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Abstract 

Rodents living in a subterranean ecotope face a unique combination of evolutionary and 

ecological pressures and while host species evolution may be driven by the selective pressure 

from the parasites they harbour, the parasites may be responding to the selective pressures of 

the host. Here we obtained all available subterranean rodent host-parasite records from the 

literature and integrated these data by utilizing a bipartite network analysis to determine 

multiple critical parameters to quantify and measure the structure and interactions of the 

organisms present in host-parasite communities. A total of 163 species of subterranean rodent 

hosts, 174 parasite species, and 282 interactions were used to create four networks with data 

well-represented from all habitable continents. The results show that there was no single 

species of parasite found that infects subterranean rodents throughout all zoogeographical 

regions. Nevertheless, species representing the genera Eimeria and Trichuris were common 

across all communities of subterranean rodents studied. Based on our analysis of host-

parasite interactions across all communities studied, the parasite linkages show that 

community connectance (due to climate change or other anthropogenic factors) appears to 

show degraded linkages in both the Nearctic and Ethiopian regions: In this case parasites are 

acting as bell-weather probes signalling the loss of biodiversity.  

Key words: Endoparasite, subterranean rodents, diversity, network, Nemata, Cestoda 
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Introduction 

Parasites are an essential part of biodiversity acting as ecological resource specialists in 

communities (Hoberg and Brooks, 2015; Hoberg et al., 2022a). Using parasites as probes for 

discovering biological diversity is an efficient way to explore biodiversity at large spatial and 

temporal scales and this also enables detailed investigations of host-parasite associations at 

the level of both communities and ecosystems (Gardner and Campbell, 1992). Because more 

than half of all species of animals have a parasitic life-style, parasites are important 

components of ecosystems and contribute in myriad ways to ecosystem function (Gardner et 

al., 2022). Parasitism applies selective pressure on hosts, and in some cases, it may 

eventually drive host evolution (Pilosof et al., 2014; 2015; Runghen et al., 2021). Due to the 

anthropogenic impacts caused by global climate change, deforestation, and general global 

defaunation, the biosphere faces alteration of ecological functions, high-speed species loss 

with accelerating extinction events every year (Barnosky et al., 2011; Raven and Miller, 

2020, Wood et al., 2023). From the levels of populations through ecosystems, climate change 

also appears to reshuffle mutualistic interactions among species (Bascompte et al., 2019). It is 

clear that we are behind the curve in biodiversity inventories, with the earth losing species at 

ever increasing rates, with no hope of it slowing down. Because time is short, with species 

vanishing rapidly, it appears that the methods of multi-species network analysis, [sensu 

Bascompte et al. (2019)] may offer a partial solution to understanding global parasite 

biodiversity by mapping, visualising, and understanding ecological connectivity before the 

links are gone forever (Raven and Miller, 2020).  

Network structures describe overall patterns of interconnected biodiversity and helps 

to provide an understanding of ecological patterns and processes in biological communities. 

Network analysis is a powerful tool that can be used to visualise how species interact and 

quantitatively describe these interactions, providing insights on both the resilience and 
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stability of systems under study. In our work, we define community in the ecological sense as 

assemblages of individuals of several species that occur together (Weins, 1989). Criteria for 

the study of parasites and their hosts in a community/network analysis are based on two 

separate but related types of interactions including: I. Species of parasites found in multiple 

species of hosts; and II. Species of parasites occurring in only a single species of host. In 

visualising network modelling, networks are represented by nodes connected by links that 

signify interactions, describing ecological structures, and biological patterns. 

Bipartite network analysis (BNA) (Newman et al., 2006; Borgatti et al., 2009; 

Dormann 2020) is a quantitative method that can be used for integrating and synthesizing 

complicated datasets such as host-parasite or pollinator-plant assemblages in ecological 

communities. BNA is a robust analytical method that can be used understand, anticipate, and 

respond to accelerating environmental change (Brooks et al., 2014; 2022). 

We used network methods to examine the intimate relationships among communities 

of subterranean rodents and their parasites as part of our work on global parasite biodiversity. 

In this work, we focus on subterranean rodents because this ecological partition was 

logistically more tractable than including all rodents, for example, and focussing on one 

zoogeographic region sequentially provided interesting questions related to biogeography, 

host-range, ecological fitting, and various questions relative to general host-parasite ecology 

and biodiversity. To accomplish this and targeting the niche space of parasites and their 

subterranean rodent hosts, we focussed on these rodent/parasite relationships in the separate 

zoogeographic regions established most solidly by Wallace (1876). From the Ethiopian 

zoogeographic region, we studied recorded parasite diversity from ten species of rodents 

spanning seven genera in three families (Bathyergidae, Chrysochloridae, Muridae). From the 

Neotropical region, 19 species of subterranean rodents of two genera in two families 

(Ctenomyidae, Octodontidae) were analyzed. In the Palearctic region, we obtained and 
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studied parasite records from 17 species of rodents across eight genera in two families 

(Cricetidae and Spalacidae). Finally, we studied parasite diversity in the Nearctic region by 

obtaining all available geomyid/helminth parasite records and we included in the analysis 

results from our own studies and included data on 19 species of hosts across five genera in 

the family Geomyidae (see summary in Dursahinhan et al., in press, 2023). 

The elimination of the tapeworm disease echinococcosis by the 1970’s from the indigenous 

Yupik population of St. Lawrence Island, Alaska was executed in the DAMA protocol 

fashion by R.L. Rausch and colleagues starting in the early 1950’s. Briefly, identification and 

documentation of disease caused by Echinococcus multilocularis in the Yupik population of 

the village of Gambell was made and the life cycle of the cestode was determined and 

monitored in the arctic fox, domestic dog, and vole population. New cases of the disease were 

eliminated by the 1970’s with consistent application of deworming chemicals in the dogs as 

well as the introduction of snowmobiles supplanting dogs as transportation (Rausch and Fay, 

2002). 

The current study applies the first and second steps of the DAMA protocol which was 

first fully implemented under that name in Budapest, Hungary, summarized by Földvári et 

al., (2011; 2022): here, Földvári documented the existence of a problem of transmission of 

spirochaetes (Borrelia spp.) to humans by ticks, then assessed and monitored the problem 

over time by additional collecting and identification. Finally, his group convinced the 

politicians to install public toilets which stopped the transmission of pathogens by decreasing 

exposure of people to infected ticks. 

The protocol includes documentation, assessment, monitoring, and action for 

biologists and managers to decrease or ameliorate biodiversity loss and its associated risks to 

human societies (Brooks et al., 2014). – Implementation of the DAMA protocol is a several 

part processes outlined briefly as: 
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• Documentation: To understand complex biological interactions, we need to identify 

and document parasite distribution in as much detail as possible (Hoberg, 1997; 

Brooks and Hoberg, 2000; Hoberg et al., 2013). This part includes broad scale survey 

and inventories of host and parasite assemblages over geographic space sensu 

Gardner and Campbell (1992 a, b). 

• Assessment: The analysis of our findings is fundamental for biodiversity and 

ecological comparison. Complete documentation of helminth species diversity from 

all known distributed areas of subterranean rodents and their endoparasites provides 

an opportunity to assess their host-parasite interactions over time. Data collected from 

the documentation step of the protocol is used to create historical linkages and maps. 

• Monitoring: Multiple complete and comprehensive studies must be carried out to 

achieve a successful monitoring phase, and the multilayer network offers that 

(Runghen et al., 2021). This stage requires reassessing symbionts and recording any 

differences that appear from year to year. Furthermore, these studies need to be 

performed at regular intervals to observe the dynamics of the host-parasite 

interactions and detect any changes in the dynamics as soon as they occur. 

• Action: Due to lack of research on variation of endoparasite diversity and interactions 

among subterranean communities, we cannot take proper proactive measures. 

However, with an integrated knowledge of past research, adequate documentation, 

and comprehensive assessment, we can propose proactive steps to mitigate risks 

against unwanted results such as emerging infectious disease and extinctions of 

species among community members (Brooks et al., 2014). 

 

This study investigates the interactions among subterranean rodents and their endoparasites at 

the species level from the four major zoogeographic regions using BNA to address the 
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following questions.  

1. What are the network connections among subterranean rodents and their 

endoparasites? How can we visualize the complex connections among parasites and 

their host species of subterranean rodents?  

2. How are they connected? That is, are the parasites that occur in more than one species 

of subterranean rodent showing up in the network graphs because they currently or in 

the past share similar ecological niche space. This part of the analysis is really an 

investigation into ecological fitting (Janzen, 1985). 

3. Are there structural differences in the network among these geographically isolated 

subterranean communities? Or are the networks similar across different 

phylogenetically disparate but ecological convergent rodent/parasite communities. Do 

the convergently similar subterranean rodents and their parasites show similar 

network structures, such as similar number of species of parasites shared among 

species of hosts, and similar number of helminth or protistan parasites occurring in 

phylogenetically disparate groups of rodents? 

4. What are the major parasite groups that are in the current assemblages? 

5. Can the risk of extinction of an ecological parasite lineage be estimated using the 

networks that we developed in this subterranean rodent system?  

 

Materials and methods 

From a review of the 131 available published papers on parasites from subterranean rodents 

from four zoogeographic regions, we accumulated data on 174 species of endoparasites from 

a potential of 163 total species of subterranean rodents. To describe and assess differences in 

zoogeographic space of how assemblages of subterranean rodents interact with their 

communities of parasites, we used a bipartite network modelling framework. Data were 
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accumulated into a matrix of presence/absence notations (0 = absent; 1 = present) for each 

species of parasite for each species of host separated into their respective zoogeographic 

regions. These matrices are provided fully in supplemental data tables (See hyperlinked 

tables: S1, S2, S3, and S4). Using the matrix set given, we applied the networklevel function 

of the R package bipartite (Dormann et al., 2009; Poisot et al., 2016) to estimate twelve 

indexes describing the structure of each network; these parameters indicate the levels of 

specialization, compartmentalization, nestedness, and risk of host/parasite extinction. For the 

networks of each zoogeographic region the following indexes were estimated: 

• Connectance (CON): The proportion of realized pairwise host-parasite interactions 

among all potential interactions (Blüthgen et al., 2006; Runghen et al., 2021). 

• Compartment (C): A group of clustered host and parasite assemblages that are tightly 

linked to each other (Lewinsohn et al., 2006). A network can have multiple 

compartments that represent subcommunities. 

• The number of compartments (NC): The number of compartments determines the 

number of assemblages of recognizable subsets of interacting hosts and parasites 

more linked within than across subsets (Lewinsohn et al., 2006). 

• Compartment diversity (CD): Compartment diversity was determined by using the 

Shannon diversity index, and it indicates the probability level of differences between 

compartments (Shannon and Weaver, 1949; Latham and Scully, 2004) 

• Links per species or linkage density (LD): The structural connections of the host-

parasite interactions are measured by linkage density by calculating the number of 

links divided by the total number of nodes (Fath and Halnes, 2007). Linkage density 

is a critical parameter used to determine the degree of connectedness within the 

community (Gaedke, 1995). 

• Nestedness (NSD): Can occur when specialists (species of parasites associated with 
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subsets of the host species) interact with more generalist parasite species (Bascompte 

et al. 2003, Jordano et al., 2006). Estimates of nestedness are used to compare 

common structures in mutualistic bipartite networks.  

• NODF: Another way to test nestedness in networks is to measure a nestedness metric 

based on the overlap and decreasing fill (NODF) (Almeida-Neto et al., 2008). 

• Shannon diversity index (SDI): One of the commonly used indices is Shannon 

diversity. It obtains a quantitative estimation of biological variables to compare 

species in a community (Clarke and Warwick, 2001; Shannon and Weaver, 1949). 

• C-score: The C-score calculates higher-level species and represents the average 

number of checkerboard units for each unique species pair in the community. The 

input matrix was set to host species as columns and parasite species as rows (Stone 

and Roberts 1990; Gotelli and Rohde, 2002). 

• Extinction slope (ES): The BNA also simulates the extinction of a species from a 

community by randomly removing a participant host, and parasite species from the 

matrix. The process determines the sequence of extinctions represented by a slope 

(Memmott et al., 2004). 

• Robustness: A measure of the tolerance of the network to species extinction. Greater 

extent of connected components determine topological robustness by measuring 

degree of connectivity within the specified networks (Evans et al., 2013; Sheykhali et 

al., 2020). 

• Vulnerability: The measure of vulnerability is another way to determine ecosystem 

stability and resilience in an active community. The metrics represent the weighted 

mean (across nodes within a community) of the number of effective partners (hosts in 

this analysis) (Bersier et al., 2002).  
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The materials used in this study were extracted from published parasite records (Dursahinhan 

et al., In Press). In addition, new data were included from collections we made in Oregon, 

Colorado, Nebraska, Mongolia, and Bolivia. All specimens of parasites collected during this 

study were deposited in the parasite collections of the H.W. Manter Laboratory of 

Parasitology, University of Nebraska State Museum. Specimens of mammals were deposited 

either in the Division of Zoology in the University of Nebraska State Museum, or the 

Division of Mammals in the Museum of Southwestern Biology, University of New Mexico 

(Yates et al., 1996; Galbreath et al., 2019). All datasets are available through their respective 

museum collection database systems. 

 

Results 

A total of 282 host-parasite records were identified based on 174 endoparasite species 

collected and reported from 65 species of subterranean rodents from throughout four major 

zoogeographic regions. Across all four geographic areas that we studied, networks that were 

constructed show variation in structure, species diversity, and unique combinations of 

connectance. 

 

Ethiopian Region 

For the Ethiopian region network analysis, a total of 30 endoparasite species and ten host 

species were included. Of those, 23 occur as single host-associations, meaning that these 

species of parasites are not shared among various species of subterranean rodent hosts in 

Africa. Protospirura muricola, a nematode that occurs in the stomachs of rodents appears to 

be the most common parasite occurring in the subterranean Ethiopian rodent community. It is 

also the most connected of the species of parasites analyzed and is known to have a complex 

life-cycle, utilizing arthropods as intermediate hosts (Quentin, 1969). Thus, a total of 41 
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interactions were determined by connectance links among nodes with parasite species 

ranging from 1 to 4 per host (see Fig. 1). The greatest number of endoparasites in any one 

species of subterranean rodents in Africa was found in the common mole rat, Cryptomys 

hottentotus from which we recorded nine helminth species. The second greatest species 

number of helminth parasites recorded are from the cape dune mole rat, Bathyergus suillus, 

and Ansell's mole rat, Fukomys anselli both each having seven species of endoparasites. 

 

Endoparasite taxonomic summary 

Subterranean rodent endoparasites in the Ethiopian region can be assigned to fourteen 

families (see Fig. 1). Nematodes of the family Spiruridae showed seven species interactions 

(17%) indicating that spirurids were the most commonly reported of the parasites, followed 

by six species interactions (15%) for cestodes of the family Anoplocephalidae. Nematodes of 

the families Ascarididae, Capillariidae, and Molineidae are rare and showed only single 

species interaction (1.2%) with their subterranean rodent hosts. 

 

Palearctic Region 

For the Palearctic network analysis, a total of 71 endoparasite taxa and 17 host species were 

included. Of those, 60 species occur as single host-associations, meaning that these species of 

parasites are not shared among various species of subterranean rodent hosts in the Palearctic 

region. A total of 86 host-parasite interactions were found by connectance links with parasite 

species ranging from 1 to 4 per host (see Fig. 2). Larvae of Echinococcus multilocularis 

(Cestoda: Taeniidae) have been recorded from four species of subterranean rodents, and even 

though the adults occur in carnivores, it appears as the most generalist parasite in this rodent-

host community as it shows little discrimination for infection of various species. The greatest 

number of endoparasite species was reported from the lesser mole rat, Nannospalax 
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leucodon, which had 20 species. The second greatest was the middle-east blind mole rat, 

Nannospalax ehrenbergi, with 17 species of endoparasites being recorded. 

 

Endoparasite taxonomic summary 

The total number of the endoparasite families was 19. The family Eimeriidae had 33 species 

interactions (37%) reported, followed by 12 species interactions (13%) from the family 

Taeniidae. The families Catenotaeniidae, Dicrocoeliidae, Mesocestoididae, Spirocercidae, 

and Strongylidae had only a single species of interaction (1.1%) reported each. 

 

Nearctic Region 

For the Nearctic region, a total of 50 species of endoparasites and 19 host species were 

analyzed; of those, 25 occur as single host-associations. A nematode species, Ransomus 

rodentorum Hall, 1916 (Nemata: Strongylidae) found in seven host species of the family 

Geomyidae, was the most generalist parasite in the community. A total of 97 interactions 

were determined by connectance links between nodes with parasite species ranging from 1 to 

7 per host (see Fig. 3). The Northern pocket gopher, Thomomys talpoides, had 23 species 

which is the highest number of endoparasites reported for the Nearctic region network. The 

second-highest number of parasite species occurred in the Plains pocket gopher, Geomys 

bursarius, having 22 species of endoparasites reported. 

 

Endoparasite taxonomic summary 

Endoparasite species diversity was represented by 18 families. Anoplocephalidae and 

Hymenolepididae had ten species interactions (21%) reported, followed by five species 

interactions (10%) from the family Eimeriidae. The families Ascarididae, Aspidoderidae, 

Heligmonellidae, Moniliformidae, Paruterinidae, Polymastigidae, Strongylidae, Taeniidae, 
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and Trichuridae had only a single species of interaction (2%) reported each. 

 

Neotropical Region 

For the Neotropical region network analysis, a total of 27 endoparasite taxa and 19 host 

species were used, of these, 18 occurred as single host-parasite associations. In this group, 

unidentified species of Paraspidodera sp. Travassos, 1914 (Aspidoderidae: Rhabditida), 

found in eight host species, was the most generalist parasite in the community. In addition, a 

protozoan species, Eimeria opimi was found in six host species, determined as the second 

most generalist parasite in the community. A total of 50 interactions were indicated by 

connectance links between nodes with parasite species ranging from 1 to 8 per host (see Fig. 

4). The Talas tuco-tuco, Ctenomys talarum had 11 species which is the highest number of 

endoparasites reported for the Neotropical network. The second-highest number of parasite 

species occurred in the Highland tuco-tuco, Ctenomys opimus, having seven endoparasite 

species. 

 

Endoparasite taxonomic summary 

The endoparasite species diversity was represented by 11 families. The family Trichuridae 

and Trichostrongylidae both had five species interactions (18.5%) reported, followed by four 

species interactions (14.8%) from Eimeriidae. The families Ancylostomatidae, Davaineidae, 

Heligmonellidae, and Strongylidae, had only a single species of interaction (3.7%) reported 

each. 

 

Network index summary 

We considered 22 index values that describe various levels of network connectivity resulting 

from analysis of the host-parasite associations we discovered during our work. To 
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simultaneously describe the connectance among both host and parasite communities, 4 of 

these 22 indices were found to have greater meaning in interpretation of connectance between 

and among the host-parasite associations. This is because we focus on the change in the 

community of parasites in hosts over time. In addition, four indices were used for 

simultaneous assessment of both host and parasite communities. The network index 

parameters for all zoogeographic regions are presented in Table I. 

The Ethiopian subterranean host-parasite community network shows a greater level of 

connectance (0.1367) and greater nestedness (host: 24.9981) (parasite: 24.6716) than any 

other network that we analyzed. However, our analysis showed that the Nearctic network was 

more nested than all others when compared using the NODF index (=26.1923). Also, the 

Nearctic network had a greater number of links per species (1.4058), a higher linkage density 

(8.1237), and a higher Shannon diversity index (4.5747) as compared to all other 

zoogeographic regional networks that we analyzed. However, the lowest links per species 

(LPS) (0.9773) were reported from Palearctic host-parasite communities. The lowest linkage 

density (3.9024) and Shannon diversity index (3.7136) values were reported from Ethiopian 

host-parasite communities. The highest number (8) and diversity of compartments (DC) 

(2.5749) were found in the Palearctic network system. In contrast, the lowest number of 

compartments (3) occurred in the Ethiopian networks. 

The highest C-score values were reported from the Palearctic network for both hosts 

(0.9159) and parasites (0.8066). In contrast, the lowest C-score values were reported from the 

Neotropical subterranean hosts (0.7969) and Nearctic parasite (0.642) communities. The 

highest ES was recorded from the Nearctic host (1.5784) and Ethiopian parasite (2.6848) 

communities. Nevertheless, the smallest ESs were reported from the Palearctic hosts (1.1243) 

and Neotropical parasite (1.9603) communities. 

The Nearctic host (0.6132) and Ethiopian parasite (0.7173) communities reported the 
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highest network robustness values. Conversely, the lowest robustness index was recorded 

from the Palearctic host (0.5300) and Neotropical parasite (0.6596) communities. The 

vulnerability indices show that the Nearctic host (13.2887) and Neotropical parasite (4.8775) 

communities were most vulnerable. Nonetheless, the least vulnerability indices were reported 

in the Neotropical host (4.8000) and Palearctic parasite (1.7111) communities (see Table I). 

 

Discussion 

In the present study, we assessed subterranean rodent host-endoparasite network interactions 

and found several common patterns of similarity across all zoogeographic regions. Also, 

there was a high-level support of variation among these geographically isolated communities 

even though they all share the same niche of living in a subterranean ecotope. 

No single species occurred in all subterranean rodent communities. However, 

numerous species in the genera Eimeria Schneider, 1875 (Eimeriidae: Eucoccidiorida), and 

Trichuris Roederer, 1761 occurred in all subterranean rodent communities.  

Across all subterranean network communities in all zoogeographic regions, we 

detected a general pattern of pairings of a host species interacting with one parasite species 

(low levels of host-range), and a host species interacting with numerous species of parasites 

(general or large-host range parasites). These patterns are relatively common in other non-

subterranean host-parasite systems (Brooks and McLennan, 1993).  

We assessed the extinction measures with several other parameters on host and 

parasite interactions in each community. The extinction slope parameter estimates how hosts 

and parasites themselves are prone to rapid secondary extinction through the network system. 

The Nearctic host (Geomyidae) and Ethiopian parasite communities showed the highest ES 

results. A possible explanation for this is based on the fossil and climate records because 

species diversity for example in the family Geomyidae has fluctuated several times over the 
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past 36 million years (Cook et al., 2000). While Cook (2000) has illustrated pulses of 

speciation in the Geomyidae the reasons for this oscillation in species number appear to be 

linked to changes in global climate oscillations that resulted in ice-sheet advances and retreats 

occurring several times over the past 40 million years (Spradling et al., 2004; Hoberg and 

Brooks, 2015). Speciation in the parasites of Geomyidae has not been thoroughly 

investigated, although we are making progress with this and additional focussed studies.  

The macroevolutionary pattern showed that there were always extinctions after rapid 

diversifications or periods of long stability. This pattern is known as the taxon pulse 

hypothesis, first proposed by Erwin (1985) and later explained by the Stockholm Paradigm 

by Brooks et al. (2019; 2022). The threshold for extinction is still under debate. However, 

according to the Stockholm Paradigm, the current status of the family Geomyidae met two of 

the critical criteria for diversity reduction: climate change and the most recent high rapid 

diversification in this group of hosts. 

The second group (Ethiopian parasites) showed a high extinction slope value. A 

possible explanation for this outcome is that many endoparasite species occurred in only a 

single species of host. This observation indicates that network stability here is weak, and they 

are at a high risk of losing connections in their current network community. However, in 

some cases, sampling bias could cause this outcome, this is because some areas of the earth 

have more or less field research and mammal parasite surveys being conducted. Although the 

parasite species can be at the risk of obliteration at a certain community level, the parasite 

species extinction will be less likely to happen due to their potential and opportunities for 

ecological fitting (Janzen, 1985; Brooks et al., 2019). To quote Brooks et al., (2019) “when 

the opportunity arises, parasites can utilize new animal groups as hosts while retaining the 

original hosts.” This process will lead to a new community assemblage with new and 

potentially ramified connections among the members. 
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In contrast to the values found in the analyses of the Geomyidae in the Nearctic and 

the Bathyergidae in the Ethiopian region, the lowest ESs were recorded from the Palearctic 

hosts and Neotropical parasite communities. The Palearctic host-parasite network showed the 

highest number and diversity of compartments. The highest C Score values (average number 

of checkerboard units for each unique species pair in the community) were also reported from 

the Palearctic host-parasite network. In addition, the Palearctic parasite community showed 

the greatest number of parasite species. Combining these high network indices indicates that 

the Palearctic subterranean host-parasite community seems to be more stable than those in 

other zoogeographic regions. 

A few anomalies occurred in some results that are potentially more difficult to 

interpret. One of these includes ES calculations for the species of Geomyidae in the Nearctic 

region with the ES measure being high even though the Robustness index for both host and 

parasite are equal. The most parsimonious explanation for this discrepancy is that the 

vulnerability and ES indexes are not equal for all groups. In other words, in this case, these 

index values represent higher accuracy for the parasite groups than the host group because the 

existence of endoparasites fully depends on their host group and not vice versa. Such 

anomalies should potentially be resolved by including more data and merging other networks 

in our dataset (Fontaine et al., 2011). 

The current study shows how host-parasite interactions can reveal subterranean 

rodents and their parasite community structures using bipartite host-parasite network analyses 

and their parameters to describe these structures. Repetition of these analyses using a 

multilayer network will show differences over time, which is the third step “monitor” of the 

DAMA protocol (Brooks et al., 2014). High quality museum voucher specimens of both 

hosts and parasites will play a critical role in this process to monitor biological diversity 

(Yates et al., 1996; Galbreath et al., 2019). As these voucher specimens (with both 
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morphological and molecular data) enable the estimation of phylogenies with high coverage 

and resolution for both parasites and hosts, a phylogenetic perspective on host range and 

network structure will add great significance to any studies which purport to estimate host-

pathogen interactions for parasites and emerging infectious diseases (Brooks et al, 2007; 

Hoberg et al., 2022b). Furthermore, utilizing data accumulated during DAMA combined with 

phylogenetic analysis of all players in the system creates opportunities to shift parasitology 

from a descriptive to predictive science and this network analysis is one of the many other 

networks that are essential for biodiversity research (Fontaine et al., 2011; Runghen et al., 

2021). 
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Fig. 1. Network diagram plot derived from bipartite analysis of parasites of subterranean 

rodents in the Ethiopian region. Oval shapes indicate host species and hexagon shapes 

indicate parasite species. Numbers in hexagons indicate parasite species shown on the right 

side of the figure. Lines indicate links between and among hosts and parasites. 
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Fig. 2. Network analysis plot of endoparasites of subterranean rodents in the Palearctic 

region. Oval shapes indicate host species, and hexagon shapes indicate parasite species. 

Numbers in hexagons indicate each parasite species that corresponds to the parasite species 

list on the right. Lines indicate links among hosts and parasites. 
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Fig. 3. Network analysis of endoparasites of subterranean rodents in the Nearctic region. 

Oval shapes indicate host species and hexagonal shapes indicate parasite species. Numbers in 

hexagons indicate each parasite species corresponding to the parasite species lists on the 

graphic. Lines indicate links among hosts and parasites. 
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Fig. 4. Network analysis of endoparasites of subterranean rodents in the southern Neotropical 

region. Oval shapes indicate host species and hexagonal shapes indicate parasite species. 

Numbers in hexagons indicate each parasite species corresponding to the parasite species list 

on the left. Lines indicate links among hosts and parasites. 
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Table I: Indexes of subterranean rodent host-parasite networks from Palearctic, Ethiopian, Nearctic, and Neotropical regions. Some 

indices highlighted in bold are used in the network analysis to determine the network structure and associations of each subterranean 

rodent parasite and host communities. 

Indexes/Zoogeographic regions 

Ethiopian  

Host 

Ethiopian 

Parasite 

Palearctic  

Host 

Palearctic 

Parasite 

Nearctic  

Host 

Nearctic 

Parasite 

Neotropic 

Host 

Neotropic 

Parasite 

Connectance 0.1367 0.1367 0.0756 0.0756 0.1021 0.1021 0.0975 0.0975 

Web asymmetry 0.5000 0.5000 0.6091 0.6091 0.4493 0.4493 0.1739 0.1739 

Links per species 1.0250 1.0250 1.0344 1.0344 1.4058 1.4058 1.0870 1.0870 

Number of compartments 3 3 7 7 5 5 5 5 

Compartment diversity 1.4835 1.4835 1.9885 1.9885 1.6812 1.6812 2.1429 2.1429 

Nestedness 24.9981 24.6716 8.8998 9.1270 9.8512 9.8810 13.1190 13.1395 

NODF 12.5893 12.5893 9.5217 9.5217 26.1923 26.1923 12.8033 12.8033 

Specialization asymmetry -0.4162 -0.4162 -0.4086 -0.4086 -0.1863 -0.1863 -0.1306 -0.1306 

Linkage density 3.9024 3.9024 6.7888 6.7888 8.1237 8.1237 4.0600 4.0600 

Shannon diversity 3.7136 3.7136 4.4998 4.4998 4.5747 4.5747 3.8918 3.9120 

Number of species 10 30 17 70 19 50 19 27 

Mean number of shared partners 0.3556 0.2368 0.2352 0.2024 0.5556 0.4865 0.3392 0.2707 

Weighted cluster coefficient 0.0364 0.2619 0.0245 0.2361 0.1625 0.5081 0.0850 0.0840 
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Niche overlap 0.0690 0.1593 0.0312 0.1509 0.0767 0.2332 0.1262 0.1563 

Togetherness 0.0379 0.0752 0.0124 0.0581 0.0278 0.0877 0.0425 0.0479 

C score 0.8476 0.7813 0.9159 0.8066 0.7993 0.6242 0.7969 0.7734 

V ratio 2.3412 0.5178 7.3081 0.5122 9.6928 1.3875 2.6276 1.7856 

Discrepancy 28 25 58 60 46 50 29 29 

Extinction slope 1.2992 2.6848 1.1243 2.3747 1.5784 2.5533 1.4990 1.9603 

Robustness 0.5623 0.7173 0.5300 0.6956 0.6132 0.7103 0.5997 0.6596 

Functional complementarity 23.7041 20.8164 43.1053 34.3941 45.0191 41.4548 29.6887 27.5509 

Partner diversity 1.6584 0.4313 2.1903 0.36871 2.2037 0.8668 1.2577 0.8946 

Vulnerability 6.0244 1.7805 11.8666 1.7111 13.2887 2.9588 4.8000 4.8775 
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