution of 
the access network infrastructure [1]. Where current access 
networks are often separated per service, telecom research 
envisions offering a myriad of broadband services over a 
converged access network, as depicted in Figure 1, bringing 
IP-awareness closer to the end user and increasing 
functional intelligence of the access and aggregation nodes 
[2]. 

 
Figure 1: Evolution towards a converged, IP aware, full 

service access network. 
 

A major opportunity of such multi-service access 
networks is providing anytime, anywhere access to fast and 
reliable storage. End users have an increasing amount of 
digital data (digital photo albums, digital home videos, a 
digital music and movie collection, etc), while harddisks are 

failure prone and recordable optical media only have 
limited archival lifespan [3]. A high speed network storage 
service, enabling a user to access his personal data at all 
times, wherever he is, while relieving him of the burden of 
meticulously backing up all his precious photos, home 
videos and other important files, would make life a lot 
easier. When designing such a storage service, an important 
question that needs answering is where to put the storage 
servers.  

This paper presents and evaluates an optimization 
algorithm for determining the best locations for placing 
storage servers, minimizing the deployment cost while 
guaranteeing fast access from any access node. Both access 
and aggregation nodes are candidate storage server 
locations. A user can be served from any storage server. 
This requires a pervasive replication mechanism, as 
introduced in [13], creating a replica of a user’s data 
wherever and whenever it is accessed. In this paper, it is 
assumed that server nodes have enough processing power 
and storage capacity to handle all requests. Furthermore, a 
read mostly data storage service is assumed. In many 
typical end user applications, such as a digital media 
library, data is read much more often than it is written. Read 
mostly data implies no strong consistency is required 
between the different replicas. Updates can be propagated 
periodically, at the same time deciding whether a replica 
should be retained or deleted (e.g. based on last access time, 
access frequency, etc), taking into account that a minimum 
set of replicas should be maintained at all times in order to 
ensure resilience. Since this kind of read mostly data 
storage service puts most strain on downstream traffic, only 
downstream traffic measures are considered when 
determining the best locations for placing a storage server. 

The remainder of this paper is structured as follows: 
first, related work is presented. Then, the next section 
formalizes the problem description, after which the storage 
server placement algorithm is detailed. Next, the algorithm 
is evaluated using two typical access and aggregation 
network topologies. Finally concluding remarks are 
presented and some future work is discussed. 

Related work 
Many distributed filesystems exist today, ranging from 

client-server systems such as NFS [4], AFS [5] and Coda 
[6] over cluster filesystems (e.g. Lustre [7], GPFS [8] and 
the Google File System [9]) to global scale peer-to-peer 
filesystems (e.g. OceanStore [10], FARSITE [12] and 
Pangaea [13]).  

Deployment of a transparent, fast, scalable and reliable 
storage service in the access and aggregation network is a 
new idea, triggered by the increased functional intelligence 
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in emerging service aware access networks. At first glance, 
such a service is very similar to content distribution 
networks (CDNs), where streaming content, which is very 
sensitive to jitter and packet loss, is replicated to so-called 
surrogate servers at the edge of the network in order to 
tackle the performance issues of the classical client-server 
approach [14]. However, CDNs are designed to distribute a 
limited amount of very popular content, while a personal 
content storage service stores a huge amount of relatively 
unpopular data. For such a service, where each user adds 
his own data, storage requirements are far larger and replica 
management a lot more complex. Furthermore, 
guaranteeing low latency and high bandwidth in an 
environment where end users each access different files 
simultaneously, requires data to be replicated even closer to 
the end user. 

None of the distributed file systems enumerated above, 
were designed for large-scale deployment in an access and 
aggregation network environment. However, OceanStore, 
for which a prototype (Pond [11]) is being developed, 
seems a good candidate for this purpose. The OceanStore 
core system is composed of a multitude of highly connected 
pools, among which data is allowed to flow freely [10]. A 
pool could for instance be associated with an access and 
aggregation network. Most of the time, data will be 
accessed from within the pool, but when a user is traveling, 
his data is still accessible. Pangaea [13], with its pervasive 
replication mechanism that replicates data based on user 
activity, also seems a good candidate. Data that is only 
accessed from within the access and aggregation network 
will be kept locally. Users on the move will trigger 
replication of their data in other access and aggregation 
networks. 

Before trying to deploy such a storage service and 
selecting the appropriate technology, however, the storage 
placement problem should be studied: how can a storage 
service be deployed in the access and aggregation network, 
using a minimum set of servers while guaranteeing fast 
access from any access node. This is the topic of this paper. 
The placement problem was introduced in [15] in a web 
server environment. 

Model description 
Before presenting the storage server placement 

algorithm in the next section, this section introduces some 
definitions and formalizes the problem description by 
presenting it as a Binary Integer Linear Programming 
(BILP) problem [16]. The goal is to find a minimum set of 
storage server locations that can service storage requests 
from users connected through any access node within a 
specified time (maximum delay constraint), respecting the 
maximum available bandwidth of each network link 
(bandwidth constraint). 

Define N={N1,…,Nn} as the set of all nodes and 
A={A1,…,Am} as the set of access nodes (A ⊂ N). dij 
represents the total delay from Ni to Aj. The maximum 
allowable delay for accessing a storage server is defined as 
d. Furthermore, define D  as the bandwidth demand of 

access node Aj. Then  is the total demand in 

the access and aggregation network. Finally, define 

E={E1,…,Eo} as the set of all edges. The cost (delay) of 
edge El is defined as cl and its bandwidth is bl. 

The problem can be formalized as a BILP problem as 
follows: define n boolean variables si (si = 1 if node Ni 
represents a server location, 0 otherwise). Furthermore 
introduce a set of continuous path variables: define Pij as 
the set of all paths from node Ni to access node Aj and fijk as 
the flow on the kth path Pijk from Ni to Aj. Then fij represents 
the total flow from Ni to Aj. 

Minimize: 

subject to: 
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The first set of constraints ensures that only paths with a 
total delay ≤ d are considered. The second set of constraints 
makes sure si is set to 1 if Ni provides flow to at least one 
access node Aj.  The third set of constraints ensures that the 
demand of each access node is met. The final set of 
constraints makes sure the bandwidth constraint of each 
edge El is respected. 

Storage server placement algorithm 
For determining the minimum set of servers required for 

providing all users with a fast storage service from any 
access node within the bandwidth constraints of the access 
and aggregation network, a three-phase algorithm, was 
designed. This algorithm is described in pseudo-code in 
Figure 3 and explained below. 

Phase 1: Transformation to a minimum cost flow problem. 
As stated in the introduction, a pervasive replication 

algorithm ensures all user requests can be handled by any 
server. Furthermore, due to the nature of the storage 
service, not all requests coming from a single access node 
have to be handled by the same storage server. Therefore, 
the problem can be transformed to a single-commodity 
minimum cost flow problem [17]. This transformation, 
which is the first phase of the algorithm, is illustrated in 
Figure 2 and detailed below. First connect all access nodes 
Aj to a virtual super target node T with edge cost 0 and edge 
capacity Dj. In the example in Figure 2, A1 has a demand of 
2 Mbps and A2 has a demand of 3 Mbps, so edges 

and  have capacity 2 and 3 respectively. 

Next connect a virtual super source node S to all 
candidate server locations (i.e. all nodes Ni that can reach at 
least one access node Aj with delay ≤ d) with infinite edge 
capacity. Since each edge will carry at most D flow, the 
total demand, this value can be used to represent infinity. 

TAE 1  

TAE 2
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The total demand in Figure 3 is 5 Mbps, so edges from S 
have capacity 5. Note that S is not connected to N1 in the 
example, since the total delay from N1 to access node A1 or 
A2 is 5 ms, which is larger than the maximum allowable 
delay of 3 ms. 

 
Figure 2: Transformation to a minimum cost flow 

problem. Access node A1 has a demand of 2 Mbps, A2 has a 
demand of 3 Mbps. The maximum delay is 3 ms, hence no 
connection from S to N1 is available. The edge labels represent 
[residual bandwidth (Mbps), delay (ms)], a dash represents a 
dynamic value. 

 

Now determine the minimum cost flow with demand D 
(5 in the example) from S to T. Since edges from an access 
node Aj to T have bandwidth Dj, the only way to solve the 
minimum cost flow problem with demand D is by routing 
the appropriate demand through each access node. The cost 
of the edges from S is adapted dynamically, making sure a 
server is used to its maximum, once a server location is 
chosen, as will be explained in the next subsection. In 
Figure 2, the dynamic costs are represented by a dash.  

The transformation to a minimum cost flow problem is 
done in lines 7 to 18 of Figure 3. As shown in line 16, the 
initial candidate server edge cost for node Ni is a function of 
Bi (the outgoing bandwidth of Ni), Ci, (the number of access 
nodes Ni has in range) and d (the maximum delay). The 
function f(Ci, Bi, d) is defined such that candidate server 
edges have an initial cost between d and 2d. Higher values 
of B  and Ci result in lower values for the initial cost of 

. This initial cost of  represents the cost of 

installing a server at node Ni. 
Access nodes are treated differently from other 

candidate server nodes, cf. line 11 of Figure 3. The initial 
cost of an access node Aj also depends on the demand Dj 
and the total incoming bandwidth (B′i, where Aj = Ni). If the 
demand of an access node exceeds its total incoming 
bandwidth (Dj > B′i), a server must be installed at that 
location. In that case: 
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: S2 ← empty set 
: S3 ← empty set 
: F ← 0 
: P ← empty set 
: calculate Ci and Bi, ∀ Ni ∈ N 
: calculate B’i, ∀ Ni ∈ N ∩ A 
: add S and T to N 
: for ∀ Ni ∈ N do 
:      if ∃ j: N  = A  (Ni ∈ A) then 
:           add to E 

:           ← D, ← f’(Ci, Bi, B’i, Dj, d) 

:           add to E 

:           ← 0, ← 0 

:      else if C  × B  > 0 then 
:           add to E 

:           ← D, ← f(Ci, Bi, d) 

:      end if 
: end for 
: while F < D do 
:      p ← shortest augmenting path from S to T 
:      s ← Ni ∈ p 

:      if 

i j

 iSNE

iSNb  iSNc  

 TjAE

TjAb   TjAc  

i i

iSNE

iSNb  iSNc  

 : iSNE

∑ ∈ +>pE Ssll
cdc then 

:           cSs ← +∞ 
:      else 
:           if s ∉ S2 then 
:                add s to S2 
:                cSs ← 0 
:           end if 
:           f ← min{min{bl, El ∈ p},(D - F)} 
:           bl ← bl - f  for edges El along p 
:           F ← F + f 
:           add p to P 
:      end if 
: end while 
: while P not empty do 
:      p ← last p from P 
:      if p does not contain s ∈ S3 do 
:           Aj ← access node where ∈ p 

:           select s ∈ S2 closest to Aj on p 
:           add s to S3 
:      end if 
:      remove p from P 
: end while 

TjAE  
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th delay dij ≤ d, i.e.   and cl as the cost 

a single edge El. Bi is defined as the total outgoing 
 of node Ni and B′i as the total incoming bandwidth 

i. F represents the total flow that has already been 
 the servers currently in the set S2. P is the set of 
shortest augmenting paths that are computed 

 second phase of the algorithm. 

j

∑ == m
j iji CC 1 ,



 

BroadBand Europe Geneva, Switzerland 
 11-14 December 2006 

 

If Dj ≤ B′i and the access node also has other access 
nodes in range (Ci > 1, since Ci includes the access node 
itself), it is treated as any other candidate server: 

),,(),,',,(' dDBCfdDBBCf jiijiii +=  

Else, selecting the access node as server location should 
be avoided when possible: 

The algorithm always finds a solution respecting the 
maximum delay constraint and bandwidth constraints: worst 
case a server is installed at each access node. Since the 
initial cost of all edges , hence the cost of installing a 

server at Ni, is at least d, an algorithm solving the minimum 
cost flow problem will first add flows to access nodes in 
range from already installed servers (additional cost ≤ d), 
before installing a new server. 

Phase 2: Solving the minimum cost flow problem 
The second phase of the algorithm is solving this 

minimum cost flow problem, using a (modified) successive 
shortest path algorithm, as introduced by Busacker and 
Gowen [18]. The cost of candidate server edges is adapted 
dynamically in order to promote already installed servers 
and to ensure a maximum delay for accessing a server from 
any access node.  

At each iteration of the modified successive shortest 
path algorithm, a flow along the current shortest path from 
S to T is added. Since S is only connected to candidate 
server locations and only access nodes are connected to T, 
this implies a flow is added from the current best candidate 
server node Ni (lowest cost of ), to the access node Aj 

nodes 
selected first, since they hav west initial cost for 
edge

When a node Ni is selected as server location, the cost 
of is set to zero, making sure this server is used as 

much as possible: the cost of adding a flow from an 
installed Ni to an access node Aj in range from Ni (≤ d) will 
always be lower than the cost of installing a new server, 
which is at least d augmented with the cost of the path from 
this new server to the closest access node. The only 
exception is when the network contains access nodes that 
have a demand larger than their incoming bandwidth. The 
total cost of a flow from S to T through such an access node 
is d. The minimum cost flow problem will start by installing 
servers at those access nodes.  

Once no more access nodes Aj can be reached from Ni 
with delay dij ≤ d, the cost of the edge from S to Ni is set to 
infinity, forcing the successive shortest path algorithm to 
select another server location. 

Lines 19 to 34 of Figure 3 show the modified successive 
shortest path algorithm, where line 27 sets the cost of a 
candidate server edge to zero, once a server is installed at 
that location and line 23 sets the cost of a candidate server 
edge to infinity when a server at that location no longer has 
any access nodes in range. After each iteration, the residual 

bandwidth of the edges along the path is decreased with the 
amount of flow (f) that was added (cf. line 30). 

Phase 3:Redistributing the flow 
It is possible that at some iteration of the successive 

shortest path algorithm, a new server is added that is closer 
to some access node Aj that was already assigned a server in 
an earlier iteration. It is even possible that already selected 
server locations are obsoleted by some later server location 
additions. This is illustrated in Figure 4 using a simple tree 
topology access and aggregation network. Assume each 
access node has a demand of 5 Mbps, with a maximum 
allowable delay of 5 ms. The modified successive shortest 
path algorithm will first select node N1 as server location, 
since it has the highest total outgoing bandwidth and all 
access nodes in range. However, the 8 Mbps links from N1 
can not carry all demand and nodes N2 and N3 are also 
added as server locations (access nodes are avoided), 
obsoleting N1. 

 

13),,',,(' += ddDBBCf jiii  

iSNE

iSNE
closest to it. Candidate server nodes with a lot of access 

in range and a large outgoing bandwidth will be 
e the lo

iSNE . 

iSNE

 
Figure 4: Each access node has a demand of 5 Mbps, with 

a maximum allowable delay of 5 ms. The successive shortest 
path algorithm will first select node N1 as server location. 
However, the 8 Mbps links from N1 can not carry all demand, 
resulting in the addition of N2 and N3 as server locations, 
obsoleting N1. Again, the edge labels represent [residual 
bandwidth (Mbps), delay (ms)]. 

 

To resolve this problem, the third and final phase of the 
algorithm redistributes flows among the selected server 
locations in such a way that each access node is served by 
the closest server. Server locations that provide zero 
remaining flow are removed from the list. This can easily 
be done by traversing the set of shortest augmenting paths 
P, selected during the second phase, in reverse order. At 
each iteration, the server closest to the access node is 
selected, unless the path contains a server previously 
selected during phase 3. This is shown in lines 35 to 43 of 
Figure 3. 

Implementation and evaluation 
The algorithm was implemented using the Telecom 

Research Software library (TRS) [19], developed at the 
broadband communications research group of Ghent 
University. It is a Java network library, aiding in the 
representation of (multilayer) networks and related 
concepts. 

Use cases 
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For evaluating the algorithm, the number of storage 
servers required for providing a fast storage service was 
computed for different demands and maximum allowable 
delay in two typical access and aggregation network 
topologies: a mesh of trees topology, typically used in DSL 
deployment, and a ring of rings topology, used in cable 
Internet access deployment. Both topologies were 
downscaled to 250 access nodes in order to keep the 
simulation results verifiable. For simplicity, the hopcount 
was used as a delay measure. 

The example mesh of trees topology is depicted in 
Figure 5. The 250 access nodes are at the leaf nodes of 5 
trees of depth 2, aggregated per 10 at depth 2 and per 5 at 
depth 1. The available bandwidth between the access nodes 
and the first aggregation node is 600 Mbps. Those 
aggregation nodes are connected to the root of a tree by a 
1.2 Gbps link each. The five trees are interconnected by a 
full mesh of 3 Gbps links. 

 

 
Figure 5: Use case 1: a downscaled mesh of trees access 

and aggregation network topology, used for DSL deployment. 
 

The example ring of rings topology, is depicted in 
Figure 6. It consists of five unidirectional 6-node secondary 
rings of 2 Gbps. One node connects the secondary ring to a 
primary ring of 10 Gbps (also unidirectional). The other 5 
secondary ring nodes each connect to 10 access nodes 
trough a shared medium of 2 Gbps, resulting in a total of 
250 access nodes. 

 
Figure 6: Use case 2: a downscaled ring of rings access and 

aggregation network topology, used for cable Internet access 
deployment. The markings B, S and T are used in the 
discussion of the simulation results. 

 

Simulation results 
Results from the simulations of the example mesh of 

trees access and aggregation network topology are 
summarized in the Table 1. Due to the full mesh, a root 
node of one of the trees can reach any access node in at 
most 3 hops. Up to a demand of 60 Mbps per access node, 

the access and aggregation network has sufficient 
bandwidth available to handle all requests and the number 
of servers required, is determined by the maximum delay 
constraint. The table clearly shows that for higher demands 
per access node, the benefit of allowing a larger maximum 
delay decreases. This is caused by the statistical 
multiplexation of bandwidth on upstream links (e.g. in the 
topology of    Figure 5, ten 600 Mbps access node links are 
multiplexed on a single 1.2 Gbps link). For demands greater 
than 600 Mbps per access node, a server is to be installed at 
each access node, due to bandwidth constraints of the 
access nodes’ uplinks. It can easily be verified that the 
algorithm finds the optimal result on this rather simple 
topology. As a reference, the optimal delay only results, 
calculated by hand using Figure 5, were added to Table 1. 

 

Table 1: Simulation results for the mesh of trees access and 
aggregation network topology, depicted in Figure 5. The table 
gives the required number of servers for a varying demand 
per access node and increasing maximum delay. As a 
reference, the optimal delay only results were added to the 
table. 
 max. 1 hop max. 2 hops max. 3 hops 

0 - 60 Mbps 25 5 1 
61 - 120 Mbps 25 5 2 

121 - 600 Mbps 25 25 25 
> 600 Mbps 250 250 250 

delay only 25 5 1 
 

Results from the simulations on the example ring of 
rings topology are depicted in Figure 7. For comparison, the 
optimal delay only results of the server placement problem 
were added to the graph. These can easily be calculated 
using Figure 6: a server installed at the primary ring node 
following S can reach all access nodes (the access nodes 
connected to T are furthest away) in at most 10 hops, a 
maximum delay of 8 or 9 hops requires at least two servers 
on the primary ring, etc. 

25
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Figure 7: Simulation results for the ring of rings access and 

aggregation network topology, as depicted in Fig. 6. The delay 
only results can easily be obtained by hand. For demands > 
200 Mbps per access node, the shared medium connecting the 
access nodes to the secondary rings becomes a bottleneck and 
multiple servers per secondary ring aggregation node are 
required, i.e. ⎣ ⎦ADGbps /210 −  server nodes, with DA the 
average demand per access node connected to the shared 
medium. 
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Again, the simulation results clearly show that for 
higher demands per access nodes, the benefit of allowing a 
larger maximum delay decreases. The example ring of rings 
network topology has enough bandwidth available to 
handle demands of up to 40 Mbps per access node before 
bandwidth constraints of the links begin to influence the 
result. 

However, for a maximum delay of 5 hops, the graph in 
Figure 7 shows a small deviation between the calculated 
result for low bandwidth demands (≤ 40 Mbps) and the 
optimal delay only result. This is caused by the nature of the 
heuristic: the storage server placement algorithm assigns a 
quality to each candidate server node, based on the number 
of access nodes it has in range and its total outgoing 
bandwidth. While the node marked by B in Figure 6 can 
serve all nodes connected to its secondary ring, resulting in 
a total of 5 servers, the algorithm will first select the node 
marked by S. S has a total of 100 access nodes in range, 
while B only has 50 access nodes in range. Furthermore, 
since it’s a primary ring node, S has a larger outgoing 
bandwidth than node B. However, access nodes connected 
to T are out of range from S, resulting in a suboptimal 
solution. To allow the algorithm to break free from such 
suboptimal solutions, a stochastic parameter was added to 
the node quality, producing close to optimal results. 

The graph of Figure 7 plots the result after 10 iterations, 
each iteration taking under a minute on modern PC 
hardware1. For a demand > 200 Mbps per access node, the 
shared medium connecting the access nodes to the 
secondary ring becomes a bottleneck, requiring multiple 
servers per secondary ring aggregation node, i.e. 

⎦  servers. In this equation, As is the number 
the shared medium, DA is the 

nd of those access nodes and bs is the 
e shared medium. In the example topology, 
 ⎦  access nodes per 

secondary ring aggregation node, for DA > 200 Mbps. In 
order to keep the graph readable, this is not plotted in  
Figure 7. 

Conclusions and future work 
This paper presented and evaluated an optimization 

algorithm for determining a minimum set of storage server 
locations in the access and aggregation network that can 
service the read-mostly storage requests of for instance a 
digital media library service from users connected through 
any access node within a specified time. This algorithm 
takes into account a maximum delay constraint for 
guaranteeing fast access and respects the bandwidth 
constraints of the network links. 

The two typical access and aggregation network 
topologies were used for evaluating the algorithm: a mesh 
of trees, used in DSL deployment, and a ring of rings, used 
for cable Internet access deployment. The algorithm is 
shown to produce close to optimal results relatively fast. An 
important trend that can be noticed from the simulations is 
that, due to the statistical multiplexation of bandwidth on 

                                                

⎣ Ass DbA /−
of access nodes connected to 
average dema
bandwidth of th
this results in ⎣ ADGbps /210 −

 
1 The simulations were executed on an AMD64 3000+ with 512 MB of 

memory, running Linux and the Sun J2SE 5.0 Runtime Environment 

upstream links, the benefit of allowing a larger maximum 
delay decreases for increasing demand. 

Work is in progress to extend the storage server 
placement algorithm to finding a minimum set of storage 
servers for servicing read-write storage requests from any 
access node within a specified time. In this case, read and 
write requests from a user in a single session are to be 
redirected to the same storage server. Future plans include 
extending the presented algorithm to deal with additional 
constraints, more accurately modeling storage server 
limitations. 
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