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Abstract: Multi-energy systems (MES) allow various energy forms, such as electricity, gas, and
heat, to interact and achieve energy transfer and mutually benefit, reducing the probability of load
cutting in the event of a failure, increasing the energy utilization efficiency, and improving the
reliability and robustness of the overall energy supply system. Since energy storage systems can
help to restore power in the case of failure and store the surplus energy to enhance the flexibility of
MES, this work provides a methodology for reliability optimization, considering different energy
storage configuration schemes under weather uncertainties. First of all, a reliability evaluation
model of a multi-energy system under weather uncertainties based on a sequential Monte Carlo
simulation is established. Then, the reliability optimization problem is formulated as a multi-objective
optimization problem to minimize the reliability index, SAIDI (system average interruption duration
index), and the reliability cost. Finally, a case study implemented on a typical MES layout is used
to demonstrate the proposed methodology. A comparative analysis of three widely adopted multi-
objective metaheuristic algorithms, including NSGA-II (non-dominated sorting genetic algorithm
II), MOPSO (multiple objective particle swarm optimization), and SPEA2 (strength Pareto evolution
algorithm 2), is performed to validate the effectiveness of the proposed method. The simulation
results show that the NSGA-II algorithm leads to better optimal values and converges the fastest
compared to the other two methods.

Keywords: multi-energy system; reliability evaluation and optimization; energy storage configura-
tion schemes; uncertainty modeling; sequential Monte Carlo simulation; metaheuristic algorithms

1. Introduction

Multi-energy systems refer to a new, unified view of energy systems formed by the
coupling of cooling and heating in gas and electricity supplies during the transmission
and distribution processes, which has the potential to make energy monitoring, genera-
tion, consumption, and maintenance more efficient. Multi-energy systems can take full
advantage of the interaction between various forms of energy sources to improve system
economics, increase system flexibility, and enhance system reliability. However, due to
the complex structure of MES and the enormous components they contain, the failure of
a single component could have a significant impact on a multi-energy system’s overall
operation. Thus, it is critical to assess and improve MES reliability effectively and accurately.
Multi-energy system reliability is defined as the extent to which the performance of the
components in a bulk system provides the customer with electrical, thermal, and gas energy
within agreed criteria [1]. Besides assessing MES reliability, improving it is also essential, as
it can enhance MES stability and provide energy to the customers more efficiently [2]. MES
reliability can be improved by enhancing its flexibility through the optimized use of energy
storage systems, which can compensate for the volatility and the uncertainty of renewable
generation, such as wind and PV power generation. Therefore, this study explores how to
optimize the energy storage configuration schemes to optimize MES reliability.
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1.1. MES Reliability Assessment Overview

After Roy Billiton introduced reliability assessment analysis [3], a large number of
researchers conducted multi-energy system reliability assessments. The vast majority of
studies focus on the single coupling system, mainly on electricity and heat, with specific
application areas [4]. In Ref. [2], the reliability assessment of an electricity–heat integrated
energy system with heat pumps based on a Monte Carlo simulation is proposed. The
effects of the CCHP system on energy supply reliability are analyzed in [5], concluding
that combining energy supplies can significantly increase overall system reliability. In [6,7],
the natural gas network combined with the power distribution system is modeled for
the reliability evaluation. A few studies of power–gas–heat multi-energy systems have
been undertaken, based on the reliability assessment of single coupling systems. The
authors in [8] assess the reliability of a multi-carrier energy system with varying levels
of demand while accounting for the uncertainty of different weather conditions. In [9],
a user experience-based reliability evaluation of an electricity–gas–heat MES is defined
and reliability indicators from the standpoint of user severity and satisfaction with en-
ergy consumption are provided. Although the studies evaluate the system reliability by
integrating all of the three energy forms, and the authors in [8] also take into account the
weather uncertainty, they do not include in their assessment of integrated energy systems
renewable energy and energy storage systems, which are instead considered to be essential
components of future sustainable energy grids. Multi-energy system reliability evaluation,
considering energy storage devices, is introduced in [10–12]. The authors in [10] propose a
multi-carrier energy system to assess MES reliability while accounting for the influence of
energy storage devices. The authors in [11] propose assessing microgrid reliability with en-
ergy storage systems by utilizing a Monte Carlo simulation, which considers multi-energy
coupling and grade difference. A reliability evaluation approach is devised in [12] by inte-
grating the FMEA (failure mode and effect analysis) method and Monte Carlo simulation to
analyze multi-energy micro-grids’ reliability while considering various distinct operational
strategies for energy storage devices. An MES integrated with electrical vehicles, which
are mobile energy storage systems, has been considered in reliability evaluation. The
influence of V2G (vehicle to grid) technology on distribution system reliability is studied
in [13], using the 24 h available energy model of electric vehicles. The aforementioned
works [10–13] clearly show the key role storage systems play in supporting MES reliability
and flexibility. Based on the findings of these studies, it is essential to consider storage
systems in order to optimize MES reliability.

1.2. MES Reliability Optimization Overview

Since energy storage devices can restore power in the event of a power outage while
also storing excess energy, reliability optimization that considers different energy storage
configuration schemes is essential to enhance the energy supply reliability. Moreover, the
primary goal of MES optimization is to satisfy the customer demand at the lowest possible
cost while ensuring the highest system reliability [14]. Thus, a multi-objective method is
considered in this work to optimize both system reliability and the cost of relative energy
storage system investment and the energy not supplied.

Some researchers have attempted to incorporate the results of reliability evaluations
into optimal planning problems based on the reliability evaluation approach. The authors
in [14] use a Monte Carlo simulation and particle swarm optimization approach to develop
an optimal reliability plan for a composite electric power system. The multi-objective
optimization of a grid-connected PV–wind hybrid system, taking into account reliability,
economic, and environmental factors, is proposed in [15]. The authors in [16] optimize
residential buildings with regard to energy demand while imposing reliability constraints,
without considering costs. A standalone renewable energy system for 250 households in
India, considering the cost of electricity and reliability, is designed in [17]. An optimal
day-ahead dispatch and model of predictive control for energy hubs is explored in [18]
for simple energy hub layouts, but without considering the optimal system design. The
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previous research focused on either single energy system optimization or single objec-
tive optimization. The economics and reliability of multi-energy systems are still not
co-optimized simultaneously, however, despite both being key aspects that need to be
taken into account.

1.3. Main Contributions

Even though the studies mentioned above are relevant, there are still significant gaps
and open challenges:

1. The reliability assessment of multi-energy systems primarily focuses on single cou-
pling systems, such as power–heat and power–gas systems, and assessments seldom
focus on multi-energy systems that combine all three energy forms of power, heat,
and natural gas;

2. The established reliability modeling approach is very simplistic, ignoring component
uncertainty and time-varying load in real-world situations;

3. Most previous works solved the problem as a single optimization problem, with the
goal of maximizing reliability or lowering cost as the sole objective, and there is still
no detailed investigation of optimal storage system design for multi-energy system
reliability.

To address these gaps, a sequential Monte Carlo simulation is adopted to assess and
quantify MES reliability, based on well-known performance indicators (e.g., the reliability
index, SAIDI), and considering storage devices and PV, as well as wind uncertainties. The
Monte Carlo simulation is a mathematical technique for modeling risk or uncertainty in
complex large-scale systems, and thus can help simulate their operation by using repeated
random sampling from the specific probability distribution of random variables [19]. There
are two types of Monte Carlo simulation: non-sequential (or random) Monte Carlo and
sequential Monte Carlo (chronological). Sequential Monte Carlo simulation, as opposed
to the non-sequential approach, simulates the system states in a chronological sequence.
Since an MES is a large-scale, complex, dynamic system, the sequential method is more
appropriate for evaluating MES reliability [20]. The Monte Carlo simulation approach is
integrated into the problem of optimizing MES reliability, taking economic considerations
into account. Thus, a reliability optimization is formulated as a multi-objective problem
aiming to maximize MES reliability in a cost-effective manner. The resulting optimization
problem is highly complex and nonconvex, with a large number of variables and strongly
coupled subsystems. Because of this, solving such an optimization problem using analytical
methods, such as interior point and branch-and-bound methods, is extremely hard, and
metaheuristics are a more suitable option [21]. Metaheuristic methods, such as genetic algo-
rithms and particle swarm optimization, are widely utilized in the energy system domain to
tackle numerous problems [21], which include reliability optimization, economic dispatch,
optimal power flow, distribution system reconfiguration, load and generation forecasting,
and maintenance scheduling. These are solved using metaheuristic optimization in [22–24].
Among them, the Pareto-based MOEA (multi-objective evolutionary algorithms), including
NSGA-II, MOPSO, and SPEA2, appear to be the most commonly used. The Pareto front
contains a set of non-dominated solutions from which decision makers can choose their
preferred one [21]. Since metaheuristics can address multiple-objective, multiple-solution
problems and can calculate high-quality solutions to complicated real-world problems [25],
this paper adopts these three methods—NSGA-II, SPEA2, and MOPSO to find out the opti-
mal storage device placement schemes. NSGA-II [26], which is one of the most frequently
used genetic algorithms and is based on the crowding distance criterion (the average
distance between a given solution and the nearest solution belonging to the Pareto front;
individuals with greater crowding distances are reserved for the next generation), has a
strong capability to avoid being trapped in a local optimal solution. Moreover, NSGA-II
has shown fast and efficient convergence to Pareto solutions. Unlike NSGA-II, SPEA2 [27]
uses a different criterion-clustering method, which preserves the characteristics of the non-
dominated solutions. In high-dimensional objective spaces, SPEA2 appears to outperform
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NSGA-II. However, NSGA-II has a “broader range” of solutions, and is thus more likely
to obtain solutions closer to the Pareto optimal front [27]. The principle and technique of
MOPSO [28] are relatively simple compared to the other algorithms. MOPSO is based on
the flocking behavior of birds, in which an individual’s movement is influenced by the
locations and movements of nearby individuals. MOPSO also exhibits a fast convergent
rate; however, it performs worse than genetic algorithms at finding Pareto solutions. Based
on the different characteristics of the above algorithms, this paper employs these three
algorithms to validate and compare the effectiveness of the obtained results.

The main contributions of this paper are as follows:

1. The power–heat–gas multi-energy system reliability with energy storage devices
has been modeled, taking into account all the coupling components under weather
uncertainties;

2. The uncertainty modeling of PV and wind generation and time-varying load fore-
casting, including heat and gas demand, are considered. Moreover, a time varying
cost model based on the sector customer damage function (SCDF) [29] is also adopted
to calculate the EENS (expected energy not supplied) and the interruption cost in
objective functions;

3. A multi-objective reliability optimization problem is formulated considering both
the system reliability index, SAIDI, and costs (including interruption cost and the
installation cost of multi-energy storage devices) as objective functions. The opti-
mization results are compared through the three widely used algorithms, i.e., the
particle swarm algorithm, genetic algorithm, and evolutionary algorithm, to validate
the feasibility and effectiveness of the suggested approach.

2. Overall Modeling Architecture of Multi-Energy System

Figure 1 is a schematic diagram of a typical MES. The structure of a generic multi-
energy system includes three main parts: the power grid (PG), heat network (HN), and gas
network (GN). Besides the power generation unit PV (photovoltaic), WT (wind turbine),
and three kinds of energy storage devices, ES (electricity storage), HS (heat storage), and GS
(gas storage), coupling components, such as combined heat and power (CHP), power to gas
(P2G), vehicle to grid (V2G), and gas boiler (GB), are also considered in the MES modeling.
P2G, as a novel energy conversion technology, alters the current condition of one-way
natural gas to electricity conversion through gas turbines and brings the power grid and
natural gas network closer. P2G technology in the electric–gas combined network not only
improves power and natural gas coupling and promotes optimal operation between multi-
energy flows, but it also converts surplus wind energy into natural gas during the peak wind
power season to reduce the amount of abandoned wind energy. CHP is another coupling
component that can generate power and heat simultaneously. This technology can increase
energy efficiency by utilizing waste heat from industrial production. The V2G system
allows for two-way energy flow (charge and discharge) between the electric vehicle and the
grid, alleviating grid power supply pressure and improving battery utilization efficiency.

2.1. Multi-Energy System Components Modeling

The various MES components will have a significant influence on the system’s overall
operation. In order to assess and optimize the reliability of an MES, a mathematical model
of MES components is needed, which will be illustrated in this section.

2.1.1. CHP Unit

The CHP (combined heat and power) unit includes power production, heat production,
and gas consumption. During the time period t, the amount of natural gas consumed by
CHP is [30]:

Gt
CHP =

Pt
CHP

ηCHPLHVng
(1)
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where LHVng is the heating value of natural gas, ηCHP is the CHP unit efficiency, Gt
CHP is

the natural gas consumption, and Pt
CHP is the electric power generation of CHP unit during

period t.
As a result, the heat generated by CHP during period t can be calculated as follows:

Ht
CHP =

Pt
CHP

ηCHP
COPCHP (2)

where COPCHP is the coefficient of the performance parameter of the CHP unit and Ht
CHP

is the heat power generation of CHP unit during period t.
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2.1.2. Gas Boiler

The GB consumed the following amount of natural gas during the time period t [30]:

Gt
GB =

Ht
GB

ηGBLHVng
(3)

where ηGB is the GB unit efficiency, Gt
GB is the natural gas consumption, and Ht

GB is the
heat output of the GB unit during period t.

2.1.3. P2G Device

The amount of natural gas generated by P2G over period t is [30]:

Gt
P2G =

Pt
P2GηP2G

LHVng
(4)

where ηP2G is the P2G unit efficiency, Gt
P2G is the natural gas generation, and Pt

P2G is the
electric power consumption of P2G unit during period t.

2.1.4. Energy Storage Devices

1. Electricity storage devices

When the grid’s power supply is adequate to fulfill load demand, the ES saves the
residual electric energy from the grid; when the grid’s power supply is inadequate for
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satisfying load demand, the ES returns electricity to the grid. The following equations are
used to model ES devices [31]:

Pt
charging =

 Pt,max
charging,

(
Pgrid − PL

)
≥ Pt,max

charging

Pgrid − PL, Pt,max
charging ≥

(
Pgrid − PL

)
≥ 0

(5)

Pt
discharging =

 −Pt,max
discharging,−Pt,max

discharging ≥
(

Pgrid − PL

)
Pgrid − PL, 0 ≥

(
Pgrid − PL

)
≥ −Pt,max

discharging

(6)

where Pt
charging and Pt

discharging represent the amount of charging and discharging power of

the stored energy at hour t, respectively, and Pt,max
charging and Pt,max

discharging are the constraints of
the charging and discharging power of the stored energy. Additionally, Pgrid is the grid
power supply to the power system and PL is the load power.

2. Heat storage devices

Heat storage devices can be used to improve the flexibility of CHP units and help
to achieve peak shifting regulation of heating and power supply, hence increasing MES
reliability. The mathematical model of the heat storage device (Equation (7)) should
satisfy the heat balance between heat charging and heat discharging (Equation (8)), and
the charge/discharge and current heat power should not exceed the capacity of the heat
storage device, as shown in Equations (9)–(11), respectively. The HS devices are modeled
according to the following equations [31]:

Hi, t+1
hs = Hi, t

hs + Hi,t
hs, in − Hi,t

hs, out, ∀i ∈ Ωhs, t ∈ Γ (7)

∑ Hi,t
hs, in = ∑ Hi,t

hs, out (8)

0 ≤ Hi,t
hs, in ≤ λi, t × Hi,max

hs, in , λi, t ∈ {0, 1} (9)

0 ≤ Hi,t
hs, out ≤ (1− λi, t)× Hi,max

hs, out, λi, t ∈ {0, 1} (10)

0 ≤ Hi, t
hs ≤ Hi, max

hs (11)

where Hi, t
hs represents the heat energy of heat storage device i at hour t, and Hi, max

hs repre-
sents the capacity (maximum heat energy) of heat storage device i. Additionally, Hi,t

hs, in and

Hi,t
hs, out are the heat charging power and heat discharging power and Hi,max

hs, in and Hi,max
hs, out are

the maximum heat charging power and heat discharging power. Moreover, Ωhs is the set
of heat storage devices, Γ is the 24 h time set, and λi, t is the binary variable, where λi, t = 1
denotes the charging state, while λi, t = 0 denotes the discharging state.

3. Gas storage devices

The state of the gas storage device is expressed by the input, output, and gas storage
volume. In a day, the gas storage volume at the beginning and the end of the time is equal.
The GS devices are modeled according to the following equations [32]:

Gy,t
gs = Gy, t−1

gs + Gy,t
gs, in − Gy,t

gs, out (12)

∑ Gy,t
gs, in = ∑ Gy,t

gs, out (13)

0 ≤ Gy,t
gs, in ≤ Gy,max

gs, in , 0 ≤ Gy,t
gs, out ≤ Gy,max

gs, out (14)

0 ≤ Gy,t
gs ≤ Gy,max

gs (15)
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where Gy,t
gs is the gas storage volume of gas storage device y at hour t, Gy,max

gs is the capacity

of gas storage device y, Gy,t
gs, in and Gy,t

gs, out are the input and output gas volume of gas

storage device y at hour t, respectively, and Gy,max
gs, in and Gy,max

gs, out are the upper limit of input
and output gas volume, respectively.

2.1.5. Electric Vehicles

The energy availability of EVs will vary throughout the day due to changes in customer
demand. It is assumed that most vehicles will leave between 5 a.m. and 8 p.m., which leads
to a decrease in the available energy demand. By contrast, the majority of the vehicles will
be charging between 8 p.m. and 5 a.m.

Assume that the EVs’ available energy Fz(z) follows a normal distribution. The
formula can be found in the equation below [13]:

Fz(z) =
∫ z

−∞
∑m

j=1
ρ(N−j)

(N − j)!
e−ρ 1

j
√

2πσ
e−

(
µ
j −ω)

2

2σ2 du (16)

ρ =
δ

µ
(17)

where N is the total number of EVs in a certain area, j is the number of EVs that are
connected to the charging stations, and σ is the standard deviation. The rate of electric
vehicles entering the system is denoted as δ, whereas the rate of electric vehicles leaving
the system is specified as µ. The available power in the EVs is ω.

Assume that 150 electric vehicles enter and leave at a constant rate during the day and
night, and the available electric power of the EVs can be calculated by dividing the electric
energy over a given time h (in hours), where the available electric energy F−1

z (0.05) of the
electric vehicles is supplied to the grid with a 95% probability:

Pt
EV =

F−1
z (0.05)

h
(18)

2.2. Uncertainty Modeling

The output power of wind and solar energy is inherently uncertain due to the inter-
mittency of wind speed and the nature of solar exposure over time [33]. In this section,
the uncertainty modeling of renewable sources is described according to the stochastic
processes. In order to realize load management in MES, accurate load prediction is critical
to MES scheduling and safe operation. Due to its great ability to learn autonomously, the
error back propagation (BP) neural network can fully account for temperature, humidity,
electricity, and other factors in load forecasting [34]. Simply input the parameter input
into the trained model, and the trained model will be able to forecast the future load
situations [35].

2.2.1. Stochastic Modeling of Renewable Energy Generation

Wind and solar output power are proportional to wind speed and solar radiation,
respectively [33]. The uncertainties in renewable energy production can have a significant
influence on energy supply reliability in MES. Wind power generation and photovoltaic
power generation outputs are described in the following subsections.

Wind Power Generation

Weibull, Gaussian, exponential, gamma, and logistics distributions can usually be em-
ployed to explain the frequency features of wind speed according to different geographical
regions, according to a vast number of studies. Among them, a Weibull distribution based
on a unimodal positive skewness biparametric curve has been widely used.



Energies 2022, 15, 696 8 of 24

Wind turbine power output is dependent on wind speed, which is modeled in this pa-
per using the Weibull distribution. The following equation describes the Weibull probability
density function [33]:

f (V) =
k
c

(
V
c

)k−1
exp

[
−
(

V
c

)k
]

(19)

where k and c are the shape and scale parameters, respectively, and V represents wind speed.
From the Weibull distribution, a sample for wind speed can be determined. After that,

the output power Pw(t) can be calculated by using the wind turbine output curve, and
sampling wind speed every hour (see Figure 2) [36].

Energies 2022, 15, x FOR PEER REVIEW 8 of 25 
 

 

Wind turbine power output is dependent on wind speed, which is modeled in this 

paper using the Weibull distribution. The following equation describes the Weibull 

probability density function [33]: 

�(�) =
�

�
�

�

�
�

���

exp �− �
�

�
�

�

� (19) 

where k and c are the shape and scale parameters, respectively, and � represents wind 

speed. 

From the Weibull distribution, a sample for wind speed can be determined. After 

that, the output power ��(�) can be calculated by using the wind turbine output curve, 

and sampling wind speed every hour (see Figure 2) [36]. 

Pr

0

Pw(t)

V(t)VcoVrVci  

Figure 2. Variation curve of wind farm output power with wind speed [36]. 

The following equation can be used to calculate the power output of a wind turbine 

[33]: 

��(�) =

⎩
⎨

⎧
0     (� ≤ ��� �� � ≥ ���)

��

� − ���

�� − ���

  (��� ≤ � ≤ ��)

��          (�� ≤ � ≤ ���)

 (20) 

where ��  denotes the wind turbine’s rated power output and ���, �� , and ��� denote the 

cut-in wind speed, rated wind speed, and cut-out wind speed, respectively. 

Solar Power Generation 

Equation (21) can be used to describe the uncertainty of solar radiation [33]: 

�(�) =
Γ(� + �)

Γ(�) + Γ(�)
∙ �

�

����

�
���

∙ �1 −
�

����

�
���

 (21) 

where Γ denotes the gamma function, � and � are the shape parameters of the beta dis-

tribution, and ���� and r are the maximal and actual solar radiation value, respectively. 

The formulas for � and � are introduced in [33]. According to the amount of solar 

radiation r at the installation site, the area of a single solar panel is A, and � is the rated 

conversion efficiency of the PV module, while the output power P of the single PV mod-

ule with a base power 100 MVA can be calculated as: 

� =
�(�)������

�������
  (22) 

2.2.2. Time-Varying Load Forecasting 

Since the load demand is not constant, it is necessary to forecast the load demand 

based on the historical data to evaluate the reliability of the system at a specified time. 

The term BP neural network refers to the error back propagation (BP) network, which is 

a multi-layer feedback neural network, first proposed by Rumelhart and McClelland in 

1985 [37]. Because of its simple calculation and strong nonlinear mapping, the BP net-

work has been widely used in load prediction and it has been proven to be effective [34]. 

Figure 2. Variation curve of wind farm output power with wind speed [36].

The following equation can be used to calculate the power output of a wind turbine [33]:

Pw(t) =


0 (V ≤ Vci or V ≥ Vco)

Pr
V−Vci
Vr−Vci

(Vci ≤ V ≤ Vr)

Pr (Vr ≤ V ≤ Vco)

(20)

where Pr denotes the wind turbine’s rated power output and Vci, Vr, and Vco denote the
cut-in wind speed, rated wind speed, and cut-out wind speed, respectively.

Solar Power Generation

Equation (21) can be used to describe the uncertainty of solar radiation [33]:

f (r) =
Γ(α + β)

Γ(α) + Γ(β)
·
(

r
rmax

)α−1
·
(

1− r
rmax

)β−1
(21)

where Γ denotes the gamma function, α and β are the shape parameters of the beta distri-
bution, and rmax and r are the maximal and actual solar radiation value, respectively.

The formulas for α and β are introduced in [33]. According to the amount of solar
radiation r at the installation site, the area of a single solar panel is A, and η is the rated
conversion efficiency of the PV module, while the output power P of the single PV module
with a base power 100 MVA can be calculated as:

P =
f (r)rmax Aη

baseMVA
(22)

2.2.2. Time-Varying Load Forecasting

Since the load demand is not constant, it is necessary to forecast the load demand
based on the historical data to evaluate the reliability of the system at a specified time.
The term BP neural network refers to the error back propagation (BP) network, which is
a multi-layer feedback neural network, first proposed by Rumelhart and McClelland in
1985 [37]. Because of its simple calculation and strong nonlinear mapping, the BP network
has been widely used in load prediction and it has been proven to be effective [34]. Thus,
this paper adopts this method to forecast three time-varying energy loads. The input layer,
hidden layer, and output layer make up the three layers of a BP neural network [34].
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An MES power, heat, and gas load forecasting method based on a BP neural network
comprises the following steps:

1. Input and output vectors are determined according to the specified heat and gas load.
2. Construct a BP neural network model according to the input and output vectors.
3. Commence network training for the BP neural network.
4. Input test samples to conduct a network test on the trained BP neural network, and

judge whether the error between the predicted value and the actual value is less than
the set threshold. If so, perform Step 5.

5. Obtain the required load prediction according to the predicted values.

2.3. Time-Varying Load and Cost Model

The average load is basically a rough estimate of the true load. The time-varying
load can be modeled in Equation (23), which includes hourly loads, and provides a more
accurate description [29]:

Pt
Load = Ly × Pw × Pd × Pt

h (23)

where Ly denotes the annual peak load, Pw is the weekly load as a percentage of the annual
peak, Pd is the daily load as a percentage of the weekly peak, and Pt

h is the hourly load as a
percentage of the daily peak.

Because outage loss costs are not constant, a time-varying cost model is required
to calculate interruption costs. Customer interruption costs are the financial charges
incurred by an electricity consumer as a result of power supply interruptions to their daily
activities [38]. In real situations, customer interruption costs for a particular load level
and outage period vary depending on the time of occurrence. When an outage happens
during peak shopping hours, for example, the cost of interruption to commercial customers
is higher than when the outage occurs during off-peak hours. Therefore, by integrating
the customer damage function (CDF) with the time-varying cost weight components, a
time-varying cost model (TVCM) is constructed for each customer. Since the energy system
contains more than one load type, the TVCM for seven typical customer sectors is used to
incorporate the time-varying characteristic in the MES reliability evaluation [29].

The following equation calculates the time-varying cost weight factors Wt:

Wt =
Actual interruption cos t at hour t

Average interruption cos t
(24)

Equation (25) calculates the time-varying cost TVCt at hour t by multiplying the
appropriate weighting factor Wt with the average interruption cost (AIC) [29]:

TVCt = Wt × AIC (25)

3. Reliability Optimization Problem Formulation

To find the optimal location of the storage device in the MES at the lowest possible
cost to realize the highest reliability under weather uncertainty, the reliability optimization
problem is formulated as a multi-objective problem. The two objective functions to be
minimized are based on two performance indicators, i.e., a reliability indicator and an
economic indicator. The reliability index, SAIDI, is employed as the reliability indicator to
reflect the whole MES reliability performance in this optimization problem. The economic
indicator includes both system interruption costs and investment costs. The location of the
energy storage device is the decision variable.
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3.1. Reliability Indicator

The reliability index, SAIDI, is chosen as the reliability indicator. The formula can be
expressed as in Equation (26) [39]:

SAIDI = ∑SY
sy=1

(
∑n

i=1
Ui Ni

Ni

)
/SY (26)

where Ui is the average outage time of load point i, Ni is the number of customers at load
point i, n is the total number of buses, and SY represents the total simulation years.

The average outage time Ui can be calculated as:

Ui =
∑t=te

t=ts Ti,t
dn

fi
(27)

where fi is the number of outage events affecting load point i, Ti,t
dn is the failure time of load

point i, ts and te are the failure start and end points, respectively, and t represents the time
step. Whether the load point installs the energy storage device would directly affect its
outage time. If the decision variable (the location of the storage device) is not zero, this
means that there is a storage device installed. When the failure event happens, if the failure
load can be supplied through an energy storage device according to the time series load
prediction curves, the number of failures fi will not be accumulated and the downtime of
the system is just the trip time of the automatic switch. Therefore, the relationship between
the decision variables and the objective function SAIDI is thus established.

3.2. Economic Indicator

The cost functions, which include the system interruption cost and investment cost,
are the economic indicator of the multi-objective functions. The interruption cost is caused
by EENS due to the failure of some of the MES components:

Cinterrupt =
SY

∑
sy=1

(
n

∑
i=1

Ci,t
loss × EENSi,t

)
/SY (28)

where Ci,t
loss is the outage cost during failure time t at load i, and EENSi,t is expected energy

not supplied during failure time t at load i.
The Closs and EENS can be represented as [29]:

Ci,t
loss =

∑t=te
t=ts Wt

i
te− ts + 1

× f (rij) (29)

EENSi,t = Laijrij (30)

Laij =
∑t=te

t=ts Lri(t)
te− ts + 1

(31)

rij = k× TTSj + (1− k)× TTRj (32)

where Laij is the average load during failure event j at load point i, Lri(t) is the load demand
in the load profile, ts and te are the failure start and end points, respectively, and t represents
the time step. Additionally, rij is defined as the failure duration, TTSj and TTRj represent
time to switch and time to failure affected by failure event j, respectively, and f (rij) is the
load point customer damage function, while Wt

i is the cost weight factor for hour t.
The investment cost is only the storage device cost because they are the only ones we

place and we use them to improve and optimize the system’s reliability:

Cinvestment = N × Cinstalli (33)
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where N is the total number of the storage devices installed and Cinstalli is the installation
cost co-efficient for the storage device i.

3.3. Objective Functions

The optimization problem is formulated as a non-linear problem to find the optimal
energy storage configuration schemes. The location of the energy storage device is the
decision variable. The two objective functions are formulated as below:

1. Objective 1: Minimize the reliability index, SAIDI.

The objective function 1 can be expressed as follows:

obj1 = min(SAIDI) (34)

2. Objective 2: Minimize the interruption cost and storage device investment cost.

The objective function 2 can be expressed as follows:

obj2 = min(Cost) = min
(
Cinterrupt + Cinvestment

)
(35)

3.4. Constraints
3.4.1. Energy Balance Constraints

The total generations should equal the load demand at each operation time t. The
energy balance constraints for the power grid, heat network, and gas network are described
in Equations (36)–(38), respectively:

Pt
gen + Pt

GT + Pt
CHP + Pt

PV + Pt
WT + Pt

discharging = Pt
Load + Pt

EV + Pt
charging + Pt

P2G (36)

Ht
GB + Ht

CHP + Ht
hs,out = Ht

Load + Ht
hs,in (37)

Gt
P2G + Gt

gs,out = Gt
Load + Gt

gs,in + Gt
GB + Gt

CHP (38)

where the left side of the above equation represents total energy generation, while the right
side represents the total demands from loads in different energy systems. In addition, t
represents the time step, which is one hour.

3.4.2. Energy Storage Devices Constraints

The charging and discharging power of ES (Equations (39) and (40)), HS (Equations
(41) and (42)), and GS (Equation (43)) are bounded by their minimum and maximum
values. Moreover, the total flow in and flow out power should be balanced at all time steps
(Equations (44) and (45)). The capacity of ES, HS, and GS cannot exceed the maximum
limit, according to Equations (46)–(48), respectively:

0 ≤ Pt
charging ≤ Pmax

charging (39)

0 ≤ Pt
discharging ≤ Pmax

discharging (40)

0 ≤ Hi,t
hs,in ≤ λi,t × Hi,max

hs,in , λi, t ∈ {0, 1} (41)

0 ≤ Hi,t
hs,out ≤ (1− λi, t)× Hi,max

hs,out, λi, t ∈ {0, 1} (42)

0 ≤ Gy,t
gs,in ≤ Gy,max

gs,in , 0 ≤ Gy,t
gs,out ≤ Gy,max

gs,out (43)

∑ Hi,t
hs,in = ∑ Hi,t

hs,out, (44)

∑ Gy,t
gs,in = ∑ Gy,t

gs,out (45)

0 ≤ Et
p ≤ Emax

p (46)
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0 ≤ Hi,t
hs ≤ Hi,max

hs (47)

0 ≤ Gy,t
gs ≤ Gy,max

gs (48)

where Et
p represents the electricity of ES at hour t and Emax

p is the capacity of ES.

3.4.3. PV and Wind Turbine Constraints

The capacity constraints for PV and wind turbines are expressed in Equations (49) and (50):

0 ≤ Pt
PV ≤ Pmax

PV (49)

Pmin
WT ≤ Pt

WT ≤ Pmax
WT (50)

3.5. Normalization of Objective Functions

Due to the magnitudes of the two objective functions differing, normalizing the
objectives is necessary to obtain a Pareto optimal solution.

First, we optimize each of the objective functions (Equations (34) and (35)) individually
using the single objective function to obtain the maximum and minimum values of each
objective function. Assume i is the sequence number of the objective function, then, after
normalization, all objective functions will be constrained by [40]:

0 ≤ obji −min obji
max obji −min obji

≤ 1 (51)

because we normalize the objective functions by the real intervals of their variation through-
out the Pareto optimum set, and this gives all the objective functions the same magnitude
(0–1) [41].

3.6. Problem Formulation

The multi-objective reliability optimization problem is therefore formulated as:

min
[
SAIDI, Cinterrupt + Cinvestment

]
(52)

subject to Equations (36)–(50).

3.7. Multi-Objective Optimization Algorithms

The NSGA-II, SPEA2, and MOPSO algorithms are multi-objective stochastic optimiza-
tion algorithms. NSGA-II is an improved version of the non-dominated sorting genetic
algorithm (NSGA) [26]. NSGA-II emphasizes the non-dominated sorting with the elitist
principle by passing the best non-dominated solutions to the next generation. It also uses
a crowded distance-based diversity-preserving mechanism to find the nearest solution
belonging to the Pareto front to be reserved for the next generation [42]. SPEA2 is a multi-
objective optimization algorithm [43] that has four main features: (a) the external archive
stores the non-dominated solution in a continuously updating population, (b) the number
of external non-dominated points that dominate an individual’s fitness is used to assess
their fitness, (c) the Pareto dominance relationship is used to maintain population diversity,
and (d) the clustering process is introduced to decrease the non-dominated set without
destroying the properties of the non-dominated set. MOPSO [28] determines a particle’s
flight direction using the Pareto dominance principle, and it stores previously discovered
non-dominated vectors in a global repository that is then used by other particles to guide
their flight. All the algorithms above are based on a non-dominated sorting mechanism. By
comparing the values of the same objective, non-dominated sorting divides a solution set
into numerous disjointed subsets or ranks. Solutions of the same rank are considered to be
equally important after non-dominated sorting, and solutions of lower ranks are preferred
over those of higher ranks [44]. The adaptive stop criterion (also known as the stagnation
criterion) is used as the stop criterion, whereby the algorithm stops when the objective
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function converges to the optimal value and does not change after a certain number of
iterations. Moreover, setting the maximum number of iterations to an exceptionally high
value might be used as a last-resort resource stop criterion to catch infinite executions [21].

The optimization process related to all three algorithms is shown in Figure 3, and the
optimization steps are as follows:

Step 1: Initialize population, generation size, the upper and lower boundary of decision
variables (the placement of each particle should not exceed its energy network total
buses), and simulation times.

Step 2: Evaluate the objective functions using Monte Carlo simulation and store the non-
dominated solutions in the repository.

Step 3: Update the non-dominated solution.
Step 4: Stop if the adaptive stop criterion and the maximum number of generations have

been achieved; otherwise, proceed to step 2.
Step 5: Obtain optimal solutions: optimal storage devices placement schemes and objective

functions results.
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4. Case Study

A case study is developed to demonstrate the applicability of the proposed technique.
A comparative analysis is conducted where widely used multi-objective algorithms, i.e.,
NSGA-II, MOPSO, and SPEA2, are applied to solve the formulated reliability optimization
problem illustrated in Section 3. The considered MES includes an IEEE 39 bus system [45],
a 32-node heat network [46], and a 20-node Belgian natural gas network [47]. Figure 4
depicts a schematic diagram of the tested multi-energy system. Besides generators in the
power grid, the PV, WT, GT, and V2G systems have been considered in the MES design for
providing supplemental energy to the critical load demands, which have been installed on
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buses 1, 2, 20, and 26 respectively. The coupling components, such as CHP, P2G, and V2G,
can enable multi-energy flows and improve energy efficiency in the MES.
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4.1. Simulation Parameters

The reliability evaluation and optimization of the MES are developed with MATLAB
2020b on a PC with an Intel® Core™ i5-7200 2.5 GHz CPU and 8 GB RAM. The simulation
period for the MCS reliability evaluation is set as 20 years with a time step of one hour,
with 100 MCS runs at each iteration to obtain reasonable results. The parameters for the
Weibull distribution and beta distribution in the uncertainty modeling of a wind farm and
PV are shown in Tables 1 and 2, respectively [33].

Table 1. Weibull distribution parameters.

Weibull Distribution
Parameters k c (m/s) Vci (m/s) Vr (m/s) Vco (m/s) Pr (MW)

Value 1.5 5 3 13 25 1000

Table 2. Beta distribution parameters.

Beta Distribution
Parameters α β A(m2)

rmax
(MW/m2) η baseMVA

Value 0.6869 2.132 70 100 0.14 100

The probability distributions for wind speed and solar radiation are shown in Figure 5.
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The parameters for forecasting power, heat, and natural gas loads are presented in the
following Table 3 [35]. The BP neural network is used to forecast future load changes based
on historical data.

Table 3. BP neural network parameters.

BP Neural Network Parameters Setting

Number of network layers Input layer: 1; Hidden layer: 1; Output layer: 1
Number of neurons in each layer Input layer: 4; Hidden layer: 9; Output layer: 1
Maximum number of iterations 5000

Training target error 0.2
Initial value of training learning rate 0.1

The load forecast result for the MES is shown in the following Figure 6. The training
results show that the relative error of all loads is less than 0.2, which has met the training
goal. The maximum absolute error is 0.01 in the IEEE 39 power system, 0.004 in the 32-node
heat network, and 0.13 in the 20-node Belgian natural gas network.

The sequential Monte Carlo simulation method is used to assess the multi-energy
system’s reliability. The failure rate and repair time of the components in the MES can be
found in [9]. The installation cost and capacity for different types of storage devices are
given in Table 4. The capacities of PV, WT, and GT are shown in Table 5. The interruption
cost for seven types of customers and failure duration can be found in [29]. The seven
typical customer types are composited by large user, industry, commerce, agriculture,
resident, government, and office. The time-varying cost weight factor profiles in terms of
seven customers over 24 h are presented in [29]. The load and customer data of the IEEE
39 bus system, 32-node heat network, and 20-node Belgian natural gas network can be
found in Appendix A Tables A1–A3, respectively [45–47].

NSGA-II, MOPSO, and SPEA2 algorithms have been used to obtain the optimal case
for different storage devices. In order to select the reasonable parameters, the parameters
have been tested through experiments. The population size, number of generations, and
mutation rate start from low values, while the crossover rate starts from a high value, given
that it will begin decreasing. The population size and number of generations can have an
impact on the execution time. For MOPSO, a large population size is needed as it requires
a longer execution time compared to the other two algorithms. The NSGA-II, MOPSO, and
SPEA2 parameters are summarized in Table 6 [48]. Before running the optimization, it is
vital to determine the population size, maximum generations, and their repository/archive
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size. For MOPSO, the accelerating parameters c1 and c2 are used to update the velocity
and position of each particle, whereas for NSGA-II and SPEA2, crossover and mutation
factors are required to conduct non-dominated sorting to obtain the offspring generation
and subsequently find out the global optimal solution.
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Table 4. The installation cost coefficient and capacity for storage devices.

Component Cinstalli Capacity for MES

ES 187 USD/MWh 600 MWh
HS 6.05 USD/MWh 0.5 MWh
GS 3.665 USD/MMBtu 10 Mm3

Table 5. The capacity of PV, WT, and GT.

Component Capacity (MW)

PV 100
WT 500
GT 120
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Table 6. Multi-objective optimization algorithm parameters.

MOPSO NSGA-II SPEA2

Population size = 100 Population size = 50 Population size = 50
Generations = 200 Generations = 200 Generations = 200

Repository size =100 Archive size = 50 Archive size = 50
c1 = 1.8 Crossover rate = 0.7 Crossover rate = 0.7
c2 = 2 Mutation rate = 0.01 Mutation rate = 0.01

w = 0.7
ωdamp = 0.9

4.2. Simulation Results

Figure 7 gives the convergence characteristics of the two objectives. All the three
algorithms converge to their minimum values and the adaptive stop criterion has been
satisfied before the maximum number of iterations is reached, and no early stopping
(the optimization stops early even though the objective function continues to provide
considerable improvements) or late stopping (the optimization stops with no significant
improvement for many of the last generations) [21] occurs. The convergence characteristics
of the NSGA-II, MOPSO, and SPEA2 are thus proved.
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Figure 8 gives the Pareto front results of the three algorithms. Among them, NSGA-
II converges the fastest, followed by SPEA2. The Pareto front shown in Figure 8 has
been devised by applying the three multi-objective optimization algorithms described in
Section 3 to solve the reliability optimization problems listed in Equations (34) and (35).
The horizontal and vertical coordinates represent the two objective functions. It can be
noted that the NSGA-II method leads to better optimal values of the objective functions
compared to the other two methods, resulting in a high-quality solution.

The optimal results obtained from the three different algorithms are summarized
in Tables 7–9 All three tables are sorted in order of cost from high to low. Since higher
reliability costs more money and the cost function relates to the interruption cost and
storage device investment cost, users can decide their optimal case based on the given
tables. NSGA-II costs only USD 1.5028 × 105 × 1000 and achieves a SAIDI value of 0.0585,
given in the number one case for NSGA-II, whereas MOPSO costs USD 2.1029 × 105 × 1000
and achieves the lowest SAIDI value of 0.0867, and SPEA2 costs USD 1.6200 × 105 × 1000
and achieves the lowest SAIDI value of 0.0673. From the three tables, it is not difficult to
find out that SPEA2 outperformed MOPSO, but underperformed NSGA-II. However, it
should be pointed out that higher reliability does not mean more storage devices, for MES
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reliability would relate to both storage device placement and the system interruption costs,
and the second set of data has 41 storage devices while the fourth set of data has 49 storage
devices in NSGA-II results, which can reflect this point of view. Table 10 compares the
computational times of these three algorithms. It can be seen that NSGA-II and SPEA2 are
faster than MOPSO.
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Table 11 compares the reliability indices of the MES before and after optimization. As
energy storage devices are added, there are more components, resulting in a modest rise
in the SAIFI (system average interruption frequency index) value. The system average
interruption duration (SAIDI) decreased by 96.12%, from 1.4945 h/Ca to 0.0585 h/Ca. The
customer average interruption duration (CAIDI) decreased by 99.21%, from 7.548 h/Ca
to 0.0600 h/Ca. As for the average service availability, ASAI reached a high level, and the
optimization to ASAI is very small. Even though the ASAI rise was minor, the system
outage time was significantly reduced.

In fact, there are numerous scholars who have conducted a comparison study be-
tween the NSGA-II, SPEA2, and MOPSO algorithms, which would help to understand the
optimization results. The authors in [49] have tested several MOEAs on ZDT and WFG
functions, and the results reveal that no algorithm can always be superior or worse than
other algorithms on all test functions. A portfolio optimization problem has been studied
in [50] to compare the performance of NSGA-II, SPEA2, and MOPSO, and the results
suggests that MOPSO outperforms the other two. However, in the stochastic optimization
problem of an inventory control system in [51], NSGA-II outperforms MOPSO in terms of
spacing and the number of Pareto optimal solutions. Therefore, in view of the reliability
optimization problem raised in this paper, the case study results indicate that the NSGA-II
algorithm leads to better optimal values and converges the fastest compared to the other
two methods. The results can be varied depending on different test problems.
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Table 7. NSGA-II optimization result.

NSGA-II
Storage Device Optimal Location Obj1–SAIDI

(h/Ca)
Obj2–Cost
(USD 1000)Power Grid Heat Network Gas Network

1 Bus 1, 3, 6, 7, 12, 13, 15, 18, 19, 20, 21, 22,
25, 28, 29, 30, 31, 32, 35, 37, 39 Bus 1, 2, 4, 5, 14, 15 Bus 1, 2, 3, 5, 6, 7, 9, 10,

12, 13 0.0585 1.5028 × 105

2 Bus 1, 3, 4, 6, 7, 12, 13, 16, 18, 19, 20, 21, 22,
25, 28, 29, 30, 31, 32, 35, 37, 39 Bus 1, 2, 4, 9, 12, 15 Bus 2, 3, 5, 6, 7, 9, 10, 11,

12, 13, 15, 16, 19 0.0702 1.4132 × 105

3 Bus 1, 3, 4, 6, 7, 12, 13, 16, 18, 20, 21, 22, 25,
28, 29, 30, 31, 32, 35, 37, 39 Bus 1, 3, 8, 14, 21 Bus 2, 3, 5, 6, 7, 9, 10, 11,

12, 13, 15, 16, 19 0.0808 1.2859 × 105

4 Bus 1, 2, 3, 4, 5, 6, 7, 12, 13, 16, 18, 19, 20,
21, 22, 24, 25, 28, 29, 30, 31, 32, 35, 37, 39

Bus 3, 11, 12, 13, 14, 17,
18, 21, 22, 23, 24

Bus 2, 3, 5, 6, 7, 9, 10, 11,
12, 13, 15, 16, 19 0.0814 1.2354 × 105

5 Bus 1, 3, 4, 5, 6, 7, 12, 13, 18, 19, 20 21, 22,
25, 28, 29, 30, 31, 32, 35, 37, 39 Bus 2, 3, 4, 5, 6, 10, 11, 20 Bus 2, 3, 5, 6, 7, 9, 10, 11,

12, 13, 15, 16, 19 0.0944 1.1417 × 105

6 Bus 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 16, 18, 20 21,
22, 25, 28, 29, 30, 31, 32, 34, 37, 39 Bus 2, 3, 4, 5, 6, 10, 11, 20 Bus 2, 3, 5, 6, 7, 9, 10, 11,

12, 13, 16, 19 0.1167 1.0826 × 105

7 Bus 1, 2, 4, 6, 7, 12, 13, 16, 18, 19, 20, 21, 22,
25, 28, 29, 30, 31, 32, 34, 37, 39 Bus 4 Bus 2, 3, 5, 6, 7, 9, 10, 11,

12, 13, 15, 16, 19 0.1728 1.0461 × 105

8 Bus 1, 4, 5, 6, 7, 11, 12, 13, 16, 18, 19, 20, 22,
25, 28, 29, 30, 31, 32, 35, 37, 39 Bus 5 Bus 2, 3, 5, 6, 7, 9, 10, 11,

12, 13, 15, 16, 19 0.1765 1.0419 × 105

Table 8. MOPSO optimization result.

MOPSO
Storage Device Optimal Location Obj1–SAIDI

(h/Ca)
Obj2–Cost
(USD 1000)Power Grid Heat Network Gas Network

1
Bus 1, 4, 5, 7, 11, 12, 14, 16, 17,
18, 19, 20, 23, 24, 25, 29, 30, 31,

34, 35, 37, 38

Bus 2, 5, 7, 8, 9, 10, 12, 16, 17, 18,
20, 22, 23, 24, 25, 27, 28, 30, 31

Bus 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 14, 15, 18, 19 0.0867 2.1029 × 105

2 Bus 2, 3, 4, 7, 8, 11, 16, 17, 18, 22,
23, 24, 25, 26, 27, 28, 31, 38, 39

Bus 1, 2, 3, 4, 6, 7, 10, 12, 13, 14,
15, 16, 20, 21, 22, 23, 24, 26, 31

Bus 2, 3, 4, 5, 6, 7, 9, 10, 11, 12,
14 0.1054 1.8381 × 105

3
Bus 1, 3, 5, 6, 8, 10, 11, 13, 14, 15,
16, 17, 19, 20, 21, 22, 26, 27, 28,

30, 31, 33, 36, 39

Bus 1, 2, 3, 4, 6, 8, 10, 11, 13, 14,
15, 16, 18, 20, 22, 23, 24, 25, 26,

27, 29, 30, 32

Bus 1, 2, 4, 6, 7, 8, 10, 12, 13,
16, 18 0.1371 1.7001 × 105

4 Bus 1, 2, 3, 4, 5, 6, 9, 16, 17, 19,
20, 22, 27, 28, 29, 30, 35, 36

Bus 2, 3, 4, 5, 7, 9, 12, 13, 15, 16,
17, 18, 20, 23, 25, 26

Bus 1, 2, 3, 4, 5, 6, 7, 10, 11, 12,
13, 15 0.1999 1.3435 × 105

5 Bus 3, 4, 5, 7, 8, 9, 14, 19, 22, 30,
31

Bus 1, 2, 3, 4, 7, 8, 9, 12, 14, 19,
20, 29 Bus 3, 4, 6, 7, 9, 10, 15 0.2417 1.3032 × 105

6 Bus 1, 2, 4, 8, 10, 11, 12, 13, 14,
16, 17, 19, 26, 27, 28, 35

Bus 3, 4, 5, 6, 8, 9, 11, 13, 14, 16,
17, 18, 23, 24, 25, 29

Bus 2, 3, 4, 6, 7, 8, 10, 11, 12,
15, 19 0.4941 1.2588 × 105

Table 9. SPEA2 optimization result.

SPEA2
Storage Device Optimal Location Obj1–SAIDI

(h/Ca)
Obj2–Cost
(USD 1000)Power Grid Heat Network Gas Network

1 Bus 1, 3, 4, 5, 6, 8, 9, 11, 14, 16, 17, 19,
22, 24, 28, 29, 31, 34

Bus 1, 2, 3, 5, 6, 7, 9, 10, 11, 12,
14, 15, 16, 20, 21, 23, 25, 26

Bus 1, 2, 3, 4, 5, 6, 7, 8,
10, 11, 12, 14, 15, 19 0.0673 1.6200 × 105

2 Bus 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 17, 19,
22, 24, 28, 29, 31, 34

Bus 1, 2, 3, 5, 6, 7, 9, 10, 11, 13,
14, 15, 16, 20, 21, 23, 25, 26

Bus 1, 3, 4, 5, 6, 7, 8, 10,
11, 12, 14, 15, 19 0.0823 1.3749 × 105

3 Bus 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 17, 19,
25, 28, 30, 36, 38

Bus 1, 2, 3, 4, 5, 7, 8, 12, 13, 14,
15, 16, 18, 20, 29

Bus 1, 3, 4, 5, 6, 7, 9, 10,
12, 14, 15, 16 0.0895 1.2237 × 105

4 Bus 1, 3, 6, 7, 9, 10, 12, 14, 17, 18, 23,
24, 28, 32

Bus 1, 2, 3, 5, 6, 10, 12, 15, 18, 21,
22, 24

Bus 1, 3, 4, 5, 6, 7, 10, 11,
12, 18, 19 0.1825 1.2120 × 105

5 Bus 1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 18,
22, 29, 30

Bus 1, 2, 3, 4, 6, 7, 10, 16, 17, 20,
26, 28

Bus 2, 3, 4, 5, 6, 7, 10, 13,
14, 18 0.2766 1.2066 × 105

6 Bus 1, 2, 4, 5, 6, 7, 8, 9, 10, 14, 16, 17,
21, 25, 32, 33, 37, 39

Bus 2, 3, 4, 5, 7, 8, 9, 13, 17, 22,
29

Bus 3, 6, 7, 8, 9, 10, 11,
12, 15, 17, 24, 30 0.3000 1.1218 × 105

7 Bus 1, 3, 4, 7, 8, 9, 10, 11, 12, 14, 18,
19, 24, 26, 28, 30, 33, 36, 39

Bus 1, 4, 6, 8, 9, 11, 13, 15, 16, 18,
21, 23, 26, 27

Bus 1, 3, 4, 5, 6, 7, 8, 10,
11, 12, 18, 20 0.4280 1.0934 × 105
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Table 10. Comparison of execution times.

Optimization Algorithm Execution Time (min)

NSGA-II 288.67
MOPSO 876.92
SPEA2 283.34

Table 11. Comparison of reliability indices before and after optimization.

Reliability Indices Before Optimization After Optimization

SAIFI (1/Ca) 0.1980 0.2641
SAIDI (h/Ca) 1.4945 0.0585
CAIDI (h/Ca) 7.5480 0.0600

ASAI 0.9998 0.9999

5. Conclusions and Future Work

This paper proposes a methodology for reliability optimization in a multi-energy
system with storage devices considering the weather uncertainties using NSGA-II, MOPSO,
and SPEA2. Moreover, the multi-objective reliability optimization problem is formulated
as a non-linear problem to find the optimal energy storage configuration schemes, which
can improve MES reliability. The feasibility of the proposed method has been proven on
a typical MES, which includes an IEEE 39 bus system, a 32-node heat network, and a
20-node Belgian natural gas network. From the simulation results, we find that NSGA-II
outperforms two other modern optimization algorithms, MOPSO and SPEA2, as it can
maintain a wider range of solutions and converge faster in the non-dominated front. NSGA-
II can converge closer to the true Pareto optimal front, has the fastest computational time,
and is found to be the best among the three approaches studied here. Higher reliability
may result in a more expensive cost in terms of the storage device cost, but reduce system
interruption time, and the customer can choose the optimal case based on their situation.

As for future work, more studies could be performed on risk analysis or vulnerability
modeling of the multi-energy system. The robust and resilient operation and control of the
multi-energy system can also be considered as the future scope of this research.
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Abbreviations

MES Multi-energy system
MCS Monte Carlo simulation
NSGA-II Non-dominated sorting genetic algorithm II
MOPSO Multiple objective particle swarm optimization
SPEA2 Strength Pareto evolution algorithm 2
MOEA Multi-objective evolutionary algorithm
CHP Combined heat and power
P2G Power to gas
GB Gas boiler
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PG Power grid
HN Heat network
GN Gas network
CCHP Combined cooling, heat, and power
V2G Vehicle to grid
FMEA Failure mode and effect analysis
ES Electricity storage
HS Heat storage
GS Gas storage
TVCM Time-varying cost model
CDF Customer damage function
SAIFI System average interruption frequency index
SAIDI System average interruption duration index
CAIDI Customer average interruption duration index
ASAI Average service availability index
EENS Expected energy not supplied
TTF Time to failure
TTR Time to repair
TTS Time to switch

Appendix A

There are seven customer types, which are represented by “1-Industrial”, “2-Agriculture”,
“3-Large user”, “4-Commercial”, “5-Government”, “6-Office”, and “7-Residential”.

Table A1. An IEEE 39 bus system load and customer data [45].

Load Points Average Load Level
(MW) Customer Type Number of

Customers

1 97.6 7 200
3 322 7 322
4 500 4 500
7 233.8 5 200
8 522 6 500
9 6.5 7 132
12 8.53 3 23
15 320 4 320
16 329 6 330
18 158 3 160
20 680 2 680
21 274 6 270
23 247.5 7 240
24 308.6 7 300
25 224 7 220
26 139 7 140
27 281 7 280
28 206 7 200
29 283.5 7 280
31 9.2 1 60
39 522 6 1000

Table A2. A 32-node heat network load and customer data [46].

Load Points Average Load Level
(MW) Customer Type Number of

Customers

3 0.107 1 110
4 0.145 3 150
6 0.107 4 110
7 0.107 5 110
8 0.107 6 110
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Table A2. Cont.

Load Points Average Load Level
(MW) Customer Type Number of

Customers

9 0.107 3 110
10 0.107 1 110
11 0.145 6 150
12 0.107 7 110
14 0.0805 7 80
16 0.0805 7 80
17 0.0805 7 80
18 0.0805 7 80
20 0.0805 7 80
21 0.0805 7 80
23 0.107 2 110
24 0.107 4 110
26 0.107 6 110
27 0.107 7 110
29 0.107 3 110
30 0.107 7 110

Table A3. A 20-node Belgian natural gas system load and customer data [47].

Load Points Average Load Level
(Mm3/day) Customer Type Number of Customers

3 5.88 1 60
6 6.05 5 61
7 7.88 3 80
10 9.55 4 100
12 0.775 7 80
15 10.27 2 105
16 23.42 6 240
19 0.33 7 30
20 0.775 7 80
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