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ABSTRACT
Social networks in which users or agents are connected to
other agents and sources by trust relations are an impor-
tant part of many web applications where information may
come from multiple sources. Trust recommendations derived
from these social networks are supposed to help agents de-
velop their own opinions about how much they may trust
other agents and sources. Despite the recent developments
in the area, most of the trust models and metrics proposed
so far tend to lose trust-related knowledge. We propose
a new model in which trust values are derived from a bi-
lattice that preserves valuable trust provenance information
including partial trust, partial distrust, ignorance and incon-
sistency. We outline the problems that need to be addressed
to construct a corresponding trust learning mechanism. We
present initial results on the first learning step, namely trust
propagation through trusted third parties (TTPs).

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models; I.2.4 [Artificial

Intelligence]: Knowledge Representation Formalisms and
Methods

General Terms
Algorithms, Human Factors

Keywords
Trust provenance, web of trust, distrust, bilattice, trust
propagation

1. INTRODUCTION
As intelligent agents in the semantic web take over more

and more human tasks, they require an automated way of
trusting each other. One of the key problems in establishing
this, is related to the dynamicity of trust: to grasp how trust
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emerges and vanishes. Once an understanding is reached,
a new problem arises: how can the cyberinfrastructure be
used to manage trust among users? To this aim, it is very
important to find techniques that capture the human notions
of trust as precisely as possible. Quoting [17]:

If people can use their everyday trust building
methods for the cyberinfrastructure and through
it reach out to fellow human beings in far-away
places, then that would be the dawn of the real
Information Society for all.

In the near future, more and more applications and sys-
tems will need solid trust mechanisms. In fact, effective trust
models already play an important role in many intelligent
web applications, such as peer-to-peer (P2P) networks [13],
recommender systems [14] and question answering systems
[21]. All these applications use, in one way or another, a web
of trust that allows agents to express trust in other agents.
Using such a web of trust, an agent can develop an opinion
about another, unknown agent.

Existing trust models can be classified in several ways,
among which probabilistic vs. gradual approaches as well as
representations of trust vs. representations of both trust and
distrust. This classification is shown in Table 1, along with
some representative references for each class.

Many models deal with trust in a binary way — an agent
(or source) can either be trusted or not — and compute the
probability or belief that the agent can be trusted [11, 12,
13, 21]. In such a setting, a higher trust score corresponds to
a higher probability or belief that an agent can be trusted.

Apart from complete trust or no trust at all, however, in
real life we also encounter partial trust. For instance, we of-

Table 1: Trust Models, State of the Art

trust trust and distrust

proba- Kamvar et al. [13]
bilistic Zaihrayeu et al. [21] Jøsang et al. [11, 12]

Abdul-Rahman et al. [1]
gradual Almenárez et al. [2] De Cock et al. [6]

Massa et al. [14] Guha et al. [9]
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ten say “I trust this person very much”, or “My trust in this
person is rather low”. More recent models like [1] take this
into account: they make a distinction between “very trust-
worthy”, “trustworthy”, “untrustworthy” and “very untrust-
worthy”. Other examples of a gradual approach can be
found in [2, 7, 9, 14, 19]. In this case, a trust score is not
a probability: a higher trust score corresponds to a higher
trust. The ordering of the trust scores is very important,
with “very reliable” representing a higher trust than “re-
liable”, which in turn is higher than “rather unreliable”.
This approach leans itself better to the computation of trust
scores when the outcome of an action can be positive to
some extent, e.g., when provided information can be right
or wrong to some degree, as opposed to being either right
or wrong. It is this kind of application that we are keeping
in mind throughout this paper.

Large agent networks without a central authority typically
face ignorance as well as inconsistency problems. Indeed, it
is likely that not all agents know each other, and different
agents might provide contradictory information. Both igno-
rance and inconsistency can have an important impact on
the trust score computation. Models that only take into ac-
count trust (e.g. [1, 13, 14, 16]), either with a probabilistic
or a gradual interpretation, are not fully equipped to deal
with trust issues in large networks where many agents do
not know each other, because, as we explain in the next sec-
tion, most of these models provide limited support for trust
provenance.

Recent publications [10] show an emerging interest in mod-
eling the notion of distrust, but models that take into ac-
count both trust and distrust are still scarce [6, 9, 12]. To
the best of our knowledge, there is only one probabilistic
approach considering trust and distrust simultaneously: in
subjective logic (SL) [12] an opinion includes a belief b that
an agent is to be trusted, a disbelief d corresponding to a be-
lief that an agent is not to be trusted, and an uncertainty u.
The uncertainty factor clearly indicates that there is room
for ignorance in this model. However, the requirement that
the belief b, the disbelief d and the uncertainty u should
sum up to 1, rules out options for inconsistency although
this might arise quite naturally in large networks with con-
tradictory sources.

SL is an example of a probabilistic approach, whereas in
this paper we will outline a trust model that uses a grad-
ual approach, meaning that agents can be trusted to some
degree. Furthermore, to preserve provenance information,
our model deals with distrust in addition to trust. Conse-
quently, we can represent partial trust and partial distrust.
Our intended approach is situated in the bottom right cor-
ner of Table 1. As far as we know, besides our own earlier
work [6], there is only one other existing model in this cate-
gory: Guha et al. [9] use a couple (t, d) with a trust degree
t and a distrust degree d, both in [0,1]. To obtain the final
trust score, they subtract d from t. As we explain in the
next section, potentially important information is lost when
the trust and distrust scales are merged into one.

Our long term goal is to develop a model of trust that
preserves trust provenance as much as possible. A previous
model we introduced in [6], based on intuitionistic fuzzy set
theory [4, 15], attempts this for partial trust, partial dis-
trust and ignorance. In this paper, we will introduce an ap-
proach for preserving trust provenance about inconsistencies
as well. Our model is based on a trust score space, consist-

ing of the set [0, 1]2 of trust scores equipped with a trust
ordering, going from complete distrust to complete trust, as
well as a knowledge ordering, going from a shortage of evi-
dence (incomplete information) to an excess of evidence (in
other words inconsistent information).

First of all, in Section 2, we point out the importance of a
provenance-preserving trust model by means of some exam-
ples. In Section 3, we introduce the bilattice-based concept
of a trust score space, i.e. a set of trust scores equipped with
both a trust ordering and a knowledge ordering, and we pro-
vide a definition for a trust network. In developing a trust
learning mechanism that is able to compute trust scores we
will need to solve many challenging problems, such as how
to propagate, aggregate, and update trust scores. In Sec-
tion 4, we reflect upon our initial tinkering on candidate
operators for trust score propagation through trusted third
parties (TTPs). As these trust propagation operators are
currently shaped according to our own intuitions, we will
set up an experiment in the near future to gather the neces-
sary data that provides insight in the propagation of trust
scores through TTPs. We briefly comment on this in Section
5. Finally, subsequent problems that need to be addressed
are sketched.

2. TRUST PROVENANCE
The main aim in using trust networks is to allow users or

agents to form trust opinions on unknown agents or sources
by asking for a trust recommendation from a TTP who, in
turn, might consult its own TTP etc. This process is called
trust propagation. In large networks, it often happens that
an agent does not ask one TTP’s opinion, but several. Com-
bining trust information received from more than one TTP is
called aggregation (see fig. 1). Existing trust network mod-
els usually apply suitable trust propagation and aggregation
operators to compute a resulting trust value. In passing on
this trust value to the inquiring agent, valuable information
on how this value has been obtained is lost.

User opinions, however, may be affected by provenance
information exposing how trust values have been computed.
For example, a trust recommendation in a source from a
fully informed TTP is quite different from a trust recom-
mendation from a TTP who does not know the source too
well but has no evidence to distrust it. Unfortunately, in
current models, users cannot really exercise their right to
interpret how trust is computed since most models do not
preserve trust provenance.

Trust networks are typically challenged by two impor-
tant problems influencing trust recommendations. Firstly,
in large networks it is likely that many agents do not know
each other, hence there is an abundance of ignorance. Sec-
ondly, because of the lack of a central authority, different
agents might provide different and even contradictory infor-
mation, hence inconsistency may occur. Below we illustrate
how ignorance and inconsistency may affect trust recom-
mendations.

example 1 (Ignorance). Agent a needs to establish
an opinion about agent c in order to complete an important
bank transaction. Agent a may ask agent b for a recommen-
dation of c because agent a does not know anything about c.
Agent b, in this case, is a recommender that knows how to
compute a trust value of c from a web of trust. Assume that
b has evidence for both trusting and distrusting c. For in-



stance, let us say that b trusts c 0.5 in the range [0,1] where
0 is full absence of trust and 1 is full presence of trust; and
that b distrusts c 0.2 in the range [0,1] where 0 is full absence
of distrust and 1 is full presence of distrust. Another way
of saying this is that b trusts c at least to the extent 0.5, but
also not more than 0.8. The length of the interval [0.5,0.8]
indicates how much b lacks information about c.

In this scenario, by getting the trust value 0.5 from b,
a is losing valuable information indicating that b has some
evidence to distrust c too. A similar problem occurs using
the approach of Guha et al. [9]. In this case, b will pass on
a value of 0.5-0.2=0.3 to a. Again, a is losing valuable trust
provenance information indicating, for example, how much
b lacks information about c.

example 2 (Ignorance). Agent a needs to establish
an opinion about both agents c and d in order to find an
efficient web service. To this end, agent a calls upon agent
b for trust recommendations on agents c and d. Agent b

completely distrusts agent c, hence agent b trusts agent c to
degree 0. On the other hand agent b does not know agent
d, hence agent b trusts agent d to degree 0. As a result,
agent b returns the same trust recommendation to agent a

for both agents c and d, namely 0, but the meaning of this
value is clearly different in both cases. With agent c, the lack
of trust is caused by a presence of distrust, while with agent
d, the absence of trust is caused by a lack of knowledge. This
provenance information is vital for agent a to make a well
informed decision. For example, if agent a has a high trust
in TTP b, agent a will not consider agent c anymore, but
agent a might ask for other opinions on agent d.

example 3 (Contradictory Information). One of
your friends tells you to trust a dentist, and another one
of your friends tells you to distrust that same dentist. In
this case, there are two TTPs, they are equally trusted, and
they tell you the exact opposite thing. In other words, you
have to deal with inconsistent information. What would be
your aggregated trust score in the dentist? Models that work
with only one scale can not represent this: taking e.g. 0.5 as
trust score (i.e. the average) is not a solution, because then
we can not differentiate from a situation in which both of
your friends trust the dentist to the extent 0.5.

Furthermore, what would you answer if someone asks you
if the dentist can be trusted? A possible answer is: “I don’t
really know, because I have contradictory information about
this dentist”. Note that this is fundamentally different from
“I don’t know, because I have no information about him”.
In other words, a trust score of 0 is not a suitable option
either, as it could imply both inconsistency and ignorance.

The examples above indicate the need for a model that
preserves information on whether a “trust problem” is caused

Figure 1: Trust propagation and aggregation

by presence of distrust or rather by lack of knowledge, as well
as whether a “knowledge problem” is caused by having too
little or rather too much, i.e. contradictory, information.

3. TRUST SCORE SPACE
We need a model that, on one hand, is able to represent

the trust an agent may have in another agent in a given
domain, and on the other hand, can evaluate the contribu-
tion of each aspect of trust to the overall trust score. As a
result, such a model will be able to distinguish between dif-
ferent cases of trust provenance. To this end, we introduce
a new structure, called trust score space BL� .

Definition 1 (Trust Score Space). The trust score
space

BL�= ([0, 1]2,≤t,≤k,¬)

consists of the set [0, 1]2 of trust scores and two orderings
defined by

(x1, x2) ≤t (y1, y2) iff x1 ≤ y1 and x2 ≥ y2

(x1, x2) ≤k (y1, y2) iff x1 ≤ y1 and x2 ≤ y2

for all (x1, x2) and (y1, y2) in [0, 1]2. Furthermore

¬(x1, x2) = (x2, x1).

The negation ¬ serves to impose a relationship between the
lattices ([0, 1]2,≤t) and ([0, 1]2,≤k):

(x1, x2) ≤t (y1, y2) ⇒ ¬(x1, x2) ≥t ¬(y1, y2)

(x1, x2) ≤k (y1, y2) ⇒ ¬(x1, x2) ≤k ¬(y1, y2),

and ¬¬(x1, x2) = (x1, x2). In other words, ¬ is an involution
that reverses the ≤t-order and preserves the ≤k-order. One
can easily verify that the structure BL� is a bilattice [3, 8].

Figure 2 shows the bilattice BL� , along with some ex-
amples of trust scores. The first lattice ([0, 1]2,≤t) orders
the trust scores going from complete distrust (0, 1) to com-
plete trust (1, 0). The other lattice ([0, 1]2,≤k) evaluates
the amount of available trust evidence, going from a “short-
age of evidence”, x1 + x2 < 1 (incomplete information), to
an “excess of evidence”, namely x1 + x2 > 1 (inconsistent
information). In the extreme cases, there is no information
available (0, 0), or there is evidence that says that b is to be
trusted fully as well as evidence that states that b is com-
pletely unreliable: (1, 1).

Figure 2: Trust score space BL�



The trust score space allows our model to preserve trust
provenance by simultaneously representing partial trust, par-
tial distrust, partial ignorance and partial inconsistency, and
treating them as different, related concepts. Moreover, by
using a bilattice model the aforementioned problems disap-
pear:

1. By using trust scores we can now distinguish full dis-
trust (0,1) from ignorance (0,0) and analogously, full
trust (1,0) from inconsistency (1,1). This is an im-
provement of e.g. [1, 21].

2. We can deal with both incomplete information and
inconsistency (improvement of [6]).

3. We do not lose important information (improvement
of [9]), because, as will become clear in the next sec-
tion, we keep the trust and distrust degree separated
throughout the whole trust process (propagation and
other operations).

The available trust information is modeled as a trust net-
work that associates with each couple of agents a score
drawn from the trust score space.

Definition 2 (Trust Network). A trust network is
a couple (A, R) such that A is a set of agents and R is a

A × A → BL� mapping. For every a and b in A, we write

R(a, b) =
�
R

+(a, b), R−(a, b)
�

• R(a, b) is called the trust score of a in b.

• R+(a, b) is called the trust degree of a in b.

• R−(a, b) is called the distrust degree of a in b.

R should be thought of as a snapshot taken at a certain
moment, since the trust learning mechanism involves recal-
culating trust scores, for instance through trust propagation
as discussed next.

4. TRUST SCORE PROPAGATION
We often encounter situations in which we need trust in-

formation about an unknown person. For instance, if you
are in search of a new dentist, you can ask your friends’
opinion about dentist Evans. If they do not know Evans

personally, they can ask a friend of theirs, and so on. In
virtual trust networks, propagation operators are used to
handle this problem. The simplest case (atomic propaga-
tion) can informally be described as (fig. 3): if the trust
score of agent a in agent b is p, and the trust score of b

in agent c is q, what information can be derived about the
trust score of a in c? When propagating only trust, the most
commonly used operator is multiplication. When taking into

Figure 3: Atomic propagation

account also distrust, the picture gets more complicated, as
the following example illustrates.

example 4. Suppose agent a trusts agent b and agent b

distrusts agent c. It is reasonable to assume that based on
this, agent a will also distrust agent c, i.e. R(a, c) = (0, 1).
Now, switch the couples. If a distrusts b and b trusts c,
there are several options for the trust score of a in c: a
possible reaction for a is to do the exact opposite of what b

recommends, in other words to distrust c, R(a, c) = (0, 1).
But another interpretation is to ignore everything b says,
hence the result of the propagation is ignorance, R(a, c) =
(0, 0).

As this example indicates, there are likely multiple possi-
ble propagation operators for trust scores. We expect that
the choice for a particular BL� × BL� → BL� mapping
to model the trust score propagation will depend on the ap-
plication and the context but might also differ from person
to person. Thus, the need for provenance-preserving trust
models becomes more evident.

To study some possible propagation schemes, let us first
consider the bivalent case, i.e. when trust and distrust de-
grees assume only the values 0 or 1. For agents a and b, we
use R+(a, b), R−(a, b), and ∼R−(a, b) as shorthands for re-
spectively R+(a, b) = 1, R−(a, b) = 1 and R−(a, b) = 0. We
consider the following three, different propagation schemes
(a, b and c are agents):

1. R+(a, c) ≡ R+(a, b) ∧ R+(b, c)
R−(a, c) ≡ R+(a, b) ∧ R−(b, c)

2. R+(a, c) ≡ R+(a, b) ∧ R+(b, c)
R−(a, c) ≡ ∼R−(a, b) ∧ R−(b, c)

3. R+(a, c) ≡ (R+(a, b)∧R+(b, c))∨ (R−(a, b)∧R−(b, c))
R−(a, c) ≡ (R+(a, b)∧R−(b, c))∨ (R−(a, b)∧R+(b, c))

In scheme (1) agent a only listens to whom he trusts, and
ignores everyone else. Scheme (2) is similar but in addition
agent a takes over distrust information from a not distrusted
(hence possibly unknown) third party. Scheme (3) corre-
sponds to an interpretation in which the enemy of an enemy
is considered to be a friend, and the friend of an enemy is
considered to be an enemy.

In our model, besides 0 and 1, we also allow partial trust
and distrust. Hence we need suitable extensions of the logi-
cal operators that are used in (1), (2) and (3). For conjunc-
tion, disjunction and negation, we use respectively a t-norm
T , a t-conorm S and a negator N . They represent large
classes of logic connectives, from which specific operators,
each with their own behaviour, can be chosen, according to
the application or context.

T and S are increasing, commutative and associative [0, 1]
× [0, 1] → [0, 1] mappings satisfying T (x, 1) = S(x, 0) = x

for all x in [0, 1]. Examples of T are the minimum and the
product, while S could be the maximum or the mapping
SP defined by SP (x, y) = x + y − x · y, for all x and y in
[0, 1]. N is a decreasing [0, 1] → [0, 1] mapping satisfying
N(0) = 1 and N(1) = 0; the most commonly used one is
Ns(x) = 1 − x.

Generalizing the logical operators in scheme (1), (2), and
(3) accordingly, we obtain the propagation operators of Ta-
ble 2. Each one can be used for modeling a specific behav-
iour. Starting from a trust score (t1, d1) of agent a in agent



Table 2: Propagation operators, using TTP b with R(a, b) = (t1, d1) and R(b, c) = (t2, d2)

Notation Trust score of a in c Meaning

Prop1 (T (t1, t2), T (t1, d2)) Skeptical, take no advice from enemies or unknown people.
Prop2 (T (t1, t2), T (N(d1), d2)) Paranoid, distrust even unknown people’s enemies.
Prop3 (S(T (t1, t2), T (d1, d2)), S(T (t1, d2), T (d1, t2))) Friend of your enemy is your enemy too.

b, and a trust score (t2, d2) of agent b in agent c, each prop-
agation operator computes a trust score for agent a in agent
c. Since the resulting value is again an element of the trust
score space, trust provenance is preserved.

The remainder of this section is devoted to the investiga-
tion of some potentially useful properties of these propaga-
tion operators. In doing so, we keep the logical operators
as generic as possible, in order to get a clear view on their
general behaviour. First of all, if one of the arguments of
a propagation operator can be replaced by a higher trust
score w.r.t. to the knowledge ordering without decreasing
the resulting trust score, we call the propagation operator
knowledge monotonic.

Definition 3 (Knowledge Monotonicity). A prop-

agation operator f on BL� is said to be knowledge monotonic
iff for all x, y, z, and u in BL� ,

x ≤k y and z ≤k u implies f(x, z) ≤k f(y, u)

Knowledge monotonicity reflects that the better you know
how well you should trust or distrust user b who is recom-
mending user c, the better you know how well to trust or
distrust user c. Although this behaviour seems natural, not
all operators of Table 2 abide by it.

Proposition 1. Prop1 and Prop3 are knowledge monotonic.
Prop2 is not knowledge monotonic.

Proof. The knowledge monotonicity of Prop1 and Prop3

follows from the monotonicity of T and S. To see that Prop2

is not knowledge monotonic, consider

Prop2((0.2, 0.7), (0, 1)) = (0, 0.3)
Prop2((0.2, 0.8), (0, 1)) = (0, 0.2),

with Ns as negator. We have that (0.2, 0.7) ≤k (0.2, 0.8)
and (0, 1) ≤k (0, 1) but (0, 0.3) �k (0, 0.2).

The intuitive explanation behind the non knowledge mono-
tonic behaviour of Prop2 is that, using this propagation op-
erator, agent a takes over distrust from a stranger b, hence
giving b the benefit of the doubt, but when a starts to dis-
trust b (thus knowing b better), a will adopt b’s opinion to
a lesser extent (in other words: a derives less knowledge).

Knowledge montonicity is not only useful to provide more
insight in the propagation operators but it can also be used
to establish a lower or upper bound for the actual prop-
agated trust score without immediate recalculation. This
might be useful in a situtation where one of the agents has
updated its trust score in another agent and there is not
enough time to recalculate the whole propagation chain.

Besides atomic propagation, we need to be able to con-
sider longer propagation chains, so TTPs can in turn consult
their own TTPs and so on. Prop1 turns out to be associa-
tive, which means that we can extend it for more scores
without ambiguity.

Proposition 2. (Associativity): Prop1 is associative, i.e.

for all x, y, and z in BL� it holds that:

Prop1(Prop1(x, y), z) = Prop1(x,Prop1(y, z))

Prop2 and Prop3 are not associative.

Proof. The associativity of Prop1 can be proved by taking
into account the associativity of the t-norm. Examples can
be constructed to show that the other two propagation op-
erators are not associative. Take for example N(x) = 1 − x

and T (x, y) = x · y, then

Prop2((0.3, 0.6),Prop2((0.1, 0.2), (0.8, 0.1))) = (0.024, 0.032)

while on the other hand

Prop2(Prop2((0.3, 0.6), (0.1, 0.2)), (0.8, 0.1)) = (0.024, 0.092)

With an associative propagation operator, the overall trust
score computed from a longer propagation chain is indepen-
dent of the choice of which two subsequent trust scores to
combine first. When dealing with a non associative operator
however, it should be specified which pieces of the propaga-
tion chain to calculate first.

Finally, it is interesting to note that in some cases the
overall trust score in a longer propagation chain can be de-
termined by looking at only one agent. For instance, if we
use Prop1 or Prop3, and there occurs a missing link (0, 0)
anywhere in the propagation chain, the result will contain
no useful information (in other words, the final trust score
is (0, 0)). Hence as soon as one of the agents is ignorant, we
can dismiss the entire chain. Notice that this also holds for
Prop3, despite the fact that it is not an associative operator.
Using Prop1, the same conclusion (0, 0) can be drawn if at
any position in the chain, except the last one, there occurs
complete distrust (0, 1).

5. CONCLUSIONS AND FUTURE WORK
We have introduced a new model that can simultane-

ously handle partial trust and distrust. We showed that
our bilattice-based model alleviates some of the existing
problems of trust models, more specifically concerning trust
provenance. In addition, this new model can handle incom-
plete and excessive information, which occurs frequently in
virtual communities, such as the WWW in general and trust
networks in particular. Therefore, this new provenance-
preserving trust model can lead to an improvement of many
existing web applications, such as P2P networks, question
answering systems and recommender systems.

A first step in our future research involves the further devel-
opment and the choice of trust score propagation operators.
Of course, the trust behaviour of users depends on the sit-
uation and the application, and is in most cases relative to



a goal or a task. A friend e.g. can be trusted for answering
questions about movies, but not necessarily about doctors.
Therefore, we are preparing some specific scenario’s in which
trust is needed to make a certain decision (e.g. which doctor
to visit, which movie to see). According to these scenario’s,
we will prepare questionnaires, in which we aim to determine
how propagation of trust scores takes place. Gathering such
data, we hope to get a clear view on trust score propaga-
tion in real life, and how to model it in applications. We
do not expect to find one particular propagation schema,
but rather several, depending on a persons nature. When
we obtain the results of the questionnaire, we will also be
able to verify the three propagation operators we proposed
in this paper. Furthermore, we would like to investigate the
behaviour of the operators when using particular t-norms,
t-conorms and negators, and examine whether it is possible
to use other classes of operators that do not use t-(co)norms.

A second problem which needs to be addressed, is aggre-
gation. In our domain of interest, namely a gradual ap-
proach to both trust and distrust, there are no aggregation
operators yet. We will start by investigating whether it is
possible to extend existing aggregation operators, like e.g.
the ordered weighted averaging aggregation operator [20],
fuzzy integrals [5, 18], etc., but we assume that not all the
problems will be solved in this way, and that we will also
need to introduce new specific aggregation operators.

Finally, trust and distrust are not static, they can change
after a bad (or good) experience. Therefore, it is also nec-
essary to search for appropriate updating techniques.

Our final goal is the creation of a framework that can rep-
resent partial trust, distrust, inconsistency and ignorance,
that contains appropriate operators (propagation, aggrega-
tion, update) to work with those trust scores, and that can
serve as a starting point to improve the quality of many web
applications. In particular, as we are aware that trust is ex-
perienced in different ways, according to the application and
context, we aim at a further development of our model for
one specific application.
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