

UNIVESTIEIT	D	OA e	stimatio	on of ϕ	W	vith UC	CAs			
Bean	nspa	ce MU	SIC witl	n 9 elen	ne	nt dua	l-band	UCA		
 Resolving power of root-MUSIC for UCAs 										
			root MUSDC		comp MU		SbC			
	N_c	9	- 11	13	9	11	13			
	DOA1	54.9°(0.6°)	$55.2^{\circ}(0.64^{\circ})$	55.0°(0.03°)	-	56.0°(3°)	55.0°(0°)			
	DOA 2	$65.1^{\circ}(0.6^{\circ})$	$63.5^{\circ}(0.06^{\circ})$	65.0°(0.03°)	-	$63.9^{\circ}(0.3^{\circ})$	65.0°(0°)			
TABLE V										
BCALBAND U	CA: MEAN	AND STANDARI	DEVIATION FOR DO	DA ESTRUCTION AN SNR=100B.	188	0 MH2: INCOME	OG SOGNALS AT	55° and 65°.		
	root MUSIC						7			
	đ	20	3°	40		5°	1 I			
	DO/	A 1 55.8°()	3.3°) 55.4°(0.	6°) 55.8°(1.2	e)	55.0°(0.02°)	1			
	DO.	A 2 57.0°()	(0.3°) 57.8°(0.	5°) $58.2^{\circ}(1.2)$	P)	$68.0^{\circ}(0.02^{\circ})$				
			TAB	EVI						
THIRSCEN-ELEME	NT DUALBA	ND UCA: MEA	S AND STANDARD I	EVIATION FOR DO	3A E	STIMATION AT 18	900 MR2 FOR	NCOMING		
		\$1057	IS AT 55° AND 55	$+\delta$, with SNR=	10x	Ъ.				
State-of-the-ar Information Te	rt Antenna chnology	a Systems in Department	Mobile Commun - Electromagnet	<i>ications – Hend</i> ics Group	rik F	Rogier		p. 55		

UNIVESSITEIT	2-D D(OA estimation wit	h UCAs 💦	INTEC			
 UCA- Thr sign Mean for 	ee incoming sig al 1: (120°, 0°), si an and standard different SNR le	rals with DOAs (θ , ϕ) ignal 2: (50°, 240°), signal 3 deviation of 500 impleneevels	S: (70°, 115°)	A			
	UCA-RARE + Root-MUSIC						
	20dB	10dB	3dB				
	120.01° (0.19°)	$120.09^{\circ} (0.35^{\circ})$	$120.08^{\circ}(0.51^{\circ})$				
	$0.01^{\circ} (0.07^{\circ})$	$0.02^{\circ} (0.13^{\circ})$	$0.05^{\circ}(0.19^{\circ})$				
	$49.95^{\circ} (0.18^{\circ})$	$49.94^{\circ}(0.32^{\circ})$	49.95° (0.51°)				
	240.00° (0.14°)	$240.01^{\circ}(0.25^{\circ})$	240.03° (0.38°)				
	$69.95^{\circ} (0.22^{\circ})$	$69.94^{\circ} (0.40^{\circ})$	69.89° (0.59°)				
	115.00° (0.04°)	$115.00^{\circ} (0.08^{\circ})$	115.00° (0.14°)				
State-of-the Information	-art Antenna Systems in M Technology Department –	lobile Communications – Hendrik Rogier Electromagnetics Group		p. 61			

Second Workshop on Advanced Computational Electromagnetics

Ghent - May 3-4, 2006

- Program -

Wednesday, May 3, 2006

- 8h30 Welcome
- 9h00 Andreas Cangellaris, University of Illinois at Urbana-Champaign, USA Model Order Reduction of Finite Element Models of Electromagnetic Systems Using Krylov Subspace Methods
- 10h30 Coffee Break
- 10h45 Dominique Lesselier, Supélec, France 3-D Electromagnetic Inverse Scattering Methodologies with Emphasis on the Retrieval of Small Objects
- 12h15 Lunch
- 14h00 Rob Remis, Delft University of Technology, The Netherlands Low- and High-Frequency Model-Order Reduction of Electromagnetic Fields
- 15h30 Coffee Break
- 15h45 Hendrik Rogier, Ghent University, Belgium State-of-the-art Antenna Systems in Mobile Communications

Thursday, May 4, 2006

- 8h30 Welcome
- 9h00 Andreas Cangellaris, University of Illinois at Urbana-Champaign, USA Comprehensive Electromagnetic Modeling of On-Chip Noise Generation and Coupling During High Speed Switching
- 10h30 Coffee Break
- 10h45 Davy Pissoort, Ghent University, Belgium Fast and Accurate Modeling of Photonic Crystal Devices
- 12h15 Lunch
- 14h00 Tom Dhaene, University of Antwerp, Belgium Electromagnetic-Based Scalable Metamodeling
- 15h30 Coffee Break
- 15h45 Luc Knockaert, Gunther Lippens, and Daniël De Zutter, Ghent University, Belgium Towards a Classification of Projection-Based Model Order Reduction

On

Advanced Computational Electromagnetics

Organized by Dr. D. Pissoort Prof. D. De Zutter Prof. F. Olyslager Prof. A. Franchois