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Abstract

Due to the climate catastrophe, spatially and temporally comprehensive monitoring of the

environment is becoming increasingly important to detect changes quickly. The problem is

that human work, due to the limited number of experts, can only be scaled to a limited

extent, and humans are not really suitable for performing permanent monitoring. In addition,

there are possible cognitive limitations during data collection. If such data is collected almost

simultaneously, it can no longer be perceived in its entirety by humans, resulting in data

loss. Furthermore, data can be distorted by human assumptions (bias), or observations can be

disturbed by the mere presence of humans. Considering these problems, a shift to automated

monitoring methods seems inevitable.

This dissertation presents a new approach to create networked wireless sensor systems for

ecological monitoring. Especially forested areas often have difficult conditions for humans

and material, i.e., the proposed approach must also be able to deal with these real-world

problems.

The main field of investigation chosen in this dissertation is the observation of bats. According

to the "IUCN Red List of Threatened Species", one-third of them is either considered to be

threatened or there is not enough data about them to make a statement. In addition, bats

are good indicators of ecosystem health, i.e., monitoring bats can also provide information

about the entire ecosystem’s health. Nevertheless, the considerations and practical design

ideas presented in this thesis can be applied to other fields of environmental monitoring.

The thesis introduces a novel approach to comprehensively monitor bats, divided into the

components of monitoring the ecosystem and monitoring the bats themselves. In these areas,

scientific work is presented and concluded with a view of a concrete overall system.

In the area of ecosystemmonitoring, approaches on monitoring trees, insects, birds, and human

disturbances are presented. In this context, new networked sensor nodes are developed and

combined to form a complete system. A novel approach is proposed for equipping existing

unchangeable systems and devices with new functions and thus integrating them into existing

networked sensor systems. This novel approach is presented using the concrete integration of

an existing system into the overall monitoring system.

In the area of bat monitoring, approaches are presented that enable the tracking of bats with

different sensors and provide an automatic evaluation. New evaluation methods using machine

learning techniques and the development of an operating system for particular sensor nodes are

used. As a combination of newly developed hardware and software, a sensor node is presented

that enables multi-sensory monitoring of bats triggered by bat activity. As a result of this, video,

audio and VHF data can be collected, and ultimately one sensor’s findings can be transferred

to different other sensors.
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Deutsche Kurzfassung

In Anbetracht der Klimakatastrophe wird ein flächendeckendes und zeitlich hoch aufgelöstes

Monitoring der Umwelt immer wichtiger, um Veränderungen schnell zu detektieren. Hier-

bei ergibt sich das Problem, dass menschliche Arbeit durch die relativ geringe Anzahl an

Expert*innen nur eingeschränkt skalierbar ist und Menschen auch nicht für ein permanentes

Monitoring in der Natur geeignet sind. Hinzu kommen mögliche kognitive Einschränkungen

in der Gesamtheit der Erfassung von Daten. Treten viele Daten nahezu zur selben Zeit auf,

können diese von Menschen nicht mehr in ihrer Gänze wahrgenommen werden, und es kommt

zu Datenverlusten. Des Weiteren können Daten durch menschliche Annahmen verfälscht (Bias)

oder die Beobachtungen durch die reine Anwesenheit von Menschen gestört werden. Daher

scheint die Nutzung automatisierter Verfahren zum Monitoring unausweichlich.

Diese Dissertation präsentiert neue Ansätze zur Erstellung eines vernetzten drahtlosen Sen-

sorsystems zum ökologischen Monitoring. Gerade in bewaldeten Gebieten herrschen oftmals

schwierige Bedingungen für Mensch und Material, so dass die vorgestellten Ansätze auch mit

diesen Realbedingungen umgehen können müssen. Als Hauptuntersuchungsfeld wird vor allem

das Monitoring von Fledermäusen betrachtet. Fledermäuse sind ökologisch besonders wichtig,

da ein Drittel von ihnen nach der "IUCN Red List of Threatened Species" als bedroht gilt oder

nicht genügend Daten vorhanden sind, um eine Aussage über ihr Bedrohungspotential treffen

zu können. Hinzu kommt, dass Fledermäuse sehr gute Indikatoren für die Gesundheit eines

Ökosystems sind und somit die Beobachtung von Fledermäusen auch Aufschluss über den

Zustand des gesamten Ökosystems liefern kann. Allerdings lassen sich die in der Dissertation

vorgestellten Ansätze auch auf weitere Felder des Umweltmonitorings anwenden.

Die Arbeit stellt insbesondere einen neuen Ansatz zum umfassenden Monitoring von Fleder-

mäusen vor, der neben den Fledermäusen selbst auch das umgebende Ökosystem betrachtet.

In diesen Bereichen werden wissenschaftliche Arbeiten vorgestellt und mit einem Blick auf ein

konkretes Gesamtsystem abgeschlossen.

ImBereich desÖkosystem-Monitorings werden Ansätze zumMonitoring von Bäumen, Insekten,

Vögeln, sowie Störungen durch den Menschen vorgestellt. Einerseits werden hierbei neue

vernetzte Sensorknoten entwickelt und zu einemGesamtsystem zusammengefügt. Andererseits

wird auch eine neuartige Methode vorgestellt, wie bestehende unveränderbare Systeme und

Geräte mit neuen Funktionen ausgestattet werden können. Dies wird anhand der konkreten

Integration eines bestehenden Systems in das gezeigte Gesamtsystem illustriert.

Im Bereich des Fledermaus-Monitorings werden Ansätze präsentiert, welche mit unter-

schiedlichen Sensoren das Tracking von Fledermäusen ermöglichen und eine automatische

Auswertung liefern. Hierbei kommen sowohl neue Auswertungsmethoden auf der Grundlage

maschineller Lernverfahren, als auch die Konzeption eines Betriebssystems für spezielle

Sensorknoten zum Einsatz. Als Kombination von neu entwickelter Hard- und Software wird ein

Sensorsystem vorgestellt, welches eine multi-sensorische Beobachtung, die durch Aktivitäten

von Fledermäusen getriggert wird, ermöglicht. Hiermit können Video-, Audio- und VHF-Daten

in einer neuartigen Kombination erhoben werden und neue Schlüsse aus den Daten eines

Sensors auf die Daten eines anderen Sensors gezogen werden.
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1
Introduction

Environmental monitoring is a long-established, but in most cases highly manual field of

work [243]. Many research findings have been achieved through monitoring and experiments

designed, conducted, and evaluated by humans [243]. Several factors complicate manual

research in this field. One of them is the time-consuming nature of fieldwork and the lack of

possibilities to control the collected results during the field season. These problems lead to

experiments being conducted over an entire season, even though it may be evident after a few

weeks that the results will not be usable. For example, a researcher has to set up, supervise,

and dismantle an experiment and also has to collect information by monitoring on-site, and

the effort to collect a data point is quite considerable. Thus, considering all these tasks, in most

cases no time is left to check the data for validity. In addition, these tasks must primarily be

performed by people with prior knowledge in identifying species, capturing moths, recognizing

bird calls, or climbing trees to harvest leaves. For all these activities, well-trained people are

needed to perform these tasks conscientiously. Furthermore, even if well-trained people are

doing the job, failures can happen, and the data sets can be biased by our human nature or even

the presence of an observer [116, 243]. In addition, for a spatially and temporally highly resolved

collection of data, one would need many well-trained people who can perform the tasks in

parallel at different locations. In practice, the spatial or temporal distribution is reduced to carry

out the tasks with the given number of people. Additionally during the season, evaluations

are often skipped, because any evaluation would mean further losses in local or temporal

resolution. Thus, manual fieldwork has two main problems: (a) it is very time-consuming, so

experiments cannot be evaluated during the season, and (b) it is not scalable.

Martin Luther King said the following words with respect to the Vietnam War: "We are now
faced with the fact that tomorrow is today. We are confronted with the fierce urgency of now. In this
unfolding conundrum of life and history, there is such a thing as being too late. Procrastination is
still the thief of time. Life often leaves us standing bare, naked, and dejected with a lost opportunity.
The ’tide in the affairs of men’ does not remain at the flood; it ebbs. We may cry out desperately
for time to pause in her passage, but time is deaf to every plea and rushes on. Over the bleached
bones and jumbled residue of numerous civilizations are written the pathetic words: Too late."
Undoubtedly, we could also follow Mojib Latif [143] in mapping this to the climate catastrophe

and our ability to fight it.

Given the imminent climate catastrophe, area-wide and temporally high-resolution environ-

mental data monitoring is becoming more and more critical [222, 243]. On the one hand, this

involves logging changes in the environment and generating conclusions and expectations

from there. On the other hand, they are also predicting how the system will change. Especially

the responses of species to climate change are among the big questions in biology [26]. This
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reaction plays a role in looking at biodiversity and the state of the environment and estimating

the frequency of, e.g., extreme weather events or predicting them. Both resolution dimensions

are essential; a broad collection of good monitoring data and high-resolution data collection

are needed to meet the requirements. For example, the International Union for Conservation

of Nature (IUCN) Red List of Threatened Species lists more than 120,000 species; up to 17,000

are listed with a ’Data deficient’ status [243].

Especially for bats, the situation is critical. About one-third of all bat species are classified as

threatened or listed with a ’Data deficient’ status by the IUCN. About half of all bat species

show an unknown or declining population trend [68]. This trend reflects the need to observe

bats as notable species since bats face similar threats during climate change [68]. Nevertheless,

the available data set for bats is much smaller, as the IUCN Red List also reflects. Furthermore,

bats are good indicators of harmful environmental conditions, also described in the article

by Aodha et al. [153]: "Monitoring of bat species and their population dynamics can act as an
important indicator of ecosystem health as they are particularly sensitive to habitat conversion
and climate change." In the context of the climate catastrophe and the following biodiversity

crisis, it must be possible to collect findings in this area without long delays and on a broad

scale because only in this way findings can lead to changes and countermeasures on time [16].

If research in environmental monitoring wants to achieve more than just describing effects

retrospectively, it is essential for findings to be made available within a shorter time frame.

Making findings available would enable a feedback loop for chosen actions, which is essential

in evaluating their effects and efficiency.

Due to the technical development in the last years and decades, microprocessors and single-

board computers can record data from various sensors and perform complex processing steps

on this computers [116, 222, 243]. Furthermore, the falling prices for technical devices, micro-

processors, and sensors are responsible, because sensor nodes with commercial off-the-shelf

(COTS) components can lead to a large-scale ecological understanding [243]. The broadening of

the market for sensors and the increase in unit numbers play a significant role here. Currently,

the situation is aggravated by the Russian war on Ukraine and the Corona pandemic, and

inexpensive components are hard to obtain. Nevertheless, it is desirable to digitize ecological

monitoring processes, because this is the only way an area-wide collection of ecological data can

be obtained in a temporally high resolution [243]. To achieve these effects in the future, a system

for ecological monitoring must be as flexible and modular as possible. Individual components

must therefore be interchangeable in terms of hardware and software components.

1.1 Motivation

The state of the art in various disciplines that perform ecological monitoring is to employ

human experts [243]. Here, the process can only scale with more humans, which are complex

and time-consuming to train, not cost-effective with fair payment, error-prone, and do not

provide results with the same quality among each other. Automatization of these tasks can

achieve both scalability and comparability. Data recording, forwarding, and processing must

be automated and made intelligent without the need for much human intervention. Available

and cost-effective components must be selected for sensor systems, since this is the only way

to ensure scalability [88]. During and before transmission, domain knowledge must be used to
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enable preprocessing and compressed data. Preprocessing and compressing data allows data

to be made available in near real-time for automatic knowledge generation.

1.2 Problem Statement

Observing the behavior of bats to estimate the environment’s health is a time-consuming and,

in most cases, manual task. If devices are used, the data is processed with much time between

recording and processing.

The main question tackled in this thesis is: How can we perform ecological monitoring in an

automatic and time-consuming manner? In particular, the thesis addresses the problem of

performing bat monitoring automatically in an effective manner.

This problem can be split into two parts. The first part is devoted to the automatic monitoring

of the ecosystem surrounding bats to measure external factors that are relevant for bats. The

second part is to automatically monitor the behavior of bats: What are bats doing? Where

are bats flying, sleeping, or hunting? Which species or which individual is flying, sleeping, or

hunting? In general, the following questions should be answered: Who does an action? Where

does the action take place? Which action takes place?

The goal of this thesis is to develop a sensor system that can answer these questions. Especially

they should be answered for all bats, some species, and individuals.

1.3 Contributions

This thesis presents a novel approach for developing networked wireless sensor systems under

ecological conditions. This approach is primarily dedicated to bat research, but also includes

general design criteria for remotely located networked wireless sensing systems. Challenges of

remote scenarios are described, and solutions for different problems are presented. A novel

approach for automatic bat monitoring is presented and detailed in the subsequent chapters.

Finally, a concrete implementation of such a system is presented. The monitoring system

is divided into two parts. First, the part of ecosystem monitoring has to be adapted to the

particular use case, but most parts could also be used for different situations. Second, the part

of the use of case-specific monitoring, namely bat monitoring, must be realized.

Ecosystem Monitoring

For ecosystem monitoring, the thesis presents contributions to monitoring the environment

in which bats live. With EcoSense, the thesis shows how COTS components can be used to

monitor environmental factors. With the automatic non-lethal moth trap (AMT), a robust and
field-tested method to automatically estimate the occurrence of moths is presented. With

Unobtrusive Mechanism Interception, the conceptual basis to integrate legacy devices into

an existing network and to provide them with new functionalities is presented. Unobtrusive
Mechanism Interception is applied to the Tree Talker in ForestEdge, thus integrating an existing
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sensor node design and adding new functionalities. With Bird@Edge, we present an approach

for edge processing of audio data to determine bird calls in soundscapes. With SmartFace, the
possibility is offered to recognize faces on photos in an energy-efficient manner to discard

person-related data when taking pictures and disturbing bats by humans.

Bat Monitoring

For bat monitoring, we first present a method for recognizing bat species in continuous audio.

Using the Bird@Edge approach and a developed neural network for bat species recognition,

the Bat@Edge system can be built for automatic bat recognition at the edge of the Internet.

With tRackIT OS, we refine an existing sensor node design into a robust, error-avoiding, and

live data-exchanging solution. A further contribution with respect to bat monitoring is the

automatic classification of VHF data into active and passive behavior of birds and bats. With

BatRack, a multi-sensor approach is presented, which offers the possibility to fuse data via the

interaction of different sensors and thus enrich the data of a sensor by the findings of another

sensor.

Software Design for a Bat Monitoring System

We present six design principles that can help build a networked sensor system from scratch.

Furthermore, we present the software design of a bat monitoring system with the integration

of the approaches described above.

1.4 Publications

During the work on this thesis, the following papers were published:

1. Patrick Lampe, Markus Sommer, Artur Sterz, Jonas Höchst, Christian Uhl, and Bernd

Freisleben. “ForestEdge: Unobtrusive Mechanism Interception in Environmental Mon-

itoring.” In: 2022 IEEE 47th Conference on Local Computer Networks (LCN). IEEE. 2022,
pp. 264–266

2. Patrick Lampe, Markus Sommer, Artur Sterz, Jonas Höchst, Christian Uhl, and Bernd

Freisleben. “Unobtrusive Mechanism Interception.” In: 2022 IEEE 47th Conference on Local
Computer Networks (LCN). IEEE. 2022, pp. 303–306

3. Jonas Höchst, Hicham Bellafkir, Patrick Lampe, Markus Vogelbacher, Markus Mühling,

Daniel Schneider, Kim Lindner, Sascha Rösner, Dana G. Schabo, Nina Farwig, and

Bernd Freisleben. “Bird@Edge: Bird Species Recognition at the Edge.” In: International
Conference on Networked Systems (NETYS). Springer. May 2022, pp. 69–86

4. Hicham Bellafkir, Markus Vogelbacher, Jannis Gottwald, Markus Mühling, Nikolaus Ko-

rfhage, Patrick Lampe, Nicolas Frieß, Thomas Nauss, and Bernd Freisleben. “Bat Echolo-

cation Call Detection and Species Recognition by Transformers with Self-attention.” In:
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International Conference on Intelligent Systems and Pattern Recognition. Springer. 2022,
pp. 189–203

5. Jonas Mielke Moeglich
1
, Patrick Lampe1, Mario Fickus, Jannis Gottwald, Thomas Nauss,

Roland Brandl, Martin Braendle, Nicolas Friess, Bernd Freisleben, and Lea Heidrich. “Au-

tomated Non-lethal Moth Traps can be used for Robust Estimates of Moth Abundance.”

In: submitted; under review ()

6. Jannis Gottwald, Raphael Royaute, Marcel Becker, Tobias Geitz, Jonas Hoechst, Patrick
Lampe, Lea Leister, Kim Lindner, Julia Maier, Sascha Roesner, et al. “Classifying the

Activity States of Small Vertebrates using Automated VHF telemetry.” In: submitted;
under review ()

7. Jannis Gottwald
2
, Patrick Lampe2, Jonas Höchst, Nicolas Friess, Julia Maier, Lea Leister,

Betty Neumann, Tobias Richter, Bernd Freisleben, and Thomas Nauss. “BatRack: An

Open-Source Multi-Sensor Device for Wildlife Research.” In: Methods in Ecology and
Evolution (July 2021), pp. 1867–1874

8. Jonas Höchst, Jannis Gottwald, Patrick Lampe, Julian Zobel, Thomas Nauss, Ralf Stein-

metz, and Bernd Freisleben. “tRackIT OS: Open-Source Software for Reliable VHFWildlife

Tracking.” In: 51. Jahrestagung der Gesellschaft für Informatik, Digitale Kulturen, INFOR-
MATIK 2021, Berlin, Germany. LNI. GI, Sept. 2021, pp. 425–442

9. Julian Zobel, Paul Frommelt, Patrick Lieser, Jonas Höchst, Patrick Lampe, Bernd Freis-

leben, and Ralf Steinmetz. “Energy-efficient Mobile Sensor Data Offloading via WiFi

using LoRa-based Connectivity Estimations.” In: 51. Jahrestagung der Gesellschaft für
Informatik, Digitale Kulturen, INFORMATIK 2021, Berlin, Germany. LNI. GI, Sept. 2021,
pp. 461–479

10. Johnny Nguyen, Karl Kesper, Gunter Kräling, Christian Birk, Peter Mross, Nico Hofeditz,

Jonas Höchst, Patrick Lampe, Alvar Penning, Bastian Leutenecker-Twelsiek, Carsten

Schindler, Helwig Buchenauer, David Geisel, Caroline Sommer, Ronald Henning, Pascal

Wallot, Thomas Wiesmann, Björn Beutel, Gunter Schneider, Enrique Castro-Camus, and

Martin Koch. “Repurposing CPAP Machines as Stripped-Down Ventilators.” In: Scientific
Reports 11.1 (June 2021), pp. 1–9

11. Jonas Höchst, Alvar Penning, Patrick Lampe, and Bernd Freisleben. “PIMOD: A Tool

for Configuring Single-Board Computer Operating System Images.” In: IEEE Global
Humanitarian Technology Conference (GHTC). Seattle, USA, Oct. 2020, pp. 1–8

12. Manisha Luthra, Boris Koldehofe, Jonas Höchst, Patrick Lampe, Ali Haider Rizvi, and
Bernd Freisleben. “INetCEP: In-Network Complex Event Processing for Information-

Centric Networking.” In: 15th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). Cambridge, UK, Sept. 2019, pp. 1–13

13. Artur Sterz, Lars Baumgärtner, Jonas Höchst, Patrick Lampe, and Bernd Freisleben.

“OPPLOAD: Offloading Computational Workflows in Opportunistic Networks.” In: IEEE

1
shared first authorship

2
shared first authorship
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44th Conference on Local Computer Networks (LCN). Osnabrück, Germany, Oct. 2019,

pp. 381–388

14. Lars Baumgärtner, Patrick Lampe, Jonas Höchst, Ragnar Mogk, Artur Sterz, Pascal

Weisenburger, Mira Mezini, and Bernd Freisleben. “Smart Street Lights and Mobile

Citizen Apps for Resilient Communication in a Digital City.” In: IEEE Global Humanitarian
Technology Conference (GHTC). Seattle, USA, Oct. 2019, pp. 1–8

15. Pablo Graubner, Patrick Lampe, Jonas Höchst, Lars Baumgärtner, Mira Mezini, and

Bernd Freisleben. “Opportunistic Named Functions in Disruption-tolerant Emergency

Networks.” In: ACM International Conference on Computing Frontiers 2018 (ACM CF).
Ischia, Italy: ACM, May 2018, pp. 129–137

16. Lars Baumgärtner, Alvar Penning, Patrick Lampe, Björn Richerzhagen, Ralf Steinmetz,

and Bernd Freisleben. “Environmental Monitoring using Low-Cost Hardware and In-

frastructureless Wireless Communication.” In: IEEE Global Humanitarian Technology
Conference (GHTC). IEEE. 2018, pp. 1–8

17. Nils Schmidt, Lars Baumgärtner, Patrick Lampe, Kurt Geihs, and Bernd Freisleben.

“Miniworld: Resource-aware Distributed Network Emulation via Full Virtualization.” In:

IEEE Symposium on Computers and Communications (ISCC). IEEE. 2017, pp. 818–825

18. Patrick Lampe, Lars Baumgärtner, Ralf Steinmetz, and Bernd Freisleben. “Smartface:

Efficient Face Detection on Smartphones for Wireless on-demand Emergency Networks.”

In: 24th International Conference on Telecommunications (ICT). IEEE. 2017, pp. 1–7

19. Lars Baumgärtner, Paul Gardner-Stephen, Pablo Graubner, Jeremy Lakeman, Jonas

Höchst, Patrick Lampe, Nils Schmidt, Stefan Schulz, Artur Sterz, and Bernd Freisleben.

“An Experimental Evaluation of Delay-tolerant Networking with Serval.” In: IEEE Global
Humanitarian Technology Conference (GHTC). Seattle, USA, Oct. 2016, pp. 70–79

1.5 Organization

This thesis is organized as follows:

Chapter 2 introduces the background for the research done in this dissertation. It contains the

biological scenarios of ecological monitoring used in this thesis and briefly introduces sensor

systems, machine learning, and wireless communication.

Chapter 3 presents the general approach of this thesis with the main problem statements in

this area of research. They are followed by specific challenges in forested areas, a critical use

case for bat monitoring. After that, solutions for problems in sensor systems are presented. The

final section presents a novel design for automated bat monitoring to answer the questions

stated in Section 1.2.

Chapter 4 presents research to monitor the ecosystem surrounding bats. This chapter includes

six sections. The first section introduces EcoSense, a solution that presents many COTS compo-

nents and describes the structure of building a networked sensor system. The second section is

about a design and field study of an automated moth trap (AMT), which is a novel non-lethal
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method to measure the abundance of moths. The third section is about the approach of Unob-
trusive Mechanism Interception, which is used in ForestEdge to add new functionality to the

proprietary TreeTalker system. The fifth section on Bird@Edge shows how to process the audio

of bird songs on the edge of the Internet. The last section is about SmartFace, a solution to

detect human faces in images.

In Chapter 5, research is presented to automatically monitor bats. First, an approach for bat

call detection and species recognition is presented. With the Bat@Edge infrastructure and
the developed neural networks for bat call detection, bat detection on the edge is possible, as

described in the second section. Then, tRackIT OS is presented as a user-friendly and reliable

solution to record VHF signals. The next section concerns the classification of VHF signals in

active and passive parts for bats (and other animals) equipped with a VHF transmitter. In the

last section, BatRack, a multi-sensor device for the coupled monitoring of different sensors is

presented.

In Chapter 6, the software design of a fully automated bat monitoring system is presented.

First of all, design principles are introduced, and after that, the networked wireless sensor

system’s substantial components are presented.

Chapter 7 concludes this thesis and discusses possible areas of future work.
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2
Fundamentals

This chapter explains concepts, terms, and technologies required throughout this thesis. In

Section 2.1, the main aspects of the classical biological scenarios are introduced. Section 2.2

introduces sensor nodes and different sensor types, especially sensor types that are used in

this thesis. Section 2.3 gives an overview of wireless communication. Section 2.4 describes

basic concepts of machine learning and highlights the differences between unsupervised and

supervised learning.

2.1 Ecological Scenarios

Observing and understanding ecosystems is a central component of biology. New technology

can improve the monitoring of changes in species or entire ecosystems. However, according to

the work of Hahn et al. [88], this often requires more than the mere adaptation of off-the-shelf

devices that neither scale, nor are they reasonably adapted to the exact demands. Furthermore,

there is a lack of reliable methods and use case adapted devices that can deal with the prevailing

conditions, such as energy constraints and robustness. Wiens [26] stated: "Dozens of studies
have shown local extinctions and declines that appear to be associated with recent, human-related
climate change. For most of these cases, the primary cause of the declines has not been identified,
highlighting our worryingly limited knowledge of this crucial issue. However, where causes have
been identified, changing species interactions is essential in most cases. Because many of these
impacts have already happened and climate has changed only a little relative to the predicted
changes in the next 100 years, our results suggest that these shifting interactions may make even
small climatic changes dangerous for the survival of populations and species."

2.1.1 Ecological Monitoring

As stated by Spellerberg [223], monitoring is the systematic measurement of variables and

processes over time. Spellerberg also divided the field into three different fields of monitoring.

First, census is part of monitoring programs with the purpose of getting population counts.

Second, surveillance measures variables over time to get a timeseries of data. Finally, monitoring

does the same as surveillance, but it is assumed that the measurement has a specific reason.

With this definition, the term ecological monitoring as defined by Spellerberg has the meaning

of a systematic collection of ecological data in a standardized manner and with regular intervals
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[223]. Also, Nichols et al. [177] differentiate between surveillance and monitoring in the same

manner.

2.1.2 Bat Behavior Monitoring

To study the behavior of bats, bat calls are often recorded [153, 184]. By automatically analyzing

these audio recordings, common species, in particular, can be easily identified. To get recordings

of rarer species, individuals of these species are held close to a microphone in a flying cage or

tent, and thus all calls can be assigned to this species [216]. Thus, it is questionable whether

the calls in these situations correspond to those in routine flights. Another possibility is to get

the recordings in the field and equip a bat with a transmitter beforehand. As a result, in the

case of territorial species, an assignment of calls to species can occur when a tagged individual

approaches the microphone. The individual procedures for recording bat behavior are described

below. The monitoring of bats is critical because a decreasing bat population could be used as

an indicator of harmful environmental conditions [188].

Bat Call Detection

The beginning of the processing chain is often the detection of bat calls. Since a bat primarily

uses calls as a tool for localization, these are realistically broadband and quite the same in

certain situations. Roughly, a distinction is made between social and non-social calls. Social

calls, depending on the species, are sometimes audible to humans; the location calls are mostly

not. Calls of bats can differ significantly between species, as shown in Figure 2.1.

However, bat calls often appear in the recordings along with other sounds, such as the cracking

of branches or grasshoppers, which also provide broadband signals. Thus, manually and

automatically, bat calls must be separated from other broadband sounds. Other narrowband

sounds or sounds that are audible to humans are usually easy to filter with, for example,

high-pass filters. Preliminary work, such as the BatDetect project [153], exists in this area.

Bat Call Classification

As the second step in processing, both manual and automatic, the detected calls must be

assigned to species of bats. For this purpose, processing methods range from measuring

spectrograms to neural networks. The goal of this processing step is to generate a species list.

Distinguishing individuals based on calls is not yet possible at the time of this work.

VHF Signal Detection

To get an insight into where bats are located, bats are equipped with VHF tags, and the signals

are received either manually by cross-tracking or automatically, as described by Gottwald et

al. [80]. Cross-tracking allows cross-bearings with several receivers, i.e., two beams, which are

recorded by the two measurement points around space against the north and intersect in the

area. As a result, with the classical method, large distances often arise between both measuring
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Figure 2.1: Different bat calls of bats in Greece (Papadatou et al. [180])

persons, since the method needs either many measuring persons or large spaces to cover the

detection area. In this case, considerable error values arise even with a minimum angular error

of 5%, as shown in Figure 2.2.

The VHF signals are continuously recorded in the automatic case, and the bearing is taken

based on significantly closer stations. Here, the system benefits from scalability due to the

automatic processing.
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Figure 2.2: Schematic description of angle error to position error when the angle error is constant

by 5 degrees and the target varies in field position and distance

.

2.1.3 Insect Abundance

In the last years, the number of insects has become more and more the focus of research,

because here, also in a short time, significant changes have been observed [26, 166]. One

possible approach to measure insect abundance is manually deployed lethal light traps where

the moths attracted by the light fall in baskets by using, e.g., chloroform. This method allows

the number, mass, and composition of the killed individuals to be determined by manual

identification following the experiment [166]. This procedure is accepted in the community but

poses risks to the population by killing individuals, as shown, e.g., by Gezon et al. [77]. Therefore,

researchers should not use the method permanently and continuously for monitoring. However,

high temporal resolution and permanent monitoring of species in the forest are essential to

monitor, quantify, and evaluate the effects of climate change and possible measures to increase

the insect population.

2.1.4 Bird Song Detection and Classification

Another aspect of biodiversity assessment is the study of the occurrence of birds. These can

be detected and mapped through observations and through the classification of bird songs.

Here, it is essential to recognize a single song, as well as to determine the species in a mix of

many birds. From such a soundscape, a species list is created on a grid map when experts walk

around the area. With this list, researchers can determine the occurrences of certain species in

different areas.

2.2 Sensor Nodes

Sensor nodes consist of components that automatically record data from the installed sensors. A

sensor node can contain only one sensor or several sensors. A central computing unit processes
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all these sensors and can consist of a microprocessor or a single-board computer. More powerful

architectures are also conceivable, but the scenario limits the energy consumption of sensor

nodes installed in remote areas, therefore they do not have a fixed power supply.

Sensors in sensor nodes can be pretty straightforward, such as a temperature sensor or a

humidity sensor. Alternatively, a light sensor detects the presence of light. Nevertheless, even

for this type of sensor, there are some differences. For example, a light sensor can measure the

concrete brightness or the brightness of different bands of light. Measuring the brightness on

different bands offers the advantage that changes in the spectrum can be detected. Thus, for

example, the sensor node can estimate the condition of the foliage [245]. These sensors provide

relatively small amounts of data, in the range of a few bytes per measurement, depending on

the sensors’ accuracy.

2.2.1 Microphones

Microphones can be used to record audio. Some audio sensors work with a digital interface

and offer the audio data via, e.g., USB or I2C. Other microphones have to be read out in a

fully analog manner. Thus, the choice of a microphone depends on the application. This choice

is especially noticeable in the characteristics of microphones. Here, the range extends from

cardioid or super-cardioid microphones, which have relatively directional characteristics, to

omnidirectional microphones, which are almost equally sensitive in all directions. In addition to

the different characteristics, the microphones’ frequency ranges are also different, i.e. there are

microphones that mainly cover the human voice to microphones that are relatively sensitive in

the range audible to humans to ultrasonic microphones, which can have a sampling rate of

up to 384 kHz. For these ultrasonic microphones, the sampling rate of 384 kHz results, using

the sampling theorem of Nyquist and Shannon, in a maximal recordable frequency of 192 kHz.

Another distinguishing feature of microphones is the sensitivity curve over the frequency range.

Here, the sensitivity can vary depending on the frequency; the characteristics can also differ

depending on the frequency. Thus, there are many distinguishing features of microphones.

Also, the amount of data generated by audio recordings varies enormously with the sampling

rate, the sampling depth, and the compression used.

2.2.2 Cameras

With cameras, the quality of the taken images also depends on many factors. First, the sensor’s

resolution varies. However, the sensor size and the associated light sensitivity are also decisive

for the quality of the images. Especially in low-light situations, the lens’ sensor size and light

intensity can distinguish between a dark image and one in which the action is still clearly

visible. When choosing a suitable sensor in this area, a researcher must also consider the

scenario.

Additional sensors without infrared (IR) filters and an IR illuminator can be used for recording

in the dark at short distances. Most animals do not perceive light in the infrared spectrum, so

they are not disturbed by this setup. However, the camera’s sensor can take much brighter

pictures or videos due to the IR light, even without relatively large sensors and fast lens shutters.

At short distances, this has the advantage of making the system potentially cheaper. The sensor

13



2 Fundamentals

node can store photos and videos raw or compressed directly. Using only grayscale in images

can also lead to clear savings in memory requirements and, depending on the scenario, hardly

any loss of quality. Thus, the amount of data can only be estimated based on the specific

scenario and hardware.

2.2.3 VHF Receivers

A signal processor and an antenna are the main components for receiving VHF signals. The

antenna must amplify signals in the correct band to effectively record the appropriate signals.

The right band means that antennas are particularly receptive to the incoming signals in a

specific range of the frequency range due to their design and that there is a relatively high

attenuation of the signals in other ranges. This difference means that the choice of antenna

can also limit the signals that can be received. Furthermore, antennas differ in their sensitivity;

thus, weak signals can still be received with an antenna with higher sensitivity and no longer

with a less sensitive one. In this area, the antenna choice primarily changes the system’s range

and susceptibility to unwanted extraneous signals, which can be recorded. Thus, the task of

filtering the raw signals also depends on the hardware specifications of the antenna.

Another part of signal detection is the signal processor, and here there are different possibilities

to process the signals and to distinguish signals from background noise. Here, signal detection

benefits from not receiving too many unwanted signals through the antenna so that the range

of the system stands in conflict to the precise detection of wanted signals. Here, the signal

transmitters could play a significant role and encode their transmitted signals in order to be

able to detect the wanted signals.

Another factor that can be mentioned is the characteristic of the antenna. There are two

categories of antennas, omnidirectional and directional antennas. Here, the omnidirectional

antennas are equally receptive in all directions, while the directional antennas have a direction

in which they are significantly more sensitive than in other directions.

2.3 Wireless Communication

In environmental monitoring, network infrastructure could be present, or in remote areas, it is

possible for no communication infrastructure being present. In both cases and under changing

conditions (harsh weather, partial power outages), sensor nodes have to be able to send data

and status information. Therefore, installing a wired network in remote areas is impossible, so

the network has to be based on wireless technologies.

2.3.1 OSI Reference Model

The OSI reference model was developed in the 1970s and is based on seven layers. Interfaces

exist between the individual layers so that they can be exchanged upwards and downwards.

Thus, a protocol on one layer can be exchanged by another protocol on the same layer, since

the interfaces are the same. This interchangeability means that applications can use the
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Figure 2.3: OSI reference model according to [267]

transmission technologies of the layers below, regardless of which specific technology is

used.

Figure 2.3 shows the different layers of the OSI model. Here, the first layer is responsible for

the physical transmission of data, and the subsequent layers build on this foundation. The data

link layer acts as a logical link between different instances in the network. Packets are formed

on the network layer and sent between networks. The nodes between these two networks

forward or route packets. From the transport layer (layer four) onward, senders and receivers

exist. A logical end-to-end transmission is established and provided to the application layer,

which builds on this end-to-end communication.

2.3.2 WLAN

WLAN represents the possibility of local communication. In most cases, a method of the 802.11

standards is used. Examples are 802.11n or 802.11ac, which are often used as WLAN standards

in end devices today, but other standards are also used. WLAN is part of the lower two layers

of the OSI reference model, and thus WLAN can also be replaced by other methods on the

first and second layers [56]. The currently widespread standards of WLAN use frequency

bands around 2.4 GHz or 5 GHz, but bands around 6 GHz and 60GHz are also used, and there

are isolated other bands [130]. In addition to the infrastructure mode, mainly used between

terminals and routers, there is also the ad-hoc mode, which works without a fixed station

between two WLAN devices [56].
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2.3.3 Cellular Networks

Cellular networks are designed to deliver a high throughput link on long distances and in

remote areas [66]. Current networks are often based on LTE or 5G in western countries. With

this network structure as a basis, bandwidth-heavy data can be transmitted. For the use of

transmitting photos or even small videos, this technology can be used, but for the traffic in

most countries, significant costs arise.

2.3.4 Low-Power Wide-Area Networks

Low-power wide-area (LPWA) networks are designed to achieve the goal of enabling the

transmission of small data packets over long distances [66]. Two significant representatives

of LPWA are Sigfox and LoRa, but LoRa gets the broadest research interest at the moment

[66]. LoRa uses an unlicensed 900 MHz Band in North America and 868 MHz in Europe [66].

For Internet-of-Things (IoT) applications, LoRa is an appealing candidate, because it delivers

messages with low-energy demands over long ranges [66].

2.3.5 Satellite Links

In contrast to terrestrial stations, satellite links are based on infrastructure deployed in the

orbit, so they are not equally vulnerable to disasters [66]. The Low Earth Orbit (LEO) and

Geostationary Earth Orbit (GEO) links exist in satellite communication. Both can be used to

achieve communication and add a new or additional link to existing networks. In most satellite

networks, the data rates are low, and they are mainly used for short messages, status messages,

or alert sharing. With Starlink, a commercial satellite network with much more throughput

capability was introduced in 2020. Starlink can also handle streams of video, photo, or audio

data in remote areas, but has significant power consumption and a significant subscription

fee.

2.3.6 Disruption-tolerant Networks

To enable communication with satellites and alien robots, NASA
1
and other space agencies

started the development of delay- or disruption tolerant networks (DTNs). These remote

devices have few communication possibilities, primarily due to the conditions in space, and

also unstable links due to interference. Real-time routing has been replaced with DTNs to

allow communication by transferring data from one node to another. This scheme is called

store-carry-forward and is not only used in space communication today. NASA illustrates the

differences in a network with many disruptions in Figure 2.4. Here, it is shown that DTNs can

deliver more data when the network is disrupted.

1https://www.nasa.gov/directorates/heo/scan/engineering/technology/delay_disruption_t
olerant_networking
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Figure 2.4: IP end-to-end dataflow vs. DTN store-and-forward dataflow as in https://www.
nasa.gov/sites/default/files/dtn_0.png

2.4 Machine Learning

In machine learning (ML), there are several methods and algorithms to solve the problem of

getting a machine to learn from data.

2.4.1 Unsupervised and Supervised Machine Learning

These algorithms can be broadly divided into unsupervised and supervised learning methods.

The main difference between unsupervised and supervised learning is the dataset [87]. In the

case of unsupervised learning, the algorithm tries to find a predefined number of clusters or

classes in the data [87]. This cluster finding could be done by, e.g., a neural autoencoder that

gets a strict number of input neurons, maps this input to several middle neurons, and tries to

produce the same result on the output neurons as on the input neurons. With this method,

a researcher could make a classification or clustering. In Figure 2.5 a neural autoencoder is

shown.

In contrast to this unsupervised method, the supervised approach is to get a dataset with a

label for each data point [87]. With this labeled data, a model is trained to learn labels for data

and, after that, can tag unseen data with these learned labels [87]. In this way, data can be

classified automatically into known classes.

2.4.2 Neural Networks

Neural networks offer a way to define a nonlinear function to fit the given learning data to the

provided labels [175]. A neuron is a unit of this neural network that gets input x1, . . . , xn and
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Figure 2.5: An abstract illustration of a neural autoencoder by Andrew Ng [175]

generates an output to the activation function in the neuron [175]. The resulting structure can

be seen in Figure 2.6.

Figure 2.6: An abstract illustration of a neuron by Andrew Ng [175]

A neural network is a composition of many neurons so that the output of each neuron can

potentially be the input of another neuron [175]. A small neural network is shown in Figure 2.7.

The first layer of a neural network is the input layer, and the last is the output layer [175].

Backpropagation is combined with a cost function to learn the nonlinear function based on

training data. Backpropagation is done in the training phase, and in case a training dataset

results in wrong labels, backpropagation takes place and changes the internal state of a

neuron [175]. An additional part of building a neural network is the network structure. Here,

there are many possible structures; an abstract illustration is presented in Figure 2.8.
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Figure 2.7: An abstract illustration of a neural network by Andrew Ng [175]

Figure 2.8: An abstract illustration of a neural network structure with more than one layer by

Andrew Ng [175]

2.5 Summary

This chapter introduced terms, concepts and technologies used in this thesis. Section 2.1

explained ecological scenarios and typical methods used in this field. Also, a definition of

monitoring was given. Section 2.2 discussed technologies for sensor nodes. In Section 2.3

fundamental concepts for wireless networks were described. Basic concepts and terms for

machine learning were presented in Section 2.4.
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This chapter presents challenges in the field of ecological monitoring, especially for bat mon-

itoring, and a case study of using low-cost commercial off-the-shelf hardware components

and wireless technologies to build a sensor network. As stated in Chapter 2, bats are good

indicators of harmful environmental conditions. Thus, observing and understanding bat be-

havior plays a significant role in estimating ecosystem health and changes. As a result, spatial

and timely high-resolution monitoring of bats and their actions could be a good indicator of

the ecosystem’s well-being. Nevertheless, humans are not suitable to perform high-resolution

monitoring, as described in Section 1.1. The main reasons are that humans are time-consuming

to train, are not cost-effective with fair payment, error-prone, and do not provide comparable

results.

3.1 Bat Monitoring

Today, bat monitoring is mostly performed manually, especially regarding the bats’ positions.

Here, transmitters are stuck on the bats, and positions are taken with manual telemetry and

3-point direction finding. This process is very time-consuming, but it is currently, in most cases,

the only way to assign a location to an individual for a specific time. Only some projects try to

tackle the problem of handheld telemetry and published computerized VHF telemetry systems.

Examples are Atlas [154], the Motus Wildlife Tracking System [231], and the predecessor of our

tRackIT stations [80].

To decide which areas are important for bats, researchers have to check the presence of bats

in different regions. Checking the presence of bats can be done with audio recordings and

telemetry. Telemetry is a time-consuming method with the disadvantages that bats must

be caught and equipped with a transmitter and that it harms the bats. In the case of audio

recording, in the classical method, data is collected manually by people walking through a

forest at night with a microphone. Alternatively, researchers deploy sensor nodes beforehand in

the forest. A researcher, while walking around, documents the presence of bats in a particular

area in case of audio recordings by hand. In the case of a fixed sensor box, the area is easy to

determine, because the sensor node has a fixed location. Through these methods, the presence

of bats in a specific area can be well documented.

However, following the data recording, the species must also be determined. The bat species

can be determined manually by humans and measuring the recorded spectrograms or by
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analyzing the recorded audio sequences by software. Executing this process immediately after

the recording would save time and detect possible recording errors on time.

However, suppose a specific individual is the target of the investigation. In this case, it is

impossible with today’s methods to obtain this information through audio recordings since

humans cannot distinguish between different individuals in audio. The only option is to use

transmitters to distinguish between the different individuals. In this case, the determination of

the species is straightforward, since the animal has to be caught and thus examined in detail.

Moreover, because the transmitter is attached to a specific animal, the distinction between

different individuals is a technical issue in differentiating between different transmitters. This

issue is well understood and can be handled on a technical level.

To study the behavior of bats and especially to show differences or changes in their behavior

and thus to be able to react to this, it is necessary to include external factors. Bats depend

strongly on their environment and their food supply. These external factors must be recorded

to attribute a change in behavior to specific external factors. For this purpose, the question

of hunting grounds, the food supply, and the condition of the entire ecosystem arises. Wind,

precipitation, and concrete brightness must be mentioned here. These factors can be decisive

for the behavior of bats and should, therefore, be recorded.

In moth monitoring, a lot of work has been done in the past, but mostly work using lethal

moth traps. Non-lethal moth traps were only conceptually available in the last years and are

not yet well tested. One exception is the publication of Bjerge et al. [17], which was the basis

for our non-lethal moth trap, where we added features and robustness for the deployment in

the forest.

In general, the behavior of bats in different situations should be detectable, and also by various

sensors, because thus the observable behavior can be transferred from one sensor to another.

For example, the simultaneous acquisition of audio and VHF data could make it possible to

assign audio sequences to a specific individual. This tagged audio could be the starting point

for automatically recognizing individuals in recorded audio. This automatic recognition would

have the advantage that a transmitter and thus the intervention in animal welfare would no

longer have to be carried out. Such a multi-sensor device needed for this type of data has not

been published previously, to the best of our knowledge. To also label VHF and audio data

with bat behavior, the data fusion of audio, VHF, and camera data must be achieved. This data

fusion allows automatically detecting bat behavior in audio or VHF sequences. Furthermore, it

could also be achieved by our project BatRack, which is presented in Section 5.5.

3.2 Problem Statement

To be able to answer questions in bat research, different sub-questions have to be answered, as

shown in Figure 3.1. Answering these sub-questions is necessary to get a good assessment of

the whole field.

Researchers must collect ecological data to find correlations with weather, microclimate, food

availability, or roosting sites. By surveying moths and especially recording the number of

moths over a broad local area and over time, correlations can be found with the occurrence
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Figure 3.1: Problem statements in bat monitoring

and activities of bats. By the large-scale examination of different trees, statements can be

made about the condition of the forest in various parcels of the forest and, thus, about factors

influencing bats in these parcels. It is also essential to knowwhich factors influence the behavior

and occurrence of bats. From the answers to these questions, it is easier to find answers to the

factors and circumstances that must be present to protect bats and entire ecosystems. Bats

are one of the first species to be driven out by circumstances and indicate that this ecosystem

is no longer intact. Thus, all the findings can be used to keep ecosystems intact and improve

their conditions.

Second, where bats are lactating or, more in general, the positions of bats over time are a field

of research to get an impression of what bats are doing and where bats live. Furthermore, by

investigating the positions of bats, statements can be made about their roosts and habitat.

Here, the questions arise, how many different roosts does a bat colony need per year, and how

often do they change them? The answers to these questions allow conclusions about the effects
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on the bat population. For example, the estimation of clearing forest areas is significantly

influenced by the measure of the harm to the animal population. Thus, a significantly more

accurate estimate of clearing effects or the impact of environmental damage due to natural

events can be derived. From the nature of the different tree cavities, i.e., which type of tree

and which season, conclusions can be drawn about the necessary components of forests for

the continued existence of forest bats. Thus, through these answers, an estimation can be

made for the effect of monocultures and environmental influences on the development of the

bat population and, with that, the evolution of an ecosystem. The third question that can

be answered from the positional data of bats is: How often and where are bats active? Here,

different species can be compared, and the preference for other prey or hunting techniques

can be derived from differences between species.

The third area for questions is: Who is present? Here, statements can be made about the

occurrence of different bat species in other forest areas. This method illuminates this question

more precisely and for all existing individuals. One or several individuals must be provided

with a transmitter, but all current individuals can be seized. Thus, this kind of data acquisition

is again less complex and more broadly possible. It is also less prone to human errors, since

the quality of the data does not depend on the catch success for the transmission. However,

some methodical questions still have to be answered to get a method that can distinguish

individuals and thus only allows a census of bats.

It is necessary to study the actions itself to get a complete overview of the activity of bats.

Likewise, an energy requirement can be derived from the activity, which must be absorbed

through food. The activity of bats can determine correlations with weather and microclimate,

and thus conclusions can be made about the behavior and adaptability of bats to external

conditions. A method must be created to observe a bat and determine its activity. If this is

successful, researchers can answer several questions. These include the question of how the

movement patterns differ in different activities, e.g., whether nursing bats behave or hunt

differently or in other areas than non-nursing related animals.

With the intersection of audio data and thus calls, the question of whether bat calls differ

in different activities can be answered. If so, one could also predict activity by recording the

calls and thus determine species, numbers, and activity by deploying a wide-area audio sensor

net. Therefore, it is necessary to have a method that is non-invasive to an animal to assess

its occurrence and action in specific areas. This non-invasive method could then be used to

develop a simple and scalable system that would provide a consistent and detailed record of

bats and, thus, a way to detect bat population declines quickly.

3.3 Challenges of Ecological Monitoring in Forests

Especial in harsh conditions, ecological monitoring is a challenging task that has to fulfill

several requirements. In particular, bats live in a forest ecosystem, and a feasible automatic

wireless sensor system for ecological monitoring in a forest ecosystem faces the following

challenges.
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Figure 3.2: Different stages of power generation, voltage transformation, and computation, and

the stages to optimize the energy system: (A) energy generation with photovoltaic

modules in the forest, (B) battery and solar controller, (C) voltage transformer, (D)

computation unit of the sensor node

3.3.1 Energy Constraints

In forested areas, most places do not have sufficient power supply. One reason is that these

places are often remote and thus not connected to the local power grids. Another reason

is that photovoltaic systems can only generate energy in forested areas with considerable

effort. A researcher must find clearings in the forest, the photovoltaic panels must be correctly

positioned on the clearings, and a researcher must clear them of vegetation. Furthermore,

the problem arises that most commercially available partially shaded panels hardly provide

electricity. In the open areas, this problem only arises in a weakened form, and the choice

of the solar panel and other components moves into the background. However, other power

generation components in the forest also play an essential role, so these should also be selected

sensibly. Explicitly, the choice of solar controllers and voltage transformers are potential sources

of energy dissipation. Only by choosing sensible components, the operating time of a sensor

node can be maximized, even in a cloudy or rainy period, and the manual maintenance effort

is minimized.

In contrast, to write energy-efficient software, the hardware part is, in most cases, more

expensive than less energy-efficient parts. Nevertheless, continuous operation of the sensor

nodes is nearly impossible without an energy-efficient hardware setup. In Figure 3.2, the

different areas of energy optimization are shown.

3.3.2 Harsh Environments

A sensor node used for a long period of time is exposed to different influences compared

to experiments and sensors set up manually for short periods. These sensor nodes and their

accessories must be much more robust and durable than established methods with manual care.

One example is the manual supervision of lethal insect traps. They are deployed on promising

(non-rainy) days, attract insects during the night, and researchers collect and evaluate the

results the following day. Multi-day operation is also conceivable here, but with the restriction

that these traps can be emptied every morning and thus also retrieved in lousy weather. In the
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case of automatic sensor nodes, manual maintenance of the sensor nodes is only envisaged in

the event of a fault and is therefore minimized. Otherwise, scalability could not be achieved

because manual work is too time-consuming. Moreover, collecting the sensor nodes in bad

weather is not foreseen.

3.3.3 Changing Conditions

The changes over time, in which the sensor node automatically takes over the ecological

monitoring, are not trivially solvable. For example, the daily course of the sun changes over a

year. The vegetation changes constantly, and sensor nodes and their accessories must adapt to

these circumstances, or the conditions have to be manually improved for the sensor nodes. A

robust solution for these problems is desirable because it reduces manual effort and allows

scaling.

3.3.4 Unreliable Connectivity

Especially in forested areas, due to the changing vegetation, unreliable connections to cell

towers or other nodes are not uncommon. Here, the network operator can interrupt long

running connections or a different cell tower utilization could be possible. However in a self

deployed network, nodes could fail in scenarios where the stored and newly generated energy

is not sufficient to guarantee a stable energy supply.

3.3.5 Resource Limitations

Based on the challenges and limitations described above, the hardware must only rely on

minimal resources. Here, microcontrollers, and single-board computers in particular, are a

suitable way to save energy and resources but still offer plenty of options for reading out

sensors, processing, and forwarding the data. These computers and controllers must be able to

read out the sensors used. The reading of sensors requires GPIO pins for simple sensors and

various interfaces for more complex or data-intensive sensors. For this reason, the data to be

recorded often determines which sensors must be used and, thus, which computing resources

must be employed. Thus, the choice of resources depends mainly on the use case and should be

selected so that the data is read, processed, and forwarded with as few resources as possible.

3.4 Sensor Systems

Sensor systems can be divided into hardware components, data collection, transmission, and

energy supply. In all these subareas, preliminary work or hardware can be used to solve

the problems described. In the following, a categorization in the described subareas and a

classification is presented to build a system for automatic environmental monitoring.
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3.4.1 Components of a Sensor System

The simplest way to divide hardware components into two categories is based on their primary

task: The data recording is done by the sensors and the data processing is carried out by

the computing units. Due to different possibilities for data transmission, however, not all

components in these two categories are compatible. For example, computing units can only

read some sensors out in analog form, others only provide specific digital protocols, and still

others can only be integrated via individual connectors. As a result, a researcher must select

the processing unit according to the sensors needed to perform the acquisition.

As a further aspect for the processing unit, the ability to forward and store the data is required.

Here, the categories of microcontrollers and single-board computers differ significantly. The

single-board computers usually offer significantly more interfaces for storage, and the factory

often provides some standards for transmission. In contrast, others can be upgraded, for

example, via USB. However, in contrast to microcontrollers, single-board computers are usually

much less energy-efficient.

Also, more or less energy-saving sensors exist. With these, the energy consumption is partly

systematically conditioned, e.g., with sensors for specific cases, in addition, to the concrete

conversion of the sensor and the pertinent printed circuit board. Thus, a researcher can already

optimize some systems in the design phase with the choice of sensors.

3.4.2 Data Collection

To define the requirements for a scalable, automatic, user-friendly ecological monitoring system,

a researcher must clarify which data a sensor node should collect. Since the data needed clearly

depends on the problem, it is abstracted here and divided into data classes. The data rate is

the product of temporal resolution and size per data point. For the first factor, the data classes

can be divided into continuously recorded data collection and data collection according to a

schedule. As a third variant, some data collections are triggered by an external event. Looking

at the three different variants of data collection, a reasonably fixed data rate can be determined

for the first, while with the second variant, this depends mainly on the schedule settings, and

with triggered recordings, upper estimates can be made, but no concrete data rates can be

determined.

In the second factor, the size of each data point can range from a simple float, int, or str, to a

collection of these data types per measurement, to photos or videos. Here, the memory and

transmission requirements differ significantly. Figure 3.3 shows the resulting data rates for

different sensor nodes presented in this work.

3.4.3 Communication

To equip each sensor node with its uplink, we can choose disruption-tolerant networks (DTN),

mesh networks, or no concrete network formation at all. An uplink in a mesh network or DTN

can be provided with one or more points and different technologies. The technology used

results in different transmission rates, robustness, and energy consumption of the system.
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Figure 3.3: Data rates of the different sensor node projects of this thesis - categorized by the

size of each data point and the time resolution of the recording

Communication is essential to enable real-time data processing and get status information

from the system. Real-time processing is essential to gain knowledge of the transmitted data,

evaluate the setup and results about their quality, and fix possible errors quickly. LTE, WLAN

bridges or satellite links can also be used to establish communication. These solutions depend

on infrastructure and can only be used in areas where this infrastructure is present.

3.4.4 Power Supply and Consumption

Regarding power supply, there are significant challenges due to varying vegetation. The whole

power system offers significant opportunities to optimize the power supply. As demonstrated

in Section 3.3, photovoltaic power is a suitable power source, but has some challenges, which

can partially be addressed with commercially available technology. One example are hotspot-

free solar panels, which provide significantly higher power output than conventional solar

panels in partially shaded conditions. Maximum Power Point Tracking (MPPT) solar chargers

can increase the battery’s charging efficiency compared to Pulse Width Modulation (PWM)

chargers. The researcher should also adjust the battery size of the sensor system so that the

system can survive periods of lousy weather without failure. Furthermore, the researcher

should check the efficiency of the components used in the sensor node, and they should use

more efficient parts if possible.

3.5 Networked Sensor Systems for Bat Monitoring

Section 3.2 raises questions for the research of bats and thus for predicting the state of the

whole ecosystem. These can partly be answered with new methods presented in this thesis.

For this purpose, an assignment of solutions to questions will be done in the following section.

The assignment of the projects to the individual problems is shown in Figure 3.4.
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Figure 3.4: Problems with matching publications

The work can be divided into two parts. The first part addresses issues in monitoring the

ecosystem in which bats live. This task can be split into sub-questions about people, trees,

birds, insects, and sensors. For these sub-questions, Chapter 4 highlights publications in this

area. The second part is bat monitoring, which can be split into the sub-questions of "who?",

"where?" and "what?". These sub-questions are answered by the publications in Chapter 5.

3.5.1 Ecosystem Monitoring

The publications presented in Section 4 answer sub-questions of Chapter 3.2. The EcoSense
project provides the basis and an overview of various sensors and their power consumption and

presents a structure for disseminating data. In this project, the questions about environmental

factors and how to measure them are described in a scalable way. In this context, scalability

stands for the possibility of autonomous operation and the lowest possible costs in both

acquisition and operation, which is why the energy consumption of the presented sensor nodes

is also determined.

Another project is theAutomatedMoth Trap (AMT), which automates the detection of moths and

is thus a food source for bats. As with EcoSense, the AMT also focuses on low-cost components

and operations. For this purpose, domain knowledge enables the most data and energy-saving

operation possible by employing intelligent scheduling adapted to the use case.

As a third project, the concept of Unobtrusive Mechanism Interception is presented to equip

existing systems with new functions. The method of Unobtrusive Mechanism Interception is then
used in the ForestEdge project. Thus a possibility is created to provide the proprietary system

of the TreeTalker with variable measuring intervals. These can depend now on, e.g., the battery

condition and prevent a data gap. Furthermore, the incoming data is checked for plausibility,

and the sensor node is instructed to repeat the measurement if an outlier is detected.
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Fourth, the project Bird@Edge is presented. It provides an edge computing infrastructure to

couple several network-capable microphones and an edge processing device. This infrastructure

enables the microphones themselves to be manufactured relatively inexpensively and also to

be relatively energy efficient. These microphones send the received data to the edge device,

which processes the data in real time and relays the results. Thus, bird species lists can be

made available to researchers immediately, and they can work with the results.

Finally, humans are part of the ecosystem, and the possibility of their presence has to be

addressed. The camera traps for bats from BatRack are in public places. Therefore, human

faces must be excluded from the camera images since no personal data may be collected. For

this problem, the results of the SmartFace project are used since it enables energy-efficient

recognition of faces on end devices. Thus we can immediately delete these unwanted recordings.

Afterward, we can log the occurrence of these events to analyze the impact of human presence

on bat behavior.

To summarize, these projects can answer the questions raised in Section 3.2 for the ecosystem

part and thus provide answers for this subarea, as shown in Figure 3.4.

3.5.2 Bat Monitoring

The publications presented in Chapter 5 answer questions about bat monitoring.

The first project contributes to how audio can be used to recognize bat calls. It introduces a

neural network to detect and classify them into different species and is tightly coupled to the

Bat@Edge project.

Bat@Edge provides an edge computing infrastructure to couple several network-capable micro-

phones and an edge processing device. In combination with the neural network mentioned

above, the questions from the "Who?" area shown in Figure 3.4 can be answered. Furthermore,

the question of how many bats are in this area can be estimated if bat individuals can be

distinguished in the audio data.

tRackIT OS is a solution to the scalable acquisition of a bat position and the low-maintenance

provision of this service. Through the combination of error-aware software and real-time data

processing, this system helps answer the question in the subarea "Where?" in Figure 3.4.

The project Bat@Work answers questions about "What?". In this project, the signals of bats

with attached transmitters are divided into the classes of active and passive. The different

behaviors of two other bat species are presented through a study. Through these findings,

conclusions can be drawn about the hunting behavior of the different species, and the project

also provides answers to make bat monitoring more efficient in the future. If a researcher

wants to study a specific species in the future, the researcher can use this data to adapt the

technology to the monitoring results. This result means that the technical devices no longer

have to be active the entire night but can be used in a data and power-saving manner.

With all the projects in mind, BatRack, which links several sensors, is presented. The sensors

used are an ultrasonic microphone, an infrared spotlight with an infrared camera, and a VHF

receiver. Thus, the bat calls can be recorded, while the camera can determine their activity.

Additionally, the VHF receiver can assign these data to those of a bat with a transmitter. With
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this new device, tightly coupled types of data can be recorded. For example, we can observe a

specific activity with the camera and tag the audio and VHF data with this activity for further

use.

3.6 Summary

This chapter introduced the topic of bat monitoring and problems arising in this field of work.

The research field can be divided into the following sub-questions:

• What does the ecosystem do?

• Who is acting?

• What action is performed?

• Where does the action take place?

The "who/what/where" questions were answered explicitly for bats. Networked sensor systems

can answer these sub-questions. However, these sensor systems are still confronted with use-

case-specific challenges and environmental disturbances, which are indeed accelerated by

climate change itself. The most challenging part, monitoring in forested areas, was selected.

To overcome these challenges, solutions for components for networked sensor systems, data

collection, communication, and power supply were presented.

Furthermore, an overview of the contribution of networked sensor systems for bat monitoring

was given.
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Ecosystem Monitoring

This chapter contains research results on the topic of ecosystem monitoring. Monitoring the

ecosystem is relevant for bats to understand their behavior.

First, an approach is presented to build sensor nodes with COTS components that can measure

environmental parameters in a cost-efficient and energy-efficient manner. This approach

appeared in publication [13]. Here, the main focus is on comparing sensors with similar

functionality and investigating automatic data processing for data reduction. The results show

that low-cost and intelligent sensor nodes can be built, new data sources can be used, or already

acquirable data can be recorded in a new way.

The second publication [165] presents a non-lethal moth photo trap. Preliminary work exists in

lethal moth traps that carry the disadvantage of killing the insects and potentially decimating

the population. Furthermore, some publications exist in non-lethal photo traps that were

not used in the context of a field study but existed as prototypical developments only for

testing. The presented automated non-lethal moth trap (AMT) implements a schedule for data

reduction and operates in the field with a power supply for a permanent timed recording in

possible harsh environments.

With Unobtrusive Mechanism Interception, an approach is presented to equip existing sensor

nodes with new functionality without needing to change or replace proprietary hardware. As a

result, publication [141] contributes to the scalability of the approach since, in environmental

monitoring projects, existing hardware can be further used. Thus, the costs for the conversion to

a networked wireless sensor network are reduced. In a further publication [140], this approach

is applied to the used sensor nodes. The result is called ForestEdge, indicating that unobtrusive
mechanism interception can be applied to particular sensor systems. In addition, the approach

can add some functions to the proprietary hardware, and themonitoring results can be improved

by outlier detection. For this purpose, ForestEdge was investigated in a grey box manner. The

communication via LoRa was reverse-engineered and mimicked to answer and give commands

to the proprietary hardware correctly.

As a further publication [103], Bird@Edge is presented. Here, a neural network was ported to an
edge platform and used for live analysis of bird calls in a forest. It is shown how processing at

the edge leads to a significant data rate reduction. This processing increases the transmission

chance and decreases the costs for the transmission because especially in remote areas, the costs

for higher bandwidths increase. This approach also shows the ability to track the abundance

of birds in the monitored area automatically. Furthermore, bird abundance can be correlated

with bat abundance or bat activity.

33



4 Ecosystem Monitoring

Ecosystem Monitoring Bat Monitoring

Where?

Bat 
Behavior

Who? What?

tRackIT OSBat@Edge Bat@Work

BatRackSmartFace

AMT

ForestEdge

EcoSense Eco- 
systemSensors

Insects

Trees

People

Bird@Edge Birds

Figure 4.1: Publications on ecosystem monitoring

The last publication [139] in this chapter presents an energy-saving approach for recognizing

faces in images on low-power mobile devices. This approach can reduce data by not transmitting

images of faces from camera traps. In addition, it also has the advantage of recording sensor

data in a way that complies with data protection regulations, since recording personal data

without consent is not readily permitted in the EU or is at least controversial. Furthermore, the

approach allows us to get an impression of when humans are present in the research area and

to store these events to check for signs of disturbance of humans for bats or other animals.

In Figure 4.1, the publications in this chapter that deal with monitoring the ecosystem are

displayed. They address the challenges discussed in Section 3.3. In particular, robust and

cost-effective systems are presented, which allows scaling these approaches to an area-wide

network. Furthermore, contributions to the topics discussed in Section 3.4 are made, sensors are

compared, communication paths are shown, and the power supply in the forest is optimized.

In addition, the contributions are designed to work in harsh environments. Last but not least,

the research contributes to an open networked sensor system to monitor our environment and

especially to monitor bats and their activities. It also can be used in different use cases, not

only for bat research.

The non-lethal moth trap
1
, ForestEdge

2
, and Bird@Edge

3
are available via GitHub under

open-source licenses. For EcoSense, the components developed for our setups, such as the rf95

modem firmware, the BLE modem, Serval LBARD support, and the software customized for

our Raspbian distribution, are all released as open-source software on GitHub.

Parts of this chapter have been published previously [13, 103, 139–141, 165]

1https://github.com/Nature40/InsectPhotoTrapOS
2https://github.com/umr-ds/TTtalker
3https://github.com/umr-ds/BirdEdge
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Wireless Communication

4.1 EcoSense: Environmental Monitoring using Low-Cost
Hardware and Infrastructureless Wireless Communication

4.1.1 Introduction

Environmental monitoring without being able to rely on existing electricity and communication

infrastructures is required in several use cases, such as biological and ecological studies (e.g.,

animal tracking, air quality measurement). In these situations, several constraints need to be

considered when a technical solution for environmental monitoring is designed: lack of power

supply, lack of communication infrastructures, harsh weather, low maintenance possibilities,

weight restrictions for animal-attached sensors, availability of scenario-specific sensors, and

cost factors.

There are several computing platforms readily available that can be extended to provide

stationary services as well as mobile, low power tracking devices. Furthermore, there are

many affordable, off-the-shelf sensors that are potentially useful in such scenarios, but proper

information on how to integrate them and their specific requirements, such as real world

energy consumption, are often not easily accessible. Moreover, integrating the computing

power, flexibility and mobility of smartphones and tablets is an interesting option. Since

satellite communication is expensive and limited, and cellular services are often not available

in remote places, low-cost long-range (up to 16 km) radio technologies, such as LoRa, are quite

useful. Although they are mostly associated with IoT applications in an infrastructure-based

LoRaWAN mode, they can also be used for device-to-device communication and have the

benefit of license-free frequency bands in any country of the world. Due to the low bandwidth

of these radio transceivers, only small pieces of data can be transmitted, increasing the need to

preprocess data prior to long-range transmissions.

In this section, we present a flexible and affordable sensor, computation, and communication

platform for environmental monitoring that relies on low-cost hardware and infrastructureless

communication. It uses delay-/disruption-tolerant networking (DTN) for non-time critical tasks

over different wireless links, provides on-device data processing capabilities based on machine

learning methods, and integrates mobile sensor nodes, static devices, and smartphones. In

particular, we make the following contributions:

• We present a novel sensor, computation, and communication platform for static and

mobile environmental monitoring setups, and for users with mobile devices.

• We present a novel energy-efficient approach for on-device image classification.

• We present a novel approach to provide long range communication capabilities for

Bluetooth-enabled devices.

• We present experimental evaluations of (a) commonly available and affordable platforms,

(b) the power consumption of several sensors, and (c) the real world communication

ranges and power demands of various radio link technologies for environmental moni-

toring.

35



4 Ecosystem Monitoring

Parts of this section have been published in Lars Baumgärtner, Alvar Penning, Patrick Lampe,

Björn Richerzhagen, Ralf Steinmetz, and Bernd Freisleben. “Environmental Monitoring us-

ing Low-Cost Hardware and Infrastructureless Wireless Communication.” In: IEEE Global
Humanitarian Technology Conference (GHTC). IEEE. 2018, pp. 1–8.

4.1.2 Related Work

Several wireless sensor platforms for environmental monitoring were presented in the literature,

but they are often either based on specific technologies or tailored to dedicated use cases. For

example, the OpenSense project aims to bring community-driven environmental monitoring

to life with an open platform and accessible results [1]. However, it is specifically designed

for air pollution monitoring, relies on existing communication infrastructures and hardware

specifically built for this use case. On the other hand, it integrates static sensor nodes as well

as mobile nodes, and most recently also wearables [152]. Similarly, Citi-Sense-MOB [28] and

AirSenseEUR
4
[76] work for air quality measurements in urban environments, but also rely on

technologies such as GRPS for data transmission, constant power supply (e.g., from the bus or

car the sensor is mounted on), and custom/closed-source printed circuit boards (PCBs).

Some custom-built platforms can be adopted to various scenarios. Problems associated with

custom-built platforms are their cost and availability; sometimes they are specifically tailored

to a particular geographic region [144, 217].

Llamas et al. [149] use Arduino and Raspberry Pi computers for building a reusable open

sensor platform. Their application is human gait identification. Long range communication or

infrastructureless operation are not considered.

The senseBox project
5
provides a sensor platform for citizen science projects [259]. There is a

strong focus on education and publicly available sensor data, but senseBox lacks flexibility when

used for more than just raw sensor data aggregation and also relies on existing communication

infrastructures. Luftdaten
6
[70] also uses cheap microcontroller units (MCUs) configured for

air quality measurement in a citizen science project, but also relies on existing communication

infrastructures.

The EU project WAZIUP tries to bring IoT technologies to developing countries [189]. WAZIUP

provides a low-cost communication infrastructure (LoRaWAN), while we try to work without

any infrastructure on a purely peer-to-peer basis. We incorporate DTN technologies and

feature heterogeneous radio-link setups. Furthermore, conserving energy plays a more vital

role in our use cases, and we focus on providing a complete system for remote sensing and

communication.

Some proposals use mobile devices or wearables as sensors, and some approaches provide

low-cost, long-range radios usable from smartphones, but they are often very impractical (a

direct USB connection to a smartphone is required) or require operating system modifications

[156].

4
https://airsenseur.org/website/

5
https://www.sensebox.de

6
https://www.luftdaten.info
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4.1.3 Sensor Platforms for Environmental Monitoring

Static Sensor Platforms (SSPs) are the backbone of our environmental monitoring platform.

They have less restrictions on size or weight than Mobile Sensor Platforms (MSPs), and energy

problems can be handled easier by adding solar panels, wind turbines, or larger batteries. SSPs

can be used for relaying packets, collecting sensor data on roof-tops, on trees (e.g., wildlife

cameras), or on smart street lamps. MSPs, on the other hand, are used to tag animals and,

therefore, must be kept as light and small as possible. Energy is a more valuable resource. Since

humans with smartphones and tablets can also act as sensors, these must be integrated as well.

Adding long-range infrastructureless communication to mobile devices also has the benefit

that it can be used in case of an emergency for sending messages to other participants. Finally,

it is necessary to preprocess the gathered sensor data to reduce the needed bandwidth for

transmission. This is challenging when using power-efficient devices as a basis for SSPs. The

different sensor platforms are discussed in more detail below.

Static Sensor Platforms

SSPs can easily utilize different energy sources, such as solar panels, car batteries, or electrical

wall outlets. Therefore, they can be built using regular single board computers (SBCs), such

as Raspberry Pi 3 or Zero, since these platforms offer a compromise between computational

power and low energy consumption. To also function as a network hub for mobile users and

MSPs, different radio link technologies can be incorporated - Bluetooth, WiFi mesh, and for

longer range, license-free, low-bandwidth communication via LoRa. Since energy consumption

of SSPs is not as critical as in MSPs, SSPs can constantly listen on the different wireless

interfaces and act as hubs or relays for smaller mobile nodes passing by. For data dissemination,

DTN technologies such as Serval
7
can be used, since they perform well in infrastructureless

environments [9]. A variety of sensors can be added, e.g.:

• camera, night-vision camera, thermal camera

• microphone

• GPS/GLONASS

• temperature, humidity, barometric pressure

• air quality

• rain- and soil-moisture sensors

Usually, these are connected directly through GPIO pins or various bus systems (e.g., serial,

SPI, i2c). Most SBCs directly provide these interfaces, only analog-digital pins are often lacking,

but can easily be added externally.

7
https://github.com/servalproject/serval-dna
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Mobile Sensor Platforms

MSPs have more constraints than SSPs, since they must be as light and small as possible to

be attached to animals or additionally mounted on an Unmanned Ground or Aerial Vehicles

(UGV/UAV) [11]. Apart from the weight of the total system, power consumption is the main

bottleneck. Due to these limitations, the choice of radio link technologies and the types of

sensors are quite restricted. MSPs are based on small MCUs, since they require much less

power and often provide deep sleep capabilities as well as various I/O pins for digital and

analog sensor inputs.

Long-range Radio Links for Mobile Devices

In remote areas, cellular coverage or WiFi access points for communication using standard

smartphones are often not available. Building custom radio links into phones is quite expensive

and economically not interesting for large carriers. Therefore, we need a different approach

with the following requirements:

1. it should work with any operating system,

2. it should be compatible with any mobile phone,

3. it should be license-free "worldwide",

4. it should provide infrastructureless long-range (>1 km) communication,

5. it should be energy-efficient,

6. it should be affordable.

The best solution for items 1 and 2 is to rely on platform-agnostic standards such as Bluetooth

Low Energy (BLE) that can be used from Apple iOS and Google Android, or almost any other

operating system. To cover items 3 and 4, we use the LoRa standard that in theory provides up

to 16 km of range and is available in different frequency bands (433/868/915 MHz) for worldwide

usage. LoRa also offers the LoRaWAN standard as a higher layer with built-in encryption, but

it also requires some infrastructure, making it unsuitable for our task. Energy efficiency (item

5) is partly achieved by using BLE, but also by using small MCUs to handle communication.

By finding a suitable MCU with built-in Bluetooth and LoRa chipsets, the price for such a

smartphone add-on is also kept low. Alternatively, an SBCs equipped with a LoRa modem

can be paired using Bluetooth with a smartphone. Even though power consumption will be

higher, this system has the benefit that software such as Serval can run directly on the SBC

and expose only UI relevant functions via BLE, preserving smartphone energy due to lesser

notifications and wake-ups.

On-Device Data Processing

Since long-range links over LoRa only provide a few kilobits per second of bandwidth, trans-

mitting large amounts of data in its raw form is not feasible. Therefore, processing the sensor

data at least partially on the SSP to filter out unwanted content or already produce analysis
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Figure 4.2: Base station for monitoring, relaying and processing.

results is favorable. In our use cases, we heavily rely on visual object/concept detection in

images to filter out relevant information. Our previous work has shown how this approach

can significantly reduce the amount of data necessary to be transmitted [139]. To cope with

the limited CPU power of most SBCs, we integrate external hardware to accelerate the visual

classification process. The challenge is to limit the power consumed by the accelerator device

when it is currently not in use.

4.1.4 Implementation

We now discuss implementation details of our platforms.

Static Sensor Platform

The SSP can act as a relay for MSPs and mobile devices carried by users. Furthermore, it can be

used without any sensors as a base station and uplink to the Internet (see Fig. 4.2). To provide

these features, we focused on ARM-based SBCs, more specifically the Raspberry Pi family.

These devices are readily available worldwide, are proven technology made specifically for

tinkerers and well documented. There are several cameras that can be directly attached, plus

many (p)HATs with additional hardware and many GPIO pins for direct sensor attachment.

Depending on particular requirements (size, energy etc.), there are different models available,

such as the Pi Zero W and the Pi 3. Many wildlife cameras and weather stations have already

been built on this proven hardware platform, and Raspbian provides a solid and familiar Linux

foundation. We modified a Raspbian OS Image to provide features specific to our SSP. It can

easily setup a mesh network, provide Bluetooth debugging capabilities, open an access point,

and start services, such as GPS logging and serval-dna. Also, the energy consumption can be

optimized by deactivating unused features, such as the HDMI port of the Raspberry. All this
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can be configured through a simple text file on the small FAT32 partition on the SD card
8
.

This has the benefit that the default image can be written to a new SD card and then can be

configured from any computer with a simple text editor prior to actually booting the system.

There is no need for Linux knowledge or extra drivers to read the filesystem, all is kept in one

file, in one place for ease of use. The single biggest feature missing in the Raspberry Pi family

is proper power management and deep sleep, but there are several after-market solutions
910

offering this functionality. Another benefit of the newer Pi’s (Zero W(H) and 3) is that Wi-Fi

and Bluetooth are already present. The only major interface left to be added for our system is

a LoRa transceiver for long-range communication.

LoRa Radio Modem

There are several MCUs on the market using Cortex M0, ATmega32u4, or ESP32 chips with

onboard rfm95 transceiver modules. Using the RadioHead library
11
, these can easily be used

in the Arduino programming environment to send packet data from device to device. We

developed a firmware to expose this functionality via an AT command set over the built-in

USB-Serial, similar to the one found in classic dial-up modems. Therefore, any device with an

USB port can use such a modem, and no special drivers are needed. The source of the modem

firmware can be found on github
12
. Furthermore, Serval, our DTNmiddleware, was made aware

of this communication channel by changing LBARD and writing a driver for our firmware
13
.

Mobile Sensor Platform

Since the MSP should be as light and small as possible, we focused on MCUs with integrated

Wi-Fi and/or LoRa transceivers. For convenience, performance and portability, all of our pro-

gramming was done using the Arduino programming environment in contrast to ESP’s IDF or

MicroPython. Hence, only minimal changes were necessary to switch from oneMCU to another.

To preserve battery power, the mobile sensors are mostly kept in deep sleep until a timeout or

external trigger wakes them up. Also, they are programmed as send-only devices, since relaying

data would require constant listening and would prevent deep sleep, thus draining the battery

faster.

Long-range Radio Links for Mobile Devices

Since SBCs, such as the Raspberry Pi 3 and Pi Zero W, provide Bluetooth capabilities and can

control devices with our radio modem firmware, such a setup can easily be used as a bridge

for smartphones. For a simple prototype, we used the bleno framework
14
to expose system

functionality via BLE. This is also useful for debugging head-less systems. Therefore, we provide

8
https://github.com/buschfunkproject/heckenschere

9
https://spellfoundry.com/product/sleepy-pi-2/

10
http://www.uugear.com/witty-pi-realtime-clock-power-management-for-raspberry-pi/

11
http://www.airspayce.com/mikem/arduino/RadioHead/

12
https://github.com/gh0st42/rf95modem

13
https://github.com/gh0st42/lbard-ng

14
https://github.com/noble/bleno
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Figure 4.3: BLE LoRa modem with plain Raspberry Pi 3 for size comparison.

a simple echo service to broadcast any information via BLE
15
from our customized Raspbian

distribution. Despite the flexibility this setup provides, it consumes quite a lot of power and is

rather large in size (Pi Zero + LoRa modem + battery pack + antenna).

For a more lightweight solution, we enhanced the radio modem firmware to directly use BLE

as a serial UART replacement. The packet size restrictions of LoRa and the BLE implementation

in most RF95-based chipsets are quite similar. There are ESP32-based MCUs, such as the ones

from Heltec and TTGO, that provide WiFi, Bluetooth and LoRa on a single board. The resulting

system can be paired with any BLE capable (mobile) device, requires much less power, and for

the 868/915 MHz bands, a rather short antenna. A modified version of the firmware can also

be found online
16
. This system is rather small and comparable to commercial products, such as

the GoTenna
17
, but more open and flexible. The BLE LoRa modem based on a TTGO ESP32

chip, including a small 750 mAh LiPo, a custom 3D printed case, and a 868 MHz antenna is

shown in Fig. 4.3 right next to a Raspberry Pi 3 for a size reference.

On-Device Data Processing

For data processing on SBCs, we implemented a solution with two execution options. The

first one uses the device CPU itself, and the second one utilizes an Intel® Movidius™ Neural

Compute Stick (NCS). Visual object/concept detection is used for image processing, and for

this purpose we use two neural network models. The first one is InceptionNet v3 [227] with

1001 different detectable classes, and the second one is also an InceptionNet v3 model trained

on the Open Images Dataset
18
. This second neural network can detect 6012 different classes

and is suitable for a more detailed analysis of the given images.

15
https://github.com/buschfunkproject/bledebug

16
https://github.com/gh0st42/rf95modem/tree/ble_modem

17
https://www.gotenna.com

18
https://storage.googleapis.com/openimages/web/index.html
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These neural network models are executed either with Tensorflow 1.1.0 built for ARM CPUs or

on the Movidius compute stick. Additionally, the neural networks have to be converted with

the Movidius compiler mvNCCompile to run the pretrained versions on the compute stick.

Table 4.1: Overview of SBC and MCU Platforms

Processor RAM Network Idle - Power in mW Load - Power in mW

Mean Max Mean Max

Pi 1 Model B+ 1x 700 MHz 512 MB Eth. 931 1288 1043 1418

Pi 3 Model B 4x 1200 MHz 1024 MB Eth., WiFi,� 4.1 1107 1845 2224 3285

Pi Zero W 1x 1000 MHz 512 MB WiFi, � 4.1 415 702 662 1057

ESP32, TTGO 1x 240 MHz 520 KB WiFi, � 4.2 366 427

ESP8266, Feather Huzzah 1x 80 MHz 80 KB WiFi 426 1321

Feather M0 1x 48 MHz 32 KB Optionally WiFi, LoRa 25 29

Feather 32u4 1x 8 MHz 2 KB Optionally LoRa 24 27

Waspmote 1x 14.74 MHz 8 KB 145 150

During our evaluation we found that the Intel Movidius NCS consumes an average power of

1955 mW when it is idle. On a Raspberry Pi, we can disable the entire USB subsystem, but

in this case the Ethernet and all other USB ports are also disabled. Since various sensors and

potential extra radio link interfaces might be connected over USB, this behavior is not desirable.

Disabling only the specific port of the NCS to save energy when no processing has to be done

is more favorable. T o achieve this, hub-ctrl
19
is used to turn off the power of the compute stick

in case it is currently not needed. This preserves a lot of energy, since the compute stick is

expected to have more idle times than compute times. The possibility to have the compute

stick as a backup without an energy penalty and only activating it when really needed makes

it even more useful.

The visual object/concept detection software itself was written in Python 2.7 and outputs

the five main visual concepts for each given image for further processing or discarding of

irrelevant images. Thus, the energy for transmitting irrelevant images can be saved. Especially

in a multi-hop scenario, a large amount of energy can be saved by applying preprocessing

functions to recorded image data [83].

4.1.5 Experimental Evaluation

We performed several experimental evaluations regarding power consumption, transmission

ranges, and execution times. We used the Monsoon Power Monitor for power measurements.

All energy tests were repeated 2-3 times and ran for about one minute each, resulting in plenty

of time to get a realistic power reading. Only the stress and compute stick evaluations were

not terminated by time but by the given task.

19
https://github.com/codazoda/hub-ctrl.c
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Table 4.2: Overview of different Sensors

Function Power in mW

Mean Max

MAX30105 Particle 19 145

CCS811 VOC, TVOC, eCO2 52 186

PIR PIR 51 55

SIM28 GPS GPS 250 302

BME280 Temp., Baro., Humidity 56 65

MICS-2714 NO2 42 45

MICS-5524 CO 41 60

AMG8833 IR thermal 179 2248

Envirophat

Temp., Baro., Color,

Accel., Magnetometer

180 1868

Pi Camera NV Night Vision Camera 1173 2290

Pi Camera v2.1 Camera 393 2231

Platform Comparisons

We evaluated Raspberry Pi SBCs as well as MCUs from different vendors for their idle power

consumption and under full load. Other chipset-specific features such as RAM, onboard

networking capabilities etc. are also listed in Table 4.1. When looking at the different Raspberry

Pi models, it is evident that when idling, the Pi Zero W (415 mW) consumes less than half of

what a Pi 1 (931 mW) needs and just about a third of what the base Pi 3 Model B (1107 mW)

needs. The Pi 3 Model B+ was not tested, but due to its increased CPU power it is expected to

consume even more power. Both Pi 1 and Pi 3 offer more USB ports onboard and Ethernet. T he

Pi 3 offers more processing power and cores than the relatively power-hungry Pi 1 that provides

even less processing power than the Pi Zero W. Under load, the Pi Zero W still consumes less

power than a Pi 1 idle. Due to its 4 cores and high clock speed, the Pi 3 uses 2224 mW under

load and peaks to 3285 mW at certain times. Thus, if saving power is the priority, then the Pi

Zero W is the best choice. If multiple CPU cores, onboard Ethernet, and more USB ports are

essential, then the Pi 3 Model B is the best candidate.

For our MSP we evaluated several MCU candidates, as shown in the lower part of the table.

Some of them like the ESP32 board from TTGO are much more powerful with 240 MHz and

520 KB RAM compared to systems like the Waspmote with 14.74 MHz and 8 KB RAM. Not all

systems provide deep sleep functionality by default. Even though the Waspmote or Feather

M0 system consume less power than the ESP32, they also lack the radio link interfaces. Due to

the flexibility through the included radio interfaces, cost of the board and provided CPU/RAM

as well as deep sleep capabilities and I/O pins, we mainly built our MSPs on ESP32 boards.

Should RAM not be an issue and a single radio-link interface be sufficient, the Feather M0 or

even the low-power 32u4 are good alternatives with minimal power requirements.
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Evaluation of Sensor Requirements

We measured the typical power consumption of different sensor types, as shown in Table 4.2.

The sensors range from simple temperature and particle sensors over GPS receivers to complex

optical systems such as (night vision) cameras.

Most of these sensors consume an average power of about 50 mW or less. A notable exception

is GPS with about 250 mW and the cameras with 393 mW / 1173 mW. It is also noteworthy

that the night vision camera draws 3 times as much power as the regular one. A simple 8x8

thermal imaging sensor, such as the AMG8833, on the other hand, only consumes an average

of 179 mW. When adding these sensors to an MSP or SSP, we must also consider the maximum

peaks. These can go up to 2290 mW for the optical sensors.

Radio Link Comparisons

We evaluated the power consumed by different MCUs with onboard radio transceivers, ranging

from Wi-Fi to LoRa, as shown in Table 4.3. This table shows the power consumption from the

MCUs with included radio transceivers. It is obvious that Wi-Fi communication is at least twice

as expensive as LoRa (TTGO ESP32), and in case of the Feather M0, about 10 times as expensive.

There is also a bigger difference regarding LoRa power consumption when comparing both

Feather devices (ca 46 mW) to the TTGO ESP32 (235 mW). Furthermore, sending via LoRa is

much more expensive at roughly 528 to 816 mW. If more RAM and CPU power is needed or if

more than one radio transceiver with small physical dimensions is required, than the TTGO is

the best choice. The Feather sticks are available only either with Wi-Fi or LoRa onboard.

Table 4.3: Power consumption of MCUs including radio transceivers

Power in mW

Mean Max

ESP32, TTGO, WiFi 591 1353

ESP8266, Feather Huzzah, WiFi 405 2118

Feather M0, WiFi 475 1577

ESP32, TTGO, LoRa 235 816

Feather M0, LoRa 45 528

Feather 32u4, LoRa 47 568

To evaluate the LoRa transceiver modules’ communication range, we deployed our sensor

box (Fig. 4.4) and measured the transmission range using one of our GPS modules. We used

ESP32 TTGO modules in various configurations. One chip was tuned to the 433 MHz band and

equipped with a small wire antenna from the supplier. The next one was set to work in the 868

MHz band, also with the short vendor-supplied antenna. Finally, we set up another TTGO in

the 868 MHz band but on a different channel with larger 3.5 dBi magnetic sucker antennas

on both ends. The sending interval chosen for the fixed station was set to 7 seconds for each

device.

The city of Marburg is surrounded by many hills and forests, therefore, the sending station was

deployed on a viewpoint near the university with line-of-sight to most parts of the city. The
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Table 4.4: Comparison of Concept Detection on Pi vs. Neural Compute Stick

Idle - Power in mW Starting - Power in mW Analysis - Power in mW

Mean Max Time Mean Max Time Mean Max Time per Image

Pi 3b, 1K, CPU 1107 1845 59.29 sec. 2626 2895 19.66 sec. 2723 3537 13.27 sec.

Pi 3b, 1K, Movidius 1955 2095 59.76 sec. 2372 2884 3.92 sec. 2760 3388 0.61 sec.

Pi 3b, 6K, CPU 1107 1845 59.29 sec. 2659 3203 75.03 sec. 2871 3537 5.46 sec.

Pi 3b, 6K, Movidius 1955 2095 59.76 sec. 2507 2879 12.64 sec. 3313 3667 0.82 sec.

Figure 4.4: Waterproof static sensor box deployed.

receiving nodes were mounted on the dashboard of a car, and we drove around the campus,

through the city, up to the castle on the opposite side of the city, and then along the valley,

until we lost the signal. The route we took, including received beacons, is shown in Fig. 4.5.

The longest distance covered was almost 6.5 km with the 3.5 dBi sucker antenna. The 433 MHz

setup and the other 868 MHz node reached 1-2 km less, but with a much higher packet loss.

Also, there was no more line-of-sight from either maximum distance points, it was blocked by

hills, houses and trees. The 1.5-2 km distance to the downtown area was covered by all three

devices despite trees and houses in the way.

The RSSI over distance is shown in Figure 4.6, where up to 2-3 km all devices still received

signals quite often. As expected, the 3.5 dBi antenna has the best reception throughout the

test. This is especially clear for distances over 3 km where the duck antennas both fall short.

The total number of received packets in percent can be seen in Fig. 4.7. The clear winner here,

again, is the 3.5 dBi sucker antenna. Both stock antennas from TTGO perform very similar

with reception rates between 10% and 15% during our test. Due to our constant movement and

the diverse topographic areas, these numbers should be seen in relation to the sucker antenna,

not as absolute numbers. Traffic might be responsible for remaining longer in areas where no

reception was possible, resulting in a higher overall packet loss rate.
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Figure 4.5: Communication range of different LoRa setups.

On-Device Data Processing

For on-device data processing, we used 1481 images for CPU and neural compute stick execution.

Each of these images is 3000 x 2000 pixels in size, since 6 MP are a good compromise between

storage space and visual details. This dataset is described in our previous work [139]. For

evaluation purposes, we built a Python tool to batch process these images. First, the program

loads the necessary libraries and the pretrained neural network, then the images are processed.

The power consumption and time for the tasks is shown in Table 4.4.

First, we compared the idle power consumption of the Pi 3 to one with an attached neural

compute stick. While the max peak is almost identical, the average power consumed is nearly

double when a NCS is added. In the starting phase, the neural network is loaded either into

RAM for the plain Pi 3 or onto the NCS. Both setups draw around 2500 mW with a slight edge

for the NCS setup. Taking runtime into account, the compute stick is clearly more efficient

by loading the trained model 5-6 times faster. When performing the actual visual concept

detection, the mean power is between 2723 and 3313 mW and peaks at 3667 mW, with a slightly
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Figure 4.6: RSSI vs. Distance

Figure 4.7: Number of received packets in relation to packets sent.

lower power demand by the CPU setups. Given the much longer runtimes of the CPU version,

6x and 21x slower per image, the NCS is still much more efficient, in terms of speed and energy.

The main drawback of the tested compute stick is its high power consumption when idle.

This problem was solved by deactivating the specific USB port when the stick is currently not

needed, reducing the power consumption overhead to zero.
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Setup Cost

Since we want to provide affordable solutions that can easily be customized to specific needs,

we also provide a short overview of the cost of our systems. All prices are in (rounded) Euro,

taken in June 2018 from Amazon, Aliexpress etc. All our cases are custom printed on a 3D

printer. We also did successful deployments with cheap waterproof junction boxes from the

local hardware store (<10 €).

The cheapest system is our BLE LoRa Modem with a total system cost of about 14 € (Table 4.5).

A 750 mAh battery lasts roughly between half a day and a full day. This component can easily

be swapped for a bigger battery or powerbank.

Table 4.5: Cost of BLE LoRa Modem

Part Estimate Price Comment

TTGO LoRa SX1276 ESP32 9 € incl. antenna

LiPo Battery 750mAh 3 €

3D printed case 2 €

Total Price 14 €

The MSP example shown in Table 4.6 is usable for GPS tracking of larger animals plus some

added sensors for collecting weather data. In real world deployments with a 750 mAh battery

and gathering samples every 15 seconds, the power lasted for about 6 days. With a reasonably

lightweight and cheap 1500 mAh battery and a lower sampling rate, we can achieve runtimes

over two weeks. The total cost for this setup is around 46 € per device, mainly dominated by

the price of the SD card for data logging and the GPS module.

In Table 4.7, we show a SSP example used for relaying data as well as actively gathering sensor

data and processing it on device. Depending on whether a compute stick is used or not, the

cost varies between 135 € and 201 €. The cost for a blank relay-only system would be around

65 €. The rest is the cost of the added sensors and the NCS. What this setup is lacking, is a

Table 4.6: Example configuration for a MSP

Part Estimate Price Comment

TTGO LoRa SX1276 ESP32 9 € incl. antenna

LiPo Battery 1500mAh 3 €

3D printed case 4 €

Ublox NEO GPS 12 € incl. antenna

SD-Card Breakout 2 €

32 GB SD Card 13 €

Real Time Clock 1 €

Temperature & Humidity Sensor 1 €

Gyro Sensor 1 €

Total Price 46 €
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Table 4.7: Example configuration for a SSP (w/o power supply)

Part Estimate Price Comment

Raspberry Pi 3 32 €

TTGO LoRa SX1276 ESP32 9 € incl. antenna

3D printed case 10 €

Ublox NEO GPS 12 € incl. antenna

32 GB SD Card 13 €

Real Time Clock 1 €

Temperature & Humidity Sensor 1 €

Pi Camera 20 € night vision opt.

Movidius NCS 66 € optionally
Thermal Imaging 32 €

Rain Sensor 1 €

Soil Moisture 3 €

PIR Motion Detector 1 €

Total Price 135 € / 201 €

power supply. Depending on the location of deployment, a battery system (20 € - 200 €) and/or

a solar panel (50 € - 200 €) could be added if a direct power supply is not available.
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4.2 Automated Non-lethal Moth Traps Can be Used for Robust
Estimates of Moth Abundance

4.2.1 Introduction

Recent reports on the decline in insect abundance and biomass [90, 91, 212] have raised con-

siderable public concern together with calls for the immediate implementation of conservation

strategies [95]. However, shortcomings in data availability have led to questions regarding

the generalizability of this decline [52, 218]. The resulting controversy can best be resolved by

regular and comprehensive assessments of insect communities [46, 96, 167, 249]. Nonetheless,

such efforts have been hindered by a scarcity of technical as well as taxonomic expense and

the logistical challenges associated with traditional survey methods. The development of au-

tomated monitoring systems that can be readily implemented and allow broad spatial and

taxonomic coverage is therefore needed [166].

Visual surveys such as transect walks, net sweeping or hand catches are labor intensive.

Conventional traps can reduce the demands of field work, but they are limited by their high

maintenance and post-sampling efforts [166]. Furthermore, caught specimens must be stored

at least until their identification, but storage or freezer space may not be available or is limited.

Lastly, conventional insectmonitoringmethods usually involve killing the insects for subsequent

determination and biomass assessment, which has raised ethical concerns: Some traps can

result in the slow death of the insects, which must be weighed against the knowledge and

benefits for conservation gained from their use. The debate over consciousness of insects and

their ability to feel pain should be recognized [62]. Even in the absence of detrimental effects

imposed by the long-term monitoring of insect populations [77], less destructive alternatives

should be considered whenever possible [50].

Given the above considerations, most monitoring campaigns focus on specific taxa or locations,

with the latter often being chosen based on accessibility and a high density of the target taxon

[46, 63]. However, this could result in a bias due to non-random site selection and, in turn, to

biased estimates of abundance or biomass and of the associated trends (missing zero effect,

[46])). Another practice is to focus on sampling periods that are assumed to adequately cover

insect diversity [179, 206]). However, such temporal snapshots, whether based on daily or

on annual data collection, imply a loss of information [179], because phenological shifts and

species occurring outside the general phenology peak will remain undetected (snapshot &

groundhog effect, [46]). Monitoring networks that collect data on a daily basis, such as the

Rothamsted insect survey [64], are a notable and rare exception. Yet even this dataset, made

up of > 10 million records, and thus probably more accurate than any other, cannot provide

complete species inventories at the spatial resolution relevant for conservation [203].

A limitation of manual species identification is the steadily decline in the number of taxonomic

experts [55], such that the number of sampling points cannot be increased indefinitely. Machine-

based automated species determination, especially artificial intelligence (AI)-based image

recognition, reduces both the workload and the cost associated with monitoring, thus allowing

the number of sampling points to be scaled to the required spatial and temporal extent

and resolution [46, 166]. Furthermore, non-lethal monitoring systems can provide real-time
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information about the state of populations while eliminating the ethical concerns related to

lethal sampling [46, 166].

The development of a functioning prototype and a working AI system based on comprehen-

sive training data requires an adaptive process whose applicability and functionality in real

world settings is constantly re-evaluated and accordingly adjusted [88]. However, as scalable

monitoring is often subject to financial constraints, automated monitoring systems must be

as cost efficient as possible [88]. While all of these considerations are crucial in themselves,

their relevance will depend on whether the automated system is actually able to monitor the

targeted taxonomic group in the field.

Generally, every change in the design of a trap affects its capture efficiency [191] and therefore

the conclusions regarding species composition, richness, and abundance. For example, flight

interception traps consisting of only one collecting jar at the bottom, rather than an additional

collecting jar at the top, might underestimate taxa that tend to move upwards after collision

[132]. Even in traps targeting single species, slight adjustments such as the width of the trap

opening or the addition of a rain cover can affect the number of captured individuals [18, 22,

86]. In extreme cases, design-related differences in community and/or abundance data can bias

ecological conclusions [204], especially when the effectiveness of the trap system depends on

environmental conditions and species traits [23].

In most monitoring systems, including lethal ones, the probability of detecting an individual

depends on its activity [46, 108, 261]. This dependency is likely to be reinforced in camera-based,

non-lethal systems, in which individuals are recorded only when they enter the camera’s field

of view. Since, unlike in lethal systems, individuals are not permanently removed, they might

be counted several times if they leave and re-enter the detection area. In such cases, variations

in activity, and thus movement, might change not only the probability of detection but also the

likelihood of duplicated counts. This could in turn lead to discrepancies in abundance trends

determined by conventional vs. camera-based monitoring systems. The efficiency of newly

designed traps should therefore be compared with that of conventional traps, as should the

ability of the newly designed trap to accurately capture the response of the target group to

changes in the environment. In this study, we investigated whether an automated moth trap

(AMT), which attract moths to a screen via ultraviolet (UV) light and then photographs them

[17, 107], leads to abundance trends consistent with those determined using conventional

(lethal) light traps.

Moths are one of the most diverse insect groups and they are closely tied to their ecosystems

[65]. Accordingly, they have a long history in monitoring studies [203] and are often the

commonly targeted taxon in new identification algorithms
20
[29, 213, 262]. However, moths

are highly sensitive to trap design [21, 57, 96]. For example, differences in relative abundance

were observed between manual sampling, in which species are recorded directly when they

land, and funnel traps, which are not necessarily entered by all moths [21]. An AMT, on the

other hand, captures the moths directly, but only if they land on the screen photographed by

the camera.

20https://nationalmothweek.org/2017/07/21/introducing-lepsnap-image-recognition-for-m
oths-butterflies-guest-post-by-andre-poremski/

51

https://nationalmothweek.org/2017/07/21/introducing-lepsnap-image-recognition-for-moths-butterflies-guest-post-by-andre-poremski/
https://nationalmothweek.org/2017/07/21/introducing-lepsnap-image-recognition-for-moths-butterflies-guest-post-by-andre-poremski/


4 Ecosystem Monitoring

In this study we deployed an AMT and a conventional bucket trap at the same sites throughout

the late summer, shortly after the phenological peak of moths. We reasoned that, if the two

trap types are equally efficient in capturing local moth abundance, they should show a similar

temporal decline in moth individuals. In addition, by deploying the AMT under realistic in-field

conditions in a relatively remote area, we were able to assess its usability while also identifying

its weaknesses, which can then be addressed in subsequent iterations.

Parts of this section have been published in Jonas Mielke Moeglich
21
, Patrick Lampe

1
, Mario

Fickus, Jannis Gottwald, Thomas Nauss, Roland Brandl, Martin Braendle, Nicolas Friess, Bernd

Freisleben, and Lea Heidrich. “Automated Non-lethal Moth Traps can be used for Robust

Estimates of Moth Abundance.” In: submitted; under review ().

4.2.2 Material & Methods

Study Sites

Our study was part of the Nature 4.0 framework
22
and was conducted in the "Marburg Open

Forest", a 1.5km2
university-owned forest area near Caldern, in Hesse, Germany. The forest

is a typical beech-dominated managed forest embedded in an agricultural landscape. The 18

trap sites were selected from the existing Nature 4.0 sites and were evenly distributed over the

research area, thus covering small-scale climatic, structural, and ecological differences. Each

site included a beech tree (50 to 120 years-old) in its center and is separated from the other

sites by least 50 m. An overview map can be found in 4.8.

Conventional Traps

The conventional light traps 4.9 consisted of a super-actinic UV light tube (Sylvania blacklight

F15W/T8/BL 368, 12 V, 15W, wavelength peak: 368 nm) that was used to attract the moths,

which were then directed via a funnel into the attached 10-l bucket. The bucket contained a

closed chloroform jar from which a piece of cloth was drawn through a small hole in the lid to

act as a wick, thus filling the bucket with the killing agent. Pieces of egg carton were added to

allow the caught moths to rest, thus also reducing stress and wing damage. The UV light was

powered by a 12 V lead battery. A light switch (Kemo Germany M197) attached to the battery

automatically turned the light on at sunset and shut the light off at sunrise. In the morning,

the traps were emptied and all moths were collected and stored in a freezer for later sorting.

Automated Moth Traps

A prerequisite of our AMT was that it should operate in a real-world environment and in a

variety of settings. Therefore, the design requirements of the AMT were as follows:

• modular and flexible, allowing both extensibility and adaptability for further applications

21
shared first authorship

22www.natur40.org
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Figure 4.8: Map of the Marburg Open Forest (MOF) and our study sites. Symbols indicate an

exemplary randomized setup of AMTs (star) and conventional traps (red) for one

night. The following night, the trap types were exchanged such that sites assigned

an AMT the first night received a conventional trap the following night and vice

versa (two nights = one round).

• reproducible, such that the AMT could be easily assembled by other researchers

• cost efficiency, to allow simultaneous installments of multiple AMTs

• robust, to allow continuous operation of the trap in outdoor settings

• easy to use and configurable, to support long deployment periods while minimizing the

work load

Following these requirements, we adopted the basic design of Bjerge and colleagues (2021) but

used our own software and customized the hardware to meet our needs: The AMT consists of

several power consumers (LED-UV light, LED screen, Raspberry Pi, ring light, and camera).

To achieve a comparable runtime of the two trap types without access to a power grid and

to reduce energy consumption as well as overall acquisition costs, the 15 W super-actinic UV

light tube (176€) in the conventional trap was replaced in the AMT by a LED-UV tube
23
. Below

the LED-UV tube, we installed a waterproof, white, cloth-lined LED screen illuminated by

four rows of 30 cool-white LEDs (6000 K, 240 lumens/m). The LED screen acted as a resting

site for the moths. The illuminated screen allowed for standardized photos [17], which were

taken by an oppositely placed camera box with an attached ring light for illumination. Both the

camera and the ring light were directly connected to the Raspberry Pi computer. The Raspberry

Pi’s software was programmed to trigger a customizable schedule, according to which photos

were taken and the light (UV and LED screen) was controlled. A 5MP Raspberry Pi-camera,

23www.entosphinx.cz 37.12 LED/UV lamp, 9.6 W, wavelength from 395 to 405 nm, 33€
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Figure 4.9: Setup of a conventional bucket light trap L) UV tube M) Funnel N) Chloroform O)

Egg carton P) Light switch Q) 12 V battery

v1.3 was chosen to further reduce costs. The whole system was mounted on a tripod to avoid

disturbance by animals, foliage, and puddling. To enable the longest possible operation time,

only the UV light and LED screen were powered by a 12 V battery. The Raspberry Pi, which is

susceptible to voltage fluctuations, as well as the ring light were powered by a 5 V power bank

inside the camera box to ensure stable voltage even when the LEDs were being powered. This

setup also avoided energy loss during voltage conversion, since the Raspberry Pi requires a 5

V power supply. To ensure the reproducibility of the design, the trap was constructed from

off-the-shelf hardware components. All of the components, their prices, and the measured

power consumption are listed in chapter 4.2.2 and table 4.8 (for AMT’s architecture and a

detailed description of the trap design, see figure 4.10).

Power Consumption

Power consumption was measured to provide an overview of how long the ATM can be operated

using different energy sources:

• UV LED: 0.8A@12.5V 10W

• LED Board: 0.78A@12.5V 9.75W

• Ring light: limited by the output of the power bank

• Power bank: 2.1A@5.1V 11W
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Figure 4.10: Setup of our AMT A) Raspberry Pi B) Real-time clock C) Camera D)Ring light E &

F) Relays G) Power bank H) UV LED I) LED screen J) Battery box K) Solar panel
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• Raspberry Pi: 0.35A@5.1V 1.8W

The used energy is the sum of the energy used in moth attraction multiplied by the percentage

of attractions per hour and the energy consumption per photo multiplied by the number of

photos taken in one hour and the power consumption of the Raspberry Pi. The energy per hour

is calculated as follows:

Energy_use_per_h = t ∗ (uv + led) + (n ∗ s ∗ rl/3600) + rp (4.1)

where t is the percentage of attraction, n is photos per hour, s is the duration of ring light per

photo, uv is Watts of UV light, led is Watts of LED board, rl is watts of ring light, and rp is

Watts used by the Raspberry Pi.

• 50 min attraction: 50/60 * (10 + 9.75) + (100 * 3 * 11 / 3600) + 1.8 = 19.175 Wh

• 40 min attraction: 40/60 * (10 + 9.75) + (80 * 3 * 11 / 3600) + 1.8 = 15.7 Wh

• 30 min attraction: 30/60 * (10 + 9.75) + (60 * 3 * 11 / 3600) + 1.8 = 12.225 Wh

• 20 min attraction: 20/60 * (10 + 9.75) + (40 * 3 * 11 / 3600) + 1.8 = 8.75 Wh

• 10 min attraction: 10/60 * (10 + 9.75) + (20 * 3 * 11 / 3600) + 1.8 = 5.275 Wh

The system is modular, with a sensor box at its core that switched the UV light and the LED

screen on and off by means of relays. Both the UV light and the LED screen were connected

to the sensor box via waterproof cables and connectors, so that all circuitry was contained in

the sensor box. The specific UV lamp or LED screen could thus be replaced without having

to change the sensor box itself. Only the ring light, which was also controlled by a relay,

was permanently connected to the sensor box. To ensure robustness, all components, except

the ring light, were waterproof. Ease of use was ensured by using standardized plugs and

reverse-polarity-protected sockets for the individual components. In addition, the software

was designed to be configurable and to start automatically.

Our software implementation was based on an extended version of the software of [81], which

was built using the pimod tool [105] to configure operating system images in a user-friendly

manner. Triggering the camera and the control pins of the Raspberry Pi by the program switched

the external components (i.e., the ring light, LED screen, UV light) on and off via attached

relays. AMT’s software was configurable by an yml file. A downloadable image that can be

customized with pimod to fit the needs of the project is available in our GitHub repository:

24

An additional feature of the software was that the sensor box includes a Wi-Fi connection,

which allows wireless observation and configuration. The box could be accessed via ssh (Secure

Shell) or via the live view of the camera using http (Hypertext Transfer Protocol) and a browser

on the mobile device.

24https://github.com/Nature40/InsectPhotoTrapOS/releases/tag/IPTv1.0.7
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Table 4.8: Price list of AMT components

Modul Parts (exemplary products) Quantity

Price [€]

(29.11.21)

Price per trap [€]

A1 Camera box Raspberry Pi 3 B 1 59.99 59.99

A2 Camera box SD card, SanDisk microSDHC Ultra, 64Gb 1 15.99 15.99

A3 Camera box Case 1 23.00 23.00

A4 Camera box Mounting plate (3d print) 1 1.00 1.00

A5 Camera box Jumper wires 0.1 5.35 0.54

A6 Camera box Neutrik NAC3FPX power socket female 2 8.26 16.52

A6 Camera box Neutrik NAC3MPX power socket male 1 3.66 3.66

A6 Camera box Neutrik SCNAC-FPX 3 1.08 3.24

B Camera box

DS3231 RTC Modul I2C real-time clock

AT24C32 for Arduino; with LIR2032 battery

1 5.00 5.00

C Camera box Raspberry Pi camera 5MP, v1.3 1 26.04 6.55

D Camera box LED ring light 1 8.99 8.99

E,F Camera box Relay KY019RM 2 3.79 7.58

G Power EasyAcc Powerbank, 20000mAh 1 47.00 47.00

Subtotal camera box 199.06

H Light box Entosphinx 37.12 LED/UV LAMP, 395-405 nm 1 33.00 33.00

I1 Light box Box for backlight 1 23.30 23.30

I2 Light box

LEPRO LED strip, 5 m, 12 V, 6000 K,

240 lumens/m for backlight

0.4 16.44 6.58

I3 Light box Aluminum foil in format of box for backlight 0.2 3.00 0.60

I4 Light box Lee filter in format of box for backlight 0.03 65.00 1.95

I5 Light box Bedsheet in format of box for backlight 0.1 10.00 1.00

I6 Light box Spray adhesive 0.2 15.00 3.00

I7 Light box Neutrik NAC3MPX power socket male 1 3.66 3.66

I7 Light box Neutrik SCNAC-FPX 1 1.08 1.08

I8 Light box Neutrik NAC3MX-W plug male 1 7.44 7.44

I9 Light box Cable connections 1 1.00

Subtotal light box 82.61

J1 Power Battery, 12 V, 12 Ah 1 32.18 32.18

J2 Power Battery box 0.5 52.80 26.40

J3 Power Neutrik NAC3FPX power socket female 1 8.26 8.26

J3 Power Neutrik SCNAC-FPX 1 1.08 1.08

Power Fuse 1 0.50 0.50

Subtotal power box 68.42

K Cable Neutrik NAC3FX-W plug female 2 9.08 18.16

K Cable Neutrik NAC3MX-W plug male 2 7.44 14.88

K Cable Cable 1 2.00

Subtotal cable 35.04

Mounting Backlight and UV light holder self-made 1 9.30 9.30

Mounting Tripod, Gravity GLSTBTV28 1 72.00 72.00

Mounting Threaded rods 1 1.00 1.00

Mounting Screws 4 1.00 4.00

Subtotal mounting 86.30

Other items 20.00

Total 491.43
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Sampling/Experimental Design

The two trap types were tested at separate times, to avoid their mutual interference during

sampling. Thus, the eight AMTs and eight conventional trap systems were randomly assigned

to the 16 sites for one night. The following night, the trap types were exchanged such that

sites assigned an AMT the first night received a conventional trap the following night and

vice versa (two nights = one round). This routine was performed five times from July 2021 to

August 2021. The AMTs were scheduled to take photos every 30 s. Activation of the lights (UV

and LED screen) was scheduled to start at 10 p.m. and end at 6:00 a.m., with an on time of 50

consecutive min/h followed by 10 min of lights out. This was done to test the functionality of

the hourly schedule and to roughly mimic the light phase of the conventional trap.

Software Configuration

Exemplary configuration of our test unit and sample runs:

[TimedInsectTrapAnalysesUnit]
light_pin = 26
uv_light_pin = 21
hourly = True
uv_light_start_time = 00
uv_light_end_time = 50
adjust_time_in_seconds = 2
take_photo_every_seconds = 30

[run.1]
start = 21:10
stop = 23:59:59

[run.2]
start = 00:00
stop = 05:50

[TimedInsectTrapAnalysesUnit] defines the unit itself and the associated parameters, including

the pins used for the respective relays as well as the start and end times of the hourly routine.

These values can be adapted as needed, included depending on the unit and the research

question. The time the camera needs to focus is specified by adjust_time_in_seconds: for a

camera with a fixed focus, this option can be set to 0. The time between two photos is specified

by take_photo_every_seconds, for photos taken periodically between uv_light_start_time and

uv_light_end_time. To map as many use cases as possible, different runs can be defined and

the parameters modified in each one. For example, take_photo_every_seconds can be set to 30

in run 1 and to 60 in run 2.

With this schedule, the theoretical power consumption was 19.175 Wh (see chapter 4.2.2).
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Moth Counting

Moth abundance in the photos taken with the AMT was determined by manually counting the

number of moths in each frame. For the total number of moths per night, only new arrivals on

the LED screen were counted; in other words, when the total number of resting insects in a

photo superseded the total number of resting insects in the prior photo, the moth count was

raised. This method was used because movements of the insects on the LED screen made it

difficult to identify individuals. In addition, the possibility that the same individual flew out

of the photo, swirled around the light, and then again rested on the LED screen could not be

ruled out. Accordingly, in the frame by frame counts of the insects, only the total number of

currently sitting insects was considered. Non-target insects were not counted. Due to varying

image quality, very small insects could not be identified with confidence. Thus, moths smaller

than approximately 0.8 cm and without an easily identifiable characteristic moth profile could

not be included in the count, since the distinction from, e.g., small Diptera species was no

longer possible due to blurriness. Samples from conventional bucket traps were determined to

the insect order and moths counted using a binocular.

Statistical Analyses

The analyses are aimed at testing whether the number of moths captured by the AMTs scale

isometrically to the number of moths captured by the conventional traps, thus yielding similar

seasonal patterns in the number of individuals.

Our tests for an isometric relationship between the two traps are based on the assumption that

the two nights of each round were comparable, i.e., that the number of moths do not differ when

one or the other trap system was installed. Unfortunately, due to several failures of the AMTs

(described and discussed below), only some of the sampled locations had repeated measures

see figure 4.11. Thus, we tested a priori for date-wise differences between the number of moths

caught by the conventional traps, which had a larger sample size due to the AMT malfunctions.

This pairwise comparison, using an ANOVA followed by a post-hoc test, revealed that rounds

one, three, and five had comparable numbers of individuals; in rounds two and four, the number

of moths during the respective test nights differed, e.g. due to weather changes such as rising

temperatures (see figure 4.11, round 4). We therefore applied the following analyses to both the

full data set and to a reduced data set in which rounds two and four were omitted First, a major

axis (MA) method was used to test for isometric scaling between the abundance captured by

both trap types per round and plot. In contrast to a simple linear (ordinary least squares, OLS)

model, the MA method accounts for variations in the X variable (see Smith (2009) for details),

defined here as the number of moths caught by conventional traps. Thus, it does not assume

that the use of conventional traps provides a true baseline of available moths. Rather, the

MA method reflects the fact that the two traps capture only a fraction of the true abundance

and that both are dependent on a temporal and spatial baseline. The MA was calculated with

999 permutations, using the lmodel2-function of the lmodel2 package
25
. Note that some of

the plots were repeatedly sampled, while others were sampled only once or twice due to trap

malfunctions (see figure 4.12). This hindered the implementation of plot-ID as a random effect,

25https://CRAN.R-project.org/package=lmodel2
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Figure 4.11: Results of the ANOVA and subsequent Tukey HSD to test for pairwise differences

in the sampling dates. Daily mean temperature is also given. Boxes are color-coded

according to the sampling round. Pairs that are not significantly different from

each other share the same label. Round 2, sampled on 20th and 21st July, and round

4, sampled on 17th and 18th August, differ from each other; round 1, sampled on

6th and 7th July, round 3, sampled on 28th and 29th July, and round 5, sampled on

25th and 26th August, do not (p-values 0.001 and 0.025, respectively).

because the resulting singularities could have led to overfitting and to numerical problems

and would have made standard inferential procedures inappropriate [8]. However, an ANOVA

did not show any significant differences between the plots, suggesting that the plot-ID had a

neglectable influence. To handle the discrete nature of the moth counts, the counts from AMTs

and conventional traps were loge-transformed in all analyses. This allowed retention of the

data of both axes within a comparable range. Whether the slopes resulting from all models

equaled one was determined using the slope.test function of the smatr-package [251].

We then tested whether the two trap systems differed in depicting abundance trends, by taking

advantage of the phenology of moths. In Europe, moths usually peak in abundance and diversity

around July [197, 203]. The later the sampling time thereafter, the fewer moth individuals

in the area. We thus used the Julian day, which well-reflected the time lapse between the

rounds and thereby possible seasonal trends, as an independent variable to model the number

of individuals using an OLS. We then centered the Julian day such that its intercept was in

the middle of the sampling period, which thus reflects the differences in abundance. The trap

type was included as an interaction term to test for differences in the systems in depicting the

temporal trend in abundance:

Model : loge(#individuals) trap_type ∗ centred(julian_day) (4.2)
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Figure 4.12: Plot-wise differences in the mean number of individuals, determined using the

package “pheatmap”. Differences are indicated along a color scale from red (posi-

tive) to blue (negative). The rows and column above the main plot indicate whether

the conventional traps had been set up during the respective round. None of the

differences were significant.

For consistency, the number of individuals was loge-transformed and only data points with

records from both trap types included (see electronic repository for analyses on full data sets).

We also performed all analyses with GLMs with an untransformed dependent variable, a

loge-transformed independent variable, and a negative-binomial distribution. However, no

noteworthy differences were detected. Thesemodels can be reviewed in our electronic repository.

Linear hypothesis tests were conducted using the package “car” [64]. All figures were created

using the package “ggplot2” [255]. All analyses were conducted using R
26
and RStudio

27
.

4.2.3 Results

The conventional traps captured 17,164 individuals (mean = 226, SE = 25, min = 19, max = 885) in

total and 6,755 individuals (mean = 218, SE = 36, min = 20, max = 791) considering only samples

with accompanying AMTs. The latter captured a total of 4,065 individuals (mean = 131, SE = 24,

min = 13, max = 616). On average, AMTs captured 87 fewer individuals. However, during 8 out

of 31 comparable nights more individuals were captured by the AMTs than by the conventional

26https://www.r-project.org/
27https://www.rstudio.com/
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Figure 4.13: The number of individuals captured by automated moth traps (AMTs) and conven-

tional light traps per plot and round. The points are color-coded according to the

sampling dates. The black line represents an isometric relationship with an inter-

cept of zero and a slope of one, the red line the ordinary least squares (OLS) model,

and the blue line the major axis (MA) model, with shaded areas as confidence

intervals. Note that the extrapolation on the left (less intensively shaded) only

displays the uncertainty around the intercept. Both axes were log-transformed.

traps. The variance between the two trap systems did not differ (F-test on log-transformed

data F1,30 = 0.91, p = 0.80). In the OLS model presented here, the relationship between the trap

types in terms of moth abundance was isometric (slope = 0.81, linear hypothesis test: F1,19 =

1.35, p = 0.26). Note, however, that this was not the case when considering all rounds (slope =

0.66, linear hypothesis test: F1,30 = 7.11, p = 0.01). The slopes of the MA regression models were

close to one, and the intercepts did not significantly differ from zero (Table 4.9, Figure 4.13).

Sampling conducted later in the year resulted in fewer recorded individuals overall, and AMTs

captured significantly less individuals than the conventional traps (Table 4.10). Nonetheless,

the two trap types did not differ in depicting the seasonal decline of moths in the study area

(Figure 4.14).

4.2.4 Discussion

Automation can facilitate the monitoring of insects at high temporal and spatial resolution, but

automated monitoring must be able to track processes and changes in nature [38]. In addition,

these systems must be user-friendly, easy to maintain, cost efficient, allow for long operation

times, and sufficiently robust to withstand environmental conditions, such as rain, dew, and

wide temperature fluctuations [191]. In this study we tested the ability of an AMT to depict

ecological patterns based on satisfactory data quality, as well as its in-field applicability. While
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Figure 4.14: The number of individuals captured by all AMTs (grey) and by conventional light

traps (orange) per sampling date. The positions of the data points indicate the

Julian day of the sampling date. The shaded areas show the confidence intervals

of the OLS regression. Only balanced data are shown. Note that the y-axis was

log-transformed.

Table 4.9: Results of the ordinary least squares (OLS) and major axis (MA) regressions of

the number of individuals captured by the automated moth trap (AMT) and by a

conventional light trap based on a complete (all rounds) and a reduced (rounds 1,3,5)

dataset. The results of a linear hypothesis test (LHT), testing whether slopes deviate

from one, are also displayed. Abundance values were log-transformed prior to the

analyses.

CI of intercept CI of slope
Model Intercept

(2.5% / 95%)

Slope
(2.5% / 95%)

p F (LHT) p (LHT)

OLS 1.21 (-0.12 / 2.52) 0.66 (0.39 / 0.92) <0.001 7.11 0.01All

rounds MA -0.18 (-2.53 / 1.42) 0.94 (0.61 / 1.41) <0.001 0.12 0.73

OLS 0.39 (-1.36 / 2.15) 0.81 (0.47 / 1.15) <0.001 1.35 0.26Rounds

1,3,5 MA -1.08 (-4.19 / 0.86) 1.10 (0.72 / 1.71) <0.001 0.23 0.63
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Table 4.10: Results of the OLS regression testing potential differences in the trap systems

concerning seasonal trends in moth abundance, using the centered Julian day to

account for differences in time intervals and the interaction with the trap type.

Results are displayed for a balanced data set when the data from conventional

traps and their corresponding AMTs were considered. Abundance values were log-

transformed prior to the analyses.

Predictors Estimates Std. error t p

Intercept 4.93 0.11 44.3 <0.001

Julian day (centered) -0.04 0.01 -6.32 <0.001

AMT -0.50 0.16 -3.12 0.003

AMT:Julian day 0.00 0.01 0.47 0.640

Observations 62

R2 / R2 adjusted 0.59 / 0.57

our in-field test demonstrated the comparability of AMTs and conventional traps in terms of

capturing trends in moth abundance, the need for improvements in the AMT’s design was also

identified.

Abundance and Abundance Trends

Before AMTs can be used in monitoring schemes, their ability to accurately capture ecological

patterns must be ensured. A quantitative assessment is the first step in analyzing variations in

the ecological patterns of insects, such as those arising from changes in the environment and in

the viability of populations [74, 96]. However, trap counts only provide an estimate of the total

number of individuals [164]. Given that the counting mode of AMTs differs fundamentally

from that of conventional traps and that AMTs might attract other species than conventionally

collected, due to different insect settling behaviors [21, 261], the abundances determined by

AMTs may be over- or underestimated. Indeed, in this study, compared to the conventional

traps, the AMTs captured a smaller fraction of the total abundance of moths per round and plot.

This difference was expected, given the differences in the attraction range of the LED used in the

AMTs vs. that of the super-actinic light used in the conventional traps and that in some runs, the

Raspberry Pi delayed the execution of the schedule at midnight. Moreover, an underestimation

of the total number of moths can arise if the moths are counted without considering individual

identities, such as if one moth replaces another between frames. Conversely, a duplicated count

bias and thus an over-estimation is also possible, as some moths may have flown away during

the 10 min without light and then returned to the screen after the light had been switched

on again. These duplicated counts might have contributed to the few instances in which the

AMT captured a higher fraction of the total population than the conventional traps. Yet, these

instances also coincided with the operation of the AMTs during nights that were slightly

warmer than those during paired conventional trap operation (see figure 4.15), indicating that

the effect of weather conditions exceeds the effect of the trap type. Without marking and

tracking individual moths, it is not possible to completely disentangle the effect of changes
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Figure 4.15: The difference in number of individuals captured by automated moth traps (AMTs)

and conventional light traps and A) the difference in temperature and B) the

difference in windspeed between following nights at each site. The points are

color-coded according to the sampling rounds.

in ambient weather conditions between trapping events and potential inaccuracies in the

counting method.

Despite these ambiguities, the changes in population size determined using the AMTs corre-

sponded 1 to 1 with those determined using the conventional traps. This was also demonstrated

by the seasonal trends in population size, which were similarly captured by the two trap types.

Overall, the AMT is sufficiently robust to capture important trends in moth abundance, thus

providing fundamental ecological information, especially since abundance is commonly used

to evaluate insect communities [131, 258]. The utility of AMTs will be expanded even further

by the development of more advanced functions, such as species detection and justifies further

investments.

Field-work Applicability and Lessons Learned

In evaluating the in-field applicability and usability of our ATM, two issues came to our attention

that need to be addressed. First, the DIY prototypes constructed from consumer-class hardware

suffered problems in the field, despite prior laboratory testing. These problems resulted in

data loss see figure 4.12. Out of a total of 90 sampling events (5 rounds × 18 plots), the AMTs

worked completely fault-free and delivered data in 34%. In the remaining events, failures

resulted in partial to total data loss. The problems responsible for the failures included the

loosening of soldered connections during transport over rough terrain, corrupted SD cards, and

modifications/undocumented changes by the manufacturer in the specifications of individual

components that led to incompatibilities with the Raspberry Pi. As technical failures such

as these can only be identified during field work and/or during long-term deployment, they

demonstrate the importance of thoroughly testing trap prototypes in order to achieve a truly

operational design. For example, although the LED screen was initially thought to be beneficial

for the standardization of photos, during the course of our study it became apparent that,

while the LED screen guaranteed an even background, backlighting led to underexposure of
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the moths themselves. The use of a flash strong enough to evenly illuminate the background

without underexposing the moths would make the LED screen obsolete, thus also reducing

acquisition and energy costs.

An Honest Evaluation of the Costs and Benefits

As the aim of this study was to determine whether our AMT could provide information on moth

abundances and the changes therein, the generation of a fully autarkic, automated monitoring

system was beyond its scope. The power supply of the AMT tested in this study consisted of

portable energy storage, since the number of AMTs was limited and the traps had to be shared

between plots. However, in a long-term deployment the additional investment in photovoltaic

systems or, in shadier locations, shade-tolerant solar panels, would be worthwhile. A similarly

constructed bat monitoring system, described in a previous study [81], was likewise operated

autonomously. In addition, a shorter illumination time would save energy; for example, a

reduction to 30 min would save 7Wh, or even 12Whwithout the LED screen (see chapter 4.2.2).

For data transfer, rather than frequent visits to the trap sites to exchange the SD card, the

research site could be remotely accessed. Data could be directly extracted using LTE sticks [81],

or, when restricted by mobile phone reception, LoRa [61], which would again require additional

infrastructure. A further necessity is data-processing software (a trained neural network) that

would allow the Raspberry Pi to analyze and process the images in-field, thus reducing the

size of the output files.

These investments in solar power and automatic data transfer will add to the current total

material costs of 491€ per trap, in addition to incurring further running costs. Nevertheless, the

cost of an updated version of the DIY-system presented herein would still be at the lower end

of the price range of systems utilizing more elaborate components, such as high-end cameras

(e.g., AMMOD [248]), or custom-built cases (e.g., www.diopsis.eu). The cost still obviously
exceeds that of conventional traps, including the model used in this study (240€) but also

those in other studies (e.g., [254]. The acquisition costs of automated monitoring systems will

amortize over the long run, through a reduction of the workload both in the field and during

AI-based post-processing. Our study did not address the latter as our focus at this stage was

to acquire data on the number of individuals, without the uncertainties of AI, which despite

showing promising results, has to be fully trained and validated. However, a full validation

can be expected in the near future [111] and will allow automated identification to become

nearly instantaneous. Admittedly, automated counting will not necessarily lead to a crucial cost

savings relative to the acquisition cost of AMTs, as the post-processing costs of conventional

traps are relatively low if only abundance data are considered.

The fastest amortization and greatest entomological value would be gained by automated

species identification. The manual identification of species is both time-consuming and costly

(yet also rewarding), and remains the greatest challenge in large-scale monitoring using con-

ventional traps. For example, for this study the cost of sending the moths caught during each

sampling event (night/plot) using the conventional trap to a specialist for identification would

have been 110€ (on average, 218 individuals, current common price 0.5€ per individual). A pre-

liminary test showed that a slight upgrade in the camera (from RPI CAM 5 MP, v1.3, resolution

2592 * 1944 px (6.55€) to RASP CAM HQ 12 MP with wide-angle lens, resolution 4056 * 3040px
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Figure 4.16: Generalized additive models (GAMs) of individuals arriving per time, listed by

rounds. The round was inserted as a linear term; time was added using a cubic

spline basis function, with k = 5. To account for the effect of the plot in the

repeated measurements of arriving individuals, the trap location was included as a

random effect. The colored lines represent the GAMs of the different rounds, and

the shaded areas the confidence intervals. According to the model R2
adj = 0.722,

the largest number of individuals overall was captured during round one, i.e., the

first and earliest of the rounds. Also, moth arrivals as recorded by the AMT in

round one peaked at 3 a.m., whereas in the other rounds the peak occurred at 11

p.m. or 12 a.m.. Since data from sunset (around 9 p.m.) was missing, such that the

earliest hour of moth activity was not included in the model, an even earlier peak

may have been missed.

(88€)) and an adjustment of the illumination would produce images in which conspicuous

species and genera could at least be identified [17, 134]. This upgrade would provide data

not only on total moth abundance but also on species abundance and composition. Further

studies need then to test for differences in the species composition obtained with the AMTs vs.

conventional traps.

Potential and Outlook

The flexibility of the AMT, such as the possibility to customize the light regime, allows for a

broad range of applications in both monitoring and research. First and foremost, the AMT

provides additional information on the precise timing of the sightings [131]), and thus on the

effect of environmental conditions, with high accuracy and detail (figure 4.11 and S7).
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4.3 Unobtrusive Mechanism Interception

4.3.1 Introduction

Networked systems are often based on proprietary hardware/software components (e.g., appli-

cations, access points) and communication between them (e.g., network interfaces, system calls)

that manufacturers might not be willing to adapt or update if new requirements arise. Possible

reasons are: insufficient monetization of deprecated components and/or technical hurdles

such as missing infrastructure. Furthermore, long and costly standardization and deployment

processes may also hinder or slow down updates, which is not only true for proprietary compo-

nents. Generally, this leaves users with no choice but to accept the non-optimal functionality

of networked systems.

To add or modify functionality to/of existing networked systems or applications without touch-

ing proprietary components, developers use abstractions and workarounds that unobtrusively

intercept and modify the communication between proprietary components and their environ-

ments. For example, developers introduced Network Address Translation (NAT) as a solution

for insufficient IPv4 addresses, or Wine to run Windows applications on Unix-like operating

systems.

We argue that such solutions are not exceptions, but essential for networked systems to provide

highly desired improvements in a fast manner. However, there is no approach that can be

used by developers to systematically identify possible starting points and implement such

functionality.

Therefore, we present mechanism interception, a novel approach to implement functional ad-

ditions to or modifications of existing networked systems without touching any proprietary

components. We distinguish between system, i.e., components containing non-changeable

parts, and environment, i.e., components containing modifiable parts under control. Behavioral

changes are achieved by functionality-enhancing yet unobtrusive interceptors, i.e., hardware/-
software components that are introduced between environment and system to add or update

mechanisms representing some functionality. Examples of interceptors are an updated software

library, a newly deployed edge device, or an enhanced cloud service. Interceptors must be

unobtrusive to avoid disrupting or even destroying applications, but still provide added or

modified mechanisms to the networked systems. We illustrate our approach by a case study,

where we unobtrusively add a vertical handover mechanism betweenWi-Fi and LTE to a mobile

device without disconnecting existing TCP sessions. Our results indicate that mechanism in-

terception is a compelling approach to achieve improved service quality and provide previously

unavailable functionality in an unobtrusive manner.

Parts of this section have been published in Patrick Lampe, Markus Sommer, Artur Sterz, Jonas

Höchst, Christian Uhl, and Bernd Freisleben. “Unobtrusive Mechanism Interception.” In: 2022
IEEE 47th Conference on Local Computer Networks (LCN). IEEE. 2022, pp. 303–306.
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4.3.2 Related Work

The basic idea of making network protocols extensible has been investigated in the context of

active networks [236, 237]. ANTS [253] enables new protocols to be deployed on routers as well

as terminals through platform-independent code. Pathak et al. [183] propose a system that

provides applications with additional TCP interfaces andmakes TCP adaptable in a fine-grained

way. With software-defined networks [159] and the network programming language P4 [19],

network programmability is provided. Tran et al. [242] present a method to add functionality

to the TCP kernel implementation using eBPF. De Coninck et al. [43, 44] present a method to

dynamically tune QUIC for each connection via extensions.

Alpine [53] and MultiStack [109] are userspace implementations of network stacks that allow

changes to be tested quickly. An implementation of TCP in userspace is presented by Jeong et

al. [115]. With NUSE, the network stack of the Linux kernel can be used as a userspace library

[232] and existing programs can use modified protocols without modifications to the program

itself. Heuschkel et al. [100] present VirtualStack, which allows different userspace network

stacks to be used in one system. ClickNF [72] is an extension of a software-defined router in

which the lower four layers of the network stack can be exchanged in a modular way.

Balinsky et al. [7] describe a method to prevent data leaks with system call interception and

DAVINCI [51] uses system call hooking to build a fully transparent dynamic analysis tool for

Android apps. Somy et al. [220] propose a sandbox architecture for serverless functions based

on system call monitoring and whitelisting.

4.3.3 Unobtrusive Mechanism Interception

We motivate the novel concept of unobtrusive mechanism interception by the following exam-

ples:

Network Address Translation

The Internet Protocol version 4 (IPv4) was designed in the late 1970s, allowing only roughly 4.3

billion hosts in the Internet. At that time, the number of participating hosts in the Internet was

rather low with less than 1000 and the designers of IPv4 did not anticipate, that the number

of hosts in the Internet would increase dramatically as it did especially since the 2000s. Thus,

they chose a 32 Bit field for addressing, allowing only roughly 4.3 billion hosts in the Internet.

With over 5.5 billion smartphones globally [235], there are already more devices than the 4.3

billion hosts supported by via IPV4 not to mention servers, wearables, embedded systems and

the entire IoT area. This development raised the need for solutions. Although there is a newer

version, IPv6, for quite some time, allowing 2128
hosts in the Internet, its roll-out has been very

slow. The protocol itself was already standardized 1998, but as of 2021, only 32% to 37% of

the Internet’s traffic is IPv6 based. To tackle the looming threat of address scarcity, Network

Address Translation (NAT) has been introduced. Using NAT, a network gateway intercepts IP

packets before routing and translates the IP addresses and TCP/UDP ports between an inbound,

private IP address and an outbound, public IP address. When a reply arrives at the gateway,

the IP addresses and TCP/UDP ports are translated back using the same mapping. Using NAT,
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it is not necessary to update or somehow alter the hosts of the private network, since NAT

unobtrusively translates addresses without private hosts even noticing it. The observations

that can be made for this example are the following. Thus, there is a system (i.e., the private

host) that uses a mechanism (i.e., IP routing) provided by the environment (i.e., the gateway)

to communicate with hosts in other networks. The NAT component adds a new functionality

to the environment that intercepts IP packets and unobtrusively masquerades the IP addresses

and TCP/UDP ports.

Wine

As of 2022, Windows is the dominant operating system for desktop computers, with a share of

about 75%. Therefore, the Windows ecosystem contains the largest number of applications,

many of which are not executable on Linux or other POSIX-compatible operating systems. To

allow Windows applications to be executed on Linux or other POSIX-compatible operating

systems, the Wine project
28
was initiated. It re-implements Windows system calls and libraries,

such that system calls of Windows applications are translated to their corresponding POSIX

equivalents. This example follows the same pattern as above. One could now argue that the

Linux kernel could also support Windows system calls and system libraries. However, this

would be time consuming and only solve the problem for the Linux kernel but not for, e.g.,

macOS, where Apple would be in charge re-implementing Windows system calls and system

libraries.

These are just two examples. A further example is 6in4 or 4in6 tunneling, where the system can

only use IPv4 or IPv6 and cannot be updated. The environment (i.e., a gateway) unobtrusively

intercepts IPv4/IPv6 packets and encapsulates them in IPv6/IPv4 packets. Similarly, Talaminos-

Barroso et al. [229] present a middleware that translates different Internet-of-Things (IoT)

protocols to allow IoT devices that use incompatible protocols to communicate with each other.

We argue that this approach is necessary in modern networked systems to allow adding new

or update existing functionality on systems that are not controllable.

Mechanism Interception

In all examples, there is a system (i.e., a private host or a Windows application) that cannot

be upgraded or modified. It uses mechanisms (i.e., IP routing or system calls) to achieve a

specific task (i.e., communications between networks or executing a Windows application).

Developers can control the environment (i.e., the NAT router or the operating system) and

use a new mechanism that intercepts information from an old mechanism and translates it to

the new mechanism (i.e., translating between private and public IP addresses or translating

between Windows and POSIX system calls).

Our novel approach of unobtrusive mechanism interception is shown in Fig. 4.17. It consists of

the following components:

28https://www.winehq.org
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Environment
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A/C Interceptor

Interface A

A/B Interceptor

Figure 4.17: System, Environment, and Interceptor

System and Environment

We consider a system (green in Fig. 4.17) that is intended to achieve a particular task. The system

or parts of it cannot be changed because it contains proprietary components or depends on

other external factors, such as high coordination costs for changes due to long standardization

or technical hurdles. In the NAT example, the system is the host that wants to communicate

with hosts in other networks. The system is surrounded by an environment (gray in Fig. 4.17)

that provides functionality to be used by the system. The system depends on the functionality

provided by the environment to achieve the intended task. In the NAT example, the host

needs the routing functionality of the gateway to enable communication with hosts in other

networks.

Mechanism

A mechanism is the implementation of a functional unit of the environment used by the system

via its corresponding interface to achieve its task [5]. The mechansim/interface mapping is not

unique. For example, for the TCP mechanism, the interface could be the Sockets API or the

Wi-Fi connection between two devices. In Fig. 4.17, the mechanisms are represented in black

geometric figures and their interfaces in corresponding white geometric figures. In the NAT

example, the mechanism provided by the environment that the system uses is IP routing and

the corresponding network interface between host and NAT router.

Unobtrusive Interceptor

In the area of software engineering, the “interceptor architectural pattern allows services

to be added transparently to a framework and triggered automatically when certain events

occur” [208]. In this programming pattern, a framework provides interfaces so that programs

using the framework can transparently intercept the flow of data at specific events. While

the goal of our interceptor is similar, i.e., to transparently intercept the data flow to enable

71



4 Ecosystem Monitoring

new functionality, the perspective is reversed. An interceptor in our approach is part of the

environment and provides mechanisms to the system via interfaces, which are represented as

combinations of geometric figures in the yellow area in Fig. 4.17. In contrast to the interceptor

pattern, our interceptor is used by the system but configured by the environment. To allow

a system to use the mechanisms, the interceptor is inserted between the system and the

mechanism and changes the data flow. The used mechanism can also be introduced into the

environment as part of the interceptor and does not have to exist before. In the NAT example,

the newly added mechanism is IP masquerading.

To not influence or even disturb the actual task of the system, the existing mechanism must be

unobtrusively replaced by the provided mechanism of the interceptor. The system should not

notice the change of the mechanism; the used interfaces pretend that the original mechanism is

still in place. Furthermore, the behavior of an interceptor must be unobtrusive so that the system

can continue to provide the functionality and not provide error cases for its termination.

Guide to Action

To implement unobtrusive mechanism interceptors, we propose a 3-step procedure for develop-

ers.

Identification of Problem and Solution

The first step is to identify the problem that needs to be solved. Usually, problem identification

is the result of prolonged use of a system where limitations occur or are noticed. Once the

problem is identified, a solution must be found. Typically, there are several possibilities from

which feasible solutions can be distilled. In the NAT example, the problem is IPv4 address

scarcity, and the solution might be to translate addresses between multiple networks or to

adjust routing on hosts so that unique IPv4 addresses are not necessary.

Identification of System and Environment

In the second step, developers need to identify the system in terms the problem to be solved,

i.e., the component that cannot be changed or controlled, and the environment that can be

controlled or changed by an interceptor. Some solutions of the first step must be discarded,

since they would require a change of the system. In the NAT example, the system is the host

that communicates with hosts in other networks, and the environment is the local network or

NAT router. The alternative suggestion of adapting hosts so that IPv4 addresses do not have to

be unique is omitted because the host is not changeable.

Identification of Mechanisms and Interceptors

In the third step, mechanisms must be found to solve the problem by considering the feasibility

and unobtrusiveness of an interceptor that translates between the old and the new mechanism.

This makes it essential that the mechanisms are functionally equivalent, for example, that they
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are on the same layer in the case of network protocols. In the NAT example, the functionally

equivalent mechanism is an adaptation of IP routing. This interceptor implements an alternative

IP routingmechanism, i.e., functionally equivalent to the oldmechanism. Finally, the interceptor

has to be implemented and deployed.

4.3.4 TunnelHandovers

We present the use case of an unobtrusive mechanism interceptor that uses common Linux

mechanisms to enable handovers without TCP session disconnects, and without the need to

roll out new, complicated, or niche protocols.

Problem and Solution

A vertical handover (henceforth simply called ”handover”) is the process of switching a net-

worked device from one network access technology to another [106]. Probably the best-known

example is the switch from a mobile phone’s Wi-Fi connection to a cellular connection, e.g.,

when leaving home on the way to the office. The core problem with handovers are protocols

such as TCP, which were designed before wireless communication became popular. Thus,

disconnections on the transport layer were not really considered during protocol design. If

the connection on the transport layer is interrupted, the connections on the application layer

must also be re-established, which can lead to different implications for different applications,

such as interruptions of audio streams when listening to music or making phone calls. Several

solutions to this problem have been proposed. There are standards that explicitly support mo-

bility of nodes and implement mechanisms to support handovers, most notably Multipath-TCP,

SCTP, and QUIC. However, all of these approaches have the core problem that they have to be

deployed and supported by a major number of participants in the network. Furthermore, all

of these solutions require application developers to update and adjust their applications to

support these protocols.

System and Environment

The system in this scenario is an TCP-based application that we cannot change, e.g., by adding

UDP functionality, since it is a pre-compiled application from some app store. The environment

is the operating system, which we can change by implementing and deploying an interceptor.

Mechanism and Interceptor

We use two building blocks: WireGuard and LD_PRELOAD. WireGuard is a simple, fast, and

secure VPN software that transmits data encapsulated in UDP datagrams. The use of UDP

eliminates the problem of TCP connection losses during handovers, since UDP is not connection-

oriented. For a WireGuard tunnel to work, a tunnel endpoint somewhere in the network is

required, where the WireGuard tunnel is terminated and the encapsulated TCP connection is

further relayed to the original destination.
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Figure 4.18: The system architecture for the TunnelHandover approach

The use of WireGuard alone does not automatically enable existing TCP-based applications to

support handovers. Rather, they have to be instructed to transfer their data over theWireGuard

connection. One way to do this is to modify the routing table of the system in a way that

all traffic from the host is sent over the tunnel. However, this would mean that non-TCP

based applications would also be routed through the tunnel, including UDP or QUIC based

applications that do not have the problem of a missing handover capability, making the

routing table an inappropriate interface for the TCP mechanism. To mitigate this potential

drawback, LD_PRELOAD is used. The LD_PRELOAD mechanism allows intercepting functions of

dynamically linked libraries, enabling us to intercept the Socket API such that only connections

of the application started with our LD_PRELOADmodifications use the WireGuard tunnel. Thus,

the mechanism TCP/IP is replaced by the mechanism TCP/Tunnel/IP. For this purpose, an
interceptor is used that implements the Socket API used by the system, i.e., the application.

Fig. 4.18 presents the components of our TunnelHandover approach. A WireGuard daemon

is executed on the operating system, indicated by the black square. When a program is exe-

cuted with our interceptor, the TCP packets of this particular application are intercepted and

redirected to the local WireGuard daemon using LD_PRELOAD. The UDP-based WireGuard

packets are then sent to the WireGuard endpoint located in the network, which unpacks the

encapsulated TCP connection and acts as a relay to forward the application data to the desired

destination using conventional TCP/IP mechanisms. The responses of the server with which the

application communicates are sent back to the host via the same route, i.e., via the WireGuard

tunnel.

Experimental Evaluation

We evaluated the proposed interceptor for seamless handovers by emulation using the Common

Open Research Emulator (CORE) in a leaving home scenario. Here, the handover is performed

from Wi-Fi to LTE. The following nodes were emulated: client (with the TCP-based application

to be intercepted), Wi-Fi access point (AP) and LTE access network (AN) to handover between,

backbone router where both AP and AN are connected to for the network uplink, WireGuard

gateway to terminate the WireGuard connection, and application server running the server

of the client’s application. To simulate a TCP-based application, we used iPerf3
29
, where the

29https://iperf.fr

74

https://iperf.fr


4.3 Unobtrusive Mechanism Interception

client initiates the connection to the server via Wi-Fi at experiment start. We also conducted

experiments without the TCP/Tunnel/IP mechanism for comparison, using the regular TCP/IP
mechanisms of the Linux kernel.
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Figure 4.19: Network throughput with and without vertical handover

Fig. 4.19 shows the results for the conducted experiment. The x-axis denotes the experimental

time, while the y-axis denotes the achieved bandwidth. The orange graph shows experiments

where the proposed handover mechanism is enabled, the blue graph shows the results with-

out employing the TCP/Tunnel/IP mechanism. Without theTCP/Tunnel/IP mechanism, the

throughput drops to 0 because the TCP connection is not re-established after the connection is

changed. Using the proposed LD_PRELOAD interceptor, a short throughput degradation is visible
at around 25 seconds. This is due to the Wi-Fi connection being lost immediately, resulting in

a short connection drop until the kernel recognizes the lost connection and propagates the

changes to the routing tables.
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4.4 ForestEdge: Unobtrusive Mechanism Interception in
Environmental Monitoring

4.4.1 Introduction

Networked systems for environmental monitoring are often based on highly specialized inte-

grated hardware and software components with a limited feature set. Many of these systems

are created for exactly one use case, with a particular focus on cost. If such systems are operated

for a long time, several components might not be state of the art anymore and might lack func-

tionality that has become relevant over time. Furthermore, lengthy and costly standardization

and deployment processes may also hinder or slow down updates, which is not only valid for

proprietary components.

Sensor networks for environmental monitoring were previously criticized for being too costly

to operate [150]. Advances in other fields, i.e., technologies borrowed from the Internet of

Things (IoT) and machine learning, including denoising methods and suitable standards for

communication, allow environmental monitoring applications to become smarter [244]. Using

new technology, environmental monitoring can be realized in a more cost-efficient manner.

An example is the TreeTalker platform. It is a low-cost networked system for monitoring the

health of trees in a natural ecosystem [245], which is currently in use in many areas around

the world
30
. The platform consists of sensor devices called TreeTalkers (TT) and a base station

called TTCloud, which can be used to relay data received via LoRa and upload it to a cloud

storage provider. Our university operates 100 TreeTalkers as part of the Nature 4.0 research
project[69]. The TreeTalker platform is proprietary and does not give buyers access to the

software’s source code. There is also no intention from the vendor that these devices can be

upgraded after purchase. The original implementation is limited in functionality and restricted

to pure data acquisition. Hence, modern advances and technologies, such as machine learning

methods, anomaly detection algorithms, or dynamical measurements, are not utilizable in the

TreeTalker platform.

In this section, we replace TTCloud with a versatile gateway based on open source software

and components-off-the-shelf (COTS) hardware to allow dynamic reconfiguration of all TTs

and to have a common basis for the automated analysis of collected data based on the novel

concept of unobtrusive mechanism interception [141].

Parts of this section have been published in Patrick Lampe, Markus Sommer, Artur Sterz,

Jonas Höchst, Christian Uhl, and Bernd Freisleben. “ForestEdge: Unobtrusive Mechanism

Interception in Environmental Monitoring.” In: 2022 IEEE 47th Conference on Local Computer
Networks (LCN). IEEE. 2022, pp. 264–266.

4.4.2 Background

To replace TTCloud with our gateway, we performed a black-box analysis of a TT’s behavior
and network communication to understand the communication protocol. TTCloud’s command

message contains four significant values influencing a TT’s behavior. Sleep is the time the

30https://www.nature4shop.com/our-vision/

76

https://www.nature4shop.com/our-vision/


4.4 ForestEdge: Unobtrusive Mechanism Interception in Environmental Monitoring

device will sit idle between measurements (default is one hour). Heating time is the time the

TT will run its internal heater before taking the second heat-probe measurement. Finally, time
slot and slot length govern the time the device will wait between measurements and sending

measurement data; these values are multiplied to get the time to wait before transmitting. The

waiting time between measurements is user-configurable during deployment. The time slot

length will also be the same for all nodes, while the gateway will assign each TT a unique

time slot. The only way for a user to access the collected data is by downloading a CSV file

containing the measurement data from the vendor’s web server or via a serial interface on

the device. Neither a TT nor the cloud backend implements an interactive interface or an

evaluation/error check of the data.

TTCloud is controlled via SMS. Collected data is sent to the cloud backend via a mobile data

connection using a LoRa-based call-response protocol initiated by a TT. LoRa-certified hardware

provides a dedicated network layer protocol, LoRaWAN, which handles collisions, addressing,

and other issues resulting from the shared-medium characteristics of LoRa. However, the

TT vendor decided to forgo LoRaWAN in favor of using the LoRa PHY layer directly. Thus,

communication with each TT must be scheduled manually to avoid collisions. Especially in

congested frequency bands, operating a TT network without collision avoidance is problematic,

often resulting in poor reliability.

To add or modify the functionality of an existing networked system, we rely on the novel

approach of unobtrusive mechanism interception [141]. Therefore, we distinguish between system,

i.e., components containing proprietary or other non-changeable parts, and environment, i.e.,
components containing modifiable parts under our control. Behavioral changes are achieved

by functionality-enhancing yet unobtrusive interceptors, i.e., hardware/software components

introduced between the environment and the system to add or update mechanisms to represent

some functionality. To showcase the use of mechanism interception, we illustrate our approach

on a specific proprietary hardware system, namely the TT. We call the resulting interceptor

ForestEdge.

4.4.3 ForestEdge

With the insights gathered from our black-box analysis, we can fully replace TTCloud with our

open-source alternative, which allows us to bring mechanism interception to the TT network.

By intercepting and redirecting TT messages, we can increase both the functionality and the

reliability of the TT network: (a) we can make the system interactive, (b) we can perform

statistical analyses on measurement data to find and rectify anomalies by triggering repeated

measurements, and (c) we can maximize the battery lifetime by adjusting the measurement

frequency to the remaining battery power.

According to the approach of unobtrusive mechanism interception, the following components

are present: (a) The TT is the system; its goal is the collection of accurate environmental data

and to make it available to users. (b) The environment is a forest-wide LoRa network that

serves as the gateway to connect the set of TTs to the Internet. It receives the TTs’ data via

LoRa and can process and relay it to other systems in the Internet. ForestEdge is modular

and allows the use of arbitrary communication technologies, such as WiFi, LTE, 5G, or a

satellite uplink for data transmission. (c) The mechanism that allows the set of TTs to talk to
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Figure 4.20: TT scenario with system, environment, and interceptor

the system is LoRa. (d) ForestEdge is the interceptor. It replaces TTCloud, communicates with

the set of TTs via LoRa, and ultimately allows users to access the data in a more convenient

format. Furthermore, it enhances the system’s functionality by introducing anomaly detection

algorithms, improving the data quality. This approach is unobtrusive, since the TTs cannot

distinguish between TTCloud and ForestEdge.

Fig. 4.20 shows the architecture of ForestEdge. It is based on two separate decision-making

entities. The local decision engine is located on the physical device, in this case, a Raspberry Pi,

in the forest and communicates directly with a set of TTs. It only has data from its directly

connected sensor nodes. This component is labeled ForestEdge in the figure; it consists of

the actual interceptor, shown in the yellow area, which includes the LoRa transceiver and a

translation layer that re-marshals the packets and sends them on via MQTT. The anomaly

detection algorithm checks if a measurement seems reasonable, and if successful, the packet

is transmitted onward via different communication technologies. ForestEdge decodes LoRa

packets from a TT and submits the measurement data via MQTT. When the local decision

engine receives data via MQTT, it stores it locally and forwards it to a global aggregator, which

periodically aggregates data from all the nodes and computes relevant benchmark values.

When generating a reply packet, the local decision engine performs a statistical evaluation

of the corresponding TT’s previous measurement data and how it relates to the aggregator-

supplied benchmark values. For simplicity, we decided to use a statistical analysis where a

value is labeled as an "anomaly" if it deviates from the expected value by more than two

standard deviations. The expected value is computed from the ForestEdge node’s local data

and aggregated values supplied by the backend. However, employing a more sophisticated

analysis method (e.g., based on machine learning) is possible with little to no modification of

78



4.4 ForestEdge: Unobtrusive Mechanism Interception in Environmental Monitoring

Figure 4.21: Erratic data from the deployed TT in the Marburg Open Forest

the architecture. If ForestEdge detects an anomaly, a TT is required to rerun its measurements

by sending a command packet with an updated shorter sleep time.

The second decision-making entity, labeled Backend in Fig. 4.20, is a global decision engine, i.e.,

a centralized aggregator in the backend. It has global knowledge of all nodes in the network. The

backend receives data from all ForestEdge instances and saves them in a time-series database

to aggregate and redistribute them to aid stations in making statistical evaluations. It also

contains a presentation layer through which users can view the data.

4.4.4 Anomaly Detection at the ForestEdge

A disadvantage of the TT devices is the fluctuating quality of on-device measurements. To

compensate for this shortcoming, we implemented local anomaly detection, which can trigger

a new measurement. To make meaningful decisions, we compare a long-running and a short-

running time window of the data. If we assume the data is normally distributed, the calculation

of the twofold standard deviation for short-running windows is already sufficient to make

decisions, e.g., whether a new measurement is necessary or these new values can be appointed

as the new standard. In general, the preferred decision is to reduce the upcoming measurement

interval to verify and increase the accuracy of the collected data. If no anomaly is found,

the sleep time until the subsequent measurement is calculated based on the TT’s reported

remaining battery capacity. This maximizes the device’s lifetime running with a battery by

reducing the measurement frequency when the solar panel produces little energy and increases

the frequency when there is a power surplus. We used real-world data gathered from 100 TTs

over the past two years to evaluate whether our anomaly detection works as intended. The

evaluation was performed by injecting data into the global decision engine in chronological

order, thus doing a replay.
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Table 4.11: Anomalous and critical events found in historical data

Type Position Movement Stem Temp. Air Temp.

Anomalous 2182 108 443 0

Critical 6313 105 183 1

Figure 4.22: Original TreeTalker (left) and the ForestEdge hardware (right)

Table 4.11 indicates that most events are produced by the accelerometer and, more specifically,

by the values denoting the sensor’s position. Further investigation of the data revealed that

this seems to be due to a systematical failure in either the installed sensor itself or the method

in which the onboard controller queries it. The data reported by the TT for this sensor seems

to be completely erratic and not suitable as a basis for further decision-making, as shown

in Figure 4.21. This failure had previously not been noticed by the operators, but with the

aid of ForestEdge, we were able to discover it before it could impact other decision-making

processes.
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4.5 Bird@Edge: Bird Species Recognition at the Edge

4.5.1 Introduction

The continuous loss of biodiversity is particularly evident from the sharp decline of bird popu-

lations in recent decades. Birds are important for many ecosystems, since they interconnect

habitats, resources, and biological processes, and thus serve as important early warning bioindi-

cators of an ecosystem’s health. Thus, changes in bird species in time and space should be

detected as early as possible.

Traditionally, this is achieved by human experts who walk around a natural habitat to look

at birds and listen to bird sounds, identify bird species present in the sounds, and take notes

of their occurrence. In recent years, this is often supported by placing microphones in the

natural habitats of birds and recording their sounds. The audio data recorded in this way is

then evaluated either manually by human experts or by means of automatic analysis methods

to recognize bird species in soundscapes. The disadvantages of this approach are: (a) there is a

potentially large amount of recorded audio data that can usually only be evaluated after the

end of the recording time, and (b) there is an inherent time delay between recording the audio

data and delivering the recognition results.

In this section, we combine Edge Computing and Artificial Intelligence (AI) to present

Bird@Edge, an Edge AI system for recognizing bird species in audio recordings to support

real-time biodiversity monitoring. Bird@Edge is based on embedded edge devices operating

in a distributed system to enable efficient, continuous evaluation of soundscapes recorded in

forests. Multiple microphones based on ESP32 microcontroller units (called Bird@Edge Mics)

stream audio to a local Bird@Edge Station, on which bird species recognition is performed.

The recognition results of different Bird@Edge Stations are transmitted to a backend cloud for

further analysis, e.g., by biodiversity researchers.

To recognize bird species in soundscapes, a deep neural network based on the EfficientNet-B3

architecture is trained and optimized for execution on embedded edge devices and deployed

on a NVIDIA Jetson Nano board using the DeepStream SDK. Our experimental results show

that our deep neural network model outperforms the state-of-the-art BirdNET neural network

on several data sets and achieves a recognition quality of up to 95.2% mean average precision

on soundscape recordings in the Marburg Open Forest, a research and teaching forest of the

University of Marburg, Germany. Measurements of the power consumption of a Bird@Edge

Station and the Bird@Edge Mics highlight the real-world applicability of the approach. All

software and firmware components of Bird@Edge are available under open source licenses
31
.

Our contributions are:

• We present a novel Edge AI approach for recognizing bird species in audio recordings; it

supports efficient live data transmission and provides high-quality recognition results.

• We propose a deep neural network based on the EfficientNet-B3 architecture optimized

for execution on embedded edge devices to identify bird species in soundscapes.

31https://github.com/umr-ds/BirdEdge
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• We evaluate our Edge AI approach in terms of recognition quality, runtime performance,

and power consumption.

Parts of this section have been published in Jonas Höchst, Hicham Bellafkir, Patrick Lampe,

Markus Vogelbacher, Markus Mühling, Daniel Schneider, Kim Lindner, Sascha Rösner, Dana G.

Schabo, Nina Farwig, and Bernd Freisleben. “Bird@Edge: Bird Species Recognition at the Edge.”

In: International Conference on Networked Systems (NETYS). Springer. May 2022, pp. 69–86.

4.5.2 Related Work

In this section, we discuss related work with respect to current machine learning approaches

for bird species recognition in audio recordings and edge AI approaches for biodiversity moni-

toring.

Bird Species Recognition

For many years, bird populations were monitored manually by ornithologists who identified

birds visually and acoustically on site. The introduction of autonomous recording units (ARU)

opened new possibilities. Although such passively recorded data does not provide any visual

information, the resulting bird surveys conducted by humans from sound recordings are

comparable to traditional monitoring approaches in the field [42].

Furthermore, machine learning methods, such as Convolutional Neural Networks (CNN), are

increasingly being used for automatically recognizing bird species in soundscapes. For example,

BirdNET is a task-specific CNN architecture trained on a large audio data set using extensive

data pre-processing, augmentation, and mixup that achieves state-of-the-art performance

[121]. The audio spectrograms are generated using a Fast Fourier Transform (FFT) with a

high temporal resolution. BirdNet is based on a ResNet [97] architecture and is capable of

identifying 984 North American and European bird species.

More recently, BirdNET-Lite
32
has been released. This neural network is optimized for mobile

and edge devices and can recognize more than 6,000 bird species. It takes raw audio as its

input and generates spectrograms on-the-fly. Mühling et al. [169] proposed a task-specific

neural network created by neural architecture search [269]. It won the BirdCLEF 2020 challenge

[119]. It also operates on raw audio data and contains multiple auxiliary heads and recurrent

layers.

Recently, Vision Transformers (ViT) achieved great improvements in computer vision tasks

[49] and audio event classification[78]. Puget [192] adopted a ViT architecture for bird song

recognition and achieved results comparable to CNNs. However, the annual birdcall identifica-

tion challenge (BirdCLEF [120]) is currently dominated by approaches based on CNNs. The

top approaches typically use ensembles of CNNs and heavy parameter tuning. The winning

approach at BirdCLEF 2021, for example, uses Mel spectrograms, network architectures based

on ResNet-50 [97], and gradient boosting to refine the results using metadata. The runners-up

Henkel et al. [99] presented an ensemble of nine CNNs. During training, they used 30 second

32https://github.com/kahst/BirdNET-Lite
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Mel spectrograms to mitigate the effect of the weakly labeled training data and applied a

novel mixup scheme within and across training samples for extensive data augmentation.

Furthermore, a binary bird call/no bird call classifier contributed to the final result. However,

combining several machine learning models leads to a considerably increased computational

effort.

Edge AI for Biodiversity Monitoring

Executing machine learning algorithms on edge devices leads to a quantitative increase of data

through continuous observation, where previously only individual data points could be collected

with manual effort, often including a bias of individual experiences depending on, e.g., habitat or

bird species. Merenda et al. [161] survey several approaches based on the execution of machine

learning methods on hardware with limited resources. Gallacher et al. [71] deployed 15 sensors

in a large urban park to process recorded audio data of bats locally, which allowed monitoring

their activities for several months. Given that the system has only been operated in an urban

environment, the limitations of this approach are that network connectivity must be available

via WiFi, and that a fixed power supply must be present. Novel deep learning approaches

presented by Disabato et al. [48] further improved bird song recognition at the edge. These

approaches provide high accuracy while reducing computational and memory requirements,

with limited battery lifetimes of up to 12.4 days on an STM32H743ZI microcontroller. Likewise,

Zualkernan et al. [271] compare different edge computing platforms based on neural networks

using bat species classification as an example. While the NVIDIA Jetson Nano is the only device

capable of executing a TensorRT model on its GPU, both the Raspberry Pi 3B+ and the Google

Coral showed good results when executing a reduced TensorFlow-Lite model.

4.5.3 Bird@Edge

Bird@Edge is designed as an Edge AI system based on distributed embedded edge devices to

enable efficient, continuous evaluation of soundscapes recorded in forests. Multiple Bird@Edge

Mics stream audio wirelessly to a local Bird@Edge Station, on which bird species recognition is

performed. The recognition results of different Bird@Edge Stations are transmitted to a backend

for further analysis. The results are stored in a time series database and can be visualized, as

shown in Fig. 4.23. Using hidden microphones also supports recognizing very elusive species

that are hard to detect while ecologists are present in field to conduct a census.

A Bird@Edge Station consumes significantly more power than a microphone node, but can

run a neural network for bird species recognition for more than one audio stream. We can

feed 1 to 10 audio streams into the neural network and thus operate a variable number of

Bird@Edge Mics at one Bird@Edge Station. Different numbers of Bird@Edge Mics may be

present when a new microphone node appears (e.g., by switching it on) or leaves (e.g., due to

battery shortage).

To generate a list of bird species at a Bird@Edge Station, chunks of an incoming audio stream

are passed to the neural network, which may return multiple results, since we process mixtures

of recorded bird songs, i.e., soundscapes. These potentially multiple results per audio segment

are then collected and aggregated into larger intervals in the time series database in the
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Figure 4.23: Overview over the Bird@Edge system

backend cloud. The size of the interval can be dynamically changed and visualized in near

real-time. In addition, the status of the microphone nodes and potential problems can be

detected much faster than collecting data only every few days.

Bird@Edge Hardware

The hardware used for Bird@Edge consists of (a) Bird@Edge Mics, which are in charge of

recording and transmitting audio at the deployed location; (b) Bird@Edge Stations, which

receive audio streams from multiple Bird@Edge Mics and execute the Bird@Edge processing

pipeline. Figure 4.24 provides an overview of the hardware components used in Bird@Edge.

A Bird@Edge Mic consists of an Espressif ESP32 microcontroller that has a dual-core CPU

running at 80 MHz, Bluetooth and WiFi connectivity, as well as multiple input and output

options, including an I2S (Inter-IC Sound) bus. Connected to it is a Knowles SPH0645LM4H

microphone capable of recording audio in the range between 50 Hz and 15 kHz
33
. A Bird@Edge

Mic can be powered either using single 18650 Li-ion cells or using one of the widely available

USB power banks. The price of a Bird@Edge mic of 22€ to 50€ is composed of the ESP32,

depending on the offer and model 5€ to 15€, the I2S microphone 7 - 12€ and a battery for 10€ -

33https://www.knowles.com/docs/default-source/default-document-library/sph0645lm4h-1
-datasheet.pdf
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Figure 4.24: Bird@Edge hardware components

20€. All components can be placed in a small case of 10 x 10 x 5 centimeters, which does not

exceed the weight of 500 grams.

At the heart of a Bird@Edge Station is a NVIDIA Jetson Nano. It allows the efficient execution of

machine learning models in a low power environment. A Realtek RTL8812BU-based USB WiFi

is used to enable wireless networking with the board and allow connection to the Bird@Edge

Mics. In addition, a Huawei E3372H LTE modem is installed to connect to the Internet in

rural areas. The station is powered by 12V solar battery system connected to the Jetson Board

via a 12V/5V step down converter. The hardware of a Bird@Edge Station costs about 110€,

with 50€ for the Jetson Nano, 20€ for the USB WiFi adapter, and 40€ for the LTE modem. The

components of an Bird@Edge Station, including a solar charge controller, can be fitted into an

industrial enclosure measuring 25 x 18 x 12 centimeters, weighing less than 1.5 kilograms in

total.

Bird@Edge Software

Bird@Edge consists of a variety of software components that enable its smooth configuration

and operation. Figure 4.25 shows these software components, as well as the data flows and

interaction possibilities of the users with the system.

The software for the Bird@Edge Mics is built using components of the Espressif Development

Framework (ESP-IDF), i.e., HTTP Server, Multicast DNS Implementation, and I2S drivers. When

booting up, the Bird@Edge Mic connects to the WiFi network (SSID: BirdEdge) with the best
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Figure 4.25: Bird@Edge software components

signal strength and reports its own accessibility via the service identifier mDNS. Then, the

HTTP server is started, which provides the audio stream of the microphone for the Bird@Edge

station. To detect connection interruptions, the WiFi connection is also checked at intervals of

one second with the aid of ICMP and, if necessary, the WiFi connection is re-established. The

Bird@Edge Mic software is available online
34
.

The software running on a Bird@Edge Station is based on the NVIDIA Jetson Nano Develop-

ment Kit Operating System, which in turn is based on Ubuntu Linux. The central component

responsible for detecting the Bird@Edge Mics, executing the processing pipeline and trans-

mitting the results is called birdedged (Bird@Edge Daemon). It continuously searches for

newly connected Bird@Edge devices and restarts the processing pipeline accordingly when

devices are found or dropped. Bird species recognition results from the processing pipeline are

captured and transmitted to the InfluxDB server system. The server system that collects data

from potentially multiple Bird@Edge implementations runs Grafana, a dashboard visualization

WebUI designed specifically for stream data
35
.

The operating system running on Bird@Edge Stations is built using pimod [105] and is available

online
36
. NVIDIA’s licenses do not allow to redistribute complete operating system images,

however pimod allows to reduce the necessary steps and easily create the images.

34https://github.com/umr-ds/BirdEdge/tree/main/BirdEdge-Client
35https://grafana.com
36https://github.com/umr-ds/BirdAtEdge-OS
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4.5.4 Recognizing Bird Species in Soundscapes

In this section, we describe our deep learning approach to bird species recognition in audio

recordings including the preprocessing steps, the neural network as well as its optimization

and deployment on the NVIDIA Jetson Nano edge device. The deep neural network model is

designed to recognize 82 bird species indigenous in Germany and background noise that is

typical for German forests.

Audio Preprocessing

We selected 44.1 kHz as the sampling rate and analyzed frequencies up to 22.05 kHz to cover the

frequency ranges of the bird song patterns. The task is considered as a classification problem,

aiming to recognize bird species in 5-second audio snippets. To avoid overfitting and enrich

our data set, we randomly select these 5-second snippets and add randomly selected noise

from up to four background samples. This encourages our model to focus on the patterns that

are important for species recognition. The recognition is based on visual representations of

the frequency spectrum as it changes over time, called spectrograms. In our case, we use Mel

spectrograms that are generated using 128 Mel bands and an FFT window size of 1,024.

Neural Network Architecture

Our approach to recognize bird species relies on an EfficientNet-B3 [230] architecture pre-

trained on ImageNet [201]. The model is fine-tuned in two phases to target domain using the

Adam [127] optimizer. In the first phase, we only train the last, randomly initialized layer for

40 epochs with an initial learning rate of 0.004, while the remaining layers with pre-trained

weights are frozen. In the second phase, we train all layers of the model until convergence,

while reducing the initial learning rate by a factor of 10. Furthermore, a binary cross-entropy

loss combined with modulation factors motivated by the success of focal loss [148] in the field

of object detection are used to emphasize difficult samples during the training process. Since

the underlying data set is only weakly labeled, we use positive training samples for one species

as negative samples for the others. Furthermore, samples labeled negative from expert feedback

are defined as hard negatives in the following. Our loss function is defined as follows:

L =
K

∑
k=1

l(yk, pk),

l(y, p) =


−αpos(1 − p)γ log(p) if y is positive

−αn pγ log(1 − p) if y is negative

−αhn pγ log(1 − p) if y is hard negative

where K is the number of bird classes, pk is the predicted probability for the k-th class, yk is

the k-th ground truth label, αpos is the weighting factor for positive labels, αn for negative or

undefined labels, αhn for hard negative labels and γ is the focusing parameter.
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We implemented our approach using the TensorFlow deep learning framework [157]. For audio

processing and especially spectrogram generation, we use the librosa library [158].

Optimizing the Neural Network for Edge Devices

To speed up inference, we optimized our model using the TensorRT
37
library. This library in-

cludes an inference optimizer for CUDA-capable target devices that applies various operations,

such as quantization and memory optimization, to reduce the inference time. In particular,

the floating point precision is reduced by quantizing to FP16 or INT8, while maintaining high

accuracy. We optimized our model by using FP16 quantization in addition to the original FP32

weights, since the NVIDIA Jetson Nano does not support INT8 computations natively. Further-

more, we applied target-specific auto-tuning to select the best algorithms and quantization for

each layer.

Inference

We use the DeepStream SDK
38
to deploy our optimized model on the NVIDIA Jetson Nano

board with high throughput rates. DeepStream is based on the GStreamer framework and

provides a pipeline that takes an input stream and performs hardware accelerated inference on

it. An overview of our pipeline composed with DeepStream is presented in Figure 4.26. First, the

Stream 
Muxer……

Predictions

Read 
HTTP 

Stream

Highpass 
@120 Hz

NvInferAudio

CNN

NvInferAudio

CNN

Read 
HTTP 

Stream

Highpass 
@120 Hz

Figure 4.26: Overview of the Bird@Edge processing pipeline

N HTTP streams are read and parsed from the WiFi signal. Since the microphone we used (see

Section 4.5.3 for details) induces noise in the lowest frequency bands, we apply a highpass filter

that attenuates all frequencies below 120 Hz to each stream. These frequencies are irrelevant

for bird species recognition and can therefore be neglected. We prefer the Chebyshev highpass

filter over the windowed sinc filter, because it is much faster. Next, we use DeepStream’s stream

muxer to bundle our streams into one batch and forward the data to the NvInferAudio plugin.

This plugin provides inference for audio streams and automatically generates the respective

37https://developer.nvidia.com/tensorrt
38https://developer.nvidia.com/deepstream-sdk
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Mel spectrograms. Finally, the spectrograms are passed to our model with a batch size of N,

and the obtained predictions are retrieved. To be able to process the streams in real-time with

a high temporal resolution, we take 5 second snippets with a stride of one second.

4.5.5 Experimental Evaluation

In this section, we present experimental results in terms of (a) bird species recognition qual-

ity and execution speed, (b) visualization of bird recognition results, as well as (c) power

consumption measurements of a Bird@Edge Station and a Bird@Edge Mic.

Bird Species RecognitionQuality and Execution Speed

Data Sets.

Our neural network models were evaluated and compared to BirdNET [121] and BirdNET-

Lite
32
on data sets collected from three sources. We recorded a first data set with AudioMoth

devices [101] in the Marburg Open Forest (MOF). The recordings were labeled on a 5 second

basis by human experts. In total, 33 species occur in the MOF data set. Since the amount of

labeled data in the MOF data set is not sufficient to train a deep learning model, we acquired

further data sets by crawling data from the online bird song collections Xeno-Canto [264] and

iNaturalist [114]. The assets included in these data sets have often higher quality and contain

less background noise. In our evaluation, we took up to 10% of the files of each class. To make

sure that we do not feed snippets without bird calls, we first applied the heuristic used by Kahl

et al. [121] and selected up to three 5 second snippets containing a bird call for each test file.

Table 4.12 shows an overview of the training and test data.

Table 4.12: Overview of the training and test data.

Data Set MOF Xeno-Canto iNaturalist

Training 4,294 104,989 30,631

Test 913 2,144 1,365

Quality Metrics.

To evaluate the performance of our bird species recognition approach, we use average precision

(AP) as our quality metric. The AP score is the most commonly used quality measure for

retrieval results and approximates the area under the recall-precision curve. The task of bird

call recognition can be considered as a retrieval problem for each species where the annotated
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audio samples represent the relevant documents. Then, the AP score is calculated from the list

of ranked documents as follows:

AP(ρ) =
1

|R ∩ ρN |

N

∑
k=1

∣∣R ∩ ρk
∣∣

k
ψ(ik),

with ψ(ik) =

 1 if ik ∈ R

0 otherwise

where N is the length of the ranked document list (total number of analyzed audio snippets),

ρk = {i1, i2, . . . , ik} is the ranked document list up to rank k, R is the set of relevant documents

(audio snippets containing a bird call),

∣∣R ∩ ρk
∣∣
is the number of relevant documents in the

top-k of ρ and ψ(ik) is the relevance function. Generally speaking, AP is the average of the

precision values at each relevant document. To evaluate the overall performance, the mean AP

score is calculated by taking the mean value of the AP scores from each species.

Table 4.13: Results (mAP).

Method MOF XC iNat

BirdNET[121] 0.833 0.725 0.725

BirdNET-Lite
32

0.859 0.737 0.714

EfficientNet-B3 0.952 0.820 0.811

Bird@Edge 0.952 0.816 0.819

Table 4.14: Model inference runtimes.

Model Device Inference time (ms)

BirdNET-Lite
32

Raspberry Pi-4B 279

Bird@Edge (FP32) Jetson Nano 64

Bird@Edge Jetson Nano 54

Results.

First, we evaluated the recognition quality of our models, namely the original trained model

(EfficientNet-B3) as well as the optimized model (Bird@Edge) and compare the results to Bird-

NET and BirdNET-Lite. While EfficientNet-B3 is evaluated with TensorFlow on a workstation,

the Bird@Edge model is run on the NVIDIA Jetson Nano for inference.

BirdNET and BirdNET-Lite take the recording location as additional metadata along with the

corresponding audio input. As longitude and latitude, we take the coordinates of the Marburg
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Figure 4.27: Grafana panel (x-axis: clock time; y-axis: recognition confidence) showing recog-

nized bird species of a certain Bird@Edge Mic, based on Xeno-Canto file XC706150,

recorded by user brickegickel

Open Forest for all data sets, since we only use bird species resident in this specific forest

for evaluation. Since the length of the audio input of the BirdNET models differs from our

approach, the 5 second samples are split into two 3 second snippets with an overlap of 1 second

and the results are averaged for the final prediction.

Table 4.13 summarizes the experimental bird species recognition results. Our original model

(EfficientNet-B3) outperforms BirdNET-Lite as well as BirdNET by roughly 10% in terms of mAP

on all data sets considered. While keeping the recognition quality, the optimized Bird@Edge

model achieves an inference runtime of 64 ms per spectrogram, as shown in Table 4.14. Adding

model quantization with 16-bit floating point precision where appropriate effectively reduces

the inference runtime on the NVIDIA Jetson Nano board by 10 ms. We also compared the

runtimes of our models to BirdNET-Lite. Similar to BirdNET-Pi
39
, we ran BirdNET-Lite on a

Raspberry Pi-4B with 4 CPU threads in parallel. Table 4.14 reveals that our setting is more than

four times faster.

Visualization of Bird Species Recognition Results

Figure 4.27 shows a Grafana screenshot of an automatically generated graph of the recognized

bird species of a Bird@Edge station. To generate the figure, the publicly available soundscape

audio file XC706150 from Xeno-Canto
40
of the target area was played back and captured by

39https://github.com/mcguirepr89/BirdNET-Pi
40https://xeno-canto.org/706150
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the Bird@Edge Mic. The clock time is shown on the x-axis. The confidence of the recognition

is plotted on the y-axis. The data is grouped according to the recognized bird species labels,

distinguished by color. For every Bird@Edge Mic, a separate figure is generated, and its

parameters, e.g., plotted time frame or selection of species, can be configured.

Some observations can be derived from this simple visualization. First, there are several rec-

ognized occurrences of Coccothraustes coccothraustes (hawfinch) in two clusters. Picus canus
(grey-headed woodpecker) is detected multiple times over the duration of 12 seconds, and Sitta
europaea (Eurasian nuthatch) is detected in two clusters each at the beginning and end of the

observation period. All three observations indicate that individuals were heard on the record-

ings and were in the area at these times. For Loxia curvirostra (red crossbill) and Dendrocopos
major (great spotted woodpecker), only 4 and 2 observations were made, respectively; these

were probably heard only in the background. More sophisticated analyses can be performed

based on researchers’ requirements, such as heat maps of the occurrence of species based on

their geo-positions, or time-based plots. This can include both short-term considerations, such

as the time of day at which certain species are active, or long-term aspects, such as during

which period a particular species is particularly active.

Power Consumption

An important aspect for the applicability of Bird@Edge in real applications is its power con-

sumption. Therefore, we measured the power consumption of a Bird@Edge Station and a

Bird@Edge Mic.

To measure the power consumption of a Bird@Edge Station, we used the internal power

monitors of the NVIDIA Jetson Nano, since these enable the differentiation between CPU,

GPU, and total power consumption. The power measurements were performed in different

profiles: a) the 10 Watt maximum performance profile (default), b) the 5 Watt low power profile

from NVIDIA, and c) a custom low power profile created for Bird@Edge. In this custom power

profile, only 2 of the 4 CPU cores were used, running at a maximum frequency of 614 MHz,

and the GPU was limited to a maximum of 230 MHz. As a baseline, the power consumption is

measured with 5 connected Bird@Edge mics, and only the measured values while the pipeline

is running are averaged. In this setup, the maximum performance mode requires 4.86 W, the low

power profile 4.19 W and the custom low power mode only requires 3.16 W, i.e., roughly 35%

compared to the maximum performance mode with no performance degradation observable.

Our observations during the execution of the experiments suggest that the GPU’s dynamic

frequency scaling algorithm tends to be too conservative to permanently lower the clock and

thus prevents the possible lower power consumption.

Figure 4.28 shows the power consumption of a Bird@Edge station in a short scenario with a

changing number of connected Bird@Edge Mics. At the beginning, the system is switched on,

but the neural network for bird species is not running; the system needs 2.1 W in this state. At

t=0, the neural network is started with a Bird@Edge Mic already connected to the station. The

neural network model is loaded into memory from t=6, for which the CPU requires up to 0.59

W. From time t=36, i.e., 30 seconds after the start of the pipeline, the neural network model runs

and forwards results to the backend. In this phase, the Bird@Edge station requires an average

of 3.18 W. At t=120 and t=180, 4 and 5 additional Bird@Edge Mics are switched on, which first
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Figure 4.28: Power consumption of a Bird@Edge Station in a dynamic scenario.

connect to the Bird@Edge Station via WiFi, then are discovered via mDNS, which results in the

reconfiguration of the processing pipeline and its restart. In both cases, the reboot took about

35 seconds, with 5 seconds for WiFi connection and discovery, and 30 seconds for pipeline

reboot. With 5 and 10 Bird@Edge Mics connected, the Bird@Edge Station requires 3.16 W and

3.13 W, respectively. Particularly noteworthy is the station’s lower power consumption when a

larger number of Bird@Edge Mics are connected. Figure 4.28 indicates that GPU utilization is

lower with many Bird@Edge Mics connected, compared to smaller numbers of Bird@Edge

Mics (98% with 1 client, 88% with 5 clients, 80% with 10 clients). This is probably due to internals

of the DeepStream SDK and may be influenced by the implementation, e.g., with respect to

the handling of unused streams.

The magnitude of the Bird@Edge Station’s power consumption necessitates the use of an LFP,

VRLA or AGM battery, which at 12 Volts typically have a capacity of 50 to 200 Ah. The available

60 to 2400 Wh allow the operation of a Bird@Edge Station from 7 up to 31 days. In combination

with a solar panel between 50 and 100 watt, a continuous operation is also possible during

periods of weak sunlight.

To measure the power consumption of a Bird@Edge Mic, we used a Monsoon High Voltage

Power Monitor
41

and connected the ESP32 using the 3.3 volt input. The measurements of

a Bird@Edge Mic show a power usage of 665 mW whenever the stream is activated and

data is sent to the station. The power measurements were performed with three different

off-the-shelf ESP32 boards, since the additional electronics present on the boards can have an

additional impact on power consumption. The three boards differed only slightly in terms of

power consumption: 0.452 W was needed by the Adafruit HUZZAH32, 0.452 W by the Joy-IT
NodeMCU ESP32, and 0.421 W by the SparkFun ESP32 Thing Plus. The latter

42
is the board

41https://www.msoon.com/high-voltage-power-monitor
42https://www.sparkfun.com/products/15663
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of choice for our application, due to the lowest power consumption, a direct LiPo battery

connector, and an external WiFi antenna.

To get a realistic estimation of the battery life of a Bird@Edge Mic, further measurements were

performed with 3.7 Volt via the corresponding connectors for LiPo batteries. The SparkFun

board required 0.468 W or 126.6 mA in operation, whereas the Adafruit board required 132.9

mA, or 0.492 W. LiPo batteries are available in a wide range of capacities, from 100 mAh to

over 30000 mAh. Typical capacities, as they are found in smartphones and can be purchased

cheaply, are around 3500 mAh, which allow a runtime of 27.6 hours. In combination with a

small solar panel of around 10 Watts, continuous operation is thus easily feasible.

94



4.6 SmartFace: Efficient Face Detection on Mobile Devices for Wireless On-demand Networks

4.6 SmartFace: Efficient Face Detection on Mobile Devices for
Wireless On-demand Networks

4.6.1 Introduction

During ecological monitoring, a common task is to take photos of scenes in the nature to detect

leaf sprouts, observe bats, or spot for wild animals. This images are taken to get ecological

insights. In most cases, taking photos of humans are not the primary goal, but can be used as

an indicator for disturbances by humans. For this purpose, humans have to be detected on

photos and especially their faces. Faces belong to personal data in the EU, and storing images

with personal data may be a legal problem.

For desktop and server systems, several face detection libraries with different properties in

terms of recall and precision are available, but their resource requirements do not match with

the resources of today’s mobile devices, since the latter still only provide a fraction of the

computing power offered by a contemporary workstation.

In this section, we present a novel approach, called SmartFace, to perform face detection in
situ on smartphones or tablets in an efficient manner. The approach is based on a novel two-

stage combination of state-of-the-art face detection algorithms, further enhanced by region of

interest selection, color space/depth reduction, resolution scaling, face size definition, image

scaling, image cropping, and bounding box scaling. SmartFace improves the face detection

rates within the same runtimes or obtains the same face detection rates within faster runtimes

compared to the individual face detection algorithms used alone, and also reduces the amount

of data that needs to be stored on disk and sent over the network. As a consequence, the battery

life of mobile devices is extended, too. The main contributions are:

• We present a novel two-stage processing pipeline for resource-efficient face detection on

mobile devices, with improved overall face detection rates and runtimes.

• We present an experimental study of image preprocessing parameters to obtain algorithm

agnostic speed gains.

Parts of this section have been published in Patrick Lampe, Lars Baumgärtner, Ralf Steinmetz,

and Bernd Freisleben. “Smartface: Efficient Face Detection on Smartphones for Wireless on-

demand Emergency Networks.” In: 24th International Conference on Telecommunications (ICT).
IEEE. 2017, pp. 1–7.

4.6.2 Related Work

Ecological monitoring networks [190] typically rely on radio technologies, such as Bluetooth,

LoRaWAN, WiFi, TETRA digital radio or satellite links. They either use telecommunication

infrastructures, are distributed (peer-to-peer, mobile ad-hoc networks), or form hybrid archi-

tectures of both.

Several approaches utilize commodity mobile devices to realize hop-to-hop DTN [32, 73, 238].

Due to their peer-to-peer nature, they are well suited for infrastructure-less scenarios. Projects
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such as FireChat
43
, Briar

44
, Serval

45
and Forban

46
transfer messages and files between hetero-

geneous devices and share them locally through store-and-forward technology.

Furthermore, several face detection algorithms have been proposed. Viola and Jones [247] offer

an approach in OpenCV that accelerates face detection. The tradeoff is that with an increased

detection rate, the false positive rate also increases.

Felzenswalb et al. [58] present an object detection system for dlib. Since a sliding window

over an entire image in different resolutions is used, the runtime increases with increasing

image size. Therefore, small interesting regions within an image should be selected before the

algorithm is applied.

Cheney et al. [31] perform a comparison of face detection algorithms. The authors state that

often used test sets, such as LFW[112] and YouTube Faces [260], do not pose any challenges

for current algorithms and should not be used any more for benchmarking. Instead, they use

IJB-A [129] that consists of over 5000 images and 20,000 video frames for benchmarking, The

main open source algorithms highlighted in their paper are from Dlib and OpenCV, the first
one with good detection rates and the second one being one of the fastest.

The typical approach to perform face detection on mobile devices is to offload images to a

server and run a face detection algorithm on the server [113, 221]. Using powerful servers

makes it much easier to achieve good face detection rates, but in an ecological monitoring

scenario such servers are often not available.

Feng et al. [59] present a cascaded classifier approach that has also been tested on a Samsung

S6 smartphone, resulting in a runtime of 34 ms for detecting faces in a 640 x 480 pixel photo.

Compared to current 8 or 16 megapixel cameras in today’s smartphones, this size is very small,

and no public code is available to verify the results.

4.6.3 SmartFace

The goals of SmartFace are as follows:

• Since the photos with recognized faces are deleted the false positive rate of the used face

detection approach should be as low as possible.

• Since a data transfer can only happen after face detection has finished, the runtime of

the used face detection approach should be minimized. This also means that the false

negative rate and the false positive rate of the used face detection approach cannot be

minimized at the same time, but the false negative rate should be as low as possible in

accordance with the available computational resources on mobile devices.

To achieve these goals, our basic idea is to develop a two-stage processing pipeline in which

the first stage is responsible for quickly selecting interesting regions in a given image, and the

second stage performs in-depth face detection and validation in the interesting region selected

43
http://opengarden.com/firechat

44
https://briarproject.org/

45
http://www.servalproject.org

46
http://www.foo.be/forban/
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in the first stage (see Fig. 4.29). Thus, the first stage is optimized for speed, favoring high recall

over high precision. The second stage is optimized for quality, favoring high precision over

high recall. By using adequate face detection algorithms that support the competing objectives

of each stage, overall speed and quality improvements can be achieved.

results results
first 

detection 
stage

second 
detection 

stage

Figure 4.29: Basic two-stage face detector
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results

image section

Figure 4.30: Two-stage face detector, preprocessing, and parameters

This two-stage face detection approach can be flexibly configured to the preferences of a

particular usage scenario, e.g., (a) by reducing the runtimes to save battery power, (b) by

improving the quality of the face detection results by running the algorithms for a longer time,

or (c) by trying to get the best results in a fixed amount of time.

There are several parameters that can change the runtime and the quality of the results of a face

detection algorithm without changing the algorithm itself. To support the goals of SmartFace,
we consider the following set of parameters and their values:

Color space: color / greyscale / black-and-white

Color depth: 24-bit / 8-bit / 1-bit

Resolution: 100 ≤ n ≤ 5000 in steps of 100 pixels

Image scaling: area, cubic, lanczos4, linear, nearest interpolation

Cropping: remove from each border 0%, 10%, 20%, 30% of the full image

Face size: min: 80 x 80 pixels; max: 1000 x 1000 pixels

Bounding box scaling 50 ≤ n ≤ 500 in steps of 50

Some of these parameters are relevant for operations in a preprocessing step, while other

parameters are applied to the first or second detection stages, respectively, as shown in Fig. 4.30.

For example, having a larger bounding box in the second stage might increase the number of

results, but might overlap with nearby faces in the same region. Here, duplicates have to be

detected and eliminated. This is achieved by allowing bounding boxes to overlap to a certain

degree after the second detection stage.
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Figure 4.31: SmartFace in action

4.6.4 Implementation Issues

The implementation of SmartFace is based on three main components. The first component

handles the parameters and the preprocessing steps. The second component is a fast face

detection algorithm for the first stage of SmartFace to select regions of interest. The third

component is a high-quality face detection algorithm for the second stage of SmartFace to
operate on the selected regions of interest.

OpenCV’s Viola/Jones algorithm [247] is used in the first stage, since it is a common out-of-the-

box solution for face detection, in contrast to OpenCV’s SURF that is also suitable for general

object detection. It is comparatively fast [31], but has a relatively high false positive rate (which

is acceptable as a pre-filter), as shown in Fig. 4.31 by the blue bounding boxes in each image.

Dlib is used in the second stage. It is slower than the Viola/Jones algorithm, but has a lower

false positive rate and a higher precision [31]. The faces detected by dlib are shown by the

yellow bounding boxes in Fig. 4.31.

All parameters except the face sizes are independent of the used face detection algorithms.

Therefore, the algorithms can be replaced by alternatives, still benefiting from the rest of our

optimizations. The entire program flow is shown in Figure 4.32.

preprocessing

OpenCV

dlib
min face size 

max face size

bounding box

color

color depth

resolution

image section

result

file path image

modify

transform

Figure 4.32: SmartFace implementation
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To determine suitable parameters for our scenario, we performed a parameter scan by creating a

test environment in Bash and using the created API to automatically iterate over the parameter

sets using our image test set. The parameter scan is first performed with dlib to match the

results to the behavior of OpenCV. The results are presented in Section 4.6.5.

4.6.5 Experimental Evaluation

Test Environment

We use three different devices in our experimental evaluation, as shown in Table 4.15: (a) a

workstation as a reference platform, (b) a smartphone (OnePlus 3T), and (c) an older tablet

(Nexus 7). The workstation operates under Ubuntu 16.04 LTS, and both Android devices use

Android release 6.0.1.

Table 4.15: Device Specifications

Device CPU RAM Storage

Workstation Quad-core (i7-2600 @3,4GHz) 8GB 256 GB SSD

OnePlus 3T Quad-core (2x2,35 GHz & 2x1,6 GHz) 6GB 128 GB Flash

Nexus 7 Quad-core (4x1,5GHz) 2GB 32 GB Flash

Figure 4.33: Examples from image test set

Image Test Set

To evaluate SmartFace on realistic images taken under challenging conditions, we created our

own test set by randomly downloading images from the Internet (two examples are shown

in Figure 4.33) using one of the search terms from the following list: haiti earthquake, haiti
earthquake people, haiti earthquake faces, earthquake faces, earthquake people, disaster people,
disaster faces, disaster management, flooding people, flooding faces, natural hazard people, natural
hazard faces, tsunami people, tsunami faces, night bushfire, bushfire people, firefighter disaster,
explosion people, accident people, syrian civil war, crowd, crowd disasters, crowd control, crevices
earthquake.
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Figure 4.34: Comparison of different color spaces and depths.

We developed a crawler for Google Images and downloaded the top 100 search results, finally

obtaining a total of 2,400 images. The crawler downloads images with a resolution of 3000 x 2000

pixels. Thus, these images correspond to photos taken by a 6 megapixel camera. Smartphones

can take photos with a higher resolution, but in a typical scenario with energy constrains it

is not realistic to assume that top-notch hardware is commonly available. Thus, 6 megapixel

photos are quite realistic and much more sophisticated than commonly used face detection

test sets, such as LFW where images have a resolution of 250 x 250 pixels, and a large image

part is covered by a face.

After removing duplicates, our test set consists of 1,481 images. This leads to 2.8 GB image

data that needs to be processed in our benchmarks. In addition, we have manually labeled

the faces for each image in our test set. It contains 2,419 faces to be detected. A list with 2-D

coordinates is stored for each image in the test set. These coordinates represent a central point

in the face, in many cases this is the tip of the nose. Furthermore, we follow the rule suggested

by Cheney et al. [31] to only mark faces where both eyes can be seen.
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Parameter Scan

To evaluate the selected parameters, we present results performed with dlib below; each

preprocessing experiment is repeated 10 times. The results using OpenCV are similar.

Color Space and Depth

In this experiment, the 24-bit input image is reduced to an 8-bit greyscale image and to a 1-bit

black-and-white image. As indicated by Fig. 4.34a, the runtimes for greyscale and black-and-

white images are nearly identical, and both are faster than for the fully colored image. This

effect increases with increasing image size. Changing color space and depth also affects the

detection rates, as shown in Fig. 4.34b. Using a greyscale image produces almost as good results

as using the original image, but black-and-white yields significantly worse results. Fig. 4.34c

shows the combination of the first two graphs; lower numbers are better. Again, greyscale and

full color images are similar in their score, with a slight edge for greyscale due to its runtime

being faster than its decrease in detection rate.

Image Scaling

These experiments are performed on the original and greyscale images; black-and-white is

not considered due to the results from the color space tests. Although the most common

interpolation mechanisms for scaling images such as linear, area, cubic, nearest and lanczos4
produce slightly different images, they are all comparable in terms of runtime and number of

detected faces (see Fig. 4.35).
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Figure 4.35: #detected faces per detection time for different resolutions.

Image Cropping

The next parameter we evaluate is cropping the greyscale image. For each image, 0%, 10%, 20%

and 30% are cut off from each border, reducing the image size, but also reducing areas where
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possible faces could be detected. As expected, image cropping reduces runtimes, even more

when an original image is upscaled, as shown in Fig. 4.36a. Cropping the image by 30% from

each border significantly reduces the number of detected faces, while cropping 10% decreases

the detection rate only slightly (see Fig. 4.36b). Combining both scores shows an interesting

result in Figure 4.36c where no single strategy wins. The behavior changes between 1,500 and

2,000 pixels. Cropping around 10% gives the most reliable results independent of image size.

However, since we do not expect many portrait photos in our scenario, we cannot assume

that humans are always centered in the images, therefore cutting off the edges might miss

important information.
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Figure 4.36: Comparison of cropped areas from grey scale images.

Face Detection Comparison

For a fast, offline face detection solution not only execution time is relevant but also its precision

and recall.

Next, we compare the face detection quality of the dlib andOpenCV algorithms. Tables 4.16 and

4.17 show that dlib is superior with an overall F1 score of 0.63 compared to the 0.37 of OpenCV.
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However, the recall value of 0.49 for dlib is much lower than the recall value for OpenCV with

0.79, whereas the precision of dlib with 0.87 clearly outperforms OpenCV with a precision of

0.24. This confirms that OpenCV is well suited for the first stage of SmartFace, while dlib is an

ideal candidate for the second stage.

Table 4.16: Contingency table for dlib

faces detected undetected

labeled faces 1,194 1,226 Recall (R): 0.49

unlabeled areas 178 —

Precision (P): 0.87 F1-Score: 0.63

Table 4.17: Contingency table for OpenCV

faces detected undetected

labeled faces 1,967 502 Recall (R): 0.79

unlabeled areas 6,106 —

Precision (P): 0.24 F1-Score: 0.37

Table 4.18 shows the results for combining both algorithms within SmartFace where we tried
to run SmartFace as fast as possible to obtain roughly the same number of detected faces as

dlib. In contrast, in Table 4.19 we gave SmartFace the same amount of time as dlib, leading to a

higher precision of 0.93 and also a higher recall of 0.70 compared dlib. This also results in a

higher F1 score of 0.80 compared to 0.63 of dlib.

Table 4.18: Contingency table for SmartFace (faster runtime)

faces detected undetected

labeled faces 1,172 1,263 Recall (R): 0.49

unlabeled areas 238 —

Precision (P): 0.83 F1-Score: 0.61

Table 4.19: Contingency table for SmartFace (higher quality)

face detected undetected

labeled face 1,741 732 Recall (R): 0.70

unlabeled area 129 —

Precision (P): 0.93 F1-Score: 0.80

Compared to using color or greyscale images in dlib, SmartFace is up to two times faster

depending on the image size, as shown in Figure 4.37a. The overall number of detected faces is

only slightly smaller, particularly when compared to standard greyscale (Fig. 4.37b) images

resulting in the best overall score, as indicated by Figure 4.37c.
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Figure 4.38a shows a comparison of the best parameter combinations. The two horizontal lines

are the baselines of dlib for runtime and number of detected faces without preprocessing,

respectively. With an increased number of detected faces (80-100%), the runtime also increases

for dlib with preprocessing. When reaching 100%, the runtime is still slightly better than dlib
without preprocessing. Giving dlib with preprocessing the same amount of time as dlib without
preprocessing results in a few more detected faces. On the other hand, SmartFace (i.e., the
red/blue bars denoted by optimized time and optimized detection) is almost twice as fast as

dlib with preprocessing, when limited to the same number of detected faces. If SmartFace gets
the same amount of time as dlib with preprocessing, the number of detected faces increases

significantly.
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Figure 4.37: Overall benchmark

Device Performance

A comparison (see Fig. 4.38b) of SmartFace running on all three devices shows that the high-end

OnePlus 3T is about 2-4 times slower than the i7 workstation. The mid-range tablet Nexus 7
is about twice as slow as the OnePlus 3T. All three devices yield about the same high face
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Figure 4.39: Individual device performance

detection rate, but the runtimes range between 3 and 7 seconds for the mobile devices. For our

scenario with a DTN sharing photos, these runtimes are sufficently fast.

105



4 Ecosystem Monitoring

The individual performance of the three devices is shown in Fig. 4.39. Across all devices,OpenCV
is clearly the fastest algorithm, but with an unacceptably high false positive rate. Figure 4.39a

shows that depending on whether SmartFace is optimized for time or detection rate, it clearly

outperforms dlib. Even on the resource-constraint mobile devices, the number of detected faces

is increased.
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4.7 Summary

This chapter presented work that contributes to ecosystem monitoring in forested areas. It

was shown that, on the one hand, new sensor nodes can generate new knowledge, and, on

the other hand, in some cases, legacy sensor boxes can be integrated and new functionalities

can be added. The presented approaches can be used to monitor the ecosystem automatically

with relatively low-cost hardware. This low-cost hardware leads to the ability to scale the

system to an area-wide networked sensor system. In particular, the following contributions

were presented:

EcoSense

We presented EcoSense, a flexible and affordable sensor, computation, and communication

platform for environmental monitoring. We provided solutions for static and mobile setups,

and integrated mobile devices, such as smartphones, into long-range infrastructure-less ra-

dio networks. Apart from evaluating typical power requirements of common platforms and

sensors, we also included LoRa radio transceivers in our study and evaluated their realistic

communication range. Furthermore, to optimize these long-range, low-bandwidth links, we

provided a solution to on-device preprocessing image data using neural compute sticks in an

energy-efficient and fast way. Finally, we presented the expected costs of the subsystems used

in our evaluation.

AMT

We demonstrated the comparability of a low-cost automated moth trap (AMT) with a conven-

tional trap in capturing trends in moth abundance. AMTs and automated species identification

cannot replace the expertise of entomologists, since some species cannot be identified from

photographs alone. However, an automated system can perform "taxonomical trivia" [131]

and thus can serve as a complementary tool in species detection and identification. The data

obtained can reveal ecological patterns, such as insect decline, and ultimately allow for scalable

fine-meshed monitoring. Perhaps most importantly, AMTs can be deployed in the field for long

periods without the ethical issues associated with conventional moth sampling.

Unobtrusive Mechanism Interception

We presented mechanism interception, a novel approach to implementing unobtrusive func-

tional additions to or modifications of an existing networked system without touching any

proprietary components. Mechanism-enhancing yet unobtrusive interceptors achieve behav-

ioral changes. The results of the case studies indicated that a mechanism interception is

a compelling approach to achieving improved service quality and unobtrusively providing

previously unavailable functionality.
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ForestEdge

By applying unobtrusive mechanism interception to a TreeTalker (TT) network, we were able

to improve the overall functionality of a networked system that is not intended for upgrades

and is locked by the vendor. Our prototype adds functionality without needing to replace the

existing TT infrastructure, thus saving costs. We could also leverage behavioral modification to

enable interactivity in an otherwise static system, which allowed us to recognize faulty sensors

and identify corrupted data. Finally, we gained significant progress for the TT system in terms

of a user-friendly interface and improved measurement accuracy.

Bird@Edge

In audio recordings, we presented Bird@Edge, an Edge AI system for recognizing bird species

to support real-time biodiversity monitoring. Bird@Edge is composed of embedded edge

devices, such as ESP32-based microphones and NVIDIA Jetson Nano boards, operating in a

distributed system to enable efficient, continuous evaluation of soundscapes recorded in forests.

We presented a deep neural network based on the EfficientNet-B3 architecture and optimized

for execution on an NVIDIA Jetson Nano board to recognize bird species in soundscapes. It

outperforms the state-of-the-art BirdNET neural network on several data sets. It achieves a

recognition quality of up to 95.2% mean average precision on soundscape recordings in the

Marburg Open Forest, a research and teaching forest of the University of Marburg, Germany.

Measurements of the power consumption of Bird@Edge Station and Bird@Edge Mics show

that the system has a sufficient demand of 3.18 W plus 0.492 W for each Bird@Edge Mic,

which can be covered by reasonably sized batteries and solar panels, highlighting the real-world

applicability of the approach.

SmartFace

We presented a novel approach to perform face detection on mobile devices efficiently to

support the search for missing persons in wireless on-demand emergency networks. The

approach relies on a two-stage combination of existing face detection algorithms, enhanced by

region of interest selection, color space/depth reduction, resolution scaling, face size definition,

image scaling, image cropping, and bounding box scaling. Experimental results showed that the

proposed approach improves the overall face detection rate and the overall runtime compared

to each of the individual face detection algorithms used alone and also reduces the amount of

data that needs to be stored on disk and sent over the network.
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This chapter presents work on bat monitoring. It answers three questions about bats’ behavior:

1) Where do bats act? 2) Which bat or species acts? 3) What do they do?

In Section 5.1, an approach is presented to allow the automatic processing of audio data

by a neural network to detect bat calls. Through this approach, the collected data can be

automatically categorized by species, and a species-specific distribution of bats can be detected

using the meta-data of the sensor nodes. The approach appeared in publication [15].

A machine learning model for bat call detection was ported to an edge device, using the

presented Bird@Edge approach as the basis. This led to the project of Bat@Edge, which allows

detecting where and which bats are present, as presented in Section 5.2. Higher sampling rates

lead to hardware changes and make it necessary to filter the data stream of ultrasonic audio

on the microphone side.

Section 5.3 presents tRackIT OS [104] as a robust, error-aware, and self-healing approach

to collect VHF signals on low-cost hardware. This work is the basis for long-running VHF

monitoring tasks of bats equipped with a VHF transmitter. The results show that not only the

data gets better, but also all processes that depend on this data get better results. Furthermore,

the results can deliver insights into where bats are located.

Section 5.4 presents the automatic classification of VHF signals into active and passive [79].

The basis of this work was the collected data in the BatRack system, and thus developments

intertwine here as described by design. The automatic evaluation of active and passive phases

in bats based on the VHF data can give cost-effective information about where bats are active,

i.e., to answer questions like: What is the habitat? What are the hunting grounds of bats? Long

periods of inactivity for bats during the day indicate that they are in a roost; long active periods

in the night with small spatial dimensions could indicate a hunting scenario.

Finally, BatRack is presented [81] that allows recording bats at night via video, VHF, and audio.

This publication works with schedules and triggers in the scheduled time windows. This data

saving was made possible because the installed sensors can interact with each other. Thus,

audio sequences, which could correspond to a bat call, were taken as triggers for recording

videos with an IR spotlight. Also, the recording of VHF signals and the classification of these

signals into present and absent and present active or passive were used as triggers so that only

recordings were made when at least one of the transmitted bats was in the area and active.

This fusion of sensors allowed data to be recorded simultaneously on the video, audio, and VHF

spectra without removing the animals from their natural habitat or exposing them to stressful

situations. Based on this data and the temporal parallelism, audio and VHF data can now be
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Figure 5.1: Publications on bat monitoring

tagged with behaviors that are detectable on the videos. To our knowledge, this tagging of

data was not possible until the time of publication and has not yet been done.

This chapter contributes to the aim of bat monitoring as shown in Figure 5.1. Here, three

questions are answered with specific publications, and on top of this, BatRack is presented

as a solution that can answer all three questions. BatRack can also generate coupled data

sets over the different sensors. Robust and cost-effective software and systems are presented,

contributing to the scalability of sensor systems to observe bats in forested environments. All

publications in this chapter also deal with the challenges discussed in Section 3.3 and give

solutions to this challenges.

From this chapter, tRackIT OS
1
, the classification of activity states

2
, and two parts of BatRack

3

4
are publicly available under open-source licences on GitHub. Our neural network models

5
for

bat echolocation call detection and bat species recognition are publicly available on GitHub.

1https://github.com/Nature40/tRackIT-OS
2https://github.com/Nature40/tRackIT
3https://github.com/Nature40/BatRackOS
4https://github.com/Nature40/BatRack
5https://github.com/umr-ds/transformer4bats
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5.1 Bat Echolocation Call Detection and Species Recognition by
Transformers with Self-Attention

5.1.1 Introduction

Bats (Chiroptera) belong to the most widespread species group among terrestrial mammals.

Except for the Arctic, Antarctic, and a few isolated islands, all regions of the earth are inhabited

by bats [136]. With almost 1,400 recognized taxa, they represent almost one fifth to the

mammalian diversity [68]. From pest control to seed dispersal, bats contribute to all four

ecosystem services defined in the Millennium Ecosystem Assessment [137]. Thus, they are

equally important for the ecosystems they inhabit and for mankind whose well-being depends

on the integrity of these ecosystems. Furthermore, bats are important bioindicators for the

health of the ecosystems they live in. For example, due to the high trophic level of insectivorous

species, fluctuations in bat populations can be indicative of environmental changes affecting

their prey of mostly small invertebrates, which are difficult to monitor themselves [117].

Unfortunately, about one third of all bat species are classified as threatened or data deficient

by the International Union for Conservation of Nature (IUCN), and about half of all bat species

show a declining or unknown population trend [68].

To monitor populations of bat species and thus biodiversity at scale, automatic bat echolocation

call detection and bat species recognition approaches are required. With the success of Convo-

lutional Neural Networks (CNNs) in various tasks, audio classification research has evolved

over the last decade from models based on hand-crafted features like Mel Frequency Cerpstral

Coefficients (MFCCs) to CNNs that directly match audio spectrograms to feature represen-

tations. Several state-of-the-art bat echolocation call detection and bat species recognition

approaches are based on CNN architectures applied to audio spectrograms.

Currently, transformer neural network architectures based on self-attention, such as Vision

Transformers (ViT) [49], are successfully applied in computer vision tasks. While CNNs have

an inductive bias, such as spatial locality and translation equivariance, vision transformers

have a lower bias and can capture global context even in the first layers of a neural network.

In this section, we present a novel approach for detecting bat echolocation calls and recognizing

bat species in audio spectrograms. It is based on a transformer neural network architecture

and relies on self-attention. To the best of our knowledge, this is the first work that utilizes

fully attentional architectures to solve the problems of bat echolocation call detection and bat

species recognition. In particular, our contributions are as follows:

• We present a novel self-attention approach for bat echolocation call detection and bat

species recognition in audio spectrograms. It is based on pre-trained data-efficient image

transformer models used as components in a workflow that we developed to process

audio spectrograms of recorded bat echolocation calls.

• We show that the presented approach outperforms other state-of-the-art approaches for

bat echolocation call detection and bat species recognition on several publicly available

data sets. Our approach for bat echolocation call detection achieves a performance of up

to 90.2% in terms of average precision, and our bat species recognition model obtains up

to 88.7% accuracy for 14 bat classes occurring in Germany, some of which are difficult to
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distinguish even for human experts. Furthermore, we demonstrate that the distribution of

the training and test set is an important factor for determining the recognition accuracy.

• We make our transformer models for bat echolocation call detection and bat species

recognition publicly available at https://github.com/umr-ds/transformer4bats.
In this way, other researchers can use our models to detect and recognize bat calls

contained in their audio recordings.

Parts of this section have been published in Hicham Bellafkir, Markus Vogelbacher, Jannis

Gottwald, Markus Mühling, Nikolaus Korfhage, Patrick Lampe, Nicolas Frieß, Thomas Nauss,

and Bernd Freisleben. “Bat Echolocation Call Detection and Species Recognition by Trans-

formers with Self-attention.” In: International Conference on Intelligent Systems and Pattern
Recognition. Springer. 2022, pp. 189–203.

5.1.2 Related Work

Since manually detecting and recognizing bat echolocation calls is a tedious and time-

consuming task, several automated methods have been proposed in the literature. For many

years, handcrafted features extracted from the length of the call, the frequencies, and ampli-

tudes were used to train machine learning algorithms. In recent years, several approaches

based on CNNs outperformed these methods by learning the features in an end-to-end manner.

Usually, the audio recordings are transformed into spectrograms that are then processed by a

CNN.

Bat populations are found across all continents except the Arctic, the Antarctic, and a few

isolated islands. Nevertheless, each region has an individual set of bat species. Roemer et al.

[196] attempted to build a universal model to classify bat calls into species around the world.

To do so, they first classified the calls into sonotypes and refined the results by determining

the exact species. They used random forests to realize their approach.

Current approaches often use CNNs and mostly consider a specific geographic region. Conse-

quently, models are available for regions in Europe [184, 211], North America [228], the Middle

East [270], and Asia [30, 133].

While most approaches are based on spectrograms generated from standard waveform audio

recordings, Tabak et al. [228] trained their CNN on sparse zero-cross data. Using a small ResNet-

18 [97] neural network architecture, they achieved good results on out-of-distribution data.

The way spectrograms are generated plays an important role for the given task. Zualkernan et

al. [270] compared three different kinds of spectrograms, namely Short-Time Fourier Transform

(STFT), Mel-Scaled Filterbanks (MSFB), and Mel-Frequency Cerpstral Coefficients (MFCC). For

their use case, they found that Mel-Scaled Filterbanks work best. Paumen et al. [184] decided

to work with MFCCs for data efficiency reasons. Most approaches make use of the Short-Time

Fourier Transform [30, 133, 211]. Zualkernan et al. [270] and Paumen et al. [184] considered

3 and 1 second snippets, respectively, extracted from spectrograms, whereas the majority of

approaches extract single calls [30, 133, 211] and can thus make use of a higher input resolution

per call. Chen et al. [30] showed how manual labeling of bat call events can be improved by a

simple peak detection algorithm for detecting potential regions, in order to significantly speed

up the labeling process by human experts [133, 211].
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Nevertheless, the human labeling process is a sophisticated task, infeasible for larger data

sets, and the results can differ significantly between different annotators, resulting in a low

inter-coder reliability [153].

Furthermore, an extensive publicly available bat call data collection is missing. In particular,

certain species are inadequately represented in the existing data sets. To deal with small data

sets and the class imbalance problem, Kobayashi et al. [133] used data augmentation. The

authors applied Cutout, Random Erasing, and Salt-and-Pepper noise to the spectrograms.

In terms of the considered bat species, Schwab et al. [211] are closest to our work. The authors

first applied a band-pass filter to the audio signal and computed the corresponding spectrogram.

Next, they detected peaks in that spectrogram and cut out 10 ms windows around these points.

A first CNN was trained to distinguish bat calls from noise and background. Based on the

results of this model, a second CNN determined the exact bat species. Optionally, both models

can be integrated into a single neural network to make the process more lightweight. The

best results were achieved using a modified ResNet-50 [97] architecture. Paumen et al. [184]

considered German bat species too, but merged similar bat species into higher classes. While

most papers work with species that partly stem from the same kind, Zualkernan et al. [270]

took solely groups of bat species into account, which is a much simpler task. In our approach,

bat species are only merged if they are not distinguishable by human experts. A list of the bat

species we considered is presented in Table 5.1.

To tackle the problem of hard to classify weak signals, Chen et al. [30] introduced a weak label

along with a rechecking strategy that verifies whether the neighboring regions of the weak call

belong to the same class. This is a helpful strategy for noisy, passively recorded data. However,

this strategy requires additional manual labeling effort. Due to the different species being

considered and the lack of publicly available data sets, it is difficult to compare the existing

approaches on bat call recognition using deep learning techniques. Furthermore, classes with

few samples can often be found in the data sets, which has the risk of overfitting.

To classify bat calls, these calls need to be detected in audio recordings in the first place.

This corresponds to localizing audio events in time. Similar to recognition, detection has been

performed using handcrafted methods such as amplitude threshold filtering or detection of

changes in frequency. However, most available algorithms are closed commercial projects

and thus lack transparency. Contrary to that trend, Mac Aodha et al. [153] developed an

open-source software based on CNNs. Their software called BatDetective is based on a sliding

window approach over time-expanded and band-pass filtered FFT spectrograms. Since the used

data sets contain rather noisy audio recordings, the mean amplitude of each frequency band

is removed [2] as a denoising operation. The resulting image is then fed into a CNN using a

sliding window approach, where the window size is 23 ms. The final probabilities of the binary

classification problem are obtained by applying non-maximum suppression. BatDetective

achieves the best quantifiable results among all available tools by a large margin.

In recent years, CNNs have been the best choice for detecting and recognizing bat calls.

Meanwhile, in many computer vision tasks, CNNs have been outperformed by transformer

architectures. Transformers are based on self-attention mechanisms and have been applied,

e.g., to image classification [49, 241], audio event tagging [78], and image captioning tasks [40,

266].
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5.1.3 Methods

Self-attention architectures, in particular transformers, have recently become the model of

choice in natural language processing (NLP), where they are often pre-trained on a large corpus

of text and fine-tuned for different downstream tasks. Furthermore, transformer architectures,

such as Vision Transformers (ViT) [49], have also become state-of-the-art approaches in several

computer vision tasks. In an attempt to explain this success, Cordonnier et al. [39] showed

that self-attention can express a CNN layer and that convolutional filters are learned in

practice by self-attention. Furthermore, Dosovitskiy et al. [49] concluded that transformers

do not generalize well when trained on insufficient amounts of data. Contrary to this claim,

Touvron et al. [241] showed that it is possible to learn a model that generalizes well using only

the ImageNet-1k data set at training time. The authors presented a training process and a

distillation procedure based on a distillation token, which plays the same role as the class token

used by Dosovitskiy et al. [49], with the exception that it aims to reproduce the distribution of

the label vector estimated by the teacher. The authors showed that the trained fully attentional

model (i.e., DeiT) can achieve competitive state-of-the-art results on ImageNet. This approach

was also successfully used in the Audio Spectrogram Transformer (AST) [78] for audio event

tagging using audio set
6
[75].

In the following, we present a novel self-attention approach based on pre-trained DeiT models

for the automated analysis of bat calls in audio recordings. In Section 5.1.3, we describe our

detection approach for bat echolocation calls, whereas our recognition method is explained in

Section 5.1.3.

Bat Echolocation Call Detection

Our detection approach is based on self-attention and hence free of any convolutional layers.

In the following, we describe the steps of our detection workflow, as shown in Figure 5.2.

First, we generate a spectrogram from the audio recordings to enable the use of pre-trained

image transformer architectures. Instead of using traditional MFCCs or PLP (perceptual linear

prediction) coefficients, we use log Mel filterbank features that are state-of-the-art for bat call

detection and recognition [270]. The input audio waveform of t seconds, time-expanded (TE) by

factor 10, is converted into a sequence of 128-dimensional log Mel filterbank features computed

by applying a 23 ms TE Hanning window with a large overlap of 84% to better capture short

calls.

The resulting spectrogram is then split into multiple views with a sliding window approach,

where each view is a 128 × 64 spectrogram that is equivalent to 230 ms TE. We selected the

window size to be sufficiently long to capture the longest search calls in our training data.

Each such view is then split into 16 × 16 patches with a stride of 10 and fed into a linear

projection operation before using them as the input sequence to the transformer model to

verify the presence of a bat call. The model takes ⌈(H − 16)/10⌉ × ⌈(W − 16)/10⌉ patches,
which is 60 for an input of 128 × 64. We use overlapping patches that were shown to be

beneficial by Gong et al. [78]. Since we split the original spectrogram into overlapping views,

6https://research.google.com/audioset
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Figure 5.2: Workflow for bat echolocation call detection.

a one-dimensional non-maximum suppression operation is required to determine the final

predicted time positions.

Our transformer architecture is a pre-trained tiny vision transformer (i.e., DeiT-tiny) [241] with

approximately 5 million parameters. This architecture consists of 12 layers, each layer having 3

self-attention heads. The transfer learning approach with respect to processing audio data is

applicable since the vision transformer can handle arbitrary sequence lengths. However, the

pre-trained position embeddings need to be modified, since DeiT-tiny is pre-trained with a

resolution of 224, which results in 14 × 14 position embeddings with patch sizes of 16 × 16.
Since using randomly initialized position embeddings leads to poor overall performance in our

experiments, we adopted the approach used by Gong et al. [78] and cut the first and second

dimension of the 14× 14 positional embedding to 12× 5 and use it as the positional embedding

in our training phase. Furthermore, we replaced the classification layer of the DeiT-tiny model

to adapt the architecture to our audio detection task and initialized it randomly.

Bat Species Recognition

To build our recognition model, we consider only German bat species of the Tierstimmenarchiv
7

data set. Some of the bat species have very similar echolocation calls, e.g., the species of the

Myotis kind. Nevertheless, we do not merge any of the classes, but try to distinguish them as

annotated except for the Whiskered bat and the Brandt’s bat which are not distinguishable by

7https://www.tierstimmenarchiv.de/
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Figure 5.3: Workflow for bat species recognition.

their echolocation calls. All species considered for training our model are presented in Table

5.1.

Our recognition workflow is shown in Figure 5.3. To train our model, we first extracted echolo-

cation calls from the Tierstimmenarchiv data set using our detection approach. For this purpose,

the detection model was fine-tuned to the audio recordings of the Tierstimmenarchiv. We

selected 90% as the threshold at which a detection is accepted. During training, we generate

128-dimensional logMel filter bank features computed by applying a 23 ms TE Hanning window

with a frame shift of 2.5 ms TE. We place each call in the midst of a 330 ms TE window, which

results in an input resolution of 128 × 128. For the recognition task, we selected a deeper

architecture to match the complexity of the task. We used two pre-trained data-efficient image

base transformers (DeiT-small and DeiT-base) as alternatives. Both architectures consist of 12

layers as in DeiT-tiny, but DeiT-small has 6 self-attention heads per layer and DeiT-base has

12 self-attention heads per layer, whereas DeiT-tiny has only 3 self-attention heads per layer.

Each image is then split (as in the detection workflow) into 16 × 16 patches with a stride of 10
in both dimensions, which results in 144 patches in this configuration.

5.1.4 Experiments

In this section, our methods are evaluated on different data sets. First, we describe the applied

quality metrics as well as the used data sets in Section 5.1.4 and Section 5.1.4, respectively.
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Afterwards, we present our bat call detection results and the conducted experiments for bat

species recognition in Section 5.1.4.

In all experiments, a workstation equipped with an AMD EPYC™ 7702P 64-Core CPU, 256 GB

RAM, and four NVIDIA
®
A100-PCIe-40GB GPUs were used. We implemented our approach

using the PyTorch deep learning framework [182], utilizing the Torchaudio library [265] for

audio and signal processing. The pre-trained DeiT models are available in the PyTorch Image

Models (timm) library [256].

Quality Metrics

To evaluate the performance of our bat call detection approach, average precision (AP) and

recall at 95% precision are used as our quality metrics. The AP score is the most commonly used

quality measure for retrieval results and approximates the area under the recall-precision curve.

The task of bat call detection can be considered as a retrieval problem where the annotated bat

calls represent the relevant documents. Then, the AP score is calculated from the list of ranked

documents as follows:

AP(ρ) =
1

|R ∩ ρN |

N

∑
k=1

∣∣R ∩ ρk
∣∣

k
ψ(ik), (5.1)

with ψ(ik) =

 1 if ik ∈ R

0 otherwise

where N is the length of the ranked document list (total number of analyzed audio snippets),

ρk = {i1, i2, . . . , ik} is the ranked document list up to rank k, R is the set of relevant documents

(audio snippets containing a bat call),

∣∣R ∩ ρk
∣∣
is the number of relevant documents in the

top-k of ρ and ψ(ik) is the relevance function. Generally speaking, AP is the average of the

precision values at each relevant document.

To determine whether the model underestimates the number of bat calls in the test set, we

further calculate recall at 95% precision, i.e., only 5% of false positives are allowed for this

metric.

To evaluate the performance of our bat call recognition approach, we use the accuracy metric

as well as the F1-score. These metrics are widely used for evaluating classification models.

Data

Altogether, three different data sets are used as our test material for the detection task: two

data sets provided by the Indicator Bats Program (iBats) [118] and a third data set provided by

the Norfolk Bat Survey [174]. They consist of time-expanded ultrasonic acoustic data recorded

between 2005 and 2011. The number of recordings and bat calls per test set are summarized in

Table 5.2. We used 2,812 recordings containing 4,782 calls for training; these are a subset of the

iBats R&B data collection. The described training and test split matches the one used by Mac

Aodha et al. [153].
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Table 5.1: Overview of the data set used for bat species recognition, showing the distribution

of bat species including the number of recordings, the duration and the number of

detected calls per species.

Species Code Recordings Duration (s)(TE) Detected calls

Eptesicus nilssonii Enil 26 778 557

Eptesicus serotinus Eser 75 2,018 1,926

Myotis brandtii/mystacinus Mbart 24 1,770 2,033

Myotis dasycneme Mdas 69 1,557 1,613

Myotis daubentonii Mdau 128 3,370 4,764

Myotis emarginatus Mema 28 450 597

Myotis myotis Mmyo 52 1,202 1,598

Myotis nattereri Mnat 77 1,969 2,714

Nyctalus leisleri Nlei 78 2,338 1,770

Nyctalus noctula Nnoc 95 3,236 2,574

Pipistrellus kuhlii Pkuh 138 3,655 3,493

Pipistrellus nathusii Pnat 140 3,760 3,279

Pipistrellus pipistrellus Ppip 267 6,696 6,484

Vespertilio murinus Vmur 69 1,788 1,654

Σ 1,266 34,587 35,056

Table 5.2: Number of recordings and bat calls per test set used for bat call detection.

Test set Number of recordings Number of calls

iBats R&B 500 1,604

iBats UK 434 842

Norfolk 500 1,345

Following Schwab et al. [211], we use a data set provided by the Tierstimmenarchiv for the

recognition task. The data was originally recorded by Skiba [219] and later digitized. The mono

audio files were provided in the WAV format with a sampling rate of 96 kHz and a bit depth of

24. Table 5.1 shows the amount of data per class along with the number of detected calls. As

mentioned in Section 5.1.3, we first extracted these calls using our detection model. Although

the annotations are given only per file, it is viable to assume that all detected calls in a certain

recording belong to the corresponding manually annotated class of the file. This procedure is

applicable because the data recorded by Skiba consists of high quality active recordings, i.e.,

the bats were captured for the recording and were close to the microphone.

Results

Bat Call Detection.

As mentioned above, our bat call detection model is trained using 2,812 recordings containing

4,782 calls. To augment the data, three different time crops were sampled per call, which contain

the call or part of the call. For each call, six negative crops were randomly sampled, so that

the overall training set contains 14,346 positive samples (bat call) and 28,692 negative samples.

Furthermore, data augmentation techniques for spectrograms introduced by Park et al. [181]
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Table 5.3: Summary of the training settings for the detection and recognition models.

Hyperparameter Detection Recognition

learning rate 5e−5 1e−4

warm up ✓ ✓
optimizer ADAM [127] ADAM

batch size 64 64

input resolution 128 × 64 128 × 128
time/frequency masking ✓ ✓
patch stride 10 10

random noise ✓ ✓

for speech recognition were used, such as time and frequency masking. The training settings

are summarized in Table 5.3.

We adopted the evaluation protocol used by Mac Aodha et al. [153]. A detection is considered

as a true positive if its distance to the ground truth is smaller than a given threshold. We

used a threshold of 100 ms TE, similar to Mac Aodha et al. [153]. Table 5.4 summarizes the

results of our approach and compares them to state-of-the-art approaches. The results of the

random forest approach, CNNFAST and CNNFULL are reported by Mac Aodha et al. [153]. Our

self-attention approach outperforms the other approaches on all three data sets.

Table 5.4: Bat call detection results on three different datasets and comparison to state-of-the-

art approaches.

Average precision
Testset Method

Random Forest [153] CNNFAST [153] CNNFULL [153] DeiT-tiny

iBats R&B 0.674 0.863 0.895 0.900
iBats UK 0.648 0.781 0.866 0.902
Norfolk 0.630 0.861 0.882 0.898

Recall at 95% precision
iBats R&B 0.568 0.777 0.818 0.821
iBats UK 0.324 0.570 0.670 0.681
Norfolk 0.049 0.781 0.754 0.801

The model was trained for a maximum of five epochs. While the training took about 146

seconds per epoch, the average inference runtime is 0.093 seconds for an audio signal with

a length of one second using the hardware/software system described at the beginning of

Section 5.1.4.

Bat Call Recognition.

In this section, we evaluate our bat call recognition model. We compare our self-attention

approach to the ResNet-50 architecture that was used by Schwab et al. [211]. Additionally, we

evaluate the use of Log-Spectrograms vs. Log-Mel-Spectrograms. Furthermore, we show that

the way we split the data set into training and test data has a great impact on the result.
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First, we follow the split described by Schwab et al. [211], where 20% of all echolocation calls

are used for evaluation, meaning that different calls emitted by the same individual in the

same call sequence can be found in both the test and the training set. Since these calls are very

similar, this approach is prone to overfitting and leads to high performance values. To better

evaluate the generalization capabilities of the model, we split the data set on a recording level.

For each class, we use 20% of the files for testing and all remaining files for training to provide

a more appropriate evaluation strategy. Table 5.5 summarizes the results using both splits.

Table 5.5: Comparison of bat call classification results of the DeiT-base model using call-based

and recording-based splits of the data set.

Species F1-score

Call-based split Recording-based split

Enil 0.99 0.75

Eser 0.99 0.82

Mbart 0.99 0.95

Mdas 1.00 0.80

Mdau 0.99 0.92

Mema 1.00 0.98

Mmyo 1.00 0.98

Mnat 1.00 0.93

Nlei 0.99 0.76

Nnoc 1.00 0.91

Pkuh 0.99 0.86

Pnat 0.98 0.78

Ppip 0.99 0.94

Vmur 1.00 0.79

Avg 0.99 0.87

Table 5.6: Recognition results.

Method Accuracy

DeiT-base + Log-Mel-Spectrogram 0.887
DeiT-small + Log-Mel-Spectrogram 0.882

ResNet-50 + Log-Mel-Spectrogram 0.884

DeiT-base + Log-Spectrogram 0.881

ResNet-50 + Log-Spectrogram 0.879

Indeed, the evaluation using a call-based split reaches very high F1-score values (≥ 0.98) for
all species, which is consistent with the findings of Schwab et al. [211]. In contrast, these

excellent scores cannot be confirmed using a file based split of the data set. However, our model

still reaches very good results on this test split, since no class drops below 0.75, as Table 5.5

confirms. Therefore, we will use the latter, more meaningful data set split in the remainder of

this paper.

In the following, we compare two transformer architectures, namely DeiT-base and DeiT-small,

with the ResNet-50 CNN architecture. With 6 self-attention heads per layer, DeiT-small is a

compromise between DeiT-tiny (3 heads) and DeiT-base (12 heads). As our input, we use both

Log-Spectrograms as well as Log-Mel-Spectrograms. Table 5.6 shows that we achieve better
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Figure 5.4: Normalized confusion matrix of the bat species classification results.

results than the ResNet-50 on both kinds of spectrograms. Furthermore, our best model, i.e.,

DeiT-base, achieves a 0.6% higher accuracy using Log-Mel-Spectrograms than using simple

Log-Spectrograms.

Next, we consider the results of the best model (DeiT-base with Log-Mel-Spectrograms) for

individual bat species. For this purpose, the confusion matrix of the classification model is

visualized in Figure 5.4. The matrix shows a distinct diagonal line, which confirms the good

classification results. Furthermore, it reveals that test samples are often mistaken for another

species of the same kind. For instance, the model tends to confuse Enil and Eser, Mdas and

Mdau or Pkuh and Pnat. Many confusions that span across two different kinds are quite

difficult to distinguish as well, e.g., the bats of the Nyctaloid group (Nlei, Nnoc, Eser, Enil, Vmur)

[184]. Most of the mistakes made by the model concern species that are hard to distinguish

even for human experts, and the model predicted the higher order class correctly.

The recognition model was trained for a maximum of 50 epochs. While the training of the

DeiT-base model took about 413 seconds per epoch, the average inference runtime is 0.02

seconds per bat call using the hardware/software system described at the beginning of Section

5.1.4.
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5.2 Bat@Edge: Bat Species Recognition at the Edge

5.2.1 Introduction

As described in Section 5.1, automatic bat call detection and species recognition are necessary

to monitor the population. The task of automatically processing audio data can be performed

using the approach presented in Section 4.5, but the precondition is that the data is transferred

in files to the edge device operating in the field. The transfer is challenging because the audio

data is in raw audio format, and the data rate is relatively high with ultrasonic microphones.

Today’s most used solution is to record the audio on a SD card and collect the SD card every

few days by humans. If something went wrong in between, researchers only notice it the next

time while collecting the SD cards.

5.2.2 Related Work

To get an overview over the execution of machine learning methods, a survey was written by

Merenda et al. [161]. A similar approach was presented by Gallacher et al. [71] who deployed

15 sensors in a large urban park to process recorded audio data of bats locally. This deployment

allows monitoring of their activities for several months. But this system is only operated in

urban areas and is dependent on network connectivity and fixed power supply.

Different edge computing platforms for bat species classification are compared by Zualkernan et

al. [271]. Here, the Raspberry Pi 3B+ and the Google Coral showed good results for TensorFlow-

Lite models, but for the execution of the TensorRT model on GPU only the NVIDIA Jetson

Nano is capable.

5.2.3 Design

In Section 5.1, approaches for call detection and species recognition were presented, as well

Bird@Edge in Section 4.5. Bird@Edge is based on an edge computing infrastructure divided

into three components. These components are: (a) the microphones for field deployment, (b)

the central processing unit in the field, and (c) recognition assurance and visualization in the

backend. To design a system for automatically detecting bat calls in the field, all these three

components and their cooperation must be enabled. In the following, the different components

and the challenges are presented.

Bat@Edge Mics

Unlike bird calls, the frequency spectrum of bat calls is much broader and thusmore challenging.

The technology used in Bird@Edge is based on ESP32 devices with a microphone tethered

via I2S. In this case, ESP32 devices are responsible for sampling the incoming audio signals.

The maximum possible sampling rate depends on the available computing power and the

transfer rate of the interface, in this case, the I2S. The ESP32 with 2x240 Mhz offers a reasonable

basis for sampling 40 kHz to investigate the spectrum from 0 Hz to 20 kHz audio. For more
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extensive frequency ranges, however, more computing power is needed, so an ESP32 is no

longer sufficient.

Bat@Edge Mic
Audio Analysis Unit

Bat call detection

Classify loud/quiet 

Count loud and quiet 
parts 

Check conditions for 
bat call

Raise trigger 

Audio Transmission Unit

Audio Storage

File Observer

File Transmitter

Figure 5.5: The processing chain of a Bat@Edge Mic from recording audio to transmitting the

file

For this purpose, specially developed hardware solutions such as the Teensy Board can be used

as an alternative to sampling analog microphones with a high sampling rate. Another option is

a USB ultrasonic microphone with a Raspberry Pi. This setup is similar to the audio part of

BatRack shown in Section 5.5. In Bat@Edge, an ultrasonic microphone is also operated on a

Raspberry Pi, and the continuous data stream is examined for bat calls, as shown in Figure 5.5.

If bat calls are detected, the sequence is saved as a file and is ready for further processing or

transmission. As an estimate of the amount of data, each frame can be sampled at 16 bits, and

a sampling rate of 382k samples is possible. This setting results in a maximum data rate of 764

kB/s in phases where bat calls are detected. These detected bat calls must be transmitted after

recording. WiFi is a suitable transmission technology for transmitting the recorded ultrasonic

audio data at these data rates using files.

Bat@Edge Station

Bats are only active at night, and the execution of call detection can also be performed during

the day. This use case does not necessarily require real-time processing, so a significantly longer

execution time is acceptable. Furthermore, a filtering step on the microphone can minimize

the sequences to be processed. Thus, a neural network is only executed to process audio in

which a bat call is present with a high probability. The execution chain is as follows: incoming

data triggers the execution, and if all data is processed, the processing pipeline is shut down

to save energy. For this purpose, a neural network is adapted to the computing unit, and the

results of the execution of the neural network are saved.

The first step for the Bat@Edge Station is receiving the audio in files. This task can be done

by any data transfer protocol on a higher layer protocol like MQTT, FTP, Rsync, or DTN (like

Serval or DTN7). As the next step, an audio observer monitors the upload folder, which handles

new audio files, as shown in Figure 5.7. The trigger for new audio files is only thrown if the

file is completely uploaded. If necessary, the first processing step is resampling the audio

for the sampling rate of the used machine learning model. This step could be skipped if the

microphone and the CNN share the same sampling rate. The second step is to detect species

in the transmitted and resampled audio with possible bat calls. Therefore, the stored audio file

is given to the neural network, and after the processing ends, the results are stored for further

transmission. These stored results can be transmitted to the backend after processing.
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Bat@Edge Station
Audio Classification Unit

Receive Audio

Resample Audio

Classify Calls

Transmit  Results

Store Results

Figure 5.6: The arriving audio file and the following processing chain until the results are

submitted

Bat@Edge System

For transmitting the results, a lightweight transport protocol is used. Since the data consists

only of labels of species recognition, this data is much smaller than the raw audio data. Due to

less data, the transmission can be done using different technologies, e.g., LTE, Mesh Networks,

or WiFi bridges. The used technology is highly dependent on the use case and should be

selected with this use case in mind.

Preselected Audio Files
Bat Species Labels
User Requests

Local WiFi

…

…

Local WiFi

…

Web Frontend

Figure 5.7: The Bat@Edge System with two local WiFi clouds and a Bat@Edge Station each

and a Bat@Edge backend with result visualization

The backend saves the labels to a time series database and visualizes them, as shown in

Figure 5.7. This process allows errors to be detected as quickly as possible and automatic
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evaluations to be performed with this data. The system is designed to enable as fast as possible

processing in the field, which makes it possible to transmit the results.

5.2.4 Experimental Evaluation

In this section, we present experimental results for the Bat@Edge Station in terms of (a) the

execution time of the processing chain, (b) the utilization of the computing resources, and (c)

the power consumption while idling, resampling or classifying bat species.

Execution Time

The evaluation is based on data collected with BatRack in the Marburg Open Forest in 2021

to come close to a real-world scenario. For the evaluation, a Jetson Nano is used with a bat

detection CNN and the stored real-world audio data. The steps on the Bat@Edge Station for

the evaluation are the same as described in Section 5.2.3. The arriving audio is resampled if

necessary, and the CNN is executed.

The process is done with pre-sampled data and without getting an impression of what time the

resampling takes. The transmission is done by scp in a batch, and the processing is triggered

automatically by theBat@Edge Station. In this scenario, the concrete execution time ismeasured,

but the neural network is loaded every time from scratch with the lack of the processing chain.

This reloading is ineffective in this scenario, but in a real-world scenario, it would be better to

avoid holding the CNN all the time on load and wasting energy. The performance could be

better in a real-world scenario with no batch transmission.

This evaluation is done by a short time window of data from the night of 02.08.2021 from 21:00

till 23:59:59, i.e, for three hours. The question for the experiment is: is the execution time less

than the observation time? The execution time over all files without sampling is 3,505 seconds

or 58.40 minutes. Additionally, the load on the system is about 0.95 to 1.3, which indicates

some leftover computational resources.

With the resampling task as the first step of the execution chain, the execution time over all

files is 12,109 seconds or 201.80 minutes, and the average execution time per file, including

CNN loading and sampling, is nearly 78 seconds. In contrast, the average execution time for

the pre-sampled files is nearly 23 seconds. In this experiment, it is clear that the execution time

of the tasks with resampling takes longer than the three hours of monitoring time. In this case,

only some files get processed live, and the idle time is zero. For this scenario, a continuous

running CNN would be the better option because it does not load the model for every file.

The execution time is nearly 3.4 times higher in the resampling scenario, which can be avoided

by sampling the microphone at the same sampling rate. So, the Bat@Edge Mics have to record

the audio in the same sampling rate as the neural network to avoid this overhead. If the

sampling rate is not selectable on the microphone, the time overhead could be minimized

by executing the resampling task on multiple cores. At the moment, only one core is doing

this task, using multiple cores could speed up the process. The amount of data the Bat@Edge
Station gets is different every night and for every position of the different Bat@Edge Mics, so a

comparison for different nights should be made next.
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Bat Activity in Different Nights
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Figure 5.8: Summed sequences by day over all Bat@Edge Stations

The activity levels of bats vary significantly from night to night. These differences can be due,

for example, to the weather; thus, the supply of nocturnal insects and with these nocturnal

insects the food sources is different. The activity level per station is highly variable here, because

the bats’ primary location can also differ on a daily base. Bats only sometimes roost in the

same tree, so a location that is highly frequented one night may be less of a focus the next

night.

This behavior over the season and with several stations can be seen in Figure 5.8. Here, the

sequences recorded by the BatRack Station are plotted per day and station. In our test scenario,

we needed more hardware to continuously equip all habitat trees with a BatRack station. Nine

stations were distributed on a total of 30 habitat trees, and by manually recording the night

roosts of the bats, the stations were repositioned during the day. This repositioning results

in better detection of the unique animals, but with this repositioning, the minimum number

of calls per night still needs to be determined. Thus, the setup of the stations tries to record

as many calls and sequences as possible with the given number of stations. This number of

sequences cannot be expected for an area-wide and fixed installation with this number of

stations. If the number of stations gets higher, the load for a Bat@Edge Station could be too

high for a single Bat@Edge Station, so more than one Bat@Edge Station should be deployed.

As Figure 5.8 shows, a peak from over 3,000 sequences is possible but a rare event. Therefore,

the Bat@Edge Station also stores the data to be processed in a queue and evaluates it one after
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the other. Thus, the evaluation can also be done over the entire day. However, some nights may

produce more sequences than can be processed live.

5.2.5 Utilization of Computing Resources
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Figure 5.9: Modeling the sleeping time of the Nvidia Jetso Nano when processing the data of a

day

To investigate the utilization of the Bat@Edge sensor network, all sequences are summed up

for a whole day and get multiplied by 23 seconds for "without presampling" and 78 seconds for

"with presampling" to get an impression of how utilized the network would be in a real-world

scenario. The time not used for processing is shown as the time to sleep, as shown by Figure 5.9.

If a node needs more than 24 hours a day to compute the received data, the time is subtracted

from the next day. Alternatively, the day after the next day if more is needed, and so on and so

forth. Thus, a "traffic jam" of tasks for the "with presampling" scenario is visible in Figure 5.9.

Here, the Jetson Nano is processing the data over a few days all day long, and at the end of

data collection, about 61 hours of processing time are left over. In this case, a second Jetson

Nano would get more timely results and can handle the load without a "traffic jam".

Energy Consumption

For the power consumption measurement, the power measurement tool tegrastats of the Jetson
Nano is used. Here, the power consumption of the CPU, GPU, and the whole system can be

monitored. To get an impression what power which task consumes, a large file for processing
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is stored on the Jetson Nano. Next, the pipeline gets started and idles for nearly two minutes.

The total power consumption in this state is about 1.1 W with nearly zero watts for the GPU

and 0.12 W for the CPU, as shown in Figure 5.10. While idling, the "system" consumes the

most power (about 1 W), but the total power consumption stays low.

Figure 5.10: Power consumption of the Nvidia Jetson Nano while (a) idling (b) resampling (c)

recognizing species

After two minutes, a file is inserted, and the pipeline detects and processes the file. Now, the

average total power consumption is about 2.6 W, and the CPU consumes 0.8 W, so the rest of

the system consumes about 1.8 W. The GPU consumption stays by approximately zero watts.

The next step Bat@Edge is starting the CNN. Here, the power consumption is more variable, but

on the average, there is no significant difference in the power consumption of the resampling

task. Here, only the start of the power consumption of the GPU can be seen.

The last step of the processing chain is bat species recognition. In this state, the main power

consumption driver is the GPU power consumption which is about 3.6 W, and the total power

consumption is about 6.6 W.
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5.3 tRackIT OS: Open-source Software for Reliable VHF Wildlife
Tracking

5.3.1 Introduction

In an increasingly densely populated and anthropogenically dominated environment, a scientific

analysis of the consequences of human-wildlife interaction is essential for developing evidence-

based guidelines for conservation [122]. Understanding the impact of altered habitats on the

spatial distribution of species [205], the effects of human infrastructures such as roads [6,

110], and reasons for increased mortality of endangered species [145] is crucial for preserving

biodiversity in a crowded world. Movement data of animals generated by recent technological

advances support more detailed forms of analysis and insights into the behavior and ecology

of threatened species than ever before [25, 250, 263].

Wildlife observations can be realized with a variety of technologies. For example, GPS tech-

nology can be used to equip animals and record their movements independently of other

communication infrastructures. However, size, weight, and battery life constraints prevent the

use of GPS for most European songbirds and bats.

Manual radio telemetry is another option for observing small animals. However, it is extremely

labor-intensive, limited to a small number of individuals that can be tracked simultaneously [37],

and results in spatial and temporal data with poor resolution, which might not be sufficient for

meaningful scientific analyses [168].

Automated radio telemetry systems can minimize many of these disadvantages [124, 252].

In previous work, some of us presented a system based on commodity-off-the-shelf (COTS)

hardware for automatic radio tracking of small animals based on Very High Frequency (VHF)

tags [80] as part of the open source project radio-tracking.eu8. However, three seasons of long-
term stationary operating time of the system in the Marburg Open Forest (i.e., the teaching
and research forest of the University of Marburg, Germany) revealed several deficits, such

as the lack of failure handling, inadequate interfaces for data transmission and health-state

monitoring, and problems with time synchronization of received signals between receivers of

the same station and among different stations.

In this section, tRackIT OS, an open-source operating system distribution for reliable VHF

radio tracking of small animals, is presented. tRackIT OS runs on a tRackIT station; its basic
hardware design is due to Gottwald et al. [80]. We developed tRackIT OS to provide new

software functionality according to our experiences in studying the movement ecology of both

diurnal and nocturnal wildlife with a network of 15 tRackIT stations in densely forested terrain.

In particular, we present:

• a novel approach for automated signal detection of VHF radio tracking tags,

• means to provide reliable operation of tRackIT stations under harsh conditions,

• efficient live data transmission for monitoring data and detected signals,

• a novel web-based user interface for intuitive configuration of tRackIT stations,

8https://radio-tracking.eu
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• a comparative evaluation of tRackIT OS compared to the state-of-the-art.

Parts of this section have been published in Jonas Höchst, Jannis Gottwald, Patrick Lampe,

Julian Zobel, Thomas Nauss, Ralf Steinmetz, and Bernd Freisleben. “tRackIT OS: Open-Source

Software for Reliable VHFWildlife Tracking.” In: 51. Jahrestagung der Gesellschaft für Informatik,
Digitale Kulturen, INFORMATIK 2021, Berlin, Germany. LNI. GI, Sept. 2021, pp. 425–442.

5.3.2 Related Work

Ripperger et al. present a comprehensive overview of existing systems for localizing small ani-

mals using different technologies [195]. The most recent projects on automated VHF transmitter

tracking are ARTS [124], Atlas [252], and Motus (also called SensorGnome) [231].

ARTS consisted of towers with a height of 40 meters and top-mounted antenna arrays [124],

but the system was taken down in 2010 and replaced by camera traps and GPS transmitters.

ARTS was able to determine the position of a tagged individual by triangulation with an

spatial accuracy of 50 meters, but rotating through channels with different frequencies reduces

the time span in which each individual can be observed. tRackIT supports more detailed

observations of movements using a higher number of stations at lower cost and less effort in

construction.

The Atlas project achieves great spatial accuracy by using the time difference of arrival (TOA)
method for direction estimates as seen from the receiver, while costs for the developed tags

are low [252]. However, implementation of the receiving stations is quite expensive, a fact that

probably explains why the system is only deployed in three areas in the Netherlands, England,

and Northern Israel. tRackIT achieves comparable results with stations built from commodity

off the shelf hardware at a lower price point.

Motus
9
is a globally operating network of VHF receiver stations hosted by different collabora-

tors and supporting researchers [231]. Despite its open source character, an implementation of

Motus at US$ 3000 for a single SensorGnome
10
receiver with three 9-element Yagi antennas, and

US$ 7500 for a Lotek SRX800 receiver station with four 9-element Yagi antennas is costly [146],

leading to a trade-off between spatial resolution and coverage. By default, the implemented

radio receiver listens at a single center frequency and can detect pulses from tags in a narrow

band of ±24 kHz around its center frequency. This limits the number of distinguishable fre-

quencies, i.e., the number of detectable individuals, substantially. Motus has delivered great

insights into the ecology of different species in more than 120 research projects [231], but

investigating fine-grained spatial movements by triangulation is not supported by the system.

The wide frequency band that can be used by tRackIT supports both fine-grained temporal

resolutions and observations of many individuals.

9
Motus Wildlife Tracking System: https://motus.org

10
SensorGnome Project: https://sensorgnome.org
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5.3.3 tRackIT OS

A tRackIT system consists of (a) VHF radio tags mounted on animals, (b) tRackIT stations for
receiving signals emitted by VHF tags, (c) tRackIT OS running on tRackIT stations for detecting
and matching signals received on multiple antennas, (d) tRackIT servers for collecting and

presenting data transmitted from tRackIT stations, and (e) tRackIT analytics modules for deriving
ecological knowledge from the collected data.

In this section, we present design and implementation issues of tRackIT OS, the operating
system distribution for tRackIT stations.

Requirements

Our experiences from three seasons of field work have indicated that automatic telemetry can

only be a useful substitute of its manual counterpart if certain requirements are met:

1. Low entry barrier. To make automatic radio telemetry accessible to the widest possible

user community, both hardware and software as well as data processing and analysis

must be conveniently accessible, easy to use, and inexpensive.

2. Reliability. The used equipment must reliably record signals originating from VHF trans-

mitters and minimize the amount of interference. Any component failures caused by

adverse conditions, such as unstable power supplies, fluctuating temperatures, and

hardware-based failures should be detected and handled automatically.

3. Data availability. In many application areas, like mortality studies [98], fast data availabil-

ity is highly important. Thus, direct data transmission from the field with the shortest

possible delay between recording and transmission is desirable.

tRackIT Station

To deploy an operational installation in the field, a tRackIT station is equipped with directional

antennas in the four cardinal directions, a solar panel, and a battery box. The basic hardware

design is due to Gottwald et al. [80]. We have slightly adapted the hardware by including

an active USB hub, a better LTE modem, and a LoRa (Long Range Wireless Radio Frequency

Technology
11
) expansion board (LoRa HAT), as shown in Figure 5.11.

The ’brain’ of a tRackIT station is a Raspberry Pi 3 Model B that consists of a quad-core 1.2 GHz

ARM-Cortex-A53 and 1GB of RAM. It offers various input/output options, including Wi-Fi

and 4 USB ports. The system is powered through a 5V USB port and is capable of powering

connected USB devices. The four directional antennas are connected to four software-defined

radios (SDR) (Nooelec NESDR SMArt v4) for signal analysis. Since these SDRs require more

power than provided by the Raspberry Pi, an active 4-port USB hub (Anker 4-port Ultra Slim

USB 3.0 Data Hub, A7518) is used to connect the devices. An LTE modem (Huawei E3372H)

and a local prepaid data plan is used to establish a mobile Internet connection. The battery

11
Semtech: https://www.semtech.com/lora/
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Figure 5.11: The hardware components of a tRackIT station.

box provides a 12 V source that is converted using a step down converter rated for 2× 2.4 A at

5 V. For tRackIT stations relying on LoRa for data publishing, a Dragino SX127X GPS HAT
12
is

used. For receiving and forwarding tRackIT stations, the Dragino PG1301 LoRa Concentrator is

used
13
. The basic hardware of a tRackIT station costs a total of about 200 €, consisting of 35 €

for the Raspberry Pi 3B+, 4 × 35 € for the Nooelec SDRs, 15 € for the active USB hub, and 10 €

for the power supply unit. The optional communication modules cost 50 € in the case of the

Huawei LTE modem and/or 35 € (LoRa HAT) / 110 € (LoRa Concentrator) for the LoRa publish /

receive upgrade.

tRackIT OS Components

The operating system (OS) plays a crucial role in the reliable autonomous operation of the

presented hardware. We developed a custom distribution of the Raspberry Pi OS, called tRackIT
OS. The primary task of tRackIT OS is to execute a signal detection module, called pyradio-
tracking, in a reliable manner. The secondary task is to interface with users (a) interactively

while setting up the station, and (b) continuously during autonomous operation for extended

monitoring. tRackIT OS is built using PIMOD [105], which allows configuration of single-board

computer system images in a reproducible manner. The resources required to build tRackIT OS
as well as the OS image itself are released under a GPL 3.0 license

14
.

In Figure 5.12, the main software components of tRackIT OS are presented. Station-initiated

communication is handled using theMessage Queuing Telemetry Transport (MQTT) protocol,

with mosquitto as an MQTT client and server implementation [147] for message distribution.

It is configured such that incoming messages are forwarded to remote MQTT brokers for

12
Dragino SX127X: https://www.dragino.com/products/lora/item/106-lora-gps-hat.html

13
Dragino PG1301: https://www.dragino.com/products/lora/item/149-lora-gps-hat.html

14tRackIT OS, available online https://github.com/Nature40/tRackIT-OS

132

https://www.dragino.com/products/lora/item/106-lora-gps-hat.html
https://www.dragino.com/products/lora/item/149-lora-gps-hat.html
https://github.com/Nature40/tRackIT-OS


5.3 tRackIT OS: Open-source Software for Reliable VHF Wildlife Tracking

tRackIT Station

Server

tRackIT OS

WestRTL SDR

EastRTL SDR

NorthRTL SDR

SouthRTL SDR

pyradiotracking

mosquitto

pymqttutil

remote 
mosquitto

Visualization

Cellular
Storage

OpenSSH
Web Server

sysdweb

Users

Wi-Fi / Wireguard

systemd

Data Flow
Interaction

LoRa Station

mosquitto

pyr-lora

pyr-lora

LoRa

Figure 5.12: Overview of the main software components of a tRackIT OS distribution.

further processing. These brokers are also responsible for detecting and resolving connection

failures.

The core software component for signal detection is called pyradiotracking. The component

reads samples from all four SDRs, as well as detects, filters, and matches signals of VHF tags.

Detected signals are saved to local storage, displayed via a custom web user interface, and

published to a local message bus that is responsible for data distribution. Section 5.3.3 discusses

the implementation details of pyradiotracking.

For system monitoring, we implemented a custom tool called pymqttutil in the Python pro-

gramming language. It is released under a GPL 3.0 license
15
. The tool executes configurable

Python statements in a fixed schedule and publishes the corresponding results via MQTT.

It is configured such that relevant system metrics are published in a 5 minute interval, i.e.,

temperature, system uptime, system load, memory usage, CPU frequency, network addresses,

storage utilization, and cellular data usage.

All services are managed by systemd. The WebUI sysdweb16 for systemd is configured to allow

easy log access and service control for (mobile) users. The Caddy web server is used to provide

convenient access to the local storage, pyradiotracking and sysdweb. Finally, OpenSSH provides

direct system access for local and remote users. To allow secure remote access, wireguard is

used as a virtual private network (VPN).

15pymqttutil, available online: https://github.com/Nature40/pymqttutil
16sysdweb, available online: https://github.com/Nature40/sysdweb
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Signal Detection

The signal detection algorithm is implemented in the pyradiotracking Python package, which is

released under a GPL 3.0 license
17
. In Figure 5.13, the stages of signal processing are presented

in a block diagram. First, spectrograms of the incoming IQ samples are created, which are used

to detect signals. The detected signals are then filtered for shadow signals of lower power in

neighboring frequencies and sent to a central signal queue. The detected signals of multiple

antennas are matched and written to a local file, published to the MQTT message bus, and

visualized in the local dashboard.

rtl-sdr

pyradiotracking

Antenna Signal

SignalAnalyzer

IQ samples

process_samples

extract_signals

spectogramfilter_shadows

signals

SignalAnalyzer
…

SignalAnalyzer

ProcessConnector

MQTTConsumer

CSVConsumer

SignalQueue

SignalMatcher
match

signalmatched 
signal

Dashboard
Configuration PaneSignal Visualization

(matched) signals

Figure 5.13: Signal analysis stages implemented in pyradiotracking.

To illustrate how the different stages work, data of the length of one second is used as an

example. An SDR is configured such that a center frequency of 150.150MHz, a sample rate of

300 kHz, and a fixed gain of 49.6 dB are used. A test tag with the frequency of 150.172MHz

and a signal duration of 40ms was placed near to the receiving antenna. In Figures 5.14, 5.15,

and 5.16, three stages of signal processing are visualized.

Figure 5.14 shows the raw IQ samples received by the SDR. Following the example configuration

described above, there are 300,000 samples, hence 600 kilobyte of data collected in one second.

In the time interval of t0 = 0.45 s to t1 = 0.49 s, the IQ samples contain high values, which

appear as a rectangle in the visualization. This rather sharp rectangle indicates that the gain

value is set too high and the signal is clipping. When setting up stations for regular operation,

the gain value must be chosen such that a good compromise of gain and clipping is achieved.

To detect single signals from the received data, a spectrogram is computed and processed

further. This is achieved by applying consecutive Short-time Fourier Transforms (STFT) [4] to

17pyradiotracking, available online: https://github.com/Nature40/pyradiotracking
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Figure 5.14: IQ samples of one second, as received by RTL-SDR.

the data. Figure 5.15 shows the spectrogram computed from the previously presented example

data. The STFTs are computed with 256 samples per Fast Fourier Transform (FFT) and no

overlapping samples. The Hamming window function is applied to smoothen discontinuities at

the start and the end of the processed FFT. In this configuration, the bandwidth of 300 kHz is

divided into 256 bands and a frequency resolution of 1,171 kHz, to achieve a time resolution of

1.0 s/1, 171 = 0.853 ms.

In Figure 5.16, signal detection on individual frequencies is visualized. The signal power (dBW)

in the logarithmic scale is plotted for four example frequencies near the test sender’s frequency,

and the signal emitted by the test sender can be observed in three of those. The gray dashed

horizontal line indicates the configured signal power threshold of -60 dBW. The gray dotted

vertical lines show scan points used for initial signal detection. The blue arrow marks the total

detected signal length. Signal detection is achieved by (a) iterating through all frequencies and

(b) iterating through time using scan points placed according to the minimal detectable signal

duration of 8 ms in our example. The signal-to-noise ratio (SNR) is calculated using the ratio of

the current power and the average signal power of this frequency. If signal power and SNR at

the scan points are above the configured thresholds, a potential signal is detected. The scan is

then continued by evaluating the thresholds for all neighboring values until the thresholds

are undershot, indicated by the blue arrows. If the duration of the detected signal is within

the set limits, further complementary features are computed and added to a list for further

processing.

After all signals of a spectrogram are extracted, shadow filtering is performed. We define

a shadow signal as a signal that matches another signal in duration and time, but has a

lower detected power. In the example of Figure 5.16, the signals detected at 150.170MHz and

150.172MHz would be shadow signals of the 150.171MHz signal. The shadow signals are
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Figure 5.15: Power spectral density (PSD) of samples computed via Short-time Fourier Trans-

form (STFT).

removed and the detected primary signals are added and written to disk, published via MQTT

and sent to pyradiotracking’s main process for signal matching and data presentation.

To improve reliability, a direct control component is introduced. The librtlsdr library used

to retrieve data from an SDR works in such a way that as soon as requested data is available,

a callback method is called. If the system load is too high and the callback method takes

longer than the acquisition of the next samples, individual samples are omitted. Hardware

and library-specific errors may lead to no callbacks at all. The first problem is monitored by

comparing the actual received samples with the expected number of samples using the system

clock. In this way, dropped samples can be detected, even accumulated over longer periods of

time. The second problem is solved by (re-)setting a periodic alarm, comparable to a dead man’s

switch. If the callback method is not called in time, an alarm is triggered. This terminates the

analysis process, which is then restarted by pyradiotracking’s main process.

Signal Matching

The detected and filtered signals of multiple antennas are consumed by the signal matcher,

which works as follows. In a list, all currently active signal groups are held. When a new signal

is detected, it is compared to each of the active signal groups in time, duration, and frequency.

The SDR devices used in the project do not work synchronously and use individual quartz

crystals as their clock sources, hence time and frequency mismatches are likely to happen.

If all parameters of an active signal group are within the configured thresholds, the signal is

added to the corresponding group. If no corresponding group is found, a new active signal

group with this signal is created and added to the list. After a certain timeout, the active signal

groups are removed from the list and the key features are written to disk and published.
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Figure 5.16: Power spectral densities (PSDs) of selected frequencies, minimal signal power

threshold, and signal power sampling points.

Data Publishing

Detected signals are published directly to disk in CSV format and via MQTT in the CBOR

format, which is a binary format and introduces smaller overheads compared to text-based

formats. The MQTT broker running on a tRackIT station can be configured to forward published

signals to other brokers, such as a central server via a cellular network or other IP-based

networks.

Field Accuracy Size (bit)

Time ms of current min 16

Frequency offset to 150 MHz in kHz 9

Duration ms 6

Signal Availability flags 4

Signals 3-decimals [1 − 4]× 17

52 − 103

Table 5.7: tRackIT station’s LoRa matched signal payload: fields, accuracy, and sizes.

In addition to this IP-based data publishing, LoRa can be used to publish signals. LoRa is a

physical layer protocol based on chirp spread spectrum (CSS) modulation, that is robust against

channel noise, multi-path fading, and the Doppler effect. This allows transmission ranges of a

few kilometers in urban environments and up to 15 kilometers in rural areas, with minimal

power requirements but also only low data rates between 300 bps and 50 kbps [102, 160, 187].
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The LoRa publishing service of tRackIT OS receives signals through the local MQTT broker,

converts the data in a custom data-saving binary format, and sends it via LoRa. Table 5.7

shows the fields used for a matched signal’s payload, including accuracy and required size in

bits. A matched signal contains a minimum of one and a maximum of four signals, depending

on the number of antennas that received the signal, hence the final payload size is 52 up to

103 bits. Zeros are appended to the payload to reach the required byte boundaries, resulting

in messages of 7, 9, 11, and 13 bytes, depending on the number of the contained matched

signals. Compared to the already compact representation in CBOR of a 4-component matched

signal (56 bytes + overhead), a reduction of up to 77% is achieved (13 bytes). In the most robust

LoRa settings (SF:12, BW:250 kHz, CR:4/8), such a shortened message would require 594ms

Time-on-Air (ToA) (using Implicit Header mode with a 1-byte sender ID, the total length of the

packet is 14 bytes). Following the duty cycle regulation of a maximum utilization of 1% (10%)

per band, a message could be sent every 59 (5.9) seconds. While these settings do not allow

continuous monitoring of individuals, sparse reporting of single observations are still of value,

when trying to detect tags fallen off or with empty batteries. For stations in closer physical

proximity to the receiving gateway, less robust settings may be chosen. Using a less robust

LoRa setting (SF:8, BW:250 kHz, CR:4/8), the ToA drops down to 45.5ms, allowing messages to

be sent in an interval of 4.6 (0.46) seconds. From previous measurements in the Marburg Open

Forest, signals could be reliably transmitted over 600 meters using this setting.

5.3.4 Experimental Evaluation

In this section, we evaluate tRackIT OS in benchmarking scenarios and in field experiments.

The data of all experiments is publicly available at https://github.com/Nature40/hoechs
t2021tRackIT-eval.

Experimental Scenario

To evaluate tRackIT OS in a realistic manner, we use a system setup in theMarburg Open Forest,
consisting of 15 tRackIT stations; 5 of them are used in our evaluation described below. The

experiments are carried out twice: (a) with the most recent tRackIT OS 0.7.0 and (b) using the

most recent stable operating system version of the radio-tracking.eu18 project [80], called paur
4.2. We activated a test tag and carried it around in the area of the selected tRackIT stations
together with a GPS receiver to receive ground truth data. The experiment took place over

the course of 0:51:10 h with a VHF sender of 600µW power, 20 ms duration and an interval of

one signal per second, which results in 3,193 sent signals. In Figure 5.17, the GPS trace of the

conducted experiment is presented; stations are marked by the white circles, and the trace is

colored to indicate the time component of the experiment.

Our observations using paur in two seasons of 2019 and 2020 indicated high numbers of falsely

detected signals. We were not able to distinguish between true and false positives through

the information available after signal detection. Thus, we used a power signal threshold. The

paur experiments conducted in this section showed the same low precision, hence all detected

signals with a power lower than -78 dBW were removed for further processing. Using tRackIT

18https://radio-tracking.eu
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Figure 5.17: GPS trace of the experimental evaluation track and the corresponding tRackIT
stations.

OS, this threshold is not required, since we observed very low numbers of falsely detected

signals.

Signal Delay

A second observation from our previous field seasons in 2019 and 2020 is a delay in signal

detection using paur in the order of seconds to minutes. In Figure 5.18, an example of observed

signal delay is visualized. The dots show the received signal strength measured on multiple

antennas of the same tRackIT station. Every antenna received a series of signals with low

variance in signal strength that appear to be a straight line, indicating that the tag is not

moving. However, these straight lines on the individual receivers are offset in time from each

other, which makes further processing of the data difficult and and leads to worse to unusable

bearing calculation. In the experiments of this section, we measured a delay in signal detection

of 8 seconds in paur and no recognizable delay in tRackIT OS.

Signal Detection

In the tRackIT OS experiments, the selected five tRackIT stations detected 30,507 signals, each

on potentially four antennas, resulting in an average of 1,525 signals (47.8%) detected per

antenna. Signal detection depends on various factors, such as geographical and topographical

conditions, the orientation of the antenna, the height of the transmitter above the ground,

air humidity, and forest cover. Figure 5.19 shows the numbers of detected signals by station

and antenna. Due to the positioning of the stations, the orientation of the antennas, and

the selected test area, some of the antennas receive only a very small amount, others a large

amount of the test signals. On the north antenna of station 11, only 95 (3.0%) signals could be

detected, while 2,611 (81.8%) signals where detected on south antenna of station 9.

139



5 Bat Monitoring

02:24:45
Jul 24, 2020

02:25:00 02:25:15 02:25:30 02:25:45 02:26:00 02:26:15

50

55

60

65

70

75

80

85
Antenna

West
South
North
East

Time

S
ig

na
l P

ow
er

 (
dB

W
 +

 1
00

)

Figure 5.18: Example of signal delay among different receivers observed in the 2020 field season

using paur.
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Figure 5.19: Detected signals on tRackIT stations in the experimental scenario.

In addition to this quantitative analysis of signal detection, we evaluated the distances between

the test tag and the tRackIT stations. Figure 5.20 shows the distance of the tag and stations

measured via GPS and the power of the detected signal. While most stations can detect signals

at distances of up to 400 meters, stations 4 and 11 detect signals up to 800 meters away. While

the correlation of signal strength and measured distance is straightforward, a high variance

can be observed from the data and signal strength alone, hence this is not a suitable estimator

for distance in the presented experiment. Initially, the overall performance of the two systems

appears comparable, especially for signals with high signal strength. While paur received 2,728

signals usable for bearing calculations, tRackIT OS received 4,438 such signals, an increase

of 62.7%, when applying the same -78 dBW threshold. In addition, tRackIT OS received 1,108

signals of lower signal strength, which corresponds to an effective increase of 103.3% compared

to paur.
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Figure 5.20: Signal power and distance to a receiving station.

Bearing Calculation

To reach the goal of signal triangulation, signals detected on multiple antennas of a station are

used to calculate bearings. We use the method proposed by Gottwald et al. [80] to produce

comparable results for our bearing calculation. First, the pair of neighboring antennas with the

highest and second highest signal strength are selected (sl , sr) and the relative gain difference

δg is computed using the maximum signal strength difference δm: g = sl−sr
δm . Second, the

signal strength is used to calculate the bearing between the antennas following the formula

derived from the cosine theorem ω = π
90 × arccos(δg).
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Figure 5.21: Histogram of bearing errors.
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Figure 5.21 shows a histogram of bearing errors in tRackIT OS and paur. Due to an error on

station 4 which was not resolved automatically, signal detection failed on this station in the

paur experiment run, hence no data is presented in the histogram. While tRackIT OS has a

mean bearing error of 23.7° and a standard deviation of 30.7°, paur not only has a lower total

bearing count, but also results in 38.9° mean bearing error with 42.6° standard deviation. These

results indicate that tRackIT OS is superior to paur that represents the current the state of the
art in this field.

Power Requirements

To operate stations autonomously and to monitor and transmit data, a stable power supply is

necessary. To get realistic values for the required power, we measured a tRackIT station at the

12 volts input using a Monsoon High Voltage Power Monitor
19
.
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Figure 5.22: Power measurements of tRackIT OS and paur in default settings.

Figure 5.22 shows the power demands of paur and tRackIT OS. In contrast to tRackIT OS, paur
does not start signal detection automatically. After all SDRs and signal analysis threads are

running, tRackIT OS consumes an average of 8.23 W (684 mA), while paur consumes an average

of 8.03 W (667 mA), which is an overhead of 2.55%. We also carried out experiments with

varying sample rates (225 kHz – 300 kHz), but did not observe varying power demands. The

systems used in the Marburg Open Forest use 12 V batteries with a capacity of 120 Ah (1440

Wh) of which only 80% should be used to limit wear, which allows a maximum theoretical

runtime of 140 hours, or roughly 5.5 days. To allow a continuous operation, a 300 Watts peak

solar panel is connected via a solar charger that even works during cloud cover. The presented

results show only a slight increase in power consumption of tRackIT OS compared to paur, i.e.,
tRackIT OS meets the power requirements for continuous operation of the system.

19
Monsoon Solutions Inc. High Voltage Power Monitor: https://www.msoon.com/online-store/High-V

oltage-Power-Monitor-p90002590
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5.4 Classifying Activity States of Small Vertebrates Using
Automated VHF Telemetry

5.4.1 Introduction

The behaviour of an animal can be fundamentally divided into active and passive states [89],

with the former requiring a much higher energy expenditure [199].Quantifying the distribution

of activity periods throughout the day provides important insights into species’ responses

to their environment, foraging strategies, bioenergetics, and adaptations [240]. Moreover,

temporal segregation of species that share the same niche is one recognized mechanism that

can facilitate stable species coexistence [172].

Detailed analysis of individual activity patterns requires high-resolution observations [173],

which are often difficult to obtain. The observer’s presence may influence animal behaviour

and thus bias conclusions [41], and continuous observation of elusive or highly mobile species

in habitats with dense vegetation is close to impossible [155]. Information on medium to

large-sized species can be obtained using camera traps, GPS transmitters, and accelerometers

[123], as demonstrated by investigations of dynamic habitat and resource use [263], behaviour

[67], and migration and dispersal [250]. However, these devices are of limited use for small

animals (<100 g), due to low detection probabilities, the trade-off between transmitter size and

weight, battery life, and data-collection intensity [92, 93, 257]. Newer technical solutions such

as the ATLAS system [173] or the Wildlife Biologging Network (WBN) [195] allow the tracking

of small animals with high temporal and spatial resolution, but the required installation effort

and costs remain high.

Very high frequency (VHF) telemetry has been employed in wildlife tracking since the 1960s

[36], with the ongoing miniaturisation of VHF transmitters (< 0.2 g) allowing the tracking

of small taxa (body mass < 5 g), ranging from large insects to small vertebrates [171]. Some

studies take advantage of the fact that even small movements of tagged animals result in

discernible variations in the strength of the received signal [128] that reflect changes in the

angle and distance between the transmitter and receiver 5.23. However, collecting reasonable

amounts of data on activity bouts using manual radio-telemetry requires an enormous amount

of fieldwork, which implies a high level of wildlife disturbance [126], and the risk of missing

critical events in the life of the tagged individuals is high [138].

Kays et al. [124] proposed a method for automatically classifying active and passive behaviour

based on a threshold in the difference in the signal strength of successive VHF-signals recorded

by a system commercially available at the time. Schofield et al. [210] applied a similar system

to investigate the activity pattern of 241 individuals out of three migrating songbird species

during stopover. They found that a threshold of 2.5 dBm optimally separates active from

passive behaviour. However, the applied systems could only track one tag at a time, resulting

in a low temporal resolution (i.e., a few seconds of observations approximately every 10 min

due to switching through frequency channels). High-throughput tracking systems (<10-s data

interval, many individuals at a time) are now widely available and enable ground-breaking

research in animal behaviour, evolution, and ecology [173]. In recent years, with the ongoing

development of low-cost open-source solutions, automatic VHF radio-tracking now enables

such high resolution capacities. Systems such as the Motus Wildlife Tracking System [231] or
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VHF Signal

VHF Signal

Figure 5.23: Principle of activity-recognition-based on very high frequency (VHF) signal pat-

terns. Top: flying bat; bottom: resting bat. The amplitude and variation of the signal

strength over time increase when the tagged individual is moving.

the tRackIT-System [104] allow the tracking of many individuals simultaneously and with a

very high temporal resolution (seconds) over the complete tagging period. Continuous, high-

resolution recording of the VHF-signals makes the entire signal pattern available for subsequent

data analysis.

In this work, we build on the methodology of Kays et al. [124] by calibrating a machine-

learning (ML) model based on millions of data points representing the behaviours of multiple

tagged individuals of two temperate bat species (Myotis bechsteinii, Nyctalus leisleri). Many

machine-learning algorithms are optimised for the recognition of complex patterns in a dataset

and may be more robust against factors that influence signal propagation, such as changes

in temperature and humidity, physical contact with conspecifics and/or multipath signal

propagation [3] than a rule-based approach relying on a single separation value. ML approaches

may therefore provide substantial improvements in the accuracy of individual activity states

classification compared to threshold-based approaches.

Although deep learning methods have been successfully applied to several ecological problems

where large amounts of data are available [34], we chose a random forest model due to the fol-

lowing reasons: (a) developing a (supervised) deep learning method requires considerable effort
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for selecting an appropriate neural network architecture, choosing an appropriate framework

to implement the neural network, training, validating, testing, and refining the neural network

[34], (b) our classification tasks resolve to a simple binary classification of active/passive states

based on tabular data. In this setting, tree ensemble methods such as random forests seem to

have clear advantages - they are less computationally intensive, easy to implement, robust, and

at least as performant as deep learning [215], and (c) in a large study comparing 179 classifiers

applied to the 121 classification data sets of the UCI repository, random forests are the best

classifiers in over 90% of the cases [60].

Our random forest model was used in conjunction with recent developments in automated

radio-telemetry [80, 104] to develop a toolset that allows researchers to record the activity

patterns of even very small species (body mass < 5 g) in their natural habitat and with high

resolution. The method was tested by applying it to independent data from bats, humans,

and birds recorded in a densely vegetated and hilly area and then comparing the results with

those obtained by the threshold-based approach of Kays et al. [124] using the separation value

suggested by Schofield et al. [210].

In our method, activity states are recognised with high temporal resolution (< 10 s) and high

accuracy. In the following, we provide detailed information on the application of the random

forest model and its validation using data on the behaviour of tagged bat and bird individuals

generated with an open-source multi-sensor tool [81].

In a case study, we demonstrate the use of the approach to detect differences in activity patterns

between those of the two forest dwelling bat species Myotis bechsteinii and Nyctalus leisleri.

In the next sections we detail our process for developing and validating a random forest model to

classify VHF-signals based on activity data gathered on bats, birds and humans. We showcase

the possible insights in wildlife monitoring that our approach may bring by providing an

ecological case study focusing on the comparison of activity patterns between two bat species.

Detailed information on data processing and analysis is provided, along with an R package,

example scripts and data in a hope to promote broad application in wildlife monitoring and

ecology.

Parts of this section have been published in Jannis Gottwald, Raphael Royaute, Marcel Becker,

Tobias Geitz, Jonas Hoechst, Patrick Lampe, Lea Leister, Kim Lindner, Julia Maier, Sascha

Roesner, et al. “Classifying the Activity States of Small Vertebrates using Automated VHF

telemetry.” In: submitted; under review ().

5.4.2 Field Methods

Study Area

The study was conducted in the Marburg open Forest (MOF), Hesse, Germany, a densely

vegetated mixed forest of 200 ha, dominated by European beech (Fagus sylvatica) with some

clearings and a relatively strong relief for low mountain ranges (lowest Position 200m, highest

400m) 5.24. The forest is home to 13 species of bats and 43 species of birds.
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Tagging of Bats and Birds

Every year, we caught and then tagged bats and birds with customised VHF-transmitters

of different sizes and weights (V3+, Dessau Telemetrie-Service; 0.3g-1g). Tag weights were

always <4% of the body mass of the tagged individual (see S2 for technical details, methods and

permits). For the ecological case study on bats, we captured and tagged 91 bat individuals from

two focus species (66 M. bechsteinii and 25 N. leisleri). For the evaluation of our approach (see

“transferability to small diurnal flying vertebrates” section) we used data of 19 bird individuals

tagged in another study conducted in parallel (1 Leiopicus medius, 3 Cyanistes caeruleus, 3

Erithacus rubecula, 3 Garrulus glandarius, 3 Parus major, 3 Sylvia atricapilla, 3 Turdus merula).

The frequency separation between transmitters used simultaneously was at least 3 kHz.

Radio-tracking

From 2018 to 2021, we operated a network of 15 custom-designed automatic radio-tracking

stations (henceforth ‘tRackIT-stations’; [80, 104]) distributed over the MOF 5.24. The stations

recorded signal frequency, duration, and strength as well as the timestamp of the signal of all

individuals tagged at a given time simultaneously and automatically.

Figure 5.24: The Marburg Open Forest in Hesse, Germany. The map shows the locations of

the tRackIT-stations [80, 104], the roost trees of bats (M. bechsteinii, N. leisleri)

observed by BatRack multi-sensor stations [81], the breeding site of a woodpecker

(Leiopicus medius) and the GPS track (shown in blue) of the activity simulation

used to test the transferability of the classification method to birds and humans.

(Map data from OpenStreetMap)

146



5.4 Classifying Activity States of Small Vertebrates Using Automated VHF Telemetry

Each tRackIT-station consisted of four directional antennas with moderate directivity (HB9CV-

antenna). While this antenna design reduces the reception range to <1000m in hilly and

vegetated terrain, it guarantees overlapping radiation patterns of neighbouring antennas which

was necessary for bearing calculation and subsequent triangulation as described in Gottwald

et al. [80]. However, tracking of positions of tagged individuals is not part of this study. The

towers of the stations had a height of approximately 8m and antennas were oriented north,

east, south, and west. We permanently monitored a frequency range of 150.000-150.300 MHz.

From 2018 to 2020, we used the paur 4.3 software developed by the open-source project

radio-tracking.eu [80] but switched to the tRackIT-operating system
20
in 2021 due to high

amounts of noise and frequent software failures that often went unnoticed [104]. The tRackIT-

system enables live transmission of parameters to assess the health of the stations as well

as transmission, processing and visualisation of VHF-signals. The former greatly reduces

maintenance time and the latter enables tracking of activity, positions and body temperature

in near real time. For a detailed description of the hardware and software, please see Gottwald

et al. [80] and Höchst & Gottwald et al. [104].

The VHF data was filtered by tag frequency +/- 3 kHz and signal duration +/- 5 milliseconds ac-

cording to settings given by the manufacturer. For the data recorded with the radio-tracking.eu

software, we had to visually assess the success of the filtering procedure and in some cases

remove recordings below a station- and frequency-specific threshold in dBW due to high

amounts of electromagnetic noise. In total, we used data from 72 individuals (M. bechsteinii:

NID = 52, NObs = 577,977; N. leisleri: NID =20, NObs = 204,443) monitored for an average of 19

days (according to battery power) to distinguish active from passive states.

5.4.3 A Random Forest Model to Classify Activity States based on VHF Signals

Groundtruth

We used the patterns in the strength of the recorded VHF-signals together with a supervised

ML algorithm to classify the activity of the tagged individuals. Supervised ML requires training

and test data for implementation. We monitored 23 out of the 72 tagged bat individuals (6 N.

leisleri and 17 M. bechsteinii) using a multi-sensor tool [81] to supply the random forest model

with periods of known activity and inactivity.

First, the roost trees of tagged bats were located via manual radio-telemetry between June 9,

2020 and July 26, 2020 and between May 10, 2021 and August 18, 2021. We then set up custom-

made video recorder (‘BatRack’) units to automatically record videos of tagged individuals ([81];

21
). BatRacks consist of a VHF-antenna and an infrared video unit connected to a Raspberry Pi

single board computer. We installed the cameras with a focus on the roost entrance and its

surrounding area (40-m radius), which allowed the motion of tagged individuals to be captured

on the video tracks. The infrared camera unit was automatically triggered by the VHF-signal

of the bat transmitters and started recording if the VHF-signal strength exceeded a threshold

of -60 dBW, i.e., when a tagged bat flew close to the roosting tree and the BatRack system.

20https://github.com/Nature40/tRackIT-OS
21https://nature40.github.io/BatRack/ (vid. 2)

147

https://github.com/Nature40/tRackIT-OS
https://nature40.github.io/BatRack/


5 Bat Monitoring

We manually reviewed the video tracks recorded by BatRack units in conjunction with the

VHF-signal, and classified the observed behavioural sequence into the categories swarming,

passing, entering or emerging from the roost. Sequences that showed swarming, passing or

emerging were classified as active, and the time between entering and emerging from the roost

as inactive. In addition to the sequences recorded on video, we classified periods of time as

active if an individual was recorded in short time intervals on widely separated VHF-receivers

(tRackIT-stations and BatRacks). From the three (2020) to nine (2021) BatRacks set in front

of a total of 30 roosting trees of 6 N. leisleri and 17 M. bechsteinii individuals 5.24, 723 h of

behaviour were recorded. For these periods of known activity type, we assigned a passive or

active label to the VHF-data recorded by one or more of the 15 tRackIT-stations.

Predictor Variables

We calculated 29 predictor variables thought to capture the patterns in the signal strengths over

time by applying rolling windows of ±10 data entries, corresponding to an approximate time

window of 20 s, to each observation of the classified VHF-data recorded by the tRackIT-stations.

We chose the window size to capture the dominant signal strength pattern without smoothing

out even short changes of the activity state. To prevent averaging over longer periods, the

dataset was split into 5 minute bins per station before applying the rolling windows. For each

bin, we selected the receiver with the most data entries, i.e. the best data coverage. We only

evaluated bins with at least 60 observations, i.e. three times the window size. This procedure

ensures that only stations and receivers with relatively good reception are considered for

classification.

To smooth out noise or potentially distracting fluctuations in the signal, we calculated a Hampel

filter, in which data points that differ from the window median by more than three standard

deviations are replaced by the median [94]. We also applied a mean and a max filter on the raw

data of the main receiver whereby the respective data point was replaced with the mean or max

of the rolling window. Next, we calculated the variance, standard deviation, kurtosis, skewness,

and sum of squares for both the raw and the smoothed data, to capture the variability and

shape of the data distribution within the window.

Only one antenna is necessary to classify VHF-signals into active vs. passive states. However,

agreement between receivers of the same station provides additional information and can

improve the reliability of the classification. This is especially likely if the individual is relatively

close to the station (< 400 m in our scenario). When data were available from more than one

receiver at the same station, we calculated the variance of signal strength between the receiver

with the most and the receiver with the second most observations, together with the correlation

coefficient and the covariance of signal strength in a rolling window of ±10 data entries. All

variables are described in Supplement S1.

Training and Test Data

To give equal weight to each class and to avoid overoptimistic accuracy metrics caused by a

comparably well-detected majority class, we balanced the ground truth dataset by randomly

down-sampling the activity class with the most data to the amount of data contained by the
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Setup Active data Passive data Total data points Balanced active Balanced passive

1 receiver 588,880 2,654,873 3,243,753 294,440 294,440

2 receivers 249,796 1,469,674 1,719,470 124,898 124,898

Table 5.8: Characteristics of the test and training data obtained from 723 h of video observation

on 23 tagged individuals.

class with the least data. We then split these balanced data sets into 50% training data and

50% test data for data originating from one receiver. We used the same procedure for data

derived from the signals of two receivers, resulting in two training and two test datasets. From

a total of 3,243,753 VHF-signals, we assigned 249,796 signals to train the two-receiver model

and 588,880 signals to train the one-receiver model 5.8.

Model Tuning

We used a random forest model as our classification method because it tends to outperform

other classifiers, as shown in an extensive comparative study [60]. This model type is also robust

against multicollinearity in predictor variables, especially when used with feature selection

procedures [84], as used in our approach. Since not all variables are equally important to the

model and some may even be misleading, we used 50% of the data recorded by either one or

two receivers to perform a forward feature selection as implemented in the “CAST” package

[162]. This resulted in two random forest models, for data collected by one receiver and two

receivers, respectively.

Groundtruth for Controlled Walks with Human Subjects

We conducted a series of 61 controlled walks with a human volunteer to test the reliability

of the trained models when applied to various activity patterns and tag positions. This was

achieved by moving the VHF transmitters at two different heights, 15 cm above the ground at

the ankle and 4 m above the ground, on a pole, around the tRackIT-stations. We simulated

inactive states standing still and movements on a small spatial scale were simulated by walking

and hopping back and forth over an area of about 1 m2
. We simulated movements at a medium

spatial scale by walking within areas of 40 m2
, and multiple back and forth displacements and

displacements of at least 200 m were used to simulate large-scale movements. We performed

each movement type for 3–10 min at different positions within the north-western part of the

study area, which is characterised by a diverse topography and complete forest coverage 5.24.

We recorded the beginning and end times of each sequences and all signals simultaneously

recorded by one or more of the 15 tRackIT-stations and then manually assigned the known

activity type (active or passive). The human activity dataset consisted of 32,175 data points

(26,133 active, 6,042 inactive).
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Model Validation

We applied the trained random forest models to the 50% of the data withheld for testing to

evaluate their performance in classifying bat activity. The same trained models were applied to

the human activity datasets. In a first step, we calculated the sensitivity
truepositives

truepositives+ f alsenegatives

and specificity
truenegatives

truenegatives+ f alsepositives based on a comparison of the observed data with the ac-

tivity class attributed by the random forest models for both dataset. Additionally, we calculated

the F-score as the harmonic mean of the precision
truepositives

truepositives+ f alsepositives and sensitivity, the

AUC and the Kappa index, which takes the probability distribution of each class into account.

Values vary between 0 and 1 (<0 and <1 for Kappa), with values close to 1 indicating that the

model shows an almost perfect agreement [33, 142].

Results of Model Validation

The trained random forest models performed equally well, with F-scores of at least 0.96 and

sensitivities and specificities no less than 0.95, when applied to the validation data of bats and

the human activity-simulation 5.9. Whether the tag was positioned 15 cm or 4 m above the

ground during the human activity-simulation had no impact on the classification accuracy.

The four activity levels simulated by a human were detected similarly well, with sensitivities

between 0.95 and 0.97.

Comparison to a Threshold-based Approach

We compared the results of the ML-based approach with those of a threshold-based approach

by calculating the difference in the signal strength between successive signals for the test

datasets of bats and humans (for methods and results on the bird data see “transferability to

small diurnal flying vertebrates” section). We applied a threshold of 2.5 dB, which was deemed

appropriate to optimally separate active and passive behaviours in previous studies [210]. In

addition, we used the optimize-function of the R-package stats (R Core Team, 2021) to identify

the value of the signal strength difference that separated the training dataset into active and

passive with the highest accuracy (i.e. 1.08 dB) and applied it to the test datasets. We calculated

the same metrics as described above, except for AUC, which requires probabilities for each

classification.

Regardless of the method used, all F-scores values were < 0.9 (2.5 dB threshold, bats: 0.63,

humans: 0.74; 1.08 dB threshold, bats: 0.74, humans: 0.88) and Kappa values < 0.60 (2.5 dB

threshold, bats: 0.37, humans: 0.3; 1.08dB threshold, bats: 0.46, humans: 0.53), which correspond

to a moderate to fair agreement [142]. These values remain well below those obtained from

our ML models however.
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Dataset n passive n active F1 AUC Sensitivity Specificity Precision Kappa

Bats 1 receiver 294172 294172 0.96 0.99 0.96 0.97 0.97 0.93

Bats 2 receivers 110273 110273 0.98 1.0 0.98 0.98 0.98 0.95

Human activity 6150 26504 0.98 1.0 0.97 0.95 0.99 0.90

Table 5.9: Performance metrics of the test datasets classified by the trained random forest

model

5.4.4 Ecological Case Study: Comparison of Activity Patterns in Two Bat
Species

In the following, we present an ecological case study to highlight the advantages of the

fine-scale classification of activity states at a 1-min rate for two species monitored over four

consecutive years. Both M. bechsteinii and N. leisleri are protected species (Habitats Directive

92/43/EEC) endemic to Eurasian forests but they differ substantially in their foraging habits. N.

leisleri feeds on ephemeral insects that occur in large numbers, but only for short periods at

dusk and dawn [14, 202] while M. bechsteinii partially collects its prey from the vegetation

[47] and is thus generally less dependent on the timing of insect flight activity [202].

We focused on the following questions: 1) Do M. bechsteinii and N. leisleri differ in their overall

probability of activity? 2) Do M. bechsteinii and N. leisleri differ in their timing of activity over

the course of their circadian rhythms? To answer these questions, we compared the timing of

the onset and end of activity periods, the timing of maximum activity and the overall duration

of night-time activity bouts using the data processed with the random forest model.

The data were processed using the corresponding tRackIT R package https://github.com
/Nature40/tRackIT. Example data processing routines with a small dataset

22
can be found

at the package GitHub page
23
.

Statistical Analyses

All analyses were conducted with R v. 4.1.2 [233], using the mgcv package for additive models

(Wood, 2011). Reproducible scripts are available
24
.

We used hierarchical generalised additive models (HGAM) to compare differences in the

overnight activity patterns of M. bechsteinii and N. leisleri. These classes of models can be

applied to estimate non-linear relations between responses while allowing for a variety of

error terms and random effect specifications [186]. In this study, we modelled activity over the

course of the 24-h cycle as follows:

P(activity)i = f (time)i + ζ ID + ζDATE (5.2)

22http://dx.doi.org/10.17192/fdr/104
23https://nature40.github.io/tRackIT/
24https://nature40.github.io/tRackIt_activity_ecological_case_study/
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where the probability of activity for observation i is modelled as a binomial variable (0: inactive,

1: active) as a function of the time of day (centered around sunset to account for seasonal

shifts in daylight). We used a circular cubic spline with 120 equally-spaced knots to constrain

the beginning and end of the 24-h cycle so that they matched. Individual identity and date

were added as random effects to account for individual, seasonal and yearly effects. Given the

volume of data (> 700,000 observations), all models were fitted through the bam() function for

faster model estimation.

Given the short timespan between observations, our models had highly autocorrelated residuals

(ρ > 0.50). While there are no strict guidelines for accounting for autocorrelation with binomial

data in HGAMs, the residual autocorrelation was not influenced by the choice of the error

family specified (gaussian vs. binomial). We therefore set the autocorrelation manually at

a value equal to that of the first lag (ρ = 0.57) using the start_value_rho() from the itsadug

package [246]. Next, we refitted with the estimated autocorrelation value with an AR1 structure.

This procedure successfully accounted for autocorrelation, as evidenced by the decrease in the

median autocorrelation to −0.13 in the refitted model. Visual inspection of the autocorrelation

confirmed that ρ remained < |0.15| at all lags.

We compared the activity patterns of the two species by contrasting the Akaike information

criterion (AIC) values for a model in which species did not vary in their daily activity pat-

terns (Model 0) against one in which the effect of time of day varied between species (Model

1, using the “by = species” argument to specify a time × species interaction). To visualize

the fine-scale difference in activity patterns between M. bechsteinii and N. leisleri, we cal-

culated the difference in spline functions, δ f(time). This more precisely revealed the period

of the day when the two species were most likely to differ in their probability of activity

(negative value: P(activity)Bechstein < P(activity)Leisler, positive value: P(activity)Bechstein >
P(activity)Leisler). We further characterised the activity patterns of the two bat species by

calculating the following metrics based on the predicted values for Model 1:

• Onset and end of activity periods, defined as the first and last time of day when the

probability of activity was larger than chance (i.e. p(activity) > 0.5).

• Time of peak activity, calculated as the time of the day when the probability of activity

was maximal.

• Activity duration, defined as the duration of the activity period during a 24h period

weighted by the average probability of being active (in hours). This metric was calculated

as the area under the curve between the onset and end of the activity period.

Species Comparisons of Circadian Activity

Nyctalus leisleri and M. bechsteinii showed pronounced differences in the shapes of their

activity curves and these species differences were also supported by AIC model selection

(δAIC = 15092, 5.10; 5.25). While both species appeared to synchronise their onset of activity

with sunset, N. leisleri was active an average of 19 min earlier than M. bechsteinii. N. leisleri

also reached peak activity earlier, but its activity markedly declined as soon as M. bechsteinii

became highly active.
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Figure 5.25: Nyctalus leisleri was consistently active sooner than M. bechsteinii, but the latter

species had longer periods of continuous activity. Top panel: the points represent the

activity probability calculated over 1-h intervals, and the solid lines the predicted

values from the best HGAM model. The dashed line indicates the times when

the population was equally likely to be detected as active or passive. Bottom

panel: difference in the activity probability calculated from the best HGAM model.

Positive values indicate a larger activity probability for M. bechsteinii than for N.

leisleri.

The latter species was highly active throughout most of the night, as indicated by a significantly

higher activity duration (area under the curve when p(activity) > 0.5 [95% CI]; M. bechsteinii:

4.70 [4.56; 4.83]; N. leisleri: 3.42 [3.23; 3.62]). However, M. bechsteinii reached the end of its

activity period an average of 12 min sooner than N. leisleri (Table 4).

Transferability of the Models to Diurnal Flying Vertebrates (Birds)

Our previous section shows that the tRackIT-system can provide important insights into

ecological differences between bat species with which the model was trained on. We know

focus on the broader application of this method to other flying vertebrates.
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Table 5.10: Model coefficients (β) and standard errors (SE) and test statistics (z, p) for the linear

portion of the additive models (intercept) along with smoothed parameters for

nonlinear terms (edf: estimated degrees of freedom, chi-squared and p-values).

Model 0 (AIC = 263401.1; R2 = 0.45) Model 1 (AIC = 248309.1; R2 = 0.47)

Linear terms β SE z p Linear terms β SE z p
Intercept -1.74 0.13 -12.98 <2 x 1016 Intercept -1.74 0.13 -13.29 <2 x 1016

Smoothed terms edf df χ2 p % Variance Smoothed terms edf df χ2 p % Variance
time 51.84 118 4061287 <2 x 1016 17.42 time:Leisler 45.82 118 188033 <2 x 1016 8.83

time:Bechstein 47.23 118 3571852 <2 x 1016 22.46

Random effects Random effects

ID 67.07 71 1976322 <2 x 1016 10.18 ID 66.32 71 1824189 <2 x 1016 4.78

DATE 280.26 306 3084452 <2 x 1016 17.44 DATE 282.01 306 2421809 <2 x 1016 10.73

Metric N. leisleri M. bechsteinii

Activity onset (h) 00:12 00:31

Time of peak activity (h) 00:37 01:33

Activity end (h) 07:23 07:11

Peak P(activity) 0.82 [0.80; 0.84] 0.70 [0.75; 0.79]

Activity density 3.42 [3.23; 3.62] 4.70 [4.56; 4.83]

Table 5.11: Activity metrics of N. leisleri and M. bechsteinii. Wake-up and sleep times were

calculated as the first and last time when the probability of activity was > 0.5. All

times are presented as hours since sunset. The time of peak activity represents the

time of day when the probability of activity was maximal. Activity duration was

calculated as the area under the curve between wake-up and sleep times.

To test the reliability of the model on birds, we attached a transmitter to the back of a middle

spotted woodpecker (L. medius), and placed a daylight variant of the BatRack (“BirdRack”) in

front of its nesting tree for 4 consecutive days. The tree was located on a steep and completely

forested slope of a small valley (Fig.2). A typical recorded sequence consisted of flying, hopping

up the stem, and a very short feeding sequence during which the bird remained motionless at

the entrance of its breeding cavity. Since the feeding sequence was usually shorter than three

consecutive VHF-signals ( 2.5 s), we classified all recorded signals within such a sequence as

active. To generate sufficient inactive sequences, 2,200 random data points were sampled from

signals recorded by tRackIT-stations each night between 0:00 h and 2:00 h, while the woodpecker

was presumably asleep, over four consecutive nights. The dataset of the woodpecker, based

on the 75 observed activity sequences, consisted of 17,541 data points (8,741 active, 8,800

inactive).

We applied the two random forest models to all recordings of the tagged woodpecker and

calculated the same performance metrics as for bats and human activity for the sequences of

known activity. We used the entire woodpecker data set as well as the activity classifications of

six additional bird species, each represented by 3 individuals, to assess the transferability of the

model to birds of different size and movement habits. Since there are no actual observations

for the latter and only partial observations for the woodpecker, we visually compared the
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classified activity of the woodpecker to patterns expected for diurnal vertebrates. Then, we

calculated activity probability in relation to the time after sunset for three individuals from

each of six small to medium-sized bird species (Table 5) using methods comparable to those of

the ecological field study for bats.

Performance metrics for the sequences of known activity type of the woodpecker were in line

with those for bats and human activity (F1 = 0.97; AUROC = 1, Sensitivity = 0.95; Specificity

= 1; Precision = 1, Kappa = 0.94). Note that a threshold-based approach also behaved poorly

on this dataset (2.5 dB threshold, F-score = 0.62, Kappa = 0.38; 1.08 threshold, F-score = 0.79,

Kappa = 0.58).

Visual assessment of the active / passive sequences for the woodpecker showed typical patterns

of high activity during the day, starting around sunrise (05:12) and ending around sunset

(21:30; 5.26). The activity probability in relation to time after sunrise of the six additional bird

species also correspond to the expected patterns for diurnal birds 5.26. Even though no actual

observations were available, these patterns suggest a successful classification of the activity of

different bird species.

Figure 5.26: Signal strength [dBW] from a woodpecker tagged over four consecutive days and

nights and the corresponding classification of the bird’s activity into active (N

= 146,962) and passive states (N = 303, 802). b) Probability of activity in relation

to time since sunrise of six bird species calculated from activity classifications of

three individuals per species (see ecological case study for methods). Periods of

high activity are consistent with the diurnal activity patterns expected for these

species.
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The trained models are available
25
. The workflow for model tuning, evaluation and comparison

with a threshold-based approach is available
26
.

5.4.5 Discussion

Using a large dataset consisting of the observed behaviour of tagged bat individuals, we trained

two random forest models to classify novel data from the same species into fundamental

behaviour, and with high precision and high temporal resolution ( 1 sec interval). Our approach

outperformed previous methods based on a threshold-based approach even when using a value

calibrated with a large ground truth dataset. Although not inadequate, the threshold-based

approach had generally lower and more variable performance metrics compared to our ML

model. We also achieved similar precision when applying the ML models to ground truth

data from other species (woodpecker and controlled human walks). The activity probability

estimates of 18 additional bird individuals out of six species also matched expected activity

patterns for diurnal vertebrates. This strongly suggests that our method generalises well and

could be applied to a variety of vertebrates with similar accuracy (e.g. down to a body-mass of

4g with 0.2g transmitters [171]).

The high precision and high temporal resolution of our approach together with the easy

accessibility of the developed methods may open new research avenues on the variations in

the activity patterns among and within species in their response to the environment.

A more in-depth analysis of activity bouts as a function of abiotic factors or the detection of

changes in patterns indicating, for example, breeding has not been conducted here, but such

studies are likely to be feasible. Whether specific behaviours can be recognised (i.e., foraging,

parental care, grooming), as is possible with accelerometers, also remains to be determined. The

fact that the variance in the signal pattern depends less on the intensity of the movement than

on the signal path remains an issue, however. While the amplitude of the measurements from

accelerometers can be directly related to different behaviour classes [123], the amplitude of

stationary recorded VHF-signals also changes due to the distance to the radio tracking station.

The spatial context of the receiving stations as well as the localisation algorithms presented

in Gottwald et al. [80] could provide additional information, such as distance to the station

and direction of movement. However, for localisations, at least two radio-tracking stations

are necessary and the spatial accuracy and reliability of position tracking when operating in

cluttered environments such as forests is still under investigation.

The tRackIT system can currently record up to 90 individuals at a time within the same spatial

context, but technology that allows for higher numbers is under development. Given the

relatively low costs of the transmitters ( 130 €) and tRackIT-stations ( 1,500 €), the monitoring

of an entire community of small vertebrates at high temporal resolution becomes possible with

this system. For instance, a study investigating the activity states of an entire temperate forest

bird community is currently conducted in the Marburg Open Forest. The tRackIT system now

allows activity classification in real-time, which opens several exciting research avenues. For

example, it is now being used to narrow down the time of death of chicks in meadow-breeding

25https://doi.org/10.17192/fdr/79
26https://nature40.github.io/tRackIT_activity_classification_model_tuning_and_evaluati

on/
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birds to subsequently reduce error bars in nest survival models
27
. Personal observations during

the bird-breeding season also showed clear shifts in the frequency and regularity of activity

periods during the transition from the non-breeding to the breeding season (J. Gottwald).

Future applications may also help automatically determine the (species-specific) onset of the

breeding season in songbird communities.

Over the four years of the study, we collected data with two different software designs (radio-

tracking.eu and tRackITOS) that show significant differences in data quality. We also covered

a range of suboptimal recording conditions caused by topography and vegetation, which leads

us to the assumption that the approach presented here is not exclusively applicable to data

recorded with tRackIT-stations. Other open-source systems such as Motus (sensorgnome) [231],

but also commercial systems such as the Lotek SRX/DX series receivers, record comparable

data that may be used with the functionalities and models presented here. However, this was

not tested as part of this study.

27https://www.audi-umweltstiftung.de/umweltstiftung/de/projects/greenovation/telemetry
-technology.html
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5.5 BatRack: An Open-source Multi-sensor Device for Wildlife
Research

5.5.1 Introduction

Many of the important findings and principles of ecology and conservation biology have been

derived from behavioural observations [35], but these are difficult to obtain for small wildlife

[125]. To further close knowledge gaps, the constraint of ecological surveys between grain and

extent must be further resolved. This requires automatic, cost-effective and data-efficient (i.e.

triggered) observation systems that provide comprehensive sensor combinations and enable

automatic observation at the individual level.

Video recordings are often used to observe the behaviour of individuals [27], but for small

species camera traps are effective only over short distances [194]. The observation of bats is

particularly difficult due to their nocturnal lifestyle in often richly structured habitats. Instead,

recordings of echolocation calls are frequently used to monitor the presence/absence of bats

[163]. These acoustic signals, with their comparatively long range [54], can serve as triggers for

visual sensors. The combination of audio and video can additionally support the interpretation

of the data [24].

However, recognizing individuals on images, particularly small and nocturnal species or species

that lack unique visually detectable features, is challenging [198], as is the recognition of

individuals based on acoustic recordings [225]. By contrast, the automatic tracking of bats

using lightweight VHF radio transmitters offers several advantages [80, 124, 231]: (a) VHF

signals can be used as triggers for other sensors and (b) they may support the recognition

of individuals in video sequences based on comparisons of the VHF signal patterns with the

movements observed in the video.

To combine the desirable features of audio and video monitoring, BatRack was developed, a

modular observation system that integrates audio, video and automatic VHF radio tracking

in a single unit. The three recording technologies can be used separately, simultaneously

or in mutual trigger mode, and the corresponding configuration scheduled and switched

automatically. BatRack’s hardware is assembled from off-the-shelf components and its design

and the required software have been published under a GNU GPL 3.0 license.

In the following, BatRack’s hardware and software is presented, the suitability of its audio and

VHF sensors in triggering the camera is evaluated, and the potential of VHF recordings in the

identification of individuals in videos, in a case study of the dawn-swarming behaviour [135]

of Bechstein’s bat Myotis bechsteinii is tested. To date, only a few studies have examined this

behaviour in detail [170]. Using BatRack’s combined sensor approach, new insights based on

individual-related information about the reproductive state and an individual’s decision to

change roost sites during the night can be provided.

Parts of this section have been published in Jannis Gottwald
28
, Patrick Lampe

2
, Jonas Höchst,

Nicolas Friess, Julia Maier, Lea Leister, Betty Neumann, Tobias Richter, Bernd Freisleben, and

28
shared first authorship
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Thomas Nauss. “BatRack: An Open-Source Multi-Sensor Device for Wildlife Research.” In:

Methods in Ecology and Evolution (July 2021), pp. 1867–1874.

5.5.2 Materials and Methods

The BatRack System

BatRack combines a core computation component with three sensor units (audio, video and

VHF) and tailored analysis modules. Scientists and practitioners can easily assemble, configure

and extend the system. Moreover, BatRack is inexpensive ( 650€ without a power supply),

easily repaired using commodity off-the-shelf (COTS) components (Figure 5.27), and uses free

and open source software (FOSS). In addition, it is configurable with respect to the attached

sensors as well as their recording ranges, time-based scheduling and mutual trigger mode. A

detailed description of the hardware and software modules, including product specifications

and blueprints, can be found at the BatRack webpage https://nature40.github.io/Bat
Rack/.

Figure 5.27: Hardware components of BatRack: (a) Raspberry pi mini computer, (b) rtl-sdr

dongle, (c) real time clock or LTE stick (d) 12V to 5V converter with USB power

supply, (e) KY-019 relay, (f) ultrasonic microphone, (g) IR spotlight, (h) Raspberry pi

camera (NoIR or HQ-camera with removed IR filter), (i) omnidirectional antenna,

(j) 12 V battery, (k) solar panel.

For easy deployment, the software comes as a customized Raspberry Pi OS image bundle

called BatRackOS https://github.com/Nature40/BatRackOS/releases/, which was

built using PIMOD [105].

The audio module (Figure 5.28a) is implemented using pyaudio for audio data retrieval and

numpy for further audio processing and bat call detection. The sampling rate depends on
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the hardware (e.g. 384 kHz for Dodotronic Ultramic 384k). The camera analysis module (Fig-

ure 5.28b) uses the RPi Camera Web Interface software https://elinux.org/RPi-Cam-W
eb-Interface, which allows fast shutter speeds, concurrent camera access and automated

exposure settings. Camera recordings are obtained in single image or continuous mode (max

90 frames/s) depending on user-defined settings.

Figure 5.28: Analysis units of BatRack: (a) audio analysis unit (AAU), (b) camera analysis unit

(CAU), (c) VHF analysis unit (VAU).

The VHF analysis module (Figure 5.28c) uses the signal detection algorithm described by

Gottwald et al. [80]. When a new signal is received, its strength and duration are evaluated

such that remote and noisy signals are filtered out. All other signals are classified as active

(i.e. flying) or inactive (i.e. resting; [124]). A bat is inactive if a standard deviation in signal

strength <2 is detected over at least 30 s, and active otherwise (Figure 5.29). If the VHF signals

are used to trigger audio or video recordings, only time periods with active signals are written

to memory, thus saving storage space and reducing the number of recordings that must be

analysed. The operational modes of the analysis modules can be scheduled and configured

individually.

Audio-triggered Video Recordings

The suitability of passive ultrasonic audio observations for triggering video recordings of bats

was tested by placing BatRack in front of a known roost of Bechstein’s bats Myotis bechsteinii

for one night. The use of highly sensitive settings (10 dB, 15 kHz) resulted in the triggering of

video and audio recordings for 2 s approximately every 10 s. Audio recordings were visualized

using BatScope [178] and classified as Bechstein’s bats, other bats or no bats. Video sequences

were manually screened for bats, and the ratio of simultaneous audio and video detections of

bats served as the test variable.

To optimize the trigger parameters for the detection of Bechstein’s bats, the recorded audio

files were postprocessed using the trigger algorithm of the audio analysis unit. All possible
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Figure 5.29: VHF signal patterns in relation to the different modes of behaviour. Swarming

(purple), passive (orange), emerging from roost (green).

combinations in the range of 15–50 kHz for the frequency threshold and 15–50 dB for the

sound-pressure threshold were tested. All audio recordings classified as Bechstein’s bat calls

were treated as true positives; all other bat calls were excluded from the training dataset. The

maximum F1 score, which is the harmonic mean of precision and recall, was used to select the

parameter combination that best minimized false positives while correctly identifying most

true positives.

VHF-triggered Video Recordings and Individual-related Behavioural Patterns

To test the suitability of the VHF recordings in camera control and of the VHF signal strength

in inferring behaviour, three pairs of Bechstein’s bats from the same maternity colony were

captured with mist nets between June and July 2020 and fitted with VHF tags. All females,

except individual h172498, were in the expected reproductive state at the time of capture

(Table 5.12). To monitor the bats, three BatRacks were placed in front of known roosting trees

at a distance of 5–15 m for a total of 30 nights between June and August 2020.

To determine the suitability of VHF receptions in triggering video recordings of tagged individ-

uals, the ratio of expected captures based on VHF patterns to manually screened, actual video
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ID Reproductive state Pair Capture date VHF frequency

h146480 Pregnant Pair1 08.06.2020 150.187

h172494 Pregnant Pair1 08.06.2020 150.128

h172498 Not reproducing Pair2 23.06.2020 150.172

h146482 Lactating Pair2 18.06.2020 150.199

h146486 Postlactating Pair3 15.07.2020 150.199

h146488 Postlactating Pair3 15.07.2020 150.156

Table 5.12: Studied female Bechstein’s bat individuals and their pair assignments

captures of at least one visible bat was used as the test variable. To investigate the potential of

individual measurements to infer behavioural patterns, in this case swarming and emerging, the

VHF data were analysed manually. Swarming was defined as both a signal pattern indicating

an active bat and a signal strength above a threshold of -20 dBW for at least 30 s (Figure 5.29,

purple). This corresponded to the continuously flying of a tagged individual in close proximity

to the sensor unit. Emerging was defined as a resting phase immediately followed by a strong

signal, which in turn dropped off very quickly and did not stabilize immediately (Figure 5.29,

green).

The observed behaviour of the bats was manually labelled as swarming if the recorded video

sequences revealed an individual that moved back and forth in the area of the roost, if the

individual briefly approached the tree, or if it left the roost after a short entry. Exits that were

not directly followed by re-entry or swarming were classified as emerging.

To determine whether the video-captured bats could be identified as the tagged individuals,

the VHF signal patterns and the corresponding movement patterns in the video were compared.

Exemplary VHF data and video frames are shown in Figure 5.30. The full video sequence and

animated VHF data are provided at the BatRack webpage.

Unless otherwise stated, all analyses were performed using R [193].

5.5.3 Results

Audio Trigger Performance

During the test night, 3,317 audio-triggered audio and video recordings with an average length

of 2 s were collected. Bats could be manually identified on 170 video (5.1%) and 663 audio (20%)

recordings. From the latter, 272 recordings (41%) most likely originated from Bechstein’s bats.

For 166 of the 170 (97.6%) videos, a bat call was recorded simultaneously; in 160 cases (94.1%),

the call was classified as that of a Bechstein’s bat.

After all files with calls that could not be assigned to Bechstein’s bats were removed and

files without bat calls retained as true negatives, the remaining 2,929 files were processed to

determine the optimal trigger parameters. The optimal combination of frequency and volume
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Figure 5.30: Identification of a tagged individual. The VHF signal shows strong fluctuations

during swarming (up left and mid). The signal fluctuations decrease significantly

after the bat enters the tree (up right, down left). Shortly after a second individual

enters the tree (down mid), the tagged bat emerges from the tree (down right).

threshold based on the maximum F1 score (0.91) was 15 dB and 38 kHz. With this combination,

235 out of 274 files containing Bechstein’s bat calls (sensitivity = 0.858) were correctly identified;

only 5 out of 2,655 negatives were falsely identified as positives (specificity = 0.998).

VHF Trigger Performance

In total, 205 video recordings were captured that matched the VHF sequences classified as

swarming or emerging. Of these, 130 (63%) were considered to show swarming and 75 (37%)

emerging. Manual screening of the footage revealed one or more bats on 170 of the 205 (83%)

sequences. Swarming was successfully detected in 93% of the sequences in which swarming

was expected (122 out of 130), and emerging in 65% of the sequences (49 out of 75).

From the 170 (91%) video detections of a bat, in 155 the bat could be identified as the tagged

individual with a very high probability, based on comparison of the movement pattern with

the VHF signal strength. Among the 49 emerging and 130 swarming events, this was the case

for 47 (96%) and 108 (83%), respectively.

Individual Behaviour Patterns

Pregnant and postlactating bats (Figure 5.31; pairs one and three) did not show any apparent

differences in their swarming and resting patterns, either between individuals of a pair or

between pairs. All four individuals showed a higher swarming frequency on the night of the

roost change and on the following night. During the latter, repeated swarming sequences and

resting phases at the abandoned tree occurred. The lactating female (Figure 5.31; pair two,

h146482), showed a higher frequency of swarming behaviour and resting periods than observed

in the nonreproducing female (Figure 5.31; pair two).

163



5 Bat Monitoring

Figure 5.31: VHF-signal-derived behavioural patterns of Bechstein’s bat pairs. Blue = inactivity,

green = swarming. Gradations in the respective colour scale indicate the roost used

for resting (Tree A = lighter blue, Tree B = darker blue) or for swarming (Tree A =

lighter green, Tree B = darker green).
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5.5.4 Discussion

A prerequisite for understanding dynamic natural environments as socio-ecological systems is

data collected using highly automated monitoring systems. Recent developments have shown

that the integration of (multiple) sensors and technologies in data acquisition and analysis can

provide deep insights into the ecology of different species [85, 195, 207, 239].

Our case study on the behaviour patterns of Bechstein’s bats illustrates the potential of BatRack.

The observations provide first anecdotal indications of an association of increased swarming

activity with a change of roost (pair one, three) and weening of the pup (pair two). However,

the advantage of information acquired at the individual level comes at the price of having to

tag the animals. Furthermore, the identification of an individual is more difficult if several

tagged individuals with similar levels of activity are recorded simultaneously.

The application possibilities of BatRack are manifold. Observations that were previously only

possible in the laboratory can be obtained in natural habitats. BatRack is best suited for studies

where the observation of bats is linked to a specific and small area (e.g. hibernation roosts,

maternity colonies, specific resource occurrences). The focus here is on the study of social

behaviour between animals or the use of resources. The mobility of BatRack also makes it

possible to complement laboratory studies with field experiments (e.g. changes in resource

availability). Moreover, while behavioural contexts can often be inferred from vocalizations,

reference recordings are missing for many species [234]. This deficiency can be addressed by

BatRack, which can be used to collect visual ground truth of the behavioural significance of

vocalizations. Thus, BatRack is a promising building block to close knowledge gaps regarding

bat behaviour and to develop and evaluate conservation measures.
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5.6 Summary

This chapter presented work on bat monitoring. In particular, the following contributions were

presented:

Bat Call Recognition

We presented a novel self-attention approach for detecting bat echolocation calls and rec-

ognizing bat species in audio spectrograms. It is based on pre-trained data-efficient image

transformer models used as components in a workflow that we developed to process audio

spectrograms of recorded bat echolocation calls. We showed that it outperforms state-of-the-art

CNN-based approaches for bat call detection as well as for bat species recognition on several

publicly available data sets, yielding up to 90.2% average precision for detection and up to

88.7% accuracy for recognition, respectively. Furthermore, we demonstrated that the training

and test set distribution are essential for determining recognition accuracy.

Bat@Edge

We presented a system design based on Bird@Edge, which is described in Section 4.5. The new

hardware had to find its way into the edge computing system to overcome the challenges

of higher sampling rates. Furthermore, the streaming approach of the microphone node is

changed to a file-based approach. Here, a more powerful microphone node can analyze live

audio data and only store and transmit relevant parts to the Bat@Edge Station. This approach
enables live evaluation of multiple Bat@Edge Mics at a single Bat@Edge Station.

tRackIT OS

We presented tRackIT OS, open-source software for reliable VHF radio tracking of small animals

in their wildlife habitat. tRackIT OS is an operating system distribution for tRackIT stations that
receive signals emitted by VHF tags mounted on animals. tRackIT OS encompasses components

for VHF signal processing, system monitoring, configuration management, and user access.

We evaluated and compared tRackIT OS against a previous operating system distribution

(called paur), in an experimental field evaluation carried out in the Marburg Open Forest. Our
experimental results showed that compared to paur, tRackIT OS (a) enables reliable VHF signal

detection for bearing calculation, (b) increases the number of usable signals by 103.3%, (c)

improves the mean bearing calculation error from 38.9° to 23.7°, and (d) introduces only a slight

overhead in power consumption of 2.55% or 0.2 W. tRackIT OS has the potential to substantially
improve the quality of habitat usage studies and/or environmental assessments in the context

of anthropogenic interventions in the environment while massively reducing the time required

for fieldwork.
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Activity State Classification

We presented a method to classify the activity state of an animal equipped with a VHF

transmitter. This approach is written in R and published as open-source software. In the

ecological case study, we demonstrated that our approach enables the detection of even subtle

differences in the timing of activity according to a species’ ecological preferences (differences in

activity onset of < 20 min). Specifically, we were able to show distinct activity patterns for these

two species, characterized by a slight shift in their timing of activity and significantly lower

activity of N.leisleri during the night. Given that these species have evolved to occupy different

ecological niches, these patterns are much more likely due to synchronisation of activity peaks

with prey abundance rather than to an avoidance of competition [200]. Nyctalus leisleri, like

other aerial hawking bats, has likely evolved to exploit insect emergence at dusk and dawn,

thus avoiding the greater predation risk that may occur at higher light levels [202]. By contrast,

M. bechsteinii and other gleaning bats are less constrained to flying insects as a food source

such that an onset of activity comparable to that of N. leisleri would not bring substantial

additional benefit.

Our findings are generally in line with previous observations of the activity patterns of N.

leisleri [200, 214]. No comparable studies exist for M. bechsteinii, but in acoustic studies with

results reported at the genus level all-night activity was determined for Myotis [185]. However,

our study is the first to investigate the overlap of these two species within the same study area.

Our approach also allows to detect changes in activity probability according to the reproductive

status of individuals and indicates that these shifts are species specific.

The scientific insights that can be expected from automatic radio-tracking-based activity

studies have the potential to deepen our understanding of the ecology and behaviour of

small animal species in unprecedented ways [173]. With the recent advances in open-source

automatic radio-tracking [80, 104, 231] together with the trained models and data-processing

functionalities of the tRackIT R-package, the scientific community is now equipped with an

accessible toolset that allows the activity patterns of small animals to be analysed and classified

at high temporal resolution.

BatRack

BatRack offers a highly promising solution for the observation of bats. With its modular COTS

design, BatRack can be readily built and easily maintained, allows individual configurations

and extensions, and enables both flexible scheduling and the combination of measurements.

BatRack yields reliable occurrence information based on audio or VHF recordings. The latter

can be used in the retrieval of basic behavioral information even from a single, non-directional

VHF receiver. Especially for small bat species, the use of either VHF or audio to trigger a

video unit results in more energy- and storage-efficient video capture than allowed by purely

schedule-based recording. A high detection probability and a substantial reduction in false

positives are ensured by applying targeted trigger parameters to the audio unit. Triggering

based on the VHF signal results in an even better performance with bats captured almost all

the time when one of the tagged bats triggered the recording. In our study, valuable video

recordings were obtained even for bats flying up to 15 m away from the sensor.
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6
Software Design of a Bat Monitoring System

In this chapter, the software design of a bat monitoring system with the integration of the

projects of Chapter 4 and Chapter 5 is presented. First, a design principles for a concrete system

are presented, and after that, the design of the system is presented.

First of all, scalability is essential to enable a comprehensive coverage. For this, the components

used (hardware and software) must be available, and the costs to be incurred must be as low

as possible. In addition, the system should be easy to build, configure, and operate to make

nationwide deployment possible in the first place. Another critical point is the accessibility

in the field, which enables the sensor nodes to send status updates and to intervene in a

short time in case of malfunctions. This ability to communicate is the only way to ensure

permanent and closely timed monitoring, since it is possible to react and correct the error or

problem in the event of a malfunction or failure. To guarantee a fast insight into the recorded

data, automatic processing of the monitoring data is necessary. This dependency can also

have the advantage that pre-processing can already be implemented in the field, so only the

results need to be transmitted. Pre-processing the data on the sensor node or an edge device

would drastically reduce the transmitted data volume and should therefore be considered in

the system design, if possible. Since pre-processing steps are often more costly and energy-

intensive in the field, the researcher should not lock a system for ecological monitoring into

these pre-processing steps in the field. In addition, there should be strict interfaces for the

data and the pre-processing routines to remain interchangeable. The processing methods must

also be usable in the backend to achieve the same knowledge if the data reaches the backend

without further pre-processing.

6.1 Design Principles

The following design principles consists of six steps to build a networked wireless sensor system

for bat monitoring.

6.1.1 Using COTS Components to Offer Scalability

To offer scalability, it is necessary to build new sensor nodes with available components. COTS

components are, most of the time, affordable and available. Because of that, using COTS

components is a solid ground for the sensor node design and the design of a scalable networked

wireless sensor system. However, building a robust sensor node surviving and working in
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the field with no stable energy source and self-made protection against the weather is still

challenging. The design principle is to use relevant COTS components for the desired use case,

extract the requirements beforehand, and design the sensor system along the requirements.

6.1.2 Clever Measurements Using Domain Knowledge

Instead of measuring all the time in the same interval, the sensor node can change the interval

length over time. The sensor node can do this without losing information in case the scheduling

is done with the domain knowledge of the researcher. So, the data rates are decreased, and

storing the data is not as space intensive as without a schedule. An additional strategy to save

space and transmission, which the sensor node can use, is to observe the signals from a sensor

and only capture data if the data is relevant. This design principle could lead to more energy

consumption because the sensor that is observed is read out all the time, so the consideration

is between, on the one hand, energy and, on the other hand, storage and bandwidth. This

consideration is especially relevant for all-time running sensors, which are less energy-efficient.

This approach could benefit multi-sensor systems if the triggering sensor consumes less energy

than the other sensors and all other sensors are not read out until a trigger arises.

6.1.3 Data Reduction at the Sensor Node or at the Edge

The sensor node could also reduce the captured data by pre-processing the monitoring data.

This reduction could be a simple compression of the captured data with known compression

algorithms, and for better compression rates, multiple measurements can be compressed and

sent together. Also, for ecological measurements like temperature or humidity data, it could

be beneficial to only store every n-th value and for every other value the offset to this. In

this case, the offset is, in most cases, smaller than the value itself and can be stored in a less

storage-hungry data type, or in case the offset is zero no data has to be stored. For image or

video data, post-processing on the device or the network edge saves most of the storage space

if it is reasonable only to store the result from the post-processing. In the case of image or

video processing by machine learning models, the learned labels have to be stored and they

could require significantly less storage space than the original data.

Moreover, recording images or videos of people without permission to do so in public places

(photo or video sensor nodes) could be legally challenging. Thus, detecting this data and

deleting it could also be an improvement. The end device should reduce this type of data

to delete faces at the nearest location to the collection point, in the best case directly while

recording. For the other parts of data reduction, the execution of the models and algorithms

could take place on the end device or edge. If not enough energy is produced in the field, the

backend can also execute the models for the higher price of transmission bandwidth.

6.1.4 Robust and Timely Data Transmission with Low Overhead

Prompt data transmission is desirable to detect errors, discrepancies, and failures. For this,

the data must be available in the form to be sent to the node with an uplink. To complete
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the sending process, the pre-processing must be completed, and the resulting data must be

transmitted over the network. The time needed for pre-processing stands against prompt data

transmission to the backend but can be, in some cases, compensated or partly compensated

by the lower transmission time. This appraisal depends on the individual case and cannot be

stated in general terms. Furthermore, the data should be transferred with as little overhead

as necessary. Protocols that can be used for transmitting status information, such as MQTT,

are particularly suitable for these requirements. With other widely used methods, such as

REST, the overhead would be much higher, and MQTT also offers the advantage of push-based

processing of the data in the backend as soon as new data reaches the backend.

6.1.5 Automatic Generation of Knowledge from Data

To generate knowledge of the data, metadata is necessary to interpret the arriving data. For

example, the system must know at which location the sensor node collects data and with

which hardware or hardware version this data was collected. Calibration data could also be

a major point to store and use for the processing steps. For this purpose, it must be possible

to record this metadata in a form that is easy to use. This metadata recording also includes

further data on, e.g., bird or bat transmitter; here, it must be noted for evaluation at what time

which transmitter with which frequency was stuck on which animal.

With all this metadata, the system can generate insights in the backend, and the system can

merge data from different types of sensor nodes. This data fusion enables a broader picture of

the situation and generates further insights. The incoming data must be considered as a time

series data stream, and the results must be available again for further procedures.

Here, the temporal component is essential since the proposed system can sort all collected

sensor data using a time stamp since the data become almost worthless without temporal and

spatial information. This procedure also creates a general interface for the data so that other

researchers can add further processing steps here. New processing steps can retrospectively

process data again with these steps.

6.1.6 Visualization of Data and Knowledge

The last part of the system is to visualize the data and findings so that a researcher can quickly

correct failures and recognize connections and correlations in the data. For this purpose, the

system should be based on a time series database and a visualization engine to visualize the

data as time series. Thus, the sensor system uses the time series database as a general interface

for the data. Data storage, processing, and visualization should use the same interface and

data definitions to ensure comparability.

In case of low bandwidth of the uplink node or insufficient data volume, visualization is also

beneficial in case the health data of the sensor nodes are transmitted, and the raw data is stored

on the system. In this case, a researcher can get insights into the sensor node by observing the

health data and collecting data from the sensor node, if necessary. Most of the other benefits

are lost in this case. Still, the scalability could be maintained because the data collection is

the only manual part, and the processing steps are automatically done after the manual data
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collection. So, the system must be able to upload the collected data and initialize the processing

routine.

6.2 Bat Monitoring System
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Figure 6.1: System design of a bat monitoring system

In addition to the publications presented in Chapter 4 and Chapter 5, a concrete implementation

of a bat monitoring system must also build on several other components. Here, the automated

processing and the triggering of the following process steps are essential. In addition, however,

the obtained results must be stored in a meaningful way and made available for further

processing steps. Furthermore, additional information about the technology used must be

stored in a meta-database. And incoming data must be enriched with this metadata to ensure a

correct processing result. In Figure 6.1, a software designwithmost of the presented components

is shown. On the left side, a sensor node collects data and uses all the described design principles

of Section 6.1. In the middle, the collected data is transmitted and stored; on the right side, the

analysis components process the data to generate knowledge.

6.2.1 Database for Metadata of VHF Data

The VHF data is recorded by a so called tRackIT station, i.e., the hardware described by Gottwald

et al. [80] with tRackIT OS as its operating system, as presented in Section 5.3. The database

for metadata is used for later analysis. The data to be stored differs for each sensor node. Using

the example of the tRackIT station, we explain which data must be recorded in order to be able
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to perform processing. To record data in the tRackIT station, bats must be equipped with VHF

transmitters, and the metadata of these transmitters must also be recorded. These are:

• Date of transmitter attachment - Start date from when the transmitter was attached to

the bat and the start date of processing.

• Expected end date of the transmitter - this date can be used to minimize errors and show

the user that this transmitter is overdue for processing

• End date - the time when the transmitter can no longer be used for evaluation, either

because it has been dropped or because it no longer has energy

• Frequency of the transmitter - to assign specific VHF signals to a unique animal, the

incoming signals must be divided according to frequencies.

• Frequency Fluctuation - the expected fluctuation range of the received signals

• Minimum Duration - the minimum length of a signal; signals shorter than this are not

recognized as signals by a transmitter.

• Maximum Duration - the maximum length of a signal analogous to the minimum

• Individual ID - the ID of the individual transmitted by the transmitter

• Components of temperature curve of transmitters - some transmitters are temperature

dependent, and for calculation of temperature components for the equation are needed.

In addition to the data from the transmitters, data from bat individuals must be collected so

that it is straightforward to evaluate which individuals were involved. The metadata stored

includes:

• Species - the type of bat captured and transmitter used to make evaluations between

species or within species.

• Size - the size of the individual must be able to be re-recorded for each capture to map a

change in size over time

• Weight - the weight of the bat, which can also vary over time

• Sex - sex of the bat to record differences between sexes.

• Ring number - this is attached to recognize the bat when it is first captured and should,

therefore, be recorded.

• Age - the age of the animal if known exactly, otherwise if sexed or not.

Furthermore, metadata about a tRackIT station must be recorded. Additional activities can be

performed in this way, for example, calculating triangulation or filtering data. The metadata

stored for a tRackIT station include:

• Lat - Latitude of the station and, in connection with the longitude, the station’s location.

• Lon - Longitude of the station

• Orientation 1-4 - The measured deviation towards 0 degrees north for antennae 1, 2, 3,

and 4
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• Calibration 1-4 - The measured value for the calibration of antenna 1, 2, 3, and 4

With this information, further processing steps can be performed. To collect the data in a

user-friendly way, a user interface for the meta-database is provided, which allows saving and

changing the data. Researcher are given a central location where different people can collect,

modify, and access the data.

6.2.2 Data Flow of tRackIT Data

To enrich the incoming VHF signal of a tRackIT station with metadata for analysis, the signals

recorded by the tRackIT station are transmitted to the backend. In the backend, this data is

matched with the meta-database in the data collector, see Figure 6.2, and assigned to the

incoming signal to a transmitter and thus also to a bat individual. This matching makes it easy

to filter the signals by an individual in all further processing steps and to view the time series

data per individual. Triangulation can then be performed on this data, accessing the metadata

of the stations, explicitly the location of the station and the orientation and calibration values

of the antennas. The interaction provides a centralized way to calibrate the stations and let

this process impact the results. The triangulations are written to the time series database for

further processing and can be retrieved here for further processing or graphical processing in a

defined form.
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Figure 6.2: The data flow of VHF signals in combination with the metadata and data tagging

Furthermore, body temperatures for transmitters with variable transmission times are cal-

culated on this time series data. Here, it is easy to say that if the bat’s body temperature

decreases, the distance between signals becomes longer. If the temperature increases, the dis-

tance between the two signals becomes shorter. These differences allow the body temperature

to be calculated using a transmitter-specific curve, which is also obtained from the database

for metadata. The temperatures are, in turn, written to the time series database, making them

easy to find in a central location and available in a precise data format.

For activity classification, the signals are processed by the individual, and thus further knowl-

edge is created here, which is written to the time series database after processing. Here, the
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apparent accessibility and interface are also considered advantageous and enable defined

access.

The data stored in the time series database can thus be accessed in a defined manner, in a

known format, and displayed in a live visualization. This visualization allows the user to view

the data almost in real-time and to draw conclusions from the data on time. On the other hand,

errors can be detected at an early stage and corrected in the field or remotely.

6.2.3 Data Flow of AMT / BatRack / tRackIT Data
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Figure 6.3: The data flow of the video, audio, image, and VHF data in combination with the

data processing and result store. The tRackIT VHF Data Collector is the same as in

Figure 6.2, and the data passes through this processing chain

In contrast to the live transmitted data of a tRackIT station, the sensor data is transmitted

via SD card for fallback purposes or in case of a poor transmission rate. The state and remote

access to the sensor nodes are unaffected and continue to be performed live and remotely.

In this case, the data is read out manually and uploaded to an online service, e.g., via FTP.

The data then reaches the storage insertion system, which imports the data. As shown in

Figure 6.3, the storage insertion system is accessed by several monitoring systems that monitor

the processing status and trigger processing when new data is received. Here, the data are
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made available to the processes in the network, and the individual processing steps can be

divided on different machines. This availability in the network achieves data parallelism and,

thus, scalability.

The uploaded VHF signals are forwarded to the processing machines as described in the

previous chapter. In contrast, the image, audio, and video data are processed separately. The

process is always divided into a pre-processing step in which relevant parts of the data are

extracted and detailed processing of the areas detected in the previous step.

In the case of the image data, empty images of the AMT are first detected and sorted out. On

the non-empty images, a count of the number of insects present is performed. This two-step

process has the advantage that the detection of empty images is less energy intensive than

counting moths. This two-step process results in a more efficient structure, similar to SmartFace.
The collected results are added to a database and presented to the user.

For video data, the pre-processing in presence and absence is even more critical since the more

considerable the data, the more computationally intensive the processing. Here, the processing

is again triggered with new data, and a two-stage process is initiated. In the end, the results

are also written in a defined form in a database and can be evaluated. Furthermore, the data is

available for further processing and can be merged with other data.

The first step for the audio data on bat calls is to select the bat calls and mark them for further

processing. Similar to SmartFace, the specific configuration of the call detection is essential for

the data quality in the further processing steps. This is true for multi-step processing in general.

Thus, the next step, species recognition, also depends on the quality of the delivered calls. Also,

in this subarea, the results are fed back into the central result database, thus enabling access

to the results.

6.2.4 Data Flow of ForestEdge
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Figure 6.4: The data flow of the ForestEdge data with anomaly detection and live visualization

As described in Chapter 4.4, ForestEdge is deployed in the field and intercepts LoRa messages

and answers messages from the TT+. After the data is captured and simple anomaly detection

for this TT+ is made on the device in the field, the data is transmitted to the backend. At this

point, the data from all TT+ is collected, and an additional anomaly detection for the hole

network is done. With this second layer, research area-wide phenomena could be detected.

Also, the visualization and the storing of the processed result are done in a defined way so that

further processing steps can be applied in the future. With this concept, another sensor can be

added in the same way, and the concept of Unobtrusive Mechanism Interception can also be

applied.
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6.2.5 Data Flow of Bat@Edge and Bird@Edge

The data flow for Bat@Edge and Bird@Edge differ from those described before. Here, data

analysis takes place in the field on an edge computing node. With this, the only data which

should be transmitted is the recognized labels of the machine learning model. This can be seen

in the system design diagram 6.1.

6.3 Summary

This chapter presented six design principles that can help build a networked sensor system

from scratch. After that, the data flow of a concrete implementation of such a networked sensor

system was presented. This part highlights the processing steps as the metadata enriches the

sensor data for further processing. In conclusion, a structure for a networked sensor system

was presented and was filled with life to monitor the behavior of bats in their natural habitat.

The used sensor nodes and parts of the processing were published before and presented in

other chapters of this thesis.
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7
Conclusion

An effective approach to fighting climate change requires extensive and reliable data. This

work provides methods to acquire such data in a cost- and energy-efficient way, especially for

analyzing bat behavior. For other species, the proposed approaches can be adapted. First, a

summary of the given work is presented. Afterwards, we look at possible future research.

7.1 Summary

This thesis presented work on developing networked sensor systems for ecological monitoring.

The particularly challenging environment of a forest was chosen. Problems arising in this

environment were explained. The presented sensor nodes and analysis methods can solve

a majority of these problems. In the following, the specific contributions of this thesis are

presented.

In Chapter 4, novel sensor node designs were presented to monitor the ecosystem surrounding

bats.

EcoSense is a system design built on static and moving nodes to monitor the environment. Here,

the two node types have different requirements, and EcoSense gives hints for using separate
sensor or computing units based on their abilities and power consumption.

An automated moth trap (ATM) was presented with an automatic camera and a light that

takes photos of insects using a predefined schedule. With this data, we can measure how

many insects are present, and we presented a comparative study between the ATM and a

conventional catching method. We showed that trends are the same for the ATM and the

conventional method. In addition, with this method, the ATM can also monitor trends in a

single night without additional effort.

A novel approach and real-world use case was presented with Unobtrusive Mechanism Intercep-
tion and ForestEdge. Here, we added features to a legacy device (TreeTalker) and converted the

TreeTalker to a flexible and responsible sensor node. With this novel approach, many additional

sensor nodes can be integrated, and researchers can add new features.

With Bird@Edge, an edge networking design was shown to process the recorded data at the

edge of the network. This approach is suitable for live evaluation, error handling, and saving

bandwidth in remote areas.
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Finally, a new approach to filtering faces from images with SmartFace was presented, and this

could be used to delete pictures with faces and detect human disturbances in the research

area.

In Chapter 5, novel approaches were presented to get insights into a bat’s life.

First, approaches to perform bat call recognition for European bats to tag recorded audio

automatically were presented.

With the approach of Bird@Edge and a bat call recognition neural network, Bat@Edge was
made possible. Bat@Edge supports the preprocessing of ultrasonic audio files in the field, which

results in fewer transmissions.

We presented tRackIT OS as a solution to the scalable acquisition of a bat position and the

low-maintenance provision of this service.

A classification method for VHF signals into active and passive animals, which is used to get

an insight into activity graphs over the day and night of bats, was presented.

BatRack is a multisensor device that records audio, video, and VHF signals. With this device, it

was possible to get matching data from the different sensors, so labeling VHF data with the

correlating behavior was possible. Also, recording real-world audio with matching videos has

been made possible by this device.

Finally, in Chapter 6, we presented six design principles that can help build a networked sensor

system from scratch. Furthermore, the software design of a bat monitoring system with the

integration of the projects of Chapter 4 and Chapter 5 was presented.

7.2 Future Work

There are several topics for future research.

EcoSense

Future possibilities of direct device-to-device communication via cheap LoRa add-ons for

smartphones should be used more extensively. These add-ons open possibilities for new apps

on mobile devices, such as infrastructure-less messaging or using a phone for sensing and

remote control tasks. Furthermore, the usefulness of DTN software directly on the MCUs based

on miniDTN should be explored. Finally, integrating energy harvesting solutions would also

increase the system’s flexibility when deployed in remote places.
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AMT

Changes in species occurrences throughout the night can also be monitored. Additionally,

the non-lethal nature of the system favors its use in long-term deployments in regions with

species conservation restrictions [50]. Reducing the illumination time per hour would limit

disturbance, in contrast to the light pollution resulting from the continuous operation of light

traps, which might have adverse effects on moths [20, 45] and other animals and thus on their

inventory. Different settings should be tested in further studies to find a reasonable compromise

between a comprehensive assessment of night-flying insect fauna and keeping the light periods

as short as possible. Due to their flexibility in scheduling, AMTs could also be attractive for

studies on the dispersal of moths. In addition to moths, other light-attracted insects, such as

adult caddisflies [226], could be monitored in a similar, non-lethal fashion using AMTs. Finally,

the modularity of the AMT allows for its easy adjustment to specific needs, e.g., the use of

brighter UV LEDs, depending on whether the aim is to compare demarcated locations or obtain

qualitative assessments over a wider area.

Unobtrusive Mechanism Interception and ForestEdge

Our approach requires manual work for each application to identify the system, environment,

mechanisms, and possible interceptors. Providing adequate tools to reduce manual work would

help support our approach’s adoption. Furthermore, apart from adding a single mechanism as

part of an interceptor to enhance a single proprietary component, future work should consider

supporting multiple mechanisms per system and systems per interceptor. Finally, when an

interceptor replaces or modifies an existing mechanism or adds a new mechanism, the old

mechanism is still available, although not used. Transitioning between multiple mechanisms

could add the benefit of using the mechanism that achieves the best results for a given

situation.

Bird@Edge

Self-supervised learning could leverage the vast amount of unlabeled data and improve the

recognition quality of the target domain. Furthermore, continual and federated learning of

machine learning models at the edge are interesting future research topics. Finally, several

Bird@Edge deployments should be tested to identify potential problems in harsh environ-

ments.

SmartFace

There are several areas for future work, such as (a) exploring the use of visual concept detec-

tion algorithms as filters to determine whether humans are present in an image; the most

computation-intensive parts of SmartFace can then be skipped if no persons are present, (b)

improving the runtimes of SmartFace on mobile devices by utilizing multiple CPU cores or

GPUs, and (c) applying SmartFace to non-scenario specific image sets (e.g., LFW or FDDB) for

a general evaluation of our optimizations.
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Bat Call Recognition

First, the detection performance could be improved by considering different call durations

and types of calls, like social calls and feeding buzzes, and using a particular object detection

network architecture. Second, the generalization capabilities of the trained neural network

models should be further investigated by considering, for example, different hardware devices

and recording environments. Finally, the classification of bat behavior and the recognition of

individual bats based on different echolocation calls are exciting research directions in the

future.

Bat@Edge

Bat@Edge could be beneficial for the execution time and the amount of data that can be

processed during a day. Data with a low prediction probability could be cached and loaded

into the backend for retraining to improve CNN’s prediction. For this purpose, an uplink with

sufficient bandwidth would have to be available.

tRackIT OS

Calculating exact bearings can be challenging since signals are affected by factors such as

vegetation, the topology of the surrounding area, humidity, and rainfall. While bearings can

be directly calculated based on a simple model, higher quality can be achieved by using data

from multiple stations and further context information, such as a topology model and/or a

calibration for the specific area of operation. Furthermore, transmitting all detected signals

under the bandwidth limitations of the LoRa protocol is pretty challenging. A coordinated

selection and transmission approach for detected signals should be developed to increase

the efficiency of stations connected via LoRa. Finally, the continuous preparation and further

processing of the collected data is the next primary task in creating a user-friendly and widely

applicable animal tracking system for generating ecological knowledge.

Activity State Classification

The behavior of bats consists of more than active and passive phases. The active phases can

be divided into more classes of activity, for example, hunting, traveling to hunting grounds or

back to the roost, or deciding which roost is the one for the night (swarming). A method with

more than two classes must be developed to detect all of these behaviors automatically.

BatRack

BatRack uses multiple sensors to detect, track and record the behavior of bats. With an

additional thermal camera, the observations can be more precise, and this sensor could also be

a good trigger for the recordings.
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