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Abstract: “Boba balls” or pearls have recently gained popularity for beverages or food toppings.
“Boba balls” could be developed into functional foods by the encapsulation of bioactive compounds.
In this study, gelatin/sodium alginate composite “Boba balls” enriched with pomegranate peel extract
(PPE) at different concentrations (0, 1, 2, and 3%) were prepared. They were characterized in terms of
physical, rheological, textural, morphological, and sensory properties, as well as in vitro digestion,
bio-accessibility, and release kinetic of PPE. Adding PPE improved the “Boba” mix’s viscoelasticity
and decreased the “Boba balls”’ hardness. The increasing PPE ratio significantly (p < 0.05) increased
the antioxidant capacity and total phenolic content. The addition of PPE preserved the spherical
shape of the “Boba balls”, and as the PPE ratio increased, new junction zones were observed in SEM
images. The in vitro digestibility of PPE was significantly (p < 0.05) improved by preserving PPE from
the mouth and gastric medium, and “Boba balls” showed the highest release and bio-accessibility
in the intestinal medium. Consequently, PPE as a by-product could be successfully used at 2%
concentration for enhancing the functionality and bio-accessibility of “Boba balls” without affecting
sensory properties.

Keywords: Boba; alginate beads; pomegranate peel extract; in vitro digestion; release kinetic

1. Introduction

Traditional bubble tea, also known as Boba tea, is a drink made from tea, milk, syrup,
and tapioca pearls. The traditional “Boba balls” are made from gelatinized tapioca starch
that has been formed into a pearl shape. Customarily, they acquire their color and flavor
from brown sugar, but may incorporate other colors or flavors [1]. “Boba balls” can also
be produced with various carbohydrate and/or protein-based gel-forming polymers that
can complex with sodium alginate and are generally known for high elasticity, resilient
mouthfeel, edible convenience, and low calorie content [2]. “Boba balls” began to become
widespread in Taiwan in the early 1980s and are usually consumed with milk tea. Later,
they spread worldwide, especially in America and Europe, and the market value in 2019
reached $2.09 billion. It is predicted that the estimated market value will reach $3.29 billion
in 2027 [1]. “Boba balls” are also called “pearls” because they are structurally bead-shaped
and are consumed by mixing with hot or cold tea, milk tea, and fruit juices.

While there are many studies on alginate encapsulation by calcium alginate gels [3–5]
there is much less information about alginate gel-based “Boba balls”. Alginate gel-based
“Boba balls” have been investigated recently to determine optimum technological parameters
and for the inclusion of various flavor, aroma, color, or nutritive components [6]. Additionally,
shelf-life studies have shown that the sensory quality of “Boba balls” decreases over time and
storage conditions impact the degradation of sensory values [6].
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The spherical balls can be produced with fruits providing different aromas; these
structures can also be produced by using herbal extracts with functional properties, such
as phenolic compounds, antioxidants, anthocyanins, etc. Considering the consumption
and market value of “Boba balls”, it is obvious that enriching these products with plant
extracts rich in functional properties will significantly contribute to human health. In
a study, Liu, Xiao, Feng, Zhang, Li, Tu and Niu [2] produced “Boba balls” with konjac
glucomannan/sodium alginate composite gels and enriched “Boba balls” with purple-
potato-anthocyanin extracts to increase gastrointestinal digestion stability. The enrichment
of “Boba balls” with herbal extracts obtained from food processing by-products will im-
prove the nutritional properties of “Boba balls” as well as improve the bio-availability of
herbal extracts.

Pomegranate (Punica granatum L.) peel is a standard by-product from the production
of pomegranate juice, and the peel makes up 40–50% of the total weight of the pomegranate.
There are numerous studies about the composition of pomegranate peel extract (PPE),
and it was previously reported that PPE is rich in bioactive compounds, for example
polyphenols, flavonoids, anthocyanin and tannins such as ellagic acid, tannins, gallic
acid, and punicalagin A and punicalagin B [7]. Moreover, the antioxidant, antimicrobial,
antiviral, antifungal, and anti-diabetic properties of PPE are highly related with these
bioactive compounds. These functional and bioactive properties of PPE have increased the
possibilities of incorporating PPE as an additive and/or supplement for the development
of various functional foods [8].

The reason for choosing PPE in this study is that pomegranate peels, which are an
important by-product of the fruit juice industry, have a very rich polyphenolic and tannin
content when compared to other vegetables and fruits by-products. Additionally, the
composition of the PPE and its effects on health have been clarified by many studies [7,8].
However, polyphenols and other bioactive compounds in PPE are highly sensitive to light,
oxygen, pH, heat, pressure, etc., and encapsulation is a promising technique to protect these
components not only from such environmental conditions but also from gastrointestinal
digestion conditions.

The production of “Boba balls” is mainly similar to encapsulation methods since the
core material, e.g., PPE, is covered by sodium alginate beads after being dropped into a
CaCl2 solution. The reaction occurring between the sodium alginate and the CaCl2 is called
ionic gelation. Thus, different core materials such as purple-sweet-potato anthocyanin [2]
and orange flavor [6] have been encapsulated in the “Boba balls”. The encapsulation of
active ingredients from food industry by-products in “Boba balls” will increase the utiliza-
tion rate of active ingredients during the consumption of these products, thus enabling the
consumption of healthier and bio-available products.

There is a growing global trend to reduce waste streams from the food industry
by producing new value-added products. From this perspective, PPE is an important
value-added product from the waste stream of pomegranate juice production as it is a
good source of polyphenolics, antioxidants, phenolic acids, and tannins, etc. According
to the literature, PPE is widely used for enhancing the shelf life of meat, chicken, fishery,
dairy, and bakery products, as well as enhancing the antimicrobial properties of edible
packaging materials [8]. However, there are no or very limited current literature studies
about the production of “Boba balls” with PPE in order to increase the controlled release,
in vitro digestibility, and bio-accessibility of PPE. As these parameters are a high priority
for the development of functional foods, such as those proposed here, it will be essential
to understand how the encapsulation of the PPE during the production of “Boba balls”
impacts functionality. The aim of this work was to examine the antioxidant, phenolic
content, bio-accessibility, and release kinetics of the “Boba balls” enriched with PPE at
different ratios, as well as their rheological, textural, and morphological characterizations.
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2. Materials and Methods
2.1. Materials

Sodium alginate (SA) (CAS number:9005-38-3), ethanol (absolute), Folin- Ciocalteu,
2,2′-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl
(DPPH), Neocuproine Cupric Ion Reducing Antioxidant Capacity (CUPRAC), and chemicals
for simulating the in vitro digestion were acquired from Sigma-Aldrich (Darmstadt, Germany).
Bovine gelatin at ~225 bloom and pomegranate (Punica granatum L.) peels were kindly
provided by Bursa Gelatin (Bursa, Turkey) and Dohler (Denizli, Turkey), respectively. The
pomegranate juice (PJ) was purchased from a local market in Bursa, Turkey, and it was used
during the production of “Boba balls” for providing a pomegranate aroma. The peels were
dried at 40 ◦C for 48 h in an air-circulated oven (Nukleon NST-120, Ankara, Turkey), and then
dried peels were pulverized with a blender (Waring Commercial, PA, USA). The powdered
pomegranate peels were filled in a Ziploc bags and stored at −18 ◦C.

2.2. Preparation of Pomegranate Peel Extract (PPE)

The preparation of pomegranate peel extract (PPE) was carried out following proce-
dures from our previous study [9]. Briefly, a solution of ethanol/water (70/30; v/v) was
mixed with powdered peels at 1/10 (w/v) ratio, and then homogenized (Velp Scientific,
OV-5, Usmate, Italy) for 5 min at 10,000 rpm. In order to increase the extraction yield, the
powdered peels underwent a further 15 min of ultrasonic homogenization (JP Selecta, CY-
500, Barcelona, Spain) at 50% amplitude using a 7 mm titanium probe. An ice-water bath
was used to maintain a temperature below 25 ◦C throughout the ultrasonic homogenization.
Solid particles were removed by the centrifugation (Hettich, Universal 320, Kirchlengern,
Germany) for 10 min at 9056× g, and the supernatant was evaporated at 45 ◦C using a
vacuum rotary evaporator (Buchi, R-100, Lucerne, Switzerland). The evaporated extract
was stored at −20 ◦C for 2 days before the freeze dried (Teknosem, TRS-2, Istanbul, Turkey)
at −50 ◦C for 72 h and the resulting powders were stored at −18 ◦C in Ziploc bags.

2.3. Production of “Boba Balls”

The “Boba balls” production was performed by the methodology of Liu, Xiao, Feng,
Zhang, Li, Tu and Niu [2], with the formulation and “Boba ball” production modifications
illustrated in Figure 1. Firstly, 10 g of gelatin and PPE at 0, 1, 2 and 3% (w/v) concentrations
were dissolved in 70 mL of pomegranate juice (PJ) for 5 min at 40 ◦C on a magnetic stirrer,
and separately, SA (1.5 g) was dissolved in distilled water (30 mL) for 5 min at 70 ◦C on
a magnetic stirrer. After cooling the SA solution at 40 ◦C, gelatin solution was combined
with the SA solution before mixing for an additional 15 min at 40 ◦C. Then, the solution
was cooled down to 20 ◦C and immediately transferred to a 20 mL syringe. The syringe
was settled on the syringe pump (NE-400, Farmingdale, NY, USA), and the solution was
fed drop by drop from a 15 cm distance into a 10 cm high bath of cooled corn oil at −9 ◦C.
The gel “Boba balls” were collected with a stainless-steel filter spoon and mixed with 10%
CaCl2 solution on a magnetic stirrer for 2 min. Finally, the “Boba balls” were collected by
the filter spoon and washed twice with distilled water. The “Boba balls” were coded as C
(control, without PPE), PPE1 (containing 1% PPE), PPE2 (containing 2% PPE), and PPE3
(containing 3% PPE), and samples of “Boba balls” were stored under refrigeration at 4 ◦C
until further analysis. Prior to FT-IR and scanning electron microscopy, the “Boba balls”
were stored at −20 ◦C for 2 days before the lyophilization at −50 ◦C for 72 h.
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Figure 1. The schematic illustration of “Boba balls” production enriched with pomegranate peel
extract (PPE).

2.4. Rheological Characterization of “Boba” Mix

The gelation properties of “Boba” mix were evaluated with a controlled stress rheome-
ter (Anton Paar, MCR302, Graz, Austria). A cone-plate geometry (25 mm diameter and 2◦

cone angle) was utilized for rheological evaluation. The composite solutions were held at
20 ◦C for 120 s on the flat surface for temperature equilibrium. The storage (G′) modulus
and loss (G′′ ) modulus determined during the heating process from 20 to 50 ◦C and cooling
process from 50 to 0 ◦C were measured at a heating ramp rate of 2 ◦C/min. Before the
measurements, the linear viscoelastic range (LVR) was determined as 1% strain at 1 Hz
frequency (data now shown).

2.5. Characterization of “Boba Balls”
2.5.1. Total Phenolic Content (TPC), Antioxidant Capacity, and Anthocyanin
Pigment Content

The TPC and antioxidant capacity of the PPE and “Boba balls” samples were measured.
For this purpose, samples (1 g) were vortexed with ethanol/water (10 mL, 70/30, v/v)
in a falcon tube, and then the mixture was kept in a shaking water bath at 25 ◦C for 2 h.
After that, solids were separated from the supernatants of the samples by centrifugation for
10 min at 9000× g. Then the supernatant was used for the TPC and antioxidant capacity
analysis. Analysis of TPC was performed based on the Folin–Ciocalteu method. The
calculation of TPC was performed using gallic acid to construct the calibration curve [10],
and the results were specified as mg gallic acid equivalent/g of dry matter.

The antioxidant capacity of PPE and “Boba balls” was determined with three different
methods. Radical cation decolorization assay (2,2′-azino-bis 3-ethylbenzothiazoline-6-
sulphonic acid), ABTS) [11], free radical scavenging assay (2,2-diphenyl-1-picrylhydrazyl,
DPPH) [12] and cupric ion-reducing antioxidant capacity (CUPRAC) [13] were conducted
on the PPE and “Boba balls”. The calibration curves were prepared using Trolox (6-hydroxy-
2,5,7,8-tetramethylchromane-2-carboxylic acid), and the results were presented as µmole
TE/g dry weight.

The total monomeric anthocyanin (TMA) content of “Boba balls” was established
following the method and calculation of Lee, et al. [14], and results were stated as mg
cyaniding-3-glucoside equivalents/g.
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2.5.2. Encapsulation Efficiency (EE) of Pomegranate Peel Extract in “Boba Balls”

The measurement of the encapsulation efficiency (EE) of PPE in “Boba balls” was
determined based on the TPC of samples before and after the formation of “Boba balls”,
and was calculated by the following formula:

EE (%)

=
Total phenolic contet o f “Boba balls”

Total phenolic content o f “Boba” mix before dropping the oil

×100

(1)

2.5.3. Visual Appearance and Color

“Boba balls” were visually observed with a stereo zoom microscope (Leica EZ4E,
Heerbrugg, Switzerland) at 8× magnification, and the images were captured with an
integrated 5-megapixel camera. The color (L*, a*, and b*) values of “Boba balls” was
assessed via a color spectrophotometer (X-Rite, Ci7800, Grand Rapids, MI, USA). For
measurements, ten different “Boba balls” were used, and they were directly placed on the
measuring cell, and the color values were recorded. Prior to the color measurement of
the samples, calibration of the instrument was performed using a white standard plate
(L* = 96.11, a* = −0.25, b* = 1.06). The total color difference (∆E) of “Boba balls” based on
the control sample was calculated according to following formula:

∆E =
2
√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (2)

2.5.4. Texture Analysis

The texture profile analysis (TPA) of “Boba balls” was measured with a texture analyzer
(Stable Micro Systems, TA-HD Plus, Godalming, UK) outfitted with a 36 mm diameter
P/36R probe. “Boba balls” containing PPE extract were directly placed on the center of
heavy-duty platform, and the probe was compressed to 50% of samples at a 5 mm/s test
speed. The waiting time between the two cycles of the compression was 5 s, and 10 different
“Boba balls” were subjected to testing at room temperature [2].

2.5.5. FT-IR Spectrum

Lyophilized “Boba balls” and PPE extracts were converted into powder form with the
help of a mortar, powdered samples (~20 mg) were directly placed in the sample chamber
of the FT-IR device (TA, Nicolet iS50, San Marcos, CA, USA), and FT-IR spectra were taken
directly with the help of an ATR diamond crystal at a 2 cm−1 scan resolution between 4000
and 400 cm−1 wavenumber range.

2.5.6. Microstructure Analysis

The scanning electron microscope (SEM) (Carl Zeis, Gemini 300, Jena, Germany) was
used for the visualization of the microstructure of “Boba balls”. “Boba balls” that broke after
being immersed in liquid nitrogen for 1 min were fixed on the aluminum stubs by double-
sided tape, followed by gold-palladium coating of samples in a low vacuum chamber (Leica,
EM ACE200, Heerbrugg, Germany). Images were captured at an accelerating voltage of
20 kV. The surface microstructural images were captured at 100× and 500×magnifications.

2.5.7. In Vitro Gastrointestinal Digestion

The in vitro gastrointestinal digestion of PPE and “Boba balls” was determined with
the TPC and antioxidant capacity analyses (Section 2.5.1) after the digestion of samples in
simulated gastrointestinal fluids. The salivary (SSF), gastric (SGF) and intestinal (SIF) fluids
were formulated according to Minekus, et al. [15]. Firstly, 1 g samples were mixed with SSF
and kept at 37 ◦C for 2 min in a water bath. Then, the solutions were transferred into SGF at
pH 3, before being held at 100 rpm for 2 hours at 37 ◦C in a shaking water bath. Following
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this period, the solutions (10 mL) were transferred into the SIF and held at 100 rpm for
2 h at 37 ◦C in a shaking water bath. At the completion of the hydrolysis procedures,
samples were centrifuged at 4 ◦C for 30 min at 9056× g, and then supernatants were stored
at −18 ◦C. The bio-accessibility (%) was calculated by dividing the results obtained from
the bio-accessible fraction by the sum of the extractable fraction and multiplying by 100.

2.5.8. In Vitro Release Kinetic of “Boba Balls”

For the release kinetic study, the “Boba balls” in the gastric condition were sampled
every 15 min for 120 min, and then every 30 min until 240 min. For the intestinal condition,
samples were held in the gastric condition for 120 min and the sampling procedure was
repeated as above. The release kinetics of phenolic compounds from “Boba balls” in the
stomach and intestine mediums were evaluated by the Korsmeyer–Peppas (Equation (3))
and Peppas–Sahlin (Equation (4)) kinetic models, which are widely used in release kinetic
studies, as well as the Makoid–Banakar model (Equation (5)):

Mt

M∞
= ktn (3)

Mt

M∞
= k1tm + k2t2m (4)

Mt = KMB × tn × e−ct (5)

where Mt and M∞ refer to the releasing of TPC at t and infinite times, respectively. k and
n refer to the kinetic constant depending on the geometrical and structural properties of
particles, and release exponent, which shows the release mechanism, respectively. k1, k2,
m and KMB are kinetic constants, diffusional exponent for Peppas–Sahlin model, and the
Makoid–Banakar coefficient, respectively.

2.5.9. Sensory Evaluation

The sensory panel was selected from the students and academicians of the Food
Engineering Department at Bursa Technical University, Turkey. Panelists consisted of
15 women and 15 men between the ages of 19 and 42 years old that were semi-trained
about the product and evaluation criteria before starting the evaluation. The products were
evaluated by a five-point hedonic scale, where 1 = dislike very much, 2 = dislike slightly,
3 = neither like nor dislike, 4 = like slightly, and 5 = like very much. The evaluation was
based on appearance, elasticity, taste, and aroma, general acceptability, and affordability.
The samples were randomly numbered with three digits before serving to panelists. After
the evaluation of each sample, the panelists rinsed their mouths with water.

2.6. Statistical Analysis

The production of “Boba balls” was performed in triplicate, and rheology, TPC, antiox-
idant capacity, EE, in vitro release, and sensory tests were conducted at least in triplicate,
while texture and color analysis were measured for 10 samples per batch of “Boba balls”.
The results of these tests are presented as mean ± standard deviation. A one-way analysis
of variance was performed to determine any significant differences between treatments,
followed by Duncan’s multiple range test at a 95% confidence interval with SPSS v21
(IBM, New York, NY, USA). OriginPro v8.5 (OriginLab Corp., Northampton, MA, USA)
was used for the graphical visualization of the results. The release kinetic mathematical
models were applied to experimental data by using MS Excel (v2016, Redmond, WA, USA)
with DDSolver.
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3. Results and Discussion
3.1. Rheological Properties of “Boba” Mix

The production of “Boba balls” occurs from two different processes, mainly the heating-
swelling and cooling-molding of the polymer mix, and therefore, temperature ramp analysis
of the “Boba” mix can provide significant information about the simulation of production.
The storage (G′) modulus and loss (G′′) modulus from the temperature sweep test in
LVR are illustrated in Figure 2. It is evident that the “Boba” mix was characterized as
a viscoelastic structure due to higher G′ than G′′ up to 35 ◦C. In addition, G′ and G′′

values of the control were lower than in the PPE samples. The increasing modulus values
could be attributed to the antioxidant and bioactive compounds of PPE, which have a
positive influence on the final structural network formation of gelatin [16]. The heating
and cooling cycles of the “Boba” mix gave significant information about the melting
and gelation temperatures, respectively. During heating from 20 to 50 ◦C, the G′ and
G′′ values of “Boba” mix decreased rapidly, and cross-over points were observed for
samples, which were related to melting temperature (Table 1). The heating of the mix
caused a single-strand arrangement of gelatin molecules and activated the molecular bonds,
which resulted in the unfolding and full hydration of alginate, and hence, exhaustive
dissolution [2]. G′ and G′′ values increased sharply as the temperature decreased, implying
gel formation. The gelation process occurred through the transition from a single-strand
arrangement to the triple-helix structure of gelatin, by means of hydrogen bonding, van
der Waals forces, ionic interaction, hydrophobic association, and self-assembly [17]. The
addition of PPE to the “Boba” mix slightly decreased the melting temperature (p > 0.05),
whereas gelation temperature significantly increased (p < 0.05). The changes in gelation
temperatures could be explained by the increased total soluble solid content of the “Boba”
mix and the formation of triple-helix structures due to hydroxyl groups and hydrogen
bonding. Additionally, the high molecular weight of PPE and SA provides a protective
effect for the “Boba” mix gel structure [18]. Similar results were reported earlier by Liu,
Xiao, Feng, Zhang, Li, Tu and Niu [2] for a konjac-glucomannan-SA “Boba” mix containing
purple-sweet-potato-peel anthocyanin.

Table 1. The melting and gelation temperatures of “Boba” mix and bioactive properties of “Boba balls”.

Properties PPE C PPE1 PPE2 PPE3

Tm - 32.88 ± 1.75 31.70 ± 0.98 32.52 ± 1.57 32.53 ± 1.18
Tg - 19.56 ± 0.32 c 21.38 ± 0.45 b 23.60 ± 0.57 a 23.65 ± 0.86 a

EE - 75.25 ± 9.21 72.74 ± 3.99 71.59 ± 2.72 68.52 ± 0.51
TPC 234.18 ± 3.61 25.50 ± 0.01 d 28.48 ± 0.51 c 30.86 ± 0.02 b 33.19 ± 0.27 a

ABTS 1465.46 ± 26.71 7.96 ± 0.32 d 11.69 ± 0.99 c 27.56 ± 0.01 b 50.49 ± 1.49 a

CUPRAC 3215.66 ± 48.69 7.45 ± 0.25 d 16.43 ± 0.76 c 22.52 ± 0.67 b 36.52 ± 0.58 a

DPPH 458.74 ± 33.25 8.15 ± 0.31 d 18.66 ± 0.15 c 32.75 ± 1.09 b 35.54 ± 1.13 a

TMA 80.54 ± 0.06 34.63 ± 0.04 d 41.39 ± 0.15 c 49.10 ± 0.04 b 54.35 ± 0.17 a

Values are means ± standard deviation. a–d Means within the same row with different letters are significantly
different (p < 0.05). Tm: Melting temperature (◦C); Tg: Gelation temperature (◦C); EE: Encapsulation efficiency (%);
TPC: Total phenolic content (mg gallic acid equivalent/g of extract); ABTS, CUPRAC and DPPH are antioxidant
capacity measurement methods as µmole trolox/g; TMA: Total monomeric anthocyanin content (mg cyaniding-3-
glucoside equivalents/g); C: “Boba balls” without PPE addition, Control; PPE: Pomegranate peel extract; PPE1:
“Boba balls” enriched with 1% PPE; PPE2: “Boba balls” enriched with 2% PPE; PPE3: “Boba balls” enriched with
3% PPE.
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modulus of gelatin/sodium alginate composite solutions during heating and cooling process. (C:
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temperature (◦C); Tg: Gelation temperature (◦C)).

3.2. Encapsulation Efficiency and Bioactive Properties of “Boba Balls”

The encapsulation efficiency (EE), total phenolic content (TPC), antioxidant capacity,
and total monomeric anthocyanin content (TMA) of PPE and PPE-enriched “Boba balls” are
summarized in Table 1. The EE of “Boba balls” was determined based on TPC content, and
therefore, the control sample displayed high EE results due to the TPC of pomegranate juice.
The EE results of “Boba balls” decreased insignificantly with the PPE addition (p > 0.05).
However, the TPC values of PPE were high (234.18 mg gallic acid equivalent/g of extract);
the EE results of “Boba balls” may have decreased due to the high gelatin content of
the “Boba” mix. The higher gelatin concentration resulted in the production of a porous,
hydrophilic, and loose gel network structure, causing the encapsulated material to leach out
during “Boba balls” production [19]. In a previous investigation, Liu, et al. [20] stated that
the EE of alginate/gelatin hydrogels decreased when the gelatin concentration increased to
60 g/L. The authors explained this situation by the increasing viscosity of hydrogel, which
caused the complex distribution of core material. In our study, the viscoelastic properties
(Figure 2) of the “Boba” mix increased with the PPE addition. Therefore, the EE results
decreased due to the inability to evenly distribute PPE within the polymer mix. Moreover,
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the gel structure of SA does not form immediately, and the contact with the Ca+2 ions
is needed. Due to the hydrophilic nature of PPE, the encapsulation efficiency may have
decreased due to the possibility that a small quantity of the extract was emitted into the
CaCl2 solution [21].

The TPC value of PPE was determined to be 234.18 mg gallic acid equivalent/g of
extract, which was comparable to the quantity reported in the literature [22]. The control
sample produced with pomegranate juice displayed the lowest TPC value (25.50 mg gallic
acid equivalent/g of extract), and the increasing PPE amount in “Boba balls” significantly
increased the TPC values, and the highest result (p < 0.05) was observed from PPE3
(33.19 mg gallic acid equivalent/g of sample). CUPRAC, ABTS, and DPPH methods are
the most widely used techniques for establishing the antioxidant capacity, and therefore
these methods were used for PPE and “Boba balls”. Since the measurement principles
of these methods are different from each other, the results obtained gave the expected
results, but were not comparable with each other. As expected, the PPE was found to
have the highest antioxidant capacity. Amongst the “Boba balls” samples, the control
showed the lowest antioxidant capacity results due to the lower antioxidant capacity of
pomegranate juice. The addition of PPE significantly improved the antioxidant capacity of
“Boba balls” (p < 0.05). The increasing antioxidant capacity with PPE could be attributed to
the secondary metabolites of pomegranate peels, such as phenolic compounds including
flavonoids and tannins, which engage in metal chelating and scavenging activities [23].

The major pigments of pomegranate peel are dependent on the anthocyanin content,
which belongs to the flavonoid family. The color change and bioactive compounds in the
pomegranate peel are mainly affected by the variety, environmental conditions (tempera-
ture, rainfall, etc.), cultivation conditions, growing region, and ripening stage of the fruit
to be harvested [24]. The TMA content of PPE was determined to be 80.54 mg cyaniding-
3-glicoside eq/g, and our result was similar to the literature [25]. The lowest TMA value
(34.63 mg cyaniding-3-glicoside eq/g) was determined for the control sample, and it was
due to pomegranate juice. The addition of PPE to the “Boba” mix resulted in a significantly
(p < 0.05) increased TMA value (p < 0.05).

3.3. Visual Appearance and Color of “Boba Balls”

The visual appearance of “Boba balls” captured by a stereo microscope is shown in
Figure 3, and the color results are summarized in Table 2. It is obvious in Figure 3 that “Boba
balls” were successfully produced in spherical shapes. In addition, PPE addition to the
“Boba” mix caused a cloudy appearance, and therefore, “Boba balls” not enriched with PPE
were more transparent than PPE-containing samples. The control sample showed some
particulate in the spherical “Boba” probably caused by the particulates in pomegranate juice,
and the addition of PPE at 1% decreased the visibility of these particulates. Additionally,
these particulates were not observed in PPE2 and PPE3 samples, possibly due to the
increasing opacity. It can also be concluded that “Boba balls” had a homogeneous shape,
surface structure, and stable size, meaning that the production of “Boba balls” was very
stable. The color values of “Boba balls” revealed that PPE addition significantly (p < 0.05)
affected the L* and b* values but did not affect a* values (p > 0.05). The lowest L* value
(16.97) was observed for the PPE1 sample, while PPE3 showed the highest L* value (29.72).
The significant change in the L* values could be attributed to the transparency and opacity
of the samples, which is caused by light transmission through control and PPE1 samples,
whereas PPE2 and PPE3 reflected the light and hence showed higher L* values. The b*
values of the “Boba ball” samples were not significantly (p > 0.05) altered by the addition
of PPE up to 3%. At 3% PPE, the “Boba balls” showed the highest b* results, which meant
increased yellowness. However, the lower PPE concentrations caused a more greenish
color of “Boba balls”. As expected, the typical color of “Boba balls” was reddish due to the
dominant color of pomegranate juice, and the a* values were not significantly (p > 0.05)
impacted by the PPE addition.
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Table 2. Color and textural properties of “Boba balls”.

C PPE1 PPE2 PPE3

L* 20.96 ± 0.37 c 16.97 ± 0.49 d 26.24 ± 3.10 b 29.72 ± 1.78 a

a* 28.39 ± 1.88 26.39 ± 0.44 31.48 ± 2.51 28.47 ± 1.94
b* 12.25 ± 0.19 b 10.51 ± 0.31 b 12.48 ± 1.37 b 18.04 ± 1.89 a

∆E - 4.60 ± 0.27 b 5.02 ± 0.26 b 6.97 ± 0.98 a

Hardness (g) 424.18 ± 95.13 a 398.76 ± 50.66 a 275.88 ± 48.22 b 116.53 ± 25.74 c

Springiness 0.98 ± 0.01 b 0.98 ± 0.01 b 0.98 ± 0.01 b 1.03 ± 0.04 a

Cohesiveness 0.80 ± 0.01 a 0.82 ± 0.01 a 0.83 ± 0.02 a 0.50 ± 0.09 b

Gumminess (g) 340.22 ± 79.42 a 325.2 ± 42.06 a 228.33 ± 42.62 b 60.41 ± 21.52 c

Chewiness (g) 334.17 ± 77.91 a 319.15 ± 41.1 a 224.36 ± 41.46 b 61.37 ± 20.38 c

Resilience 0.88 ± 0.02 a 0.84 ± 0.02 bc 0.87 ± 0.03 ab 0.81 ± 0.06 c

Values are means ± standard deviation. a–d Means within the same row with different letters are significantly
different (p < 0.05). L*: Lightness; a*: redness; b*: yellowness; ∆E: Total color difference; C: “Boba balls” without
PPE addition, Control; PPE1: “Boba balls” enriched with 1% PPE; PPE2: “Boba balls” enriched with 2% PPE;
PPE3: “Boba balls” enriched with 3% PPE.

The total color differences (∆E) of “Boba balls” were evaluated based on the control
sample, which was produced without PPE addition. The results showed that there was
no significant difference between PPE1 and PPE2 (p > 0.05), whereas PPE3 showed a
significantly higher ∆E value than others (p < 0.05). The increasing PPE ratio caused higher
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∆E values probably due to increasing L*, a* and b* values. According to the classification
of ∆E values by Cserhalmi, et al. [26] “Boba balls” enriched with PPE displayed color
differences between well-visible (3.0–6.0) and great (6.0–12.0).

3.4. Textural Properties

The hardness and elasticity of a hydrogel-type food product are crucial parameters
that directly affect consumer acceptability. These parameters can easily and rapidly be
determined by the texture profile analysis, and the results are provided in Table 2. Hard-
ness, cohesiveness, gumminess and adhesiveness play an important part in swallowing
physiology. Properties such as greater hardness, adhesiveness, and gumminess, and re-
duced cohesiveness are generally connected to a higher risk of aspiration [27]. The soft
gel structure of “Boba balls” is widely utilized during the consumption of beverages such
as milk tea, coffee, and yogurts. Therefore, a softer gel-forming agent is necessary to be
easily chewed and swallowed. The hardness, gumminess, and chewiness values of samples
decreased insignificantly (p > 0.05) for the control and PPE1 samples; however, the further
addition of PPE significantly (p < 0.05) decreased the hardness. The decreasing hardness
values after the 0.25% purple-sweet-potato-peel anthocyanin addition were also reported
by Liu, Xiao, Feng, Zhang, Li, Tu and Niu [2]. The gel, which has a high springiness, is
structurally divided into several large pieces upon the initial compression. In contrast, gels
with lower springiness will structurally break into many small pieces at the end of the first
compression [28]. Springiness values were stable for all samples up to 3% PPE addition
and then significantly (p < 0.05) increased. The degree of difficulty required to break down
the gel’s internal structure is an indication of the cohesiveness value. Although control,
PPE1, and PPE2 showed the highest cohesiveness results, the lowest value was determined
for PPE3. This means that the internal structure of “Boba balls” containing PPE at 1 and 2%
was better than those containing 3% PPE. Resilience displays the degree to which a product
strives to regain its initial height. PPE3 showed the lowest resilience and control, and PPE2
had the highest results.

3.5. FT-IR Spectrum

The potential molecular interactions between the “Boba” mix and core material
(pomegranate peel extract) were investigated with the FT-IR spectrum. For this purpose,
freeze-dried “Boba” mix without PPE, neat PPE, and “Boba balls” enriched with PPE at
different ratios were analyzed, and the related images are illustrated in Figure 4. The
FT-IR spectrum of PPE showed five major peaks located at the wavenumbers of 3377,
2972, 1725, 1594 and 1034 cm−1, which can be allocated to hydroxylic groups’ (alcohols,
carboxylic acids, or phenols) stretching vibration bond; aliphatic C-H groups because of
C-CH and C-CH2 bonds; COO groups of aldehyde and ketone, and carboxylic acid C=O
groups; the C=O and C=C stretching vibration bonds; and the stretching bonding of CO
and OH deformation in alcohols, respectively [29]. The “Boba” mix also showed the same
peaks with the slight shifting of wavenumbers. The intensity of peaks located at 1635
and 1535 cm−1 for the “Boba” mix was higher than PPE because the “Boba” mix consists
of gelatin, and these peaks (Amide I and II) are fingerprints for protein molecules. In
addition, a similar backbone structure was observed for the “Boba balls” enriched with PPE.
However, a new peak, which was not observed in the PPE and “Boba” mix, was detected
for PPE-enriched “Boba balls” at the 2361 cm−1 wavenumber, and the intensity of this
peak increased with increasing PPE ratio. This peak is highly related to carbonyl specific
absorption [30]. Overall, the FT-IR spectra of PPE-enriched “Boba balls” revealed that PPE
was successfully incorporated with “Boba” mix as a core material, and the observed shift
in wavenumbers and new peak occurrence indicated a strong interaction between the PPE
and “Boba balls”.
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Figure 4. Effects of pomegranate peel extract (PPE) concentration on the Fourier transform infrared
(FT-IR) spectrums. (PPE: pomegranate peel extract; C: Control without PPE; PPE1: “Boba balls”
containing 1% PPE; PPE2: “Boba balls” containing 2% PPE; PPE3: “Boba balls” containing 3% PPE).

3.6. SEM Images

The interactions between polymers used for “Boba ball” production can be further
explained by morphological characterization, and for this purpose, the freeze-dried “Boba
balls” were investigated with an electron microscope. The images were captured from
the surface (50×) and cross-section (500×) of broken “Boba balls” by liquid nitrogen
(Figure 5). The deformity and heterogeneous surface structure with a wrinkled shape
of control sample could be related with the high sublimation rates of ice crystals during
freeze-drying [2]. However, the surface structure was significantly changed by the addition
of PPE, and smoother surfaces occurred as the PPE concentration increased. The increasing
PPE concentration caused a denser surface structure with smaller voids, and more junction
zones were formed, probably due to the cross-linking of PPE-gelatin and SA [2]. In addition,
the smoother surfaces of PE-added “Boba balls” may be associated with the high sugar
content of PPE. In general, uniform spherical microbeads are more attractive than non-
uniform shapes for drug delivery and controlled-release applications because uniform
microbeads offer the prolonged and precise release of encapsulated compounds [31]. The
cross-sectional images of the samples clearly revealed that the increasing PPE concentration
increased the connections between the polymers, and PPE3 showed a denser cross-section
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without huge voids. Furthermore, it was confirmed that the cross-sectional morphology of
“Boba balls” at 2 and 3% PPE showed a more uniform and compact network arrangement
with less pores in the gels. The dense internal structure of “Boba balls” could also improve
the controlled release of PPE. These results can also be well corroborated with the uniform
spherical shapes of PPE2 and PPE3, as well as encapsulation efficiency, rheology and
texture analysis.
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Figure 5. Scanning electron microscope (SEM) images of “Boba balls”. (C: Control, “Boba balls”
without pomegranate peel extract (PPE); PPE1: “Boba balls” containing 1% PPE; PPE2: “Boba balls”
containing 2% PPE; PPE3: “Boba balls” containing 3% PPE).

3.7. In Vitro Digestion of “Boba Balls”

The in vitro digestibility of coated and/or encapsulated bioactive substances is very
important because most of the bioactive substances are required to pass through the mouth
and stomach without being damaged and to be released in the intestinal medium, thus
increasing the bio-availability. In vitro bio-accessibility of PPE-loaded “Boba balls” was
evaluated by the assessment of TPC and antioxidant capacity. The findings are depicted in
Figure 6, and it can clearly be seen that the bio-accessibility of phenolic and antioxidant
compounds in “Boba balls” were lower than 10% in an oral medium, which meant that these
bioactive compounds were successfully protected against oral digestive fluids. In addition,
the initial bio-accessibility of bioactive compounds in an oral medium may possibly be
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associated with the phenolic compounds on the surface of “Boba balls”. The TPC bio-
accessibility in the gastric medium ranged from 11.75 to 14.66% and increased significantly
by the increasing of PPE ratio. The antioxidant capacity tests in the gastric condition were
higher than the TPC results, and they were also affected by the PPE concentration. The
increasing bio-accessibility in the gastric medium was mainly caused by the variation
in ionic composition, pH, and gastric enzymes, which caused the leakage of phenolic
compounds [32]. Moreover, during the 2 h duration of gastric conditions, “Boba balls”
showed TPC bio-accessibility lower than 15%, and antioxidant capacity lower than 40 and
30% for DPPH, ABTS, and CUPRAC, respectively. This situation clearly revealed that the
strong biopolymer matrix network restrained the seepage of bioactive compounds from
“Boba balls” to the stomach. Less discharge in the stomach is advantageous since more
bioactive compounds would be absorbed in the intestinal medium. The bio-accessibility
of bioactive compounds in “Boba balls” in the intestinal medium showed the highest
values, probably due to the intense electronic repulsion between alginate molecules, which
triggered the degradation of the hydrogel [33]. In a previous study, uncoated PPE showed
only 22.46% bio-accessibility in the intestinal medium, and 87.83% of the initial phenolic
compounds in PPE were degraded in the oral phase, whereas 46.60% of TPC was degraded
in gastric conditions [34]. It can be clearly concluded from our results that the production
of “Boba balls” enriched with PPE significantly improves the bio-accessibility of bioactive
compounds in gastrointestinal digestion.
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Figure 6. The in vitro bio-accessibility of “Boba balls” containing pomegranate peel extract (PPE)
at various concentrations. (C: Control without PPE; PPE1: “Boba balls” containing 1% PPE; PPE2:
“Boba balls” containing 2% PPE; PPE3: “Boba balls” containing 3% PPE).

3.8. In Vitro Release Kinetic of “Boba Balls”

The in vitro release kinetic of phenolic compounds in the “Boba balls” in the stomach
and intestinal environments was evaluated with widely used release models. The cumu-
lative percentage release vs. time graph of TPC in PPE and “Boba balls” is described in
Figure 7, and the related model parameters are provided in Table 3. The highest release
percentage for oral and gastric conditions was determined from the PPE, which showed
that the phenolic compounds of PPE should be protected via encapsulation for better
biological activity. However, TPC release from PPE in the intestinal medium was lower
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than “Boba balls” at the beginning of the digestion in the intestine, and in contrast to “Boba
balls”, attained a maximum level at the conclusion of digestion. The release rate of TPC
in the oral medium was very low, whereas in the gastric medium, the release rate linearly
increased during the 2 h duration. The increasing rate could be attributed to phenolic
compounds attached to the surface of “Boba balls”. However, the release rate reached the
highest values when samples passed through the intestinal medium, probably due to the
effectiveness of bile salt, which increased the leakage of active compounds, and the pH
value of the intestine medium, which resulted in the solubility of alginate [35]. The release
data were fitted to three different models, including Korsmeyer–Peppas, Peppas–Sahlin,
and Makoid–Banakar, the most used models for drug-release studies. As seen in Table 3,
all models, except for Korsmeyer–Peppas in the intestinal medium, showed high R2 values
(>0.950) both for the stomach and intestine medium. In the Korsmeyer–Peppas model,
the exponent n describes the release mechanism and highly depends on the geometry of
the micro particles. If n = 0.43, spherical-shaped micro particles show diffusion-controlled
release or Fickian diffusion, whereas if n = 0.85, micro particles indicate swelling-controlled
release or case II transport of active compounds. However, in some cases in which n values
are between 0.43 and 0.85, the release behavior of micro particles can be defined as the su-
perposition of both phenomena, called anomalous transport [36]. In our study, “Boba balls”
showed n values lower than 0.43 both for gastric and intestinal conditions and showed a
quasi-Fickian diffusion of TPC [37]. These results reveal that the release mechanism of PPE
from “Boba balls” was diffusion-controlled, which means the concentration gradient was
the main trigger for release [38,39].
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Figure 7. Release pattern of pomegranate peel extract (PPE) from “Boba balls” in the simulated
gastrointestinal conditions. (PPE: pomegranate peel extract; C: Control without PPE; PPE1: “Boba balls”
containing 1% PPE; PPE2: “Boba balls” containing 2% PPE; PPE3: “Boba balls” containing 3% PPE).
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Table 3. The release model parameters of total phenolic compounds from “Boba balls” hydrogel to
the stomach and intestinal environments.

Medium Model Coefficients C PPE1 PPE2 PPE3

G
as

tr
ic

co
nd

it
io

ns

Korsmeyer–Peppas
k 1.885 1.402 1.400 1.490
n 0.351 0.422 0.410 0.378

R2 0.9797 0.9647 0.9609 0.9742

Peppas–Sahlin

k1 1.451 1.248 1.289 1.289
k2 0.657 0.427 0.371 0.426
m 0.227 0.274 0.274 0.252
R2 0.9821 0.9677 0.9656 0.9782

Makoid–Banakar

KMB 1.677 1.324 1.868 1.747
n 0.385 0.439 0.328 0.332
c 0.000 0.000 −0.001 0.000

R2 0.9801 0.9648 0.9625 0.9748

In
te

st
in

al
co

nd
it

io
ns

Korsmeyer–Peppas
k 34.639 43.597 39.809 39.718
n 0.182 0.141 0.153 0.148

R2 0.9547 0.8411 0.8983 0.9036

Peppas–Sahlin

k1 33.307 40.527 38.244 39.552
k2 −3.048 −4.706 −4.302 −4.712
m 0.285 0.301 0.286 0.271
R2 0.9798 0.9738 0.9701 0.9688

Makoid–Banakar

KMB 30.543 35.333 33.768 34.640
n 0.232 0.239 0.226 0.211
c 0.001 0.002 0.001 0.001

R2 0.9722 0.9569 0.9563 0.9534

3.9. Sensory Properties

The sensory properties of “Boba balls” enriched with PPE at various concentrations are
depicted in Figure 8. The addition of PPE to “Boba balls” had insignificant (p < 0.05) effects
on some sensory properties of the final product but did not change other sensory properties
such as taste and aroma, smell, acceptability, and affordability. However, the appearance,
elasticity, and consistency scores of “Boba balls” decreased with an increasing PPE ratio. The
changes in sensory scores are well supported by Figure 3, showing that the opacity of “Boba
balls” increased when the PPE ratio increased; hence, the appearance scores decreased.
Moreover, the increasing PPE ratio caused the decreasing elasticity. The decreased elasticity
may be due to increasing the total dry matter of “Boba balls”; this result is well supported
by Figure 2, in which the elastic modulus increased with increasing PPE ratio. When the
consistency values from the panelists were examined, it was clear that all samples, except
for PPE3, had similar consistency, and the lowest consistency result was observed from
PPE3. As a general evaluation of sensory scores, the PPE enrichment of “Boba balls” had
no significant effect on the acceptability and affordability of the final products, which were
close to the control sample. Thus, PPE could be used as supplementary material for “Boba
balls” to enhance antioxidant and bio-accessibility properties.
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Figure 8. Sensory evaluation of “Boba balls” produced with gelatin/sodium alginate composite
containing pomegranate peel extract (PPE) at various concentrations. (C: Control without PPE;
PPE1: “Boba balls” containing 1% PPE; PPE2: “Boba balls” containing 2% PPE; PPE3: “Boba balls”
containing 3% PPE).

4. Conclusions

In this study, “Boba balls” were successfully enriched with pomegranate peel extract
(PPE), and then the bioactivity, bio-accessibility, release kinetic, physical, chemical, and mor-
phological properties, as well as sensory properties, of “Boba balls” were characterized. PPE
addition significantly increased the gelation temperature, whereas no significant (p > 0.05)
effect was observed on the encapsulation efficiency and melting temperature. The highest
bioactive properties, such as antioxidant capacity, total monomeric anthocyanin, and total
phenolic content, were observed for PPE, and as expected, increasing PPE concentration in
“Boba balls” significantly (p < 0.05) improved these results. The visual appearance of “Boba
balls” changed and became more opaque as PPE concentration increased. The hardness and
chewiness of “Boba balls” significantly decreased with PPE addition. FT-IR results clearly
revealed the chemical bonds occurring between PPE and “Boba balls”. Additionally, more
junction zones were observed from the microstructural images of PPE-incorporated sam-
ples. The in vitro bio-accessibility of “Boba balls” clearly revealed that PPE was successfully
covered by the “Boba” mix and increased the gastrointestinal bio-accessibility. Moreover,
the release kinetic of PPE from “Boba balls” was modeled by widely used drug-release
kinetic models with a higher R2 than 0.85. Sensory scores clearly showed that the smell,
taste, aroma, overall acceptability, and affordability of “Boba balls” did not change with
the PPE addition. At the same time, appearance, elasticity, and consistency decreased.
Considering all these results, PPE can be successfully encapsulated in the “Boba balls”. It
can also be a valuable supplementary material for improving not only the bioactivity of
“Boba balls” but also the bio-accessibility.
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various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547.
[CrossRef] [PubMed]

14. Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages,
Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [CrossRef]
[PubMed]

15. Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.
A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124.
[CrossRef]

16. Wang, Q.; Cao, J.; Yu, H.; Zhang, J.; Yuan, Y.; Shen, X.; Li, C. The effects of EGCG on the mechanical, bioactivities, cross-linking
and release properties of gelatin film. Food Chem. 2019, 271, 204–210. [CrossRef] [PubMed]

17. Da Silva, M.A.; Bode, F.; Grillo, I.; Dreiss, C.A. Exploring the kinetics of gelation and final architecture of enzymatically
cross-linked chitosan/gelatin gels. Biomacromolecules 2015, 16, 1401–1409. [CrossRef] [PubMed]

http://doi.org/10.1108/BFJ-01-2022-0025
http://doi.org/10.1111/ijfs.15557
http://doi.org/10.1080/096374899101256
http://doi.org/10.1080/10408398.2014.965773
http://doi.org/10.1016/j.foodhyd.2021.106782
http://doi.org/10.3390/app11010200
http://doi.org/10.1016/j.foodres.2022.111378
http://doi.org/10.1016/j.tifs.2021.06.050
http://doi.org/10.1016/j.foodchem.2022.133921
http://www.ncbi.nlm.nih.gov/pubmed/35969988
http://doi.org/10.1007/s00604-007-0777-0
http://doi.org/10.1016/S0023-6438(95)80008-5
http://doi.org/10.3390/12071496
http://www.ncbi.nlm.nih.gov/pubmed/17909504
http://doi.org/10.1093/jaoac/88.5.1269
http://www.ncbi.nlm.nih.gov/pubmed/16385975
http://doi.org/10.1039/C3FO60702J
http://doi.org/10.1016/j.foodchem.2018.07.168
http://www.ncbi.nlm.nih.gov/pubmed/30236668
http://doi.org/10.1021/acs.biomac.5b00205
http://www.ncbi.nlm.nih.gov/pubmed/25772227


Foods 2022, 11, 3785 19 of 19

18. Tau, T.; Gunasekaran, S. Thermorheological evaluation of gelation of gelatin with sugar substitutes. LWT-Food Sci. Technol. 2016,
69, 570–578. [CrossRef]

19. Sarker, B.; Zehnder, T.; Rath, S.N.; Horch, R.E.; Kneser, U.; Detsch, R.; Boccaccini, A.R. Oxidized alginate-gelatin hydrogel: A
favorable matrix for growth and osteogenic differentiation of adipose-derived stem cells in 3D. ACS Biomater. Sci. Eng. 2017, 3,
1730–1737. [CrossRef] [PubMed]

20. Liu, J.; Liu, F.; Ren, T.; Wang, J.; Yang, M.; Yao, Y.; Chen, H. Fabrication of fish gelatin/sodium alginate double network gels for
encapsulation of probiotics. J. Sci. Food Agric. 2021, 101, 4398–4408. [CrossRef]

21. Moreira Mar, J.; Souza da Silva, L.; da S Rabello, M.; Moraes Biondo, M.; Ferreira Kinupp, V.; Henrique Campelo, P.; Bruginski,
E.; Ramos Campos, F.; de Araújo Bezerra, J.; Aparecido Sanches, E. Development of alginate/inulin carrier systems containing
non-conventional Amazonian berry extracts. Food Res. Int. 2021, 139, 109838. [CrossRef]

22. Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.)
peel: A review. Food Chem. 2018, 261, 75–86. [CrossRef]

23. Rashid, R.; Masoodi, F.A.; Wani, S.M.; Manzoor, S.; Gull, A. Ultrasound assisted extraction of bioactive compounds from
pomegranate peel, their nanoencapsulation and application for improvement in shelf life extension of edible oils. Food Chem.
2022, 385, 132608. [CrossRef] [PubMed]

24. Mirdehghan, S.H.; Rahemi, M. Seasonal changes of mineral nutrients and phenolics in pomegranate (Punica granatum L.) fruit.
Sci. Hortic. 2007, 111, 120–127. [CrossRef]

25. Azarpazhooh, E.; Sharayei, P.; Zomorodi, S.; Ramaswamy, H.S. Physicochemical and Phytochemical Characterization and Storage
Stability of Freeze-dried Encapsulated Pomegranate Peel Anthocyanin and In Vitro Evaluation of Its Antioxidant Activity. Food
Bioprocess Technol. 2019, 12, 199–210. [CrossRef]

26. Cserhalmi, Z.; Sass-Kiss, Á.; Tóth-Markus, M.; Lechner, N. Study of pulsed electric field treated citrus juices. Innov. Food Sci.
Emerg. Technol. 2006, 7, 49–54. [CrossRef]

27. Momosaki, R.; Abo, M.; Kobayashi, K. Swallowing Analysis for Semisolid Food Texture in Poststroke Dysphagic Patients. J.
Stroke Cerebrovasc. Dis. 2013, 22, 267–270. [CrossRef]

28. Lau, M.; Tang, J.; Paulson, A. Texture profile and turbidity of gellan/gelatin mixed gels. Food Res. Int. 2000, 33, 665–671. [CrossRef]
29. Saadat, S.; Emam-Djomeh, Z.; Askari, G. Antibacterial and Antioxidant Gelatin Nanofiber Scaffold Containing Ethanol Extract of

Pomegranate Peel: Design, Characterization and In Vitro Assay. Food Bioprocess Technol. 2021, 14, 935–944. [CrossRef]
30. Hady, E.; Youssef, M.; Aljahani, A.H.; Aljumayi, H.; Ismail, K.A.; El-Damaty, E.-S.; Sami, R.; El-Sharnouby, G. Enhancement of the

Stability of Encapsulated Pomegranate (Punica granatum L.) Peel Extract by Double Emulsion with Carboxymethyl Cellulose.
Crystals 2022, 12, 622. [CrossRef]

31. Batista, D.; De Oliveira, I.; Ribeiro, A.; Fonseca, E.; Santos-Magalhães, N.; de Sena-Filho, J.; Teodoro, A.; Grillo, L.; de Almeida,
R.; Dornelas, C.B. Encapsulation and release of Beauveria bassiana from alginate–bentonite nanocomposite. RSC Adv. 2017, 7,
26468–26477. [CrossRef]

32. McClements, D.J. Design of nano-laminated coatings to control bioavailability of lipophilic food components. J. Food Sci. 2010, 75,
R30–R42. [CrossRef]

33. Cong, Z.; Shi, Y.; Wang, Y.; Wang, Y.; Chen, N.; Xue, H. A novel controlled drug delivery system based on alginate hydro-
gel/chitosan micelle composites. Int. J. Biol. Macromol. 2018, 107, 855–864. [CrossRef] [PubMed]

34. Foujdar, R.; Chopra, H.K.; Bera, M.B.; Batra, K. Isolation, characterization, bio-accessibility and cytotoxic effect of ellagitannins
purified from peels of Punica granatum Indian var. Bhagwa. J. Food Meas. Charact. 2022, 16, 1733–1743. [CrossRef]

35. Avadi, M.R.; Sadeghi, A.M.M.; Mohammadpour, N.; Abedin, S.; Atyabi, F.; Dinarvand, R.; Rafiee-Tehrani, M. Preparation and
characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomed. Nanotechnol. Biol.
Med. 2010, 6, 58–63. [CrossRef] [PubMed]

36. Bruschi, M.L. Mathematical models of drug release. Strateg. Modify Drug Release Pharm. Syst. 2015, 5, 63–86.
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