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ABSTRACT This research proposes an Archive-based Multi-Objective Arithmetic Optimization Algorithm
(MAOA) as an alternative to the recently established Arithmetic Optimization Algorithm (AOA) for
multi-objective problems (MAOA). The original AOA approach was based on the distribution behavior of
vital mathematical arithmetic operators, such as multiplication, division, subtraction, and addition. The idea
of the archive is introduced in MAOA, and it may be used to find non-dominated Pareto optimum solutions.
The proposed method is tested on seven benchmark functions, ten CEC-2020 mathematic functions, and
eight restricted engineering design challenges to determine its suitability for solving real-world engineer-
ing difficulties. The experimental findings are compared to five multi-objective optimization methods
(Multi-Objective Particle SwarmOptimization (MOPSO), Multi-Objective Slap SwarmAlgorithm (MSSA),
Multi-Objective Ant Lion Optimizer (MOALO), Multi-Objective Genetic Algorithm (NSGA2) and Multi-
Objective Grey Wolf Optimizer (MOGWO) reported in the literature using multiple performance measures.
The empirical results show that the proposed MAOA outperforms existing state-of-the-art multi-objective
approaches and has a high convergence rate.

INDEX TERMS Arithmetic optimization algorithm (AOA), archive-based multi-objective arithmetic opti-
mization algorithm (MAOA), multi-objective problems, engineering optimization.

I. INTRODUCTION
Metaheuristics are efficient in solving complex real-world
problems mainly due to their black-box optimization nature
and gradient-free mechanism. Recently, various metaheuris-
tic methods have been proposed: based on natural processes,
collective behavior, or scientific rules, such as Differential
Evolution (DE) [1], Ant Colony Optimization (ACO) [2],
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Particle SwarmOptimization (PSO) [3], Reptile SearchAlgo-
rithm (RSA) [4], Dynamic Arithmetic Optimization Algo-
rithm (DAOA) [5], Transient Search Optimization (TSO)
[6], Dynamic Water Strider Algorithm (DWSA) [7], Aquila
Optimizer (AO) [8], Stochastic Paint Optimizer (SPO) [9]
and Group Teaching Optimization (GTO) [10] algorithm.
Furthermore, several researchers used these algorithms to
solve various problems [11], [12], [13], [14], [15], [16], [17].
These studies show that metaheuristic algorithms can solve
problems with high precision and a reasonable amount of
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time when used to solve complex optimization problems.
Moreover, metaheuristic algorithms have many advantages
over analytical methods, including ease of implementation,
a straightforward structure, good accuracy, and an appropriate
execution time.

Uncertainties in weights, geometry, structural properties,
manufacturing processes, and operating conditions, among
other things, are still present in engineering problems [18].
A deterministic optimization can yield a feasible solution
for problems with poor uncertainties. On the other hand,
deterministic optimization may result in inefficient or incon-
sistent solutions for issues with high uncertainties, raising
the probability of design failure. Several nondeterministic
optimization algorithms have been designed to address this
matter and successfully solve various design problems in real-
world engineering [19], [20], [21].

Since the advent of computing, the field of computer-
aided design has arisen, allowing engineers to use com-
puters to solve engineering problems. Designers will use
a computer to model the dilemma and its variables in the
early stages. As a result, there was no need to create a
prototype and test it on real-world problems. Computer soft-
ware, for example, can make the 3D outline of a car’s
body when simulating wind drag [22]. In this scenario,
the programmers were more concerned with architecture
than simulation. This resulted in a substantial reduction
in the overall expense of the design method and human
interaction.

The vast majority of the real-world optimization problems
are multi-objective by nature [23]. Multi-objective optimiza-
tion is a branch of decision-making that balances various
frequently disputed goals [24]. It has been used in various
research fields, including physics, economics, and logistics,
where optimum choices must be considered in balancing
between two or more competing goals. A single-objective
approach will only represent one part of a multi-objective
problem if used to solve it. A single-objective algorithm,
for example, cannot wholly describe the hydrological mech-
anism and function in optimizing hydrological design vari-
ables [25].

The task of solving one objective function problem is
easy. The optimal solution is the product of such problems,
and the optimization methods are assessed on the nature of
the current solutions using the specified objective functions
[26]. However, many objective functions compete with one
another in multi-objective problems. There is no one-size-
fits-all approach that is optimal for all of them simultane-
ously. Therefore, the decision-makers are searching for the
established alternative instead of the best solution in these
situations. The Pareto solutions are a subset of these types of
solutions. As a result, in multi-objective problems, optimality
is renewed by the method of Pareto optimality. The Pareto
optimal (besides known as effective, non-dominated, or non-
inferior) solutions cannot increase their efficiency in one
objective function without affecting the achievement of at
least one of the others; this is the strategy of dealingwithmore

FIGURE 1. Pareto dominance.

FIGURE 2. Pareto optimal solutions.

than objean ctive function. The Pareto set is the collection of
Pareto optimal solutions [27].

The following is an example of a general multi-objective
optimization problem:

minimize F (x) = ((f1 (x) , f2 (x) , fi (x) , . . . , ft (x))T ,

x ∈ � (1)

where � is the possible decision values, x ∈ Rk is the
decision variable, k is the number of decisions, F : �→ Rm

is a scalar objective function with multidimensional objective
components fi(x), i = 1, 2, . . . , t ≥ 2, and Rm is the objective
range. Thus, F(x) contains t objectives, and the given problem
includes k decisions. The decision range � ⊂ Rk is a linked
and closed area. Moreover, all objective functions are contin-
uous throughout the decision space; thus, a multi-objective
function in any real optimization problem is a continuous
multivariable problem [28].

Most recent algorithms have rules in place to solve
problems with multiple goals. However, the famous
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TABLE 1. Parameters setting of all algorithms.

TABLE 2. Multimodal benchmark functions with fixed-dimension.

No-Free-Lunch (NFL) [29] theorem theoretically proves that
no one best method or algorithm can solve all optimization
problems. This means existing algorithms can be improved

or new ones proposed to help solve particular problems.
However, new algorithms are best suited to unconstrained
problems and cannot handle various constraints without

VOLUME 10, 2022 106675



N. Khodadadi et al.: Archive-Based MAOA for Solving Industrial Engineering Problems

Pseudo-Code of the MAOA Algorithm

Initialize the MAOA parameters
Initialize the soLutions’ positions
Evaluate the fitness function for given soLutions
Obtain the non-dominated answers and create the archive
While (Iteration < Max-Iteration)

Update MOA and MOP with Eqs (10) and (11)
For each soLution

Find Leader
for each position
Create a random number for rl, r2, r3 between [0,1]

if r1>MOA then the exploration step will be active
If r2>0.5

Update the position with the first ruie of Eq (12)
Else

Update the position with the second ruLe of Eq (12)
End if

Else
if r3>M0A then the exploitation Step will be active

If r2>0.5
Update the position with the first ruLe of Eq (13)

Else
Update the position with second ruLe of Eq (13)

End if
End if

End for
End for

Evaluate the objective values for aLL popuLation
Obtain the non-dominated answers
Update the archive according to the found non-dominated answers

If the archive is compLeted
Use the grid mechanism to deLete the current archives
Add the new answer to the archive

Endif
If any of the newLy added answers to the archive is pLaced outside of the hypercubes

Update the grids
End if

End while;
Return Archive

using specific components. The multi-objective variant of
the recently introduced Arithmetic Optimization Algorithm
(AOA) is proposed in this paper to solve both unconstrained
and constrained problems. The mathematical operators in
math sciences became the main inspiration for the con-
ventional AOA. The Archive-based Multi-objective Arith-
metic Optimization Algorithm (MAOA) uses an archive
and leader selection process used in Multi-objective Par-
ticle Swarm Optimization. The experiments are conducted
on several various real-world engineering problems. The
proposed MAOA proved its ability to solve multiple com-
plex problems compared to other state-of-the-art multi-
objective methods. The remainder of the article is laid out as
follows:

Most recent algorithms have rules in place to solve
problems with multiple goals. However, the well-known
No-Free-Lunch (NFL) theorem proves that none of such
algorithms can solve all optimization problems. This means
existing algorithms can be improved or new ones proposed
to help solve particular problems. New algorithms are best
suited to unconstrained problems and cannot handle various
kinds of constraints without the use of specific components.
The multi-objective variant of the recently introduced Arith-
metic Optimization Algorithm (AOA) is proposed in this
paper to solve both unconstrained and constrained problems.
The mathematical operators in math sciences became the
main inspiration for the conventional AOA. The Archive-
based Multi-objective Arithmetic Optimization Algorithm
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TABLE 3. The statistical results of mathematical functions for GD performance metric.

(MAOA) uses an archive and leader selection process used
in Multi-objective Particle Swarm Optimization. The experi-
ments are conducted on several various real-world engineer-
ing problems. The proposedMAOA proved its ability to solve
multiple complex problems compared to other well-known
multi-objective methods. The remainder of the article is laid
out as follows:

Section 2 presents themulti-objective optimization (MOO)
theory. Section 3 introduces Arithmetic Optimization Algo-
rithm and its multi-objective version. Performance metrics
and results of test functions and engineering problems are
discussed in Section 4. Finally, this study is concluded in the
final Section.

II. LITERATURE REVIEW
The Multi-objective Optimization (MOO) theory and current
meta-heuristic techniques are discussed in this Section.

Due to the unary goal and the existence of just one
most satisfactory solution in single-objective problems, the
global optimum in single-objective problems is only one
solution.When only one target is in consideration, comparing
solutions with relational operators is easy. Because of the

characteristics of such problems, evaluating potential solu-
tions and selecting the best one is easy for optimization
problems. Multi-objective evaluation is a branch of multiple
approaches to solving those deal with mathematical program-
ming issues that require the evaluation of numerous objective
functions at the same time.

As a result, research into effective and reliable multi-
objective optimization algorithms is needed. Many inter-
esting experiments have been conducted in multi-objective
optimization to deal with complicated multi-objective non-
linear problems. A novel congestion control method is
proposed for Wireless Sensor Networks in [30]. Congestion
management is conducted by determining the optimum rate
by a simple Poisson method. The current techniques used
to solve this problem have high complications and power
consumption due to retransmission. To address these prob-
lems, the multi-objective optimization technique (PSOGSA)
is used to suggest a congestion control strategy [30]. For
speed optimization and controlling the data arrival rate from
each child node to the parent node. The proposed method
used two main search mechanisms; Particle Swarm Opti-
mization (PSO) and Gravitational Search Algorithm (GSA).
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TABLE 4. The statistical results of mathematical functions for IGD performance metric.

Amulti-objective optimization function considers the energy
of the connection in its fitness value. Priority-dependent
transmission is allowed because the optimization strategy
controls the arrival rate based on priority: available perfor-
mance bandwidth and child node capacity. Adjusting the
speed to the desired value is used to alleviate congestion.
The results of simulations show that the proposed method
outperforms current methods.

Due to its considerable impact on grid security and power
dispatching, researchers have recently paid growing aware-
ness to reliable and consistent wind speed estimation. On the
other hand, most current research has concentrated solely
on improving precision or stability, with only a few studies
covering both problems simultaneously. This job is difficult
due to the intermittency and dynamic variations of wind
speed. This paper proposes an innovative hybrid method
based on the Multi-Objective Whale Optimization Algorithm
[31], called MOWOA, consisting of 4 modules: optimiza-
tion, data preprocessing, forecasting, and assessment. The
suggested MOWOA’s optimization module is used to con-
figure the weights and thresholds of the neural network uti-
lized in the predicted module to achieve high precision and

confidence for wind speed prediction while overcoming the
shortcomings of single-objective algorithms. The findings
show that the proposed MOWOA outperforms the other six-
teen methods.

Cloud computing service arrangements are a complicated
optimization problem for a big company, given many users
and owned services. Sheikholeslami and Navimipour [32]
considered three competing goals: optimizing resources for
consumers and suppliers and identifying the best solution at
the right time. Since the highly efficient converging to the
Pareto front produces a well-distributed collection of non-
dominated solutions, a Crowding Distance is used in the
Multi-Objective Particle Swarm Optimization (MOPSO-CD)
to address the problem. Furthermore, the best-obtained solu-
tion is often determined using the fuzzy set approach. Again,
the suggested method’s efficiency is related to two other
multi-objective algorithms’ performance to demonstrate that
it is powerfully efficient against them. Finally, the experiment
findings revealed that the system increases the speed at which
the services distribution algorithm is executed while also
creating significant income for consumers and suppliers and
increasing resource efficiency.
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TABLE 5. The statistical results of mathematical functions for MS performance metric.

A multi-objective method-based energy-aware, called
EA-MOA, is proposed in [33] to solve a complex prob-
lem (flow shop scheduling) when considering service energy
consumption. Simultaneously, two goals are considered: the
reduction of the makespan and the reduction of energy
demand. First, each solution is expressed by two vectors in the
proposed EA-MOA: the priority vector for machine assign-
ment and the scheduling vector. Second, four different decod-
ing techniques are tested to account for these goals. Third,
to use the origin solutions from the archive of the Pareto
package, two dynamic crossover mechanisms, Single-point
Pareto-based crossover (SPBC) and Two-point Pareto-based
crossover (TPBC), is performed. After that, eight neighbor-
hood search processes and an adaptive neighborhood selec-
tion approach are constructed based on the problem structure.
Besides, a right-shifting protocol is used to reduce the running
time for all devices, thus increasing the specified solution’s
energy consumption target. Finally, the proposed EA-MOA
is analyzed against several well-known benchmark cases.
Finally, the highly successful proposed EA-MOA method
is tested and analyzed with other qualified algorithms by
studying experimental effects.

Mirjalili et al. [34] proposed the Multi-Objective version
of Ant Lion Optimizer (MOALO), which is modeled by
the hunting behavior of antlions and the way ants interact
with them. The non-dominated Pareto optimum answers thus
far are stored in a repository first. In this case, a roulette
wheel mechanism is used to choose the best solutions
from this repository. The roulette wheel chooses the best
multi-objective search areas based on howmany antlions each
solution has. Several standard unconstrained and restricted
test functions demonstrate the method’s effectiveness under
consideration. The approach is also used to solve a number
of multi-objective engineering design problems.

A multi-objective version of the Crystal Structure Algo-
rithm (MOCryStAl) was recently presented by Khodadadi et
al. [35], and it was motivated by the ideas of crystal structure
creation. This algorithm’s three primary mechanisms were
the grid, leader selection, and archive. The efficacy of the
presented method is evaluated using mathematic problems
and real-world engineering design challenges. The findings
suggest that the proposed solutions can produce remarkable
results when applied to the multi-objective challenges under
examination.
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TABLE 6. The statistical results of mathematical functions for S performance metric.

Francis Ysidro et al. [36] compared two solutions to
multi-objective problems in 1881, and Vilfredo Pareto [37]
expanded on this in 1964. The following is multi-objective
optimization (MOO) for minimization problems [38]:

Maximization : F(Ex) = {f1 (Ex) , f2 (Ex) , . . . , f z (Ex)} (2)

Subject to : gi (Ex) ≥ 0 i = 1, 2, . . . ,m (3)

hi (Ex) = 0 i = 1, 2, . . . , p (4)

Li ≤ xi ≤ Ui i = 1, 2, . . . , n (5)

where, the number of variables, inequality and equality con-
straints, objective functions are described as m, p, n and z,
respectively. The boundaries of ith variable are indicated by
Li and Ui.

A. PARETO DOMINANCE
In this part, there are a couple of solutions (i.e., Ex and Ey)
with fitness functions values Ex = (x1, x2, . . . , xk ) and Ey =
(y1, y2, . . . , yk ) that accomplished the given constraints of a
multi-objective problem. The main aim here is to determine
the smallest objective value, the solution Ex is found to dom-
inate Ey(denote as Ex ≺ Ey), if the current values of Ey are not
smaller than the current cost value of Ex, and at least one
component of Ex must be smaller than that of Ey (see Fig. 1).

This definitionmay be expressed numerically as follows [39]:

∀i ∈ {1, 2, . . . , k} : fi (Ex) ≤ fi (Ey) ∧ ∃i ∈ {1, 2, . . . , k} :

fi (Ex) ≤ fi(Ey) (6)

The concept of Pareto optimality, as per this concept of
Pareto domination, is as follows:

B. PARETO OPTIMALITY (PO)
A solution Ex ∈ X is called Pareto-optimal if and only if:

@Ey ∈ X |Ey ≺ Ex (7)

The Pareto optimum is a set of non-dominated solutions to
complex problems that are presented as follows:

C. PARETO OPTIMAL SET (POS)
The Pareto optimum set (Ps) for a given MOO is described as
Eq. (8). This set comprises all viable solutions that cannot be
controlled by anyone else plausible option. The collection of
Pareto optimum solutions is depicted in Fig. 2.

Ps := {Ex, Ey ∈ X |@Ey ≺ Ex} (8)

The following is the definition and description of the Pareto
optimal front:

106680 VOLUME 10, 2022



N. Khodadadi et al.: Archive-Based MAOA for Solving Industrial Engineering Problems

FIGURE 3. True and obtained Pareto front for ZDT benchmarks.

D. PARETO OPTIMAL FRONT (POF)
A Pareto front (Pf ) illustrates the Pareto optimal set
in the objective space as shown in Fig. 2. According
to the above definitions, it can be expressed
as Eq. (9).

As illustrated in Fig. 2, a Pareto front (Pf ) depicts the
Pareto optimum subset in the goal space. It may be stated as
Eq. as per preceding Eq. (9).

Pf = {F(Ex), Ex ∈ Ps} (9)
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FIGURE 4. True and obtained Pareto front for DTLZ2 and DTLZ4.

To solve amulti-objective problem, onemust determine the
Pareto optimal set, a collection of solutions representing the
best equilibrium between goals.

III. MULTI-OBJECTIVE ARITHMETIC OPTIMIZATION
ALGORITHM
In the following Section, the conventional AOA method is
presented first. After that, a novel multi-objective MAOA
is developed and proposed for addressing multi-objective
optimization s.

A. ARITHMETIC OPTIMIZATION ALGORITHM
Based on mathematical formulas and procedures,
Abualigah et al. [40] suggested this approach in 2020. Like

other metaheuristic algorithms, the AOA method starts with
a set of random values. Each iteration determines the objec-
tive value of each solution. Two governing variables in this
method, MOA and MOP, need to be adjusted before updating
the position of solutions:

MOA (t) = min+ t ×
(
Max −Min

T

)
(10)

where t is the latest iteration, T represents the maximum
iterative process, and Max/Min represents the maximum and
lowest values used to bind MOA.

MOP (t) = 1− (
t
T
)
1
α

(11)

where α is a controlling parameter.
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TABLE 7. The statistical results of engineering problems for GD performance metric.

A random number called r1 is created after MOA and
MOP have been updated to shift between exploration and
exploitation. The exploration search processes are used to
find the available solutions and improve them according to
the mathematical of AOA. Additionally, during this improve-
ment stage, the exploration operators (D and M ) were used
to help the exploitation step of the search phase by enhancing
communication between both. The following equation is used
for exploration:

xi,j (t + 1)

=



best
(
xj
)

MOP+ ε
×
(
UBj − LBj

)
× µ+ LBj

if r2 < 0.5
best

(
xj
)
×MOP×

(
UBj − LBj

)
× µ+ LBj

if r2 ≥ 0.5
(12)

where µ is a parameter, ε is a small number, and r2 is
a random value. Best(xj) is the best jth value in the best-
obtained solution so far.UBj and LBj are the lower and upper
boundaries of the underlying problem.

The exploitation search processes of the AOA are used to
search for a new solution according to the available candidate
solutions. AOA’s exploitation techniques (S and A) investi-
gate the search area carefully in many dense places and use a
two-pronged approach to find a better solution. The following
equation is utilized for the exploitation process:

xi,j (t + 1)

=


best

(
xj
)
−MOP×

(
UBj − LBj

)
× µ+ LBj

if r3 < 0.5
best

(
xj
)
+MOP×

(
UBj − LBj

)
× µ+ LBj

if r3 ≥ 0.5
(13)

B. ARCHIVE-BASED MULTI-OBJECTIVE ARITHMETIC
OPTIMIZATION ALGORITHM (MAOA)
In order to execute multi-objective optimization, AOA has
received two further upgrades. The functions utilized are
identical to those in MOPSO [41]. The first is an archive con-
taining all of the non-dominated Pareto optimum solutions
thus far. The following function is the leader selection feature,
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TABLE 8. The statistical results of engineering problems for IGD performance metric.

which aids in selecting the best available place solutions from
the repository as the search process’s leaders.

The archive is a simple storing mechanism for non-
dominated Pareto optimum solutions produced up to this
point. Because it controls the archivewhen a solution ismeant
to be archived or when the archive is complete, an archive
controller is a vital component. Consider that only a tiny num-
ber of people can contribute to the archive. Non-dominated
solutions produced up to this point are compared against the
existing archive during the training process of an iteration.
Three different situations might happen:

• The search agents trade details about the search space,
rapidly moving toward the genuine Pareto optimal front.

• Multi-objective strategies aid in obtaining a single run
that approximates the whole genuine Pareto optimal
front.

• Keeping a problem’s multi-objective solution allows
for problem investigation across various design require-
ments and operational environments.

The likelihood of removing an answer increases directly
to the number of responses in the hypercube (Section). If the
archive is complete, one of themost densely inhabited areas is
chosen for elimination solutions first. In order to create room

for the new solution, a solution is randomly eliminated from
one of them.When a solution is found outside the hypercubes,
a unique scenario arises. As a result, different alternative
solutions’ components can be modified.

According to the second feature, the leader selection func-
tion in MAOA, the best answers obtained thus far are used as
the best position. This function leads the other search agents
to exciting parts of the search space to find a solution close to
the global optimum. However, because of the Pareto optimal-
ity ideas discussed in the preceding subsection, the answers
in a multi-objective search space cannot be quickly com-
pared. The leader selection function was created to address
this problem. As previously mentioned, there is a repository
of the best non-dominated answers gathered thus far. The
leader selection part selects the least-crowded sections of the
search space and supplies among its non-dominated answers.
For each hypercube, a roulette-wheel method determines the
hypercube with the following probability:

Pi =
C
Ni

(14)

In this part, a constant integer greater than one is the num-
ber of acquired Pareto optimum responses. Eq. (14) shows
that hypercubes with a lower population are more likely to

106684 VOLUME 10, 2022



N. Khodadadi et al.: Archive-Based MAOA for Solving Industrial Engineering Problems

TABLE 9. The statistical results of engineering problems for MS performance metric.

recommend new leaders. The probability of selecting a hyper-
cube from which to select leaders grows as the hypercube’s
range of discovered solutions decreases.

The MAOA algorithm gets its convergence from the AOA
algorithm. Suppose we pick one of the archiving solutions.
In that case, the AOA algorithm will almost surely be able
to improve on its already great consistency. On the other
hand, finding the Pareto optimum responses created a huge
variety. This issue was solved by combining the leader func-
tion collection with archive maintenance. Regarding compu-
tational complexity, when n is the population’s total number
of individuals and m is the total number of objectives, the
computing complexity of MAOA is O(mn2). The computa-
tional complexity is superior to techniques that have O(mn3)
complexity. We employed the leader function collection and
archive maintenance to solve this problem. After all, the
pseudo-code for MAOA is as follows:

All of the AOA capability is acquired by the MAOA algo-
rithm, suggesting that search agents can explore and utilize
the search space similarly. The primary distinction is that
AOAmulti-objective preserves non-dominated services in an
external database and executes searches based on a group of
archive members.

IV. RESULTS AND DISCUSSION
Performancemeasurements and case studies, which comprise
unconstrained and constrained bi- and tri-objective mathe-
matics and real-world engineering design problems, are used
to assess the efficacy of the suggested technique in this
Section. Multi-objective optimizers must tackle non-convex
and non-linear problems, among other characteristics, to be
tested by these challenges andmathematical calculations. The
algorithm was written in

MATLAB 2021a. The computer’s features are configured
as follows: The CPU on a Macintosh computer is 2.3 GHz
(an Intel Core i9 computing platform), with 16 GB 2400MHz
DDR4 RAM (MacOS Monterey).

A. PERFORMANCE METRICS
To evaluate the algorithms’ results, the following four metrics
are used [42], [43]:

1) GENERATIONAL DISTANCE (GD)
The total of the distances between solution candidates pro-
duced using several approaches is an intelligent indicator for
analyzing the convergence characteristics of meta-heuristic
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TABLE 10. The statistical results of engineering problems for S performance metric.

algorithms with multiple objectives.

GD =

(
1
npf

npf∑
i=1

dis2i

) 1
2

(15)

2) SPACING (S)
A measure to show how far candidates are from each other
when compared to different sets of results achieved by mul-
tiple algorithms.

S =

(
1
npf

npf∑
i=1

(di − d̄)
2

) 1
2

Where d̄ =
1
npf

npf∑
i=1

di (16)

3) MAXIMUM SPREAD (MS)
It depicts the distribution of candidates among other obtained
sets by considering the various optimal choices.

MS=

 1
m

m∑
i=1

[
min

(
f maxi ,Fmaxi

)
−max(f mini ,Fmini )

Fmaxi − Fmini

]2 1
2

(17)

4) INVERTED GENERATIONAL DISTANCE (IGD)
Multiple objective optimization techniques can be used to
accurately estimate the performance of Pareto front approxi-
mations by this measure [44].

IGD =

√∑n
i=1 d

2
i

n
(18)

Wilcoxon’s Rank-Sum Test (WRT): In order to evaluate
whether two or more datasets are from the same dispersed
population, Wilcoxon’s rank-sum test is a non-parametric
statistical test with a 5% significance level. The performance
of the algorithm is thoroughly assessed using the Wilcoxon
rank-sum test. According to the null hypothesis, the two algo-
rithms have no difference in performance because their mean
metrics are identical. According to the alternative hypothesis,
the mean metrics obtained by the two examined algorithms
are different. The symbols ‘‘−,’’ ‘‘+,’’ and ‘‘=’’ are used to
compare the algorithms suggested in this article to other algo-
rithms. The algorithm performs poorly, substantially better
than that, and there is no visible difference between the two.

The IGD and GD performance measures quantify the
convergence, and the S and MS measure the coverage of
Pareto optimum solutions predicted by the algorithms. The
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FIGURE 5. True and obtained Pareto front for engineering design problems (BNH, CONSTR, DISK BRAKE and 4-BAR TRUSS).

Wilcoxon rank-sum test was used to assess algorithm per-
formance based on the mean value, and it successfully illus-
trated the algorithm’s high degree of competitiveness and
effectiveness.

B. EXPERIMENTAL SETUP
The MOPSO [41], MSSA [45], MOALO [34], NSGA2 [46]
and MOGWO [47] are compared to MAOA in this Section,
and the best figure of a set of Pareto optimal is shown.
Table 1 summarizes all of the listed algorithms’ initial param-
eters. It is worth noting that 100 populations and a max-
imum of 1000 iterations were used for each experiment.

This Section tests the efficiency of the proposed algorithm
on twenty-five experiments, including seven unconstrained,
constrained functions, eight engineering design problems,
and ten CEC-2020 mathematic functions.

The proposed MAOA’s efficiency is evaluated using ZDT,
DTLZ, and eight multi-objective engineering design prob-
lems. Each of the five evaluation problems in the ZDT bench-
mark has two goals as shown in Table 2. DTLZ comprises
two test problems with three goals and twelve variables for
each function, as shown in Table 2. Engineering design prob-
lems contain eight multi-objective optimization problems;
each problem has several variables given in Appendix A.
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FIGURE 6. True and obtained Pareto front for engineering design problems (WELDED BEAM, OSY, SPEED REDUCER and SRN).

These benchmarks include the most recent and complex test
functions: convex, non-convex, and disconnected Pareto ideal
forms.

C. DISCUSSION OF THE MATHEMATICAL TEST FUNCTIONS
Table 3 shows the statistical results of mathematical functions
(i.e., ZDT and DTLZ) for the generational distance perfor-
mance metric. It is clear that the proposed MAOA has better
results compared to other comparative methods (MOPSO,
MSSA, and MOALO). The proposed MAOA acquired the
most excellent results in four out of seven test cases (i.e.,
ZDT1, ZDT2, ZDT4, and ZDT6), followed by MOPSO,

which brought the best results in three out of seven test
cases (i.e., ZDT3, DTLZ2, and DTLZ4). Thus, the results
illustrated the ability of the proposed MAOA to solve com-
plex mathematical multi-objective optimization problems.
It acquired excellent results in most problems tested with low
SD values.

Table 4 shows the statistical results of mathematical
functions (i.e., ZDT and DTLZ) for the inverted genera-
tional distance performance metric. The proposed MAOA
has better results than other comparative methods (MOPSO,
MSSA, and MOALO). The proposed MAOA acquired the
most excellent results in five out of seven test cases (i.e.,
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TABLE 11. The statistical results of the CEC 2020 problems for performance metric GD.

ZDT1-ZDT6), followed by MOPSO, which provided the
best results in two out of seven test cases (i.e., DTLZ2 and
DTLZ4). Thus, the results illustrated the ability of the pro-
posedMAOA to solve complex mathematical multi-objective
optimization problems. The proposed MAOA produced the
best results in most problems tested with low SD values. The
other comparative methods (i.e., MSSA and MOALO) did
not obtain any best results regarding the inverted generational
distance performance metric.

Table 5 shows the statistical results of mathematical func-
tions (i.e., ZDT and DTLZ) for the maximum spread perfor-
mance metric. The proposed MAOA has better results than
other comparative methods (MOPSO, MSSA, and MOALO)
in almost all the tested cases. The proposed MAOA acquired
the most excellent results in seven out of seven test cases (i.e.,
ZDT1-ZDT6, DTLZ2, and DTLZ4). The proposed MAOA
produced the best results in most problems tested with low
SD values, except ZDT3 and DTLZ2. The other comparative
methods (i.e., MOPSO, MSSA, and MOALO) did not obtain
any best results regarding the maximum spread performance
metric.

Table 6 shows the statistical results of mathematical func-
tions (i.e., ZDT and DTLZ) for the spacing performance
metric. The proposed MAOA has better results than other
comparative methods (MOPSO, MSSA, and MOALO). The
proposed MAOA acquired the most excellent results in three
out of seven test cases (i.e., ZDT2, ZDT3, and ZDT6), fol-
lowed by MSSA, which acquired the most excellent results
in three out of seven test cases (i.e., ZDT4, DTLZ2, and
DTLZ4), and MOALO acquired the most excellent results in
one out of seven test cases (i.e., ZDT1). Thus, the results illus-
trated the proposed MAOA’s ability to solve complex mathe-
matical multi-objective optimization problems. The proposed
MAOA produced the best results in most problems tested
with low SD values, except ZDT1, DTLZ2, and DTLZ4.
The MOPSO does not obtain any best results regarding the
spacing performance metric.

Figs. 3 and 4 show the true and obtained Pareto front for
ZDT and DTLZ benchmark problems for all the comparative
methods. The Pareto front results of the proposed MAOA
and other comparative methods are seen in this figure, with
MAOA achieving greater convergence and coverage than
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TABLE 12. The statistical results of the CEC 2020 problems for performance metric IGD.

the different comparative algorithms. Furthermore, MAOA’s
solutions are widely spread around the entire Pareto front.
WhereMSSA gives a non-uniform distribution of solutions at
the curve’s ends, the proposed MAOA algorithm is superior.
MAOA generated more convergent and widely spread solu-
tions on the real Pareto optimal. Other comparative methods
could not cover any of the true Pareto optimal solutions for
these functions, but they could cover one end of the true
Pareto. Simultaneously, it crashes on the other end. Based on
the Wilcoxon rank sum test findings shown in Tables 3 to 6,
it is clear that the MAOA is significantly more efficient than
the other methods.

D. DISCUSSION OF THE ENGINEERING PROBLEMS
In this Section, the proposed MAOA method is employed
to solve several different multi-objective engineering design
problems and compared with other well-known multi-
objective methods.

Table 7 shows the statistical results of the tested engi-
neering problems for the generational distance performance
metric. The proposed MAOA got promising results for all
the tested problems. MAOA acquired the most excellent
results for four out of eight tested problems: CONSTR, DISK

BRAKE, WELDED BEAM, and SPEED REDUCER prob-
lems. Followed by MOPSO, which acquired the most excel-
lent results on two out of eight test problems (i.e., BNH and
4-BAR TRUSS), and MOALO acquired the most excellent
results on two out of eight test problems (i.e., OSY and SRN).
Moreover, the proposed MAOA got stable results according
to the SD measure, which reflects the ability of the proposed
MAOA over several runs. We conclude from the obtained
results that the proposed MAOA method has achieved stim-
ulating results and has a high and balanced capacity to solve
complex engineering problems with multiple objectives.

Table 8 presents the statistical results of the tested engi-
neering problems for the inverted generational distance per-
formance metric. The proposed MAOA produced encourag-
ing results for all the tested problems. MAOA acquired the
best results for five out of eight tested problems: BNH, DISK
BRAKE, 4-BAR TRUSS, OSY, and SPEED REDUCER.
Followed byMOPSO, it obtained the best results on three out
of eight test problems (i.e., CONSTR,WELDEDBEAM, and
SRN). Besides, the proposed MAOA got well-built results
according to the SD measure, which reflects the ability of
the proposed MAOA over various runs. From these results,
we concluded that the proposed MAOA method has reached
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TABLE 13. The statistical results of the CEC 2020 problems for performance metric MS.

exciting developments and has a high and stable capability
to tackle complex engineering problems with multi-objective
functions.

Table 9 shows the results of the tested industrial engineer-
ing problems for the maximum spread performance metric.
The proposed MAOA got better outcomes for all the tested
problems compared to other comparative methods. MAOA
acquired the most excellent results on seven out of eight
tested problems. Followed by MOPSO, it acquired the most
excellent results on two out of eight test problems (i.e., BNH
and CONSTR).

Table 10 shows the statistical results of the tested engi-
neering problems for the spacing performance metric. The
proposed MAOA got better results for all the tested prob-
lems compared to other multi-objective methods. MAOA
acquired the most excellent results on three out of eight tested
problems: BNH, CONSTR, and DISK BRAKE problems.
Followed by MOALO, it acquired the most excellent results
on two out of eight test problems (i.e., 4-BAR TRUSS and
SRN), MSSA acquired the most excellent results on two out
of eight test problems (i.e., WELDED BEAM and SPEED
REDUCER), and finally, MOPSO acquired the most excel-
lent results on one out of eight test problems (i.e., OSY).

Moreover, the proposed MAOA got stable results accord-
ing to the SD measure, which reflects the ability of the
proposed MAOA over several runs. Finally, the proposed
MAOAmethod has proven its effectiveness in solving various
complex engineering problems.

Figs. 5 and 6 show the true and obtained Pareto front
for eight engineering design problems (i.e., BNH, DISK
BRAKE, 4-BAR TRUSS, WELDED BEAM, OSY, SPEED
REDUCER, SRN, and CONSTR) using all the comparative
methods. The achieved Pareto front results of the proposed
MAOA method and other comparative methods are viewed
in this figure, with MAOA achieving greater convergence
and coverage than the different comparative methods. The
proposed MAOA Pareto solutions are very similar to Pareto
solutions to engineering design problems, as shown in this
figure. TheMAOAgives better results for almost all the tested
engineering problems.

Figs. 5 and 6 show the true and obtained Pareto front
for eight engineering design problems (i.e., BNH, DISK
BRAKE, 4-BAR TRUSS, WELDED BEAM, OSY, SPEED
REDUCER, SRN, and CONSTR) using all the comparative
methods. The achieved Pareto front results of the proposed
MAOA method, and other comparative methods are viewed
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TABLE 14. The statistical results of the CEC 2020 problems for performance metric S.

in this figure, with MAOA achieving greater convergence
and coverage than the different comparative methods. The
proposed MAOA Pareto solutions are very similar to Pareto
solutions to engineering design problems, as shown in this
figure. TheMAOAgives better results for almost all the tested
engineering problems. The findings of the Wilcoxon rank
sum test, which are provided in Tables 7 to 10, make it abun-
dantly clear that the MAOA is a strategy that is significantly
more successful than the other methods.

E. DISCUSSION OF THE CEC-2020 MMO TEST PROBLEMS
In this Section, the capability of the proposed multi-objective
strategy, known as MAOA, to address a wide variety of
issues related to CEC-2020 will be tested. The functions of
the MMO test, including all of their specifics, are described
in [48].

Tables 11-14 show the obtained results for all the compar-
ative methods in various evaluation measures. The average,
standard deviation and Wilcoxon signed-rank test sign are
calculated for each measure to explain the results clearly.

Table 11 presents the results of GD for the comparative
methods. The proposed MAOA got the best results in most
of the tested cases (i.e., MMF1, MMF4, MMF5, MMF11,

MMF12, and MMF13). The performance of the proposed
method is promising compared to the comparative methods
like MOPSO, MSSA, MOALO, NSGA2, and MOGWO.
According to the Wilcoxon signed-rank test, the proposed
MAOA almost overcame all the comparative methods.

Table 12 presents the results of IGD for the compara-
tive methods. The proposed MAOA obtained the best out-
comes in most of the tested cases (i.e., MMF4, MMF5,
MMF11, MMF12, and MMF13). The performance of the
proposed MAOA method is good compared to the compar-
ative methods like MOPSO, MSSA, MOALO, NSGA2, and
MOGWO. According to the Wilcoxon signed-rank test, the
proposed MAOA almost overcame all the comparative meth-
ods. For example, the proposedMAOA overwhelmsMOPSO
in 8 cases, MSSA in 10 cases, MOALO in 10 cases, NSGA2
in 8 cases, and MOGWO in 9 cases.

Table 13 presents the results of MS for the compara-
tive methods. The proposed MAOA got the best results
in most of the tested cases (i.e., MMF1, MMF4, MMF11,
MMF12, and MMF13). The performance of the proposed
MAOA method is sound likened to comparative methods
like MOPSO, MSSA, MOALO, NSGA2, and MOGWO. The
proposed MAOA almost overwhelmed all the comparative
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FIGURE 7. True and obtained Pareto fronts for the CEC 2020 problems (M1-M5).

methods in the Wilcoxon signed-rank test. For example, the
proposed MAOA overwhelms MOPSO in 9 cases, MSSA
in 10 cases, MOALO in 9 cases, NSGA2 in 9 cases, and
MOGWO in 8 cases.

Table 14 shows the results in terms of the S measure
for the comparative methods. The proposed MAOA got the
best results in most of the tested cases (i.e., MMF1, MMF4,
MMF5, MMF11, MMF12, and MMF13). The performance
of the proposed MAOA method is sound likened to com-
parative methods like MOPSO, MSSA, MOALO, NSGA2,

andMOGWO. The proposedMAOA almost overwhelmed all
the comparative methods in the Wilcoxon signed-rank test.
For example, the proposed MAOA overwhelms MOPSO in
7 cases, MSSA in 10 cases, MOALO in 10 cases, NSGA2 in
9 cases, and MOGWO in 10 cases. From the given results,
we concluded that the performance of the proposed MOAOA
is excellent, and it can get better results compared to other
similar methods in solving various multi-objective problems.

Figures 7 and 8 show the true and obtained Pareto fronts
for the CEC 2020 problems (M1-M5) and the true and
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FIGURE 8. True and obtained Pareto fronts for the CEC 2020 problems (M6-M10).

obtained Pareto fronts for the CEC 2020 problems (M6-
M13), respectively. These figures show that the obtained
results by the proposed MAOA are closer to the optimal
solution and got almost the best results compared to sim-
ilar methods. Moreover, the performance of the proposed
MOAO is promising according to the presented curves in
Figures 7 and 8.

V. CONCLUSION
In order to assist decision-makers, the field of multi-
objective optimization provides solutions for a variety of
complex problems with many conflicting objectives. The
previously developed Arithmetic Optimization Algorithm
(AOA) was modified to create the Archive-based Multi-
objective Arithmetic Optimization Algorithm (MAOA) in
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order to address different multi-objective issues. The sug-
gested MAOA is based on the distribution behavior of the
most common mathematical arithmetic operators, such as
multiplication, division, subtraction, and addition. In MAOA,
non-dominated Pareto optimal solutions are discovered using
an archived concept. To determine whether the suggested
MAOA approach can be used to address actual engineer-
ing challenges, it is tested on eight constrained engineering
design problems and seven benchmark test functions. Its per-
formance is compared to those of the five well-known multi-
objective techniques MOPSO, MSSA, MOALO, NSGA2
and MOGWO. Several metrics, including Generational Dis-
tance (GD), Inverted Generational Distance (IGD), Maxi-
mum Spread (MS), and Spacing (S), are used to assess the
results. The experimental study demonstrated the superior
performance and high degree of convergence of the proposed
MAOA technique compared to other existing algorithms.
The MAOA gives the best outcomes in terms of computing
costs when compared to other existing competing algorithms,
according to a number of experimental studies in this respect.
The binary version of the MAOA method will be devel-
oped for use in upcoming studies to address a variety of
challenging, intricate real-world problems in various fields.
Additionally, the future contribution of the suggested method
can be seen in its many-objective form.

APPENDIX A CONSTRAINED MULTI-OBJECTIVE TEST
PROBLEMS USED IN THIS PAPER
This issue [49] contains two constraints and two design vari-
ables with a convex Pareto front.

Minimize : f1 (x) = x1 (A.1)

Minimize : f2 (x) = (1+ x2)/x1 (A.2)

where : g1 (x) = 6− (x2 + 9x1) (A.3)

g2 (x) = 1+ (x2 − 9x1) (A.4)

0.1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 5

A. SRN
Srinivas and Deb [50] proposed the following continuous
Pareto optimum front for the following issue:

Minimize : f1(x) = 2+ (x1 − 2)2 + (x2 − 1)2 (A.5)

Minimize f2(x) = 9x1(x2 − 1)2 (A.6)

where : g1(x) = x21 + x
2
2 − 255 (A.7)

g2 (x) = x1 − 3x2 + 10 (A.8)

− 20 ≤ x1 ≤ 20, −20 ≤ x2 ≤ 20

B. BNH
Binh and Korn [51] provided this example for the first time
as follows:

Minimize : f1(x) = 4x21 + 4x22 (A.9)

Minimize : f2(x) = (x1 − 5)2 + (x2 − 5)2 (A.10)

where : g1(x) = (x1 − 5)2 + x22 − 25 (A.11)

g2(x) = 7.7− (x1 − 8)2 − (x2 + 3)2 (A.12)

0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3

C. OSY
It was suggested by Osyczka and Kundu [52] that there
should be five separate regions. In addition, the following
six restrictions and six design variables should be taken into
account:

Minimize: f1(x) = x21 + x
2
2 + x

2
3 + x

2
4 + x

2
5 + x

2
6

(A.13)

Minimize : f2 (x) = [25(x1 − 2)2 + (x2 − 1)2

+ (x3 − 1)2(x4 − 4)2 + (x5 − 1)2]

(A.14)

Where: g1 (x) = 2− x1 − x2 (A.15)

g2(x) = −6+ x1 + x2 (A.16)

g3(x) = −2− x1 + x2 (A.17)

g4(x) = −2+ x1 − 3x2 (A.18)

g5(x) = −4+ x4 + (x3 − 3)2 (A.19)

g6(x) = 4− x6 − (x5 − 3)3 (A.20)

0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10, 1 ≤ x3 ≤ 5

(A.21)

0 ≤ x4 ≤ 6, 1 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10

APPENDIX B CONSTRAINED MULTI-OBJECTIVE
ENGINEERING PROBLEMS USED IN THIS PAPER
A. THE FOUR-BAR TRUSS DESIGN PROBLEM
In this 4-bar truss issue [53], there are two objectives as struc-
tural volume (f1) and displacement (f2), which are considered
to be minimized. This issue has four design variables (x1−x4)
according to the cross-sectional area of members 1, 2, 3,
and 4. This problem may be mathematically formularized as
below:

Minimize : f1 (x) = 200× (2× x (1))+ sqrt (2× x (2))

+ sqrt (x (3))+ x (4)) (B.1)

Minimize : f2(x) = 0.01×
(

2
x(1)

)
+

(
2× sqrt(2)

x(2)

)
− ((2× sqrt(2))/x(3))+ (2/x(1))) (B.2)

1 ≤ x1 ≤ 3, 1.4142 ≤ x2 ≤ 3

1.4142 ≤ x3 ≤ 3, 1 ≤ x4 ≤ 3

B. THE WELDED BEAM DESIGN PROBLEM
Ray and Liew [54] first offered this welded beam issue with
two objectives, namely the fabrication cost (f1) and beam
deflection (f2), which is to be reduced and four constraints.
This issue has four numbers of variables, named weld thick-
ness (x1), clamped bar length (x2), bar height (x3), and bar
thickness (x4) as follows:

Minimize : f1 (x) = 1.10471× x(1)2 × x (2)+ 0.04811
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× x(3)× x(4)× (14+ x (2)) (B.3)

Minimize : f2 (x) = 65856000/(30× 106 × x(4)

× x (3)3) (B.4)

where : g1 (x) = τ − 13600 (B.5)

g2(x) = σ − 30000 (B.6)

g3 (x) = x (1)− x(4) (B.7)

g4 (x) = 6000− P (B.8)

0.125 ≤ x1 ≤ 5, 0.1 ≤ x2 ≤ 10

0.1 ≤ x3 ≤ 10, 0.125 ≤ x4 ≤ 5

where : q = 6000 ∗
(
14+

x(2)
2

)
;

D = sqrt
(
x(2)2

4
+
x(1)+ x(3))2

4

)
(B.9)

J = 2 ∗
(
x(1) ∗ x(2) ∗ sqrt(2)

∗

(
x(2)2

12
+

(x(1)+ x(3))2

4

))
(B.10)

α =
6000

sqrt(2) ∗ x(1) ∗ x(2)
(B.11)

β = Q ∗
D
J

(B.12)

C. DISK BRAKE DESIGN PROBLEM
This disc brake design issue has been figured out by Ray and
Liew [54] with two objectives, namely stopping time (f1) and
brake mass (f2) to minimize and five constraints for a disc
brake. This problem contains five numbers of variables: disc
inner radius (x1), outer disc radius (x2), engaging force (x3),
and friction surfaces number (x4). The following equations
may represent this problem:

Minimize : f1 (x) = 4.9× (10)(−5) × (x(2)(2) − x (1)(2))

× (x (4)− 1) (B.13)

Minimize : f2 (x) = (9.82× (10)(6)))

× (x(2))(2) − x (1)(2)))/((x(2))(3) − x (1)(3))

× x (4)× x (3)) (B.14)

g1 (x) = 20+ x (1)− x(2) (B.15)

g2 (x) = 2.5+ (x (4)+ 1)− 30 (B.16)

g3 (x) = (x (3))/(3.14×
(
x (2)2 − x (1)2

)2
)

− 0.4 (B.17)

g4 (x) = (2.22× (10)(−3) × x (3)

×

(
x (2)3 − x (1)3

)
)/(
(
x (2)2 − x (1)2

)2
)

− 1 (B.18)

g5 (x) = 900− (2.66× (10)(−2) × x (3)

× x (4)×
(
x (2)3 − x (1)3

)
)/

× (
(
x (2)2 − x (1)2

)2
) (B.19)

55 ≤ x1 ≤ 80, 75 ≤ x2 ≤ 110

1000 ≤ x3 ≤ 3000, 2 ≤ x4 ≤ 20

D. SPEED REDUCER DESIGN PROBLEM
This issue [53], [55] contains two objectives such as weight
(f1) and stress (f2), which are to be minimized. The problem
may represent with a diagram as given in Fig. 9. Also, the
problem has eleven constraints with seven numbers of design
variables such as the width of the gear face (x1), teeth module
(x2), pinion teeth number (x3 numeral variable), a distance
between of bearings 1 (x4), a distance of bearings 2 (x5), shaft
1 diameter (x6), and shaft 2 diameter (x7). The equations may
clearly represent this problem as below:

Minimize : f1 (x) = 0.7854× x (1)× x(2)2

× (3.3333× x
(
3)2 + 14.9334× x (3)

)
. . .

− 43.0934)− 1.508× x(1)× (x(6)2 + x(7)2

(B.20)

Minimize : f2(x) = ((sqrt(((745 ∗ x(4))/x(2) ∗ x(3)))2

+ 19.9e6)/(0.1 ∗ x(6)3)) (B.21)

where : g1 (x) = 27/(x (1)×x
(
2)2×x (3)

)
− 1 (B.22)

g2 (x) = 397.5/(x (1)× x(2)2 × x
(
3)2
)
− 1

(B.23)

g3 (x) = (1.93× (x
(
4)3
)
/(x(2)× x(3)

× x
(
6)4
)
− 1 (B.24)

g4 (x) = (1.93× (x
(
5)3
)
/(x(2)× x(3)

× x
(
7)4
)
− 1 (B.25)

g5 (x) = ((sqrt((745× x (4))/x(2)

× x
(
3)))2 + 16.9e6

)
)/(110× x

(
6)3
)
)− 1

(B.26)

g6 (x) = ((sqrt((745× x (4))/x(2)

× x
(
3)))2 + 157.5e6

)
)/(85× x

(
7)3
)
)− 1

(B.27)

g7 (x) = ((x(2)× x(3))/40)1 (B.28)

τ = sqrt
(
α2 + 2× α × β ×

x(2)
2× D

+ β2
)
(B.29)

σ =
504000

x(4)× x(3)2
(B.30)

tmpf = 4.013×
30× 106

196
(B.31)

P = tmpf × sqrt
(
x(3)2 ×

x(4)6

36

)
×

(
1− x(3)×

sqrt( 3048 )

28

)
(B.32)
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