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Abstract: The aim of this study was to develop and validate an automated pipeline that could assist the
diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose
Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was
automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and
control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aorti-
tis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV
metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were
constructed: A—RFs with high diagnostic utility removing highly correlated RFs; B used principal
component analysis (PCA); C—Random Forest intrinsic feature selection. The diagnostic utility was
evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several
RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across
training, test and external validation datasets. Good diagnostic performance achieved across several
multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be
used to build an automated clinical decision tool to facilitate objective and standardized assessment
regardless of observer experience.

Keywords: aortitis; radiomics; machine learning; convolutional neural network; positron emission
tomography/computed tomography

1. Introduction

Aortitis refers to inflammatory conditions affecting the aortic wall that cannot be
explained by atherosclerosis alone [1–3]. It can be an isolated disorder or observed in
association with several diseases, including giant cell arteritis (GCA) and Takayasu arteritis

Biomolecules 2023, 13, 343. https://doi.org/10.3390/biom13020343 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13020343
https://doi.org/10.3390/biom13020343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-4295-6356
https://orcid.org/0000-0002-4243-032X
https://orcid.org/0000-0003-2681-9922
https://orcid.org/0000-0002-5565-1164
https://orcid.org/0000-0002-4971-2477
https://doi.org/10.3390/biom13020343
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13020343?type=check_update&version=3


Biomolecules 2023, 13, 343 2 of 33

(TAK) [3,4]. However, diagnosis of active aortitis presents challenges as symptoms and
blood tests can be nonspecific, and treatment can result in severe side effects meaning
informed decisions are required [3,5,6].

[18F]-Fluorodeoxyglucose Positron Emission Tomography—Computed Tomography
(FDG PET-CT) is frequently used to assess patients with suspected aortitis related to
large vessel vasculitis (LVV) as FDG avidity identifies areas of high glycolytic activity
in the inflamed vessel wall [3,7–10]. The imaging is often qualitatively assessed based
on consensus imaging guidelines [11,12]. Although grading is conducted by imaging
specialists, the visual assessment can be subjective and inconsistent [11,13–15]. Some semi-
quantitative parameters have been utilised but can be vulnerable to several factors and
have limited information [16].

Radiomics is a data mining technique involving extraction of quantitative informa-
tion from medical images referred to as radiomic features (RF) which may help better
understand and stratify disease [15,17–19]. Radiomics may be a useful technique for aiding
in the diagnosis of active aortitis, but the process needs to be automated to deal with a
large quantity of data efficiently and facilitate routine clinical use. In particular, vascular
segmentation, if conducted manually, can be very time consuming, and is not always
reproducible [19,20]. Fully automated segmentation methods using deep learning (DL)
convolutional neural networks (CNN) have become increasingly popular as they are both
fast and reproducible [21–23].

In previous work, a methodological framework for assisting the diagnosis of active
aortitis using radiomic analysis of FDG PET-CT was established [20]. This study utilised a
small single center dataset to develop a radiomic method and provide a proof of concept
that radiomic analysis could add value to the diagnosis of active aortitis.

In this study, the aim was to continue this work by developing, testing and validating
an automated radiomic analysis pipeline to assist the diagnosis of active aortitis. This
study progresses from the original publication in two ways: firstly, the method was auto-
mated by replacing manual segmentation with a CNN and exploring the effect this change
had, and secondly the initial findings were validated with data from multiple centres to
determine the generalizability and transferability of the method. The pipeline combines
automated segmentation, radiomic analysis and machine learning (ML) with the aim of
producing a reproducible and standardized method which could be applied to a clinical
decision support tool in the future.

2. Materials and Methods

There are four key stages to a radiomic diagnostic model (Figure 1: image acquisition,
image processing and segmentation, feature extraction, and classification. Each step has
multiple sources of variation that can influence final results making the diagnostic model
vulnerable to poor reproducibility [24,25]. To mitigate this, TRIPOD guidelines were
used [26]. The protocols followed for each stage are described in the following sections.

2.1. Image Acquisition
2.1.1. Patient Selection

Figure 2 demonstrates the distribution of the imaging cohorts—training, test and
validation. The data acquired from Leeds Teaching Hospitals NHS Trust were split into
training and test (80:20) datasets. The training dataset was used to train ML models
including optimization of hyper-parameters, and the test dataset was used to confirm initial
findings were generalizable. The validation dataset acquired from external centres and
used to determine if model performance was transferable to imaging acquired elsewhere.
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Figure 1. The steps of a radiomic diagnostic model.

Figure 2. The distribution of datasets into training, test and validation cohorts.

Training and Testing Dataset

The training and test dataset was procured from Leeds Teaching Hospitals NHS Trust
from imaging taken between January 2011 and December 2019. The collated data were then
split into the training and test dataset (80:20). The inclusion and exclusion criteria for the
training and test datasets are described as follows. Patients undergoing FDG PET-CT with
a systemic inflammatory response (pyrexia of unknown origin, high acute phase response,
weight loss) or suspected active aortitis were identified retrospectively. The ground truth
diagnoses for all patients and controls were confirmed by a consultant rheumatologist
with 17 years of experience of vasculitis (co-author AWM) based on clinical assessment,
blood tests, biopsies and qualitative assessment of FDG PET-CT scans by a dual certified
radiologist and nuclear medicine physician (co-author AFS) with more than 15 years of
experience of reporting FDG PET-CT. Exclusion criteria included synchronous metabolically
active conditions obscuring or interfering with the aorta, such as malignancy. Patients with
known LVV were excluded if they did not have imaging evidence of active aortitis. Control
patients were excluded if they had activity in the aorta related to atherosclerosis. For LVV
patients who had undergone multiple FDG-PET scans, only the first scan that showed
aortitis was selected. This study included a combination of newly-diagnosed patients and
patients with relapse. The imaging data for the selected aortitis patients and controls were
extracted from the institutional PACS (Picture Archiving and Communication System)
and pseudoanonymised.

Validation Dataset

To evaluate multi-centre transferability, a validation dataset was formed using data
from external institutions. The same inclusion and exclusion crieteria were followed
but was conducted at the centre of origin. Data from patients recruited to the UK GCA
consortium (REC Ref. 05/Q1108/28) [27] with suspected aortitis, and who had FDG PET-
CT scans performed as part of routine clinical care at Alliance Medical Ltd (AML) centres
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in England, were extracted from the organizational PACS (IntelePACS Version 4, Intelerad
Medical Systems). The AML centres included Addenbrookes Hospital, Freeman Hospital,
Norfolk and Norwich PET CT Centre, Musgrove Park PET-CT Centre, Derriford Hospital,
Bradford Royal Infirmary, Guildford Diagnostic Imaging, Sheffield PET-CT Centre, Poole
Hospital and The Royal Liverpool University Hospital. The validation cohort was further
supplemented by data from the PITA (PET Imaging of Giant Cell and Takayasu Arteritis)
(REC approval: 19/EE/0043 Clinical trials registration: NCT04071691, PMID: 36697134)
study in the University of Cambridge and Imperial College London.

2.1.2. Imaging Protocol

FDG PET-CT scans were acquired using a standard protocol [11,28,29]. Images were
acquired from the upper thighs to the skull vertex in the supine position. Patients fasted
for 6 hours before FDG injection, and scanning was conducted 1 hour after injection.
Where possible, patients were not currently being treated with glucocorticoids (GC). Nine
scanners from three different manufacturers were used (Table 1). Appendix A describes the
acquisition parameters in further detail.

Table 1. Distribution of participants across scanners.

Scanner
Training Test Validation

Harmonization Batch
Aortitis Control Aortitis Control Aortitis Control

Discovery 710 14 7 4 4 3 3 1

Gemini TF64 14 11 3 0 0 0 2

Discovery 690 15 3 5 1 9 2 3

Biograph 6 and Biograph 6 True Point 0 0 0 0 5 2 4

Biograph 64 mCT 0 0 0 0 1 2 5

Discovery MI DR 0 0 0 0 6 3 6

Discovery ST and STE 0 0 0 0 0 2 7

Discovery scanners from GE Healthcare—Chicago, IL, USA. Gemini Scanner from Philips Healthcare—Best,
Netherlands. Biograph scanners from Siemens Healthineers—Erlangen, Germany.

The retrospectively gathered FDG PET-CT imaging was converted from DICOM
to Nifti file format including converting the PET component to SUV using Simple ITK
and PET DICOM (3D slicer extension from the University of Iowa (www.slicer.org/wiki/
Documentation/Nightly/Modules/SUVFactorCalculator (accessed on 1 September 2021)).

2.2. Image Processing and Segmentation

The segmentation method built into the overall pipeline was a CNN. A subset of the
training and test patient dataset (aortitis n = 50, control n = 25) was manually segmented and
given as input to the CNN in order to provide ground truth data to learn. Each FDG PET-CT
scan of these patients was segmented manually using 3D slicer and the entire aorta was de-
lineated (Version 4.10.2 (https://www.slicer.org/ (accessed on 1 April 2020)) [30,31].
The CT component was used as the main reference as it provides more anatomical in-
formation, but the result was checked against the PET scan. The Dice similarity coefficient
(DSC) (Equation (1)) [32] was used to evaluate segmentation quality:

DSC =
2|A ⋂

B|
|A|+ |B| (1)

The PET and CT components, and segmented masks were then resampled to a 4 mm
isotropic voxel size to ensure uniform sampling across the entire cohort. Linear interpola-
tion in Simple ITK was used for downsampling. This voxel size was selected as it was the
lowest resolution of the three scanners in the training and test dataset meaning downsam-

www.slicer.org/wiki/Documentation/Nightly/Modules/SUVFactorCalculator
www.slicer.org/wiki/Documentation/Nightly/Modules/SUVFactorCalculator
https: //www.slicer.org/
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pling alone was applied. A lower resolution was present in multi-centre data collected later
(5.47 mm), but the 4 mm voxel size was maintained to ensure a valid comparison, and to
keep an integer voxel size preventing rounding errors. The images and masks were also
cropped to the same window size (144 × 144 pixels) as the CNN required the same slice
sizes. Data were manually checked to ensure that the aorta was central and unaffected by
the crop.

A CNN with U-Net architecture was built for automated segmentation (Tensorflow
Version 2.4.1). The full architecture is shown in Figure 3. Training was undertaken on
ARC4, and part of the high-performance computing facilities at the University of Leeds,
UK. On ARC4, a single NVIDIA V100 GPU (graphics processing unit) was used. In total,
training and then segmentation of all data took 11:51:20 (HH:MM:SS). The average segmen-
tation time per patient was 1 min 12 s compared to an average of 30 min per patient for
manual segmentation.

The manually segmented dataset was split into training and testing cohorts for the
development of the CNN(70:30), and each CT image was read in slice by slice with its
corresponding labelled slice as the input layer. The performance of the CNN was measured
using the DSC. The batch size was set to 32 slices. The number of epochs was set to 100
with early stopping if the loss function (DSC loss) did not improve, which led to training
stopping at 41 epochs. The activation function was a leaky rectified linear unit (ReLU).
Convolution stride was 1, and pooling stride was 2. Kernel size was 3 × 3 for convolution
and 2 × 2 for pooling. Once trained, the entire patient dataset was provided as input,
and the predicted segmentations were output. Small ’islands’ were found in the predicted
segmentations. These were clusters of pixels in the background of the scan that were
several orders of magnitude smaller than the aorta. These were removed by creating new
segmentations that only retained the largest cluster of pixels in the slice using Python
packages Numpy (Version 1.18.1) and Simple ITK (Version 2.01). The segmented slices
were then reassembled into 3D volumes for use in feature extraction (Section 2.3.2).

2.3. Feature Extraction
2.3.1. Qualitative Grading of Vessel Wall FDG Activity

All scans were evaluated based on EANM/SNMMI guidelines [11] and assigned a
vascular uptake score by an experienced radiologist (supervisor AFS):

0: no uptake (less than mediastinum)
1: low-grade uptake (less than liver)
2: intermediate-grade uptake (equal to liver), (possible aortitis)
3: high-grade uptake (greater than liver), (positive active aortitis)

2.3.2. Feature Extraction

Radiomic features encompass a large number of quantitative parameters. These fea-
tures range from simple, such as SUV (standardised uptake value) metrics
(Equation (2)), to more complex descriptors of the shape and spatial relationships between
individual voxels of imaging data [33,34].

SUV metrics are part of the larger group of radiomic features but will be referred
to independently when studied separately. As they are more established in clinical use,
their diagnostic utility was explored alone and as part of the larger group. The SUV of a
region of interest (ROI) can be averaged (SUVmean) or the maximum determined (SUVmax).
However, SUV measurements can be influenced by several factors such as the size of the
volume of interest, image noise, concentration of glucose in plasma and body habitus [16].
SUV metrics were used instead of target-to-blood pool ratio as liver is a more common
reference point as discussed in Section 2.3.1:

SUV =
radioactivity concentration

injection dose (MBq) /patient′s weight (kg)
(2)
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Figure 3. Architecture of convolutional neural network (CNN) used to segment the aorta.

Radiomic features (n = 102) were extracted with Pyradiomics (Version 3.0.1, radiomics.
io/pyradiomics). A further five SUV metrics (SUVx) were calculated separately using
Numpy (Version 1.18.1) and Simple ITK (Version 2.01) and added to the radiomic features
dataset. Each SUV metric was calculated as follows:

• SUV 90th Percentile—90% of the voxel’s SUV value fall below this number;
• SUV mean—the mean SUV value in the region of interest;
• SUV maximum—the maximum SUV value in the region of interest;
• SUV x (x = 50, 60, 70, 80, 90)—mean of the voxels that are equal or greater than x% of

SUV maximum.

In both cases, the radiomic features were extracted from the entire segmented 3D
volume of the aorta in the PET image [35]. In most cases, Pyradiomics is broadly compliant
with the IBSI standards but deviates in some cases as described in their documentation
(https://pyradiomics.readthedocs.io/en/latest/faq.html (accessed on 1 November 2022)).
This will affect some of the extracted features where they rely on gray value discretization.
Features were calculated with a SUV bin width of 0.075. This bin width was determined by
dividing the maximum SUV value in the segmented areas across the whole dataset by 64—a
commonly used bin number in radiomics. No filters were applied through Pyradiomics,
and all other parameters were left as default.

A complete list of all radiomic features and SUV features (n = 107) extracted is provided
in Table A2.

2.4. Diagnosis with Machine Learning Classifiers
2.4.1. Diagnostic Utility of Individual SUV Metrics and Radiomic Features

The diagnostic utility, also referred to as diagnostic performance, of the following
methods was measured with AUC primarily, along with balanced accuracy as confirma-
tion. Balanced accuracy was used as it adjusts for imbalanced datasets and allowed for
comparison between our training, test and validation datasets. The AUC of the valida-
tion dataset was prioritised as it demonstrated both generalizability to other datasets and
transferability to other institutions which is vital for clinical use [23]. As the benchmark
AUCs for qualitative assessment of PET-CT in suspected aortitis quoted in the literature
are 0.81–0.98 [11], any AUC value greater than 0.8 was considered a good performance.
Where possible, methods with any balanced accuracy across the three cohorts ≤ 50% were
discounted. Cases where AUC was high but accuracy was low occur due to a bias towards
the positive diagnosis.

The diagnostic utility of all radiomic features and SUV metrics were first evaluated
individually using logistic regression classifiers (Sci-kit Learn Version 0.23.2). While SUV

https://pyradiomics.readthedocs.io/en/latest/faq.html
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metrics can be included as radiomic features (Section 2.3.2), they were separated and com-
pared to all remaining radiomic features at this stage to determine if the newer radiomic
features added value. To train the logistic regression classifiers, the hyper-parameters for
each feature were tuned using the Sci-kit Optimise function BayesSearchCV using the train-
ing cohort with stratified 5-fold cross validation meaning the ratio of patients to controls
in each fold was equal to the ratio in the total cohort. The hyperparameter optimization
method was changed to BayesSearchCV from GridSearchCV from the previous study as it
more thoroughly searches the parameter options [20]. The final diagnostic model for each
individual feature was then trained with the best hyper-parameters on the training cohort
with stratified 5-fold cross validation. The trained model was then applied to the test and
validation dataset.

2.4.2. Forming Radiomic Fingerprints

Individually radiomic features can be used as metrics, but, when used collectively, they
can provide complimentary information to improve diagnostic performance [36]. Using
all or most extracted radiomic features can introduce a significant amount of redundant
information and creates noise in the diagnostic model [37]. Therefore, radiomic fingerprints
were created with the extracted radiomic features. Three radiomic fingerprints were built
using the methods described below.

Fingerprint A was produced by selecting features with high individual diagnostic
utility based on their training dataset performance in Section 2.4.1 : AUC ≥ 0.5, balanced
accuracy ≥ 0.5. Features were filtered using Python package Pandas (Version 1.1.4). Highly
correlated features were then removed. For every combination of feature pairs, if the
correlation coefficient was >0.9, the feature with the lower AUC was removed.

Fingerprint B was formed using principal component analysis (PCA). PCA represents
a large set of variables as a smaller set of principal components by finding relationships
between features and combining them to reduce redundancy and minimize loss of informa-
tion. PCA was applied using Sci-kit Learn (Version 0.23.2). The fingerprint was formed with
principal components needed to account for at least 90% of variance in the radiomic data.

Fingerprint C used the Sci-kit Learn (Version 0.23.2) random forest ML classifier.
The classifier has intrinsic feature selection so all 107 extracted features were provided as
input, and the classifier will select the features that produce the best performance.

2.4.3. Diagnostic Utility of Fingerprints

The diagnostic utility of radiomic fingerprints A and B was evaluated using the same
methodology described in Section 2.4.1, but additional ML classifiers were tested alongside
logistic regression [38–40]. Ten different ML classifiers were built, trained and tested
(Sci-kit Learn Version 0.23.2): support vector machine, random forest, passive aggressive,
logistic regression, k nearest neighbours, perceptron, multi-layered perceptron, decision
tree, stochastic gradient descent and gaussian process classification. Stochastic gradient
descent refers to the SGDClassifier within Sci-kit learn that uses stochastic gradient descent
optimization on several different linear classifiers. The specific linear classifier is determined
as part of hyper-parameter tuning.

Fingerprint C was evaluated as in Section 2.4.1 using only the Random Forest Classifier
as it uses the embedded feature selection in this ML classifier.

2.4.4. Statistical Analysis

AUC was used as the key metric for determining diagnostic utility of the tested
diagnostic models and ranking accordingly. Balanced accuracy used a confirming metric.
The confidence intervals were determined using Delong’s test [41]. The final comparison of
models was conducted using the p-value derived from Delong’s Test.
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2.5. The Influence of Variation in Method
2.5.1. Harmonization

The effect of the ComBat Harmonization method (neuroCombat, Version 0.2.7) was
explored. It is a technique used to reduce the effect of different imaging protocols on
radiomic features [42–44]. These factors cannot be standardized retrospectively without
reducing the size of the dataset, so harmonization is recommended to minimize the ef-
fect [44]. The overall dataset (training, test and validation combined) was grouped in
batches as shown in Table 1 based on similar imaging protocol parameters. The effect of
harmonization was explored in the previous study [20]. No significant improvement was
achieved but as there is more variation in data in this study the comparison was repeated.
The key results with and without harmonization were compared.

2.5.2. Segmentation

A CNN was utilised as the segmentation method in this study to automate the ra-
diomic workflow. A subset of patients (50 aortitis and 25 controls) had both manual and
automatic segmentations. The above methods were repeated on these patients using both
segmentations separately in order to compare the effect the segmentation method had on
performance. There were insufficient numbers to have a test and validation cohort so only
training values were compared.

2.5.3. Imaging Sources

This study used multi-centre data from the UK as a validation cohort. This cohort was
varied but generally followed the same diagnosis pathways set out by the National Health
Service (NHS), standard of care imaging protocol, and were imaged in the same time period.
Later in the study timeline, another dataset was collated from UMCG, Groningen, The
Netherlands consisting of 40 GCA patients and 20 controls. Different imaging protocols
were followed, and the images were acquired on scanners with higher image resolution—a
range of Siemens Biograph scanners using the reconstruction methods PSF + TOF 3i21s
most often, and PSF + TOF 4i5s and OSEM3D 3i24s occasionally. These variations are
known to highly influence radiomic results [45].

The robustness of our method to highly varied data was tested with and without har-
monization. The images were preprocessed and segmented in the same way as the previous
cohorts before being included in the validation cohort and the diagnostic utility retested.

3. Results
3.1. Image Acquisition—Patient Characteristics

Overall, 114 participants were included in the training, test and validation datasets
collectively (Table 2). The age of the patients and female predominance reflects the typical
demographic of patients with LVV, the most common cause of which is GCA. The sensitivity
of FDG PET-CT is significantly reduced within a few days of starting GC treatment, so GC
(prednisolone) doses were zero at the time of scanning unless stated otherwise [46]. CRP
and ESR are laboratory markers of inflammation used in clinical care.

Less clinical data were available for the validation dataset, but, as shown in Table 2,
the gender distribution, LVV Type, prednisolone dose, CRP, ESR, blood glucose and median
age of all datasets are similar.
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Table 2. A description of patient demographics across the three datasets Key—Large vessel vasculitis
(LVV), giant cell arteritis (GCA), Takayasu’s arteritis (TAK), Not applicable (n/a), CRP (C-reactive
protein), ESR (erythrocyte sedimentation rate).

Training Test Validation

Aortitis Controls Aortitis Controls Aortitis Controls

Number of Participants 43 21 12 5 19 14

Age at time of scan, years
-median (range)

67 (23–85) 67 (41–84) 70 (58–76) 60.5 (49–70) 67 (55–85) 68 (50–79)

Sex (male/female) 11/32 11/10 4/8 2/3 4/15 5/9

LVV type 40 GCA 3 TAK n/a 12 GCA n/a 17 GCA 2 TAK n/a

Prednisolone dose at time of
scan, mg -median (range)

0 (0–40) 0 (0–30) 0 (0–40) 0 (0–60) 0 (0–40) 3.5 (0–40)

CRP (mg/L) -median (range) 41 (5–165),
not done (n = 8)

n/a 39 (11–149), not
done (n = 3)

n/a 36 (10–112),
not known

(n = 15)

n/a

ESR (mm/Hr) -median (range) 71 (3–143),
not done
(n = 29)

n/a 37 (n = 1), not
done (n = 11)

n/a 90 (12–120),
not known

(n = 15)

n/a

Blood Glucose (mmol/L)
-median (range)

5.5 (4.2–9.9),
not known

(n = 11)

5.9 (4.6–12),
not known

(n = 13)

5.8 (5–7.3),
not known

(n = 3)

5.9 (5.1–7.4),
not known

(n = 2)

5.8 (4.4–7.5),
not known

(n = 7)

6.65 (5.4–9.5),
not known

(n = 2)

3.2. Segmentation

The manually segmented data had a mean DSC of 0.91 when a sample was compared
to segmentations conducted by a second observer. The CNN achieved a mean DSC of
0.66 (median 0.72) before small ‘islands’ were removed and 0.71 (median = 0.80) after
when compared to the original manual segmentations used for training. The time taken to
segment the aorta automatically per patient was 1 min 12 s.

An example of a CNN segmentation is shown in Figure 4.

Figure 4. Segmentation from CNN with small ‘islands’ removed.
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3.3. Qualitative Grading of Vessel Wall FDG Activity

Recent guidelines advocate qualitative grading of PET-CT scans based on FDG activity
in the aortic wall relative to the liver [11]. Table 3 shows the grades assigned to the training,
test and validation cohorts respectively by an experienced radiologist on retrospective
review of the images.

Table 3. Grading of patient dataset based on EANM/SNMMI guidelines [11]

Grade
Training Test Validation

Aortitis Control Aortitis Control Aortitis Control

0 0 21 0 5 0 11

1 1 0 0 0 0 3

2 2 0 0 0 2 0

3 40 0 12 0 17 0

Ground Truth Grade 3 n = 43 Grade 0 n = 21 Grade 3 n = 12 Grade 0 n = 5 Grade 3 n = 19 Grade 0 n = 14

3.4. Diagnostic Utility of Individual SUV Metrics and Radiomic Features

Figure 5 demonstrates the performance of SUV metrics in a logistic regression classifier
where higher accuracy and AUC indicate good diagnostic utility. In general, SUV metrics
performed poorly when accuracy was considered. The SUV 90th percentile performed
better consistently across all three cohorts with a validation AUC of 0.85 and a balanced
accuracy of 71%.

Figure 5. Diagnostic utility of individual SUV metrics.

The five-best performing radiomic features, when used individually in a logistic
regression classifier, are shown in Figure 6. Performance was based on validation AUC
but a minimum balanced accuracy of 50% had to be met across the training, testing and
validation cohorts. In some cases, a radiomic feature would perform well in either testing
or validation AUC but had poor accuracy. The radiomic features given in Figure 6 suggests
that heterogeneity is an important characteristic in distinguishing aortitis from controls.

The performance of all individual radiomic features and SUV metrics in logistic
regression classifiers, and in all three cohorts, are listed in Table A2.
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Figure 6. Diagnostic utility of the five highest performing individual radiomic features—performance
ranked by validation AUC with a balanced accuracy above 50%.

3.5. Diagnostic Utility of Fingerprints

Fingerprint A was based on minimum thresholds of diagnostic performance for
each feature and a maximum correlation to other features. Random Forest performed
consistently across the training, testing and validation cohorts in both AUC and balanced
accuracy (Figure 7), suggesting that this method may have multi-centre transferability.
The performance of all explored ML classifiers is shown in Appendix Table A3.

Figure 7. ROC curves of the best performing (by validation AUC and minimum accuracies) machine
learning classifier trained on Fingerprint A—Random Forest. Corresponding Accuracies—Training:
0.74 , Test: 0.8, Validation: 0.75. Key: Mean CV ROC—Mean cross validation ROC from training
dataset, Test ROC—ROC from test dataset, Validation ROC—OC from validation dataset.

Fingerprint B was based on PCA. For this fingerprint, the best validation AUC was
achieved by a neural network classifier with a validation AUC = 0.90 (Figure 8). The perfor-
mance of all explored ML classifiers is shown in Appendix Table A4. Appendix Table A4
also shows that, despite the neural network being the best performing classifier by val-
idation AUC, the ranking metric used in this study, several other classifiers performed
similarly and more consistently across datasets and with smaller confidence intervals.

Fingerprint C used the feature selection that is intrinsically part of Random Forest clas-
sification and did not include any other ML classifiers. This method produced good results
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in both the testing and validation cohorts, demonstrating that Fingerprint C is a promising
method for the diagnosis of aortitis. Figure 9 displays the ROC curves for Fingerprint C.
As this method only used Random Forest, it was not tested in all ML classifiers.

Figure 8. ROC curves of the best performing (by validation AUC) machine learning classifier trained
on Fingerprint B—Neural Network. Corresponding Accuracies—Training: 0.78 , Test: 0.68, Validation:
0.81. Key : Mean CV ROC—Mean cross validation ROC from training dataset, Test ROC—ROC from
test dataset, Validation ROC—ROC from validation dataset.

Figure 9. ROC curves of the Random Forest classifier in Fingerprint C. Corresponding Accuracies—
Training: 0.79 , Test: 0.8, Validation: 0.73. Key: Mean CV ROC—Mean cross validation ROC from
training dataset, Test ROC—ROC from test dataset, Validation ROC—ROC from validation dataset.
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3.6. Comparison of Selected Features

Table 4 shows the top 10 features (by Validation AUC and feature importance metric
respectively) selected in Fingerprint A and Fingerprint C. As Fingerprint B used PCA and
produces new components, it is not simple to directly compare them. Table 4 demonstrates
that heterogeneity is important in distinguishing aortitis from controls. This is confirmed
by earlier results in Section 3.4.

Table 4. Features selected for Fingerprint A and C. Key—SUV (standardized uptake value), GLDM
(Gray-Level Dependence Matrix), GLCM (Gray-Level Co-Occurrence Matrix), GLRLM (Gray-Level Run
Length Matrix), and GLSZM (Gray-Level Size Zone Matrix).

Top Ten Features Selected in:

Fingerprint A Fingerprint C

GLDM Small Dependence High Gray Level Emphasis GLRLM Long Run Low Gray Level Emphasis

GLSZM Size Zone Non-Uniformity Normalized GLSZM High Gray Level Zone Emphasis

GLRLM Gray Level Variance GLDM Dependence Entropy

GLDM Large Dependence Low Gray Level Emphasis GLDM Small Dependence High Gray Level Emphasis

GLRLM Long Run Emphasis GLCM Autocorrelation

GLSZM Gray Level Variance GLRLM Short Run Emphasis e

First Order Total Energy GLDM Dependence Non-Uniformity Normalized

GLSZM Large Area Emphasis First Order Entropy

GLSZM Size Zone Non-Uniformity GLDM Gray Level Variance

First Order 10-Percentile GLDM Large Dependence Emphasis

3.7. Summary of Key Results

Table 5 summarizes the best results from each of the explored methods for diagnosis
of aortitis. The best result was determined as described in each of the previous sections,
but, in all cases, validation AUC was used to initially rank the results and where possible
results with a balanced accuracy ≤50% were removed. While the displayed results ranked
the best in each method by the given criteria, none were significantly better than each other
with respect to AUC (p > 0.05, DeLong’s Algorithm [41,47]).

Table 5. A summary of the diagnostic utility of each explored method.

Qualitative Assessment
Literature AUC 0.81–0.98 [11]

Training
Accuracy

Training AUC
(95% CI)

Testing
Accuracy

Testing AUC
(95% CI)

Validation
Accuracy

Valdiation AUC
(95% CI)

SUV Feature
-SUV 90th Percentile 0.77 0.91 (0.73–1.00) 0.7 0.93 (0.79–1.00) 0.71 0.85 (0.72–0.99)

Radiomic Feature
-GLDM Dependence Entropy 0.55 0.80 (0.61–1.00) 0.7 0.92 (0.74–1.00) 0.60 0.91 (0.82–1.00)

Fingerprint A
-Random Forest 0.74 0.90 (0.79–1.00) 0.8 0.98 (0.94–1.00) 0.75 0.92 (0.84–1.00)

Fingerprint B
-Neural Net 0.66 0.81 (0.60–1.00) 0.68 0.87 (0.67–1.00) 0.81 0.90 (0.80–1.00)

Fingerprint C
-Random Forest 0.79 0.91 (0.81–1.00) 0.8 0.95 (0.85–1.00) 0.73 0.93 (0.85–1.00)
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3.8. Influence of Variations in Method

The results given in Table 6 are from the same diagnostic models evaluated in Table 5
but with harmonized data as input instead. This demonstrates that feature harmonization
has little influence on diagnostic utility in this scenario.

Table 6. A summary of the diagnostic utility of each explored method when feature harmonization
is applied.

Qualitative
Assessment

Literature AUC 0.81–0.98 [11]

Training
Accuracy

Training AUC
(95% CI)

Testing
Accuracy

Testing AUC
(95% CI)

Validation
Accuracy

Valdiation
AUC (95% CI)

SUV Feature -SUV 90th Percentile 0.69 0.86 (0.66–1.00) 0.7 0.93 (0.79–1.00) 0.67 0.83 (0.68–0.99)

Radiomic Feature—GLDM Small
Dependence High Gray

Level Emphasis
0.66 0.85 (0.73–0.97) 0.8 0.98 (0.94–1.00) 0.77 0.82 (0.67–0.96)

Fingerprint A—Logistic Regression 0.76 0.86 (0.69–1.00) 0.72 0.90 (0.75–1.00) 0.79 0.93 (0.86–1.00)

Fingerprint B—Neural Net 0.64 0.74 (0.57–0.91) 0.72 0.90 (0.75–1.00) 0.77 0.90 (0.80–1.00)

Fingerprint C—Random Forest 0.81 0.88 (0.72–1.00) 0.62 0.88 (0.71–1.00) 0.7 0.89 (0.79–1.00)

The results given in Table 7 compare the training AUC values for manual and CNN
segmentation. These results show comparable performance for both segmentation methods.

Table 7. A comparison of key results from different segmentation methods.

Manual Segmentation Training
AUC Mean (95% CI)

Automated Segmentation Training
AUC Mean (95% CI)

SUV Feature—SUV 90th Percentile 0.85 (0.77–0.93) 0.86 (0.81–0.91 )

Radiomic Feature—GLSZM High Gray Level Zone
Emphasis/GLCM Difference Variance

0.91 (0.84–0.98 ) 0.89 (0.87–0.91 )

Fingerprint A—Random Forest 0.91 (0.80–1.0 ) 0.85 (0.81–0.89 )

Fingerprint B—Random Forest/Support Vector Machine 0.88 (0.81–0.95 ) 0.91 (0.84–0.98 )

Fingerprint C—Random Forest 0.86 (0.78–0.94 ) 0.81 (0.74–0.89 )

The results given in Table 8 demonstrate which methods are affected by using a
heterogeneous data set. The heterogeneity mostly involved larger variations in image
acquisition protocol. Only validation data are shown as the new dataset was added to
the validation cohort. CNN segmentations on this data achieved a median DSC of 0.71
when compared to manual segmentations. This demonstrates that standardization of
imaging acquisition is required for most of the explored radiomic based diagnosis methods.
Fingerprint A demonstrates the most robustness, albeit a small decrease in diagnostic utility.

Table 8. The diagnostic utility of the explored methods when data with an altered imaging acquisition
protocol is added.

Non-Harmonized Harmonized

Validation
Accuracy Validation AUC (95% CI) Validation

Accuracy Validation AUC (95% CI)

SUV Feature—SUV Mean 0.6 0.72 (0.62–0.83) 0.59 0.72 (0.61–0.82)

Radiomic Feature—First Order Energy/GLDM
Dependence Entropy

0.63 0.72 (0.61–0.82) 0.58 0.83 (0.75–0.91)

Fingerprint A—Random Forest/K Nearest Neighbours 0.71 0.80 (0.71–0.89) 0.69 0.72 (0.61–0.82)

Fingerprint B—Perceptron 0.7 0.72 (0.61–0.82) 0.7 0.70 (0.59–0.81)

Fingerprint C—Random Forest 0.48 0.61 (0.50–0.72) 0.6 0.68 (0.57–0.78)
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4. Discussion

This study presents an automated pipeline to assist diagnosis of active aortitis using
CNN segmentation, radiomic analysis, and ML classifiers. Key results are summarised
in Table 5. The different diagnostic models performed well and similarly to both each
other and the standard of care qualitative assessment. Using radiomic fingerprints had the
advantage of reducing the size of the confidence intervals. Fingerprint A demonstrated the
most robustness.

4.1. Segmentation Automation

The main component in automation was aortic segmentation using a CNN which
achieved a median DSC of 0.80 and allowed the diagnostic models to achieve a good perfor-
mance. A good diagnostic performance or utility was defined as a Validation AUC ≥ 0.8,
and is therefore similar to the benchmark AUCs for qualitative assessment of PET-CT in sus-
pected aortitis [11], and a (balanced) accuracy > 0.5 in all three cohorts. When compared to
the performance using manual segmentations (Table 7), comparable results were achieved.
Automating the method reduces the likelihood of inter and intra observation, increasing
reproducibility [48]. It also makes routine clinical adoption a more realistic proposition.

4.2. Multi-Centre Transferability

Sollini et al. concluded in their systematic review that the lack of external validation
was the key issue preventing radiomics translating into routine clinical practice [49]. Some
multi-centre diagnostic performance was shown in the proposed methods. SUV metrics
performed well in training cohorts but did not demonstrate good transferability to the
testing or validation cohort from other institutions. SUV 90th Percentile demonstrated the
most diagnostic utility from all the explored SUV metrics and did so in all three cohorts.
In future work, it may be worth investigating the effect of adjusting for lean body mass
rather than body weight, as is the case for SUV metrics, as the results from van Praagh et al.
suggest that this could be more reliable [16]. Several individual radiomic features produced
high AUC values and met the minimum accuracy values. In particular, features based on
heterogeneity performed well across all three cohorts with the highest validation AUC
coming from GLDM Dependence Entropy (AUC = 0.91) and first order Energy achieving
the best compromise between AUC and accuracy.The features selected in Fingerprint A and
C further demonstrate that heterogeneity is important in distinguishing aortitis (Table 4).

Fingerprint A was formed with high performing individual features with highly
correlated features removed. It performed well with Random Forest in all three cohorts
achieving AUC and accuracy values above the minimum thresholds stated earlier. This
fingerprint also displayed the most robustness to using a heterogeneous imaging protocol
in Table 8. This demonstrates good generalizability and transferability which are important
for clinical use [49]. Fingerprint C (Random Forest—all features) performed similarly but
was detrimentally affected by the changes in imaging protocol. This suggests it is beneficial
to still pre-select features before using random forest.

4.3. Limitations

It would be preferable to only analyse the aortic wall, but a segmentation method
which reliably distinguishes wall from the lumen in non-contrast enhanced CT has not
been developed to the extent that it reliably worked on the patient cohort in this study.
A segmentation method that achieves this with thresholding can be applied to PET scans
with high aortic wall activity, but it would not identify non-inflamed aortic wall in the
control dataset so this segmentation method would not be feasible for diagnostic purposes.
Future studies that used only aortitis cases with radiomic analysis might be able to over-
come this issue using thresholding: for example, prognostic/stratification studies. Location
of inflammation in the aortic wall could also be considered for differentiating causes of
aortitis as this varies. These were beyond the scope of the present work. Most other aortic
wall segmentation methods require contrast enhancement. One method that does not use
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contrast enhancement was developed by Piri et al. [50]. They utilised a CNN to produce
whole aorta segmentations and then labelled the wall as a predefined thickness inside and
outside of the edge, giving a 5 mm wall thickness in total. This gives a good approximation
of the aortic wall but is not precise, does not account for inter and intra patient variation,
and is not flexible to deal with anatomical alterations caused by aortitis. While a 5 mm
thickness is achievable on CT, it would result in a one pixel thick wall on PET used in
this study (voxel size 4 × 4 × 4 mm) making any second or higher order features limited.
Future work could explore whether the trade off between limiting potential features or
including the lumen is worthwhile.

Another limitation is that patients with atherosclerosis were excluded from the study
cohort, for both aortitis patients and controls, as atherosclerosis can also lead to FDG uptake
in the vessel wall [51–53]. This was part of the exclusion criteria as the purpose of the
study was to initially develop an artificial intelligence-based pipeline using unequivocal
cases and controls. The next stage would be to test this pipeline on the whole spectrum of
those presenting with suspected aortitis; atherosclerosis is common in this age group [12].
Another group has reported promising results using SUV metrics [54]. Similarly, it would
be of interest to determine whether any of the radiomic features with high diagnostic utility
can detect aortitis after treatment has started as this currently limits the use of PET imaging.
FDG PET-CT is mostly used for baseline imaging of aortitis for diagnosis as GCs reduce its
sensitivity [46,55,56]. While the diagnostic accuracy decreases significantly after 10 days,
uptake is not eradicated completely. Van der Geest et al. determined that FDG PET still
had some moderate diagnostic utility for monitoring treatment but that the individual
results were highly variable and any conclusions drawn from imaging should only be
interpreted in the context of clinical presentation [57]. This evaluation was based on visual
assessment which is based on vessel activity compared to the liver and the distribution
of uptake. Potentially, some of the radiomic features that demonstrated a high diagnostic
performance, but are based on information that is not easily appreciated by eye, could help
utilise FDG PET for monitoring aortitis.

Several components of radiomics can be replaced by DL methods adding many benefits
such as automation and reproducibility. However, these methods require large datasets
that are not always conceivable. They also need to be interpretable and understandable in
a clinical context to encourage trust, avoid unnoticed bias in training data, and overcome
privacy, legal and accountability issues [23,37,58]. These limitations do not eliminate the
use of DL and are likely to be easier to overcome in coming years. It does leave room for
other techniques like handcrafted radiomic features and simpler ML classifiers. While DL
is popular, its application to steps in the radiomic workflow does not always produce better
results than other well-established methods.

4.4. Harmonization and Standardization

There is still some debate as to the validity of harmonisation with ComBat [19,59,60].
Orlhac et al. stated that ComBat is only appropriate in situations described in their
guide [61]. Papadimitroulas et al. described several other alternatives to ComBat but
also concluded that ComBat performed well overall [23]. As this study uses data from
several institutions and scanners, harmonization was explored and showed no significant
difference in diagnostic utility. A key disadvantage to using ComBat for harmonization
is that scans that do not belong to a predefined batch cannot be harmonized. In order to
define a batch, a minimum of 20 samples are required, which was not achieved in some of
our batches and is not feasible in many smaller centers.

A key point discussed in numerous radiomic studies and reviews is the need for
standardized methodology. Standardization of imaging protocols was not feasible as this
was a retrospective study with insufficient data to exclude patients based on imaging
protocol. All steps after reconstruction and before feature extraction were kept consistent
as this has been proven to have a significant effect [? ]. Table 8 demonstrates the effect
of using input data from centres following different imaging protocols. Fingerprint A
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showed the most robustness, making it promising for transferability. TRIPOD reporting
guidelines were adhered to in this project to ensure transparency of methodological de-
tails [26]. Feature extraction software (PyRadiomics) that mostly adheres to IBSI radiomic
feature standardization was utilized. The IBSI definitions are discussed in their paper
by Zwannenburg et al. [34]. Deviations from these definitions are discussed in the user
documentation (https://pyradiomics.readthedocs.io/en/latest/features (accessed on 1
November 2022)) and accompanying publication [35]. While standardization is important,
specific recommendations for steps are rarely made as optimal methods vary based on
modality, condition and application. Some specific recommendations are published for PET
imaging in LVV, but there are little or no studies reporting use of radiomics in this setting,
meaning there is no specific guidance. The results of this project provide initial results but
further optimization of each step could be explored to produce specific advice to this appli-
cation. Meanwhile, thorough reporting of methods is sufficient to overcome most issues
caused by a lack of standardization. As IBSI found, even with well-defined rules, there can
be discrepancies in application, so following guidelines such as IBSI, STARD or TRIPOD
when reporting can help convey the most important details [26,34]. Some decisions made
in this project have been in areas still debated in literature. Examples include how to define
the bin width or bin number when conducting gray level discretization, or whether to
upsample or downsample when spatially resampling. While they are not limitations, they
may be improved upon in future studies [22,34].

5. Conclusions

The purpose of this study was to develop and validate an automated pipeline that
assists the diagnosis of active aortitis. The pipeline included an automated segmentation
method with a CNN, radiomic analysis and ML.

The different diagnostic models performed well and similarly. Fingerprint A demon-
strated the most robustness and was built using the best performing individual features
whilst removing correlated features.

These findings demonstrate a radiomic pipeline can be generalizable and transferable.
They could be used to build an automated clinical decision tool which would facilitate
objective and standardized assessment regardless of observer experience.
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Abbreviations
The following abbreviations are used in this manuscript:

SUV Standardized Uptake Value
PCA Principal Component Analysis
DSC Dice Similarity Coefficient
AUC Area Under the ROC Curve
ROC Receiver Operating Characteristic
GCA Giant Cell Arteritis
LVV Large Vessel Vasculitis
FDG PET-CT [18F]-Fluorodeoxyglucose Positron Emission Tomography—Computed

Tomography
FDG [18F]-Fluorodeoxyglucose
PET Positron Emission Tomography
CT Computed Tomography
GLDM Gray-Level Dependence Matrix
GLCM Gray-Level Co-Occurrence Matrix
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GLRLM Gray-Level Run Length Matrix
GLSZM Gray-Level Size Zone Matrix
DLYD Delayed Event Subtraction
TAK Takayasu’s arteritis
CRP C-Reactive Protein
ESR Erythrocyte Sedimentation Rate
ML Machine Learning
DL Deep Learning
DICOM Digital Imaging and Communications in Medicine
GPU Graphics Processing Unit
PITA PET Imaging of Giant Cell and Takayasu Arteritis
TARGET Treatment According to Response in Giant Cell arTeritis
CNN Convolutional Neural Network
EULAR European Alliance of Associations for Rheumatology
EANM European Association of Nuclear Medicine
SNMMI Society of Nuclear Medicine and Molecular Imaging
ReLU Rectified Linear Unit
AI Artificial Intelligence
ROI Region of Interest
IBSI International Biomarker Standardisation Initiative
PACS Picture Archiving and Communication
VPFX Vue Point FX (3D time of flight)
SS-SIMUL Single-scatter Simulation
BLOB-OS-TF Spherically symmetric basis function ordered subset algorithm

Appendix A. Imaging Protocol

Table A1. PET reconstruction parameters for each PET-CT system. Key—BLOB-OS-TF = spherically
symmetric basis function ordered subset algorithm; SS-SIMUL = single-scatter simulation; VPFX =
Vue Point FX (3D time of flight); DLYD = delayed event subtraction.

Scanner Reconstruction Scatter Correction Randoms
Correction Matrix Voxel Size

Gemini TF64 BLOB-OS-TF SS-SIMUL DLYD 144 4.00 × 4.00 × 4.00

Discovery 710 VPFX, QCFX, or VPHD Model based Singles 192 3.65 × 3.65 × 3.27

Discovery 690 VPFX or VPFX Model-based Singles 193 3.65 × 3.65 × 3.28

Discovery MI DR VPFX, QCFX, or VPHD Model-based SING 256 2.73 × 2.73 × 3.27

Discovery ST OSEM Convolution subtraction DLYD 128 4.69 × 4.69 × 3.27

Discovery STE OSEM Convolution subtraction SING 128 5.47 × 5.47 × 3.27

Biograph 6 True
Point OSEM2D 4i8s Model-based DLYD 168 4.07 × 4.07 × 3.00

Biograph 6 OSEM2D 4i8s Model-based DLYD 168 4.07 × 4.07 × 3.00

Biograph 64 mCT PSF + TOF 2i21s or OSEM3D 2i24s Model-based DLYD 200 4.07 × 4.07 × 3.00

Appendix B. ML Parameters and Diagnostic Performance of Individual SUV metrics
and Radiomic Features
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Table A2. ML Parameters and Diagnostic Performance of Individual SUV metrics and Radiomic Features : Key—ML (Machine Learning), ACC (Accuracy), CI
(Confidence Interval), AUC (Area Under the Receiver Operating Characteristic Curve), Val (Validation), SUV (Standardized Uptake Value), GLDM (Gray-Level Dependence
Matrix), GLCM (Gray-Level Co-Occurrence Matrix), GLRLM (Gray-Level Run Length Matrix), and GLSZM (Gray-Level Size Zone Matrix).

Feature Params ACC
Training

AUC
Training

AUC CI ACC
Test

AUC
Test

AUC Test
CI

ACC
Val

AUC
Val

AUC Val CI

original shape Elonga-
tion

(‘C’, 3.8056144605552977), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 6310), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.017923654340198922)

0.500 0.585 0.455–0.716 0.500 0.617 0.239–0.994 0.500 0.614 0.497–0.732

original firstorder 10 Per-
centile

(‘C’, 2.8817940478533313), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 3403), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.011518315256582621)

0.676 0.825 0.554–1.000 0.558 0.700 0.387–1.000 0.637 0.784 0.690–0.879

original firstorder En-
ergy

(‘C’, 1.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 1), (‘max
iter’, 10,000), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.02338512988384992)

0.689 0.852 0.769–0.934 0.800 0.967 0.888–1.000 0.625 0.717 0.611–0.822

original firstorder En-
tropy

(‘C’, 3.898563938816272), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 1057), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.09065383006063307)

0.710 0.901 0.793–1.000 0.800 0.917 0.780–1.000 0.470 0.555 0.440–0.670

original firstorder In-
terquartile Range

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 5), (‘max
iter’, 8442), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.004402437057502587)

0.712 0.834 0.771-0.896 0.658 0.850 0.652–1.000 0.448 0.531 0.415–0.647

original firstorder Kurto-
sis

(‘C’, 3.634835218565156), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 6758), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0013191637682750674)

0.500 0.441 0.297–0.586 0.500 0.450 0.130–0.770 0.500 0.468 0.346–0.590

original firstorder Maxi-
mum

(‘C’, 3.5515515962056434), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 9296), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.008690899693926512)

0.606 0.764 0.456–1.000 0.800 0.967 0.888–1.000 0.537 0.508 0.384–0.632

original firstorder Mean (‘C’, 3.9294940929254794), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 3769), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.034137309056045194)

0.767 0.890 0.668–1.000 0.800 0.883 0.647–1.000 0.598 0.724 0.620–0.828

original firstorder Mean-
AbsoluteDeviation

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 1), (‘max
iter’, 10,000), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.1)

0.678 0.879 0.720–1.000 0.700 0.900 0.741–1.000 0.479 0.555 0.440–0.670

original firstorder Me-
dian

(‘C’, 3.9959470312560192), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 9514), (‘penalty’, ‘l1’), (’‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.003443979629449537)

0.756 0.853 0.574–1.000 0.600 0.833 0.591–1.000 0.568 0.690 0.581–0.799

original firstorder Range (‘C’, 2.9625927896408317), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 5285), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.04665607138780834)

0.592 0.756 0.495–1.000 0.700 0.967 0.888–1.000 0.465 0.484 0.360–0.608
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Table A2. Cont.

Feature Params ACC
Training

AUC
Training

AUC CI ACC
Test

AUC
Test

AUC Test
CI

ACC
Val

AUC
Val

AUC Val CI

original firstorder
RobustMeanAbsolut-
eDeviation

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 2), (‘max
iter’, 6466), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
1× 10−7)

0.654 0.856 0.767–0.945 0.658 0.867 0.679–1.000 0.495 0.535 0.419–0.650

original firstorder Root-
MeanSquared

(‘C’, 3.9502570349836175), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 7402), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.08258347919775297)

0.767 0.900 0.710–1.000 0.600 0.883 0.647–1.000 0.585 0.718 0.614–0.822

original firstorder Skew-
ness

(‘C’, 2.238056324193022), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 1545), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.08427086764521606)

0.489 0.568 −0.004–
1.000

0.500 0.850 0.613–1.000 0.500 0.613 0.495–0.731

original firstorder Total
Energy

(‘C’, 1.292188045736975), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 9696), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.00010802104590742912)

0.689 0.852 0.769–0.934 0.800 0.967 0.888–1.000 0.662 0.717 0.611–0.822

original firstorder Uni-
formity

(‘C’, 3.39826558360898), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 5), (‘max iter’, 7542), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.07122003912935275)

0.500 0.138 0.000–0.277 0.500 0.100 −0.059–
0.259

0.500 0.460 0.344–0.577

original firstorder Vari-
ance

(‘C’, 2.8454630117539024), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 5096), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.007605136714617995)

0.723 0.899 0.756–1.000 0.800 0.967 0.890–1.000 0.453 0.551 0.437–0.665

original glcm Autocorre-
lation

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 5), (‘max
iter’, 10), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
1× 10−7)

0.798 0.894 0.786–1.000 0.700 0.950 0.839–1.000 0.469 0.604 0.493–0.716

original glcm Cluster-
Prominence

(‘C’, 1.2014550932380232), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 1049), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.02992266728475855)

0.718 0.850 0.710-0.990 0.700 1.000 nan–nan 0.424 0.558 0.444–0.673

original glcm Cluster-
Shade

(‘C’, 1.1562338815842363), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 10), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.1)

0.500 0.573 0.069-1.000 0.500 0.533 0.255–0.812 0.500 0.703 0.596–0.809

original glcm Cluster-
Tendency

(‘C’, 3.3987720010803155), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 2281), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.04646204360821551)

0.743 0.894 0.753–1.000 0.800 0.933 0.813–1.000 0.451 0.579 0.465–0.692

original glcm Contrast (‘C’, 2.794213383090132), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 7568), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.09298732537139162)

0.802 0.901 0.776–1.000 0.758 0.967 0.890–1.000 0.477 0.452 0.333–0.571
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Table A2. Cont.

Feature Params ACC
Training

AUC
Training

AUC CI ACC
Test

AUC
Test

AUC Test
CI

ACC
Val

AUC
Val

AUC Val CI

original glcm Correla-
tion

(‘C’, 2.3265163816288474), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 3), (‘max iter’, 7116), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0188936121493807)

0.500 0.423 0.244–0.603 0.500 0.367 0.068–0.665 0.500 0.768 0.658–0.877

original glcm Difference
Average

(‘C’, 3.765281617061703), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 3203), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.04678697115468039)

0.762 0.896 0.769–1.000 0.800 0.900 0.742–1.000 0.502 0.436 0.316–0.556

original glcm Difference
Entropy

(‘C’, 2.5454905419682645), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 7232), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.013588632723062564)

0.748 0.896 0.769-1.000 0.800 0.933 0.814–1.000 0.518 0.436 0.316–0.555

original glcm Difference
Variance

(‘C’, 1.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 4), (‘max
iter’, 10), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.1)

0.774 0.901 0.771-1.000 0.800 0.967 0.890–1.000 0.487 0.462 0.343–0.580

original glcm Id (‘C’, 2.876700911377709), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 5860), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.021468961778094153)

0.628 0.862 0.741–0.982 0.600 0.900 0.742–1.000 0.475 0.401 0.282–0.521

original glcm Idm (‘C’, 3.5521886140988324), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 10), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 1× 10−7)

0.639 0.862 0.741–0.982 0.600 0.900 0.742–1.000 0.475 0.394 0.275–0.513

original glcm Idmn (‘C’, 2.5729756259638257), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 4), (‘max iter’, 6648), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0722906499673705)

0.500 0.369 0.187–0.551 0.500 0.500 0.222–0.778 0.500 0.561 0.437–0.685

original glcm Idn (‘C’, 1.5612853647891844), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 8056), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.031534182504912224)

0.500 0.390 0.205–0.575 0.500 0.517 0.236–0.798 0.500 0.586 0.464–0.709

original glcm Imc1 (‘C’, 3.9438796427354554), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 3), (‘max iter’, 9320), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.09874439787032405)

0.500 0.440 0.182–0.698 0.500 0.333 0.067–0.600 0.500 0.796 0.693–0.900

original glcm Imc2 (‘C’, 2.543363070723238), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 2274), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.00834386841277177)

0.500 0.500 nan–nan 0.500 0.517 0.208–0.825 0.500 0.783 0.684–0.882

original glcm Inverse
Variance

(‘C’, 3.2073129630396777), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 6658), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0074434857032721225)

0.628 0.862 0.741–0.982 0.700 0.900 0.742–1.000 0.490 0.398 0.278–0.518
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Table A2. Cont.

Feature Params ACC
Training

AUC
Training

AUC CI ACC
Test

AUC
Test

AUC Test
CI

ACC
Val

AUC
Val

AUC Val CI

original firstorder
RobustMeanAbsolut-
eDeviation

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 2), (‘max
iter’, 6466), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
1× 10−7)

0.654 0.856 0.767–0.945 0.658 0.867 0.679–1.000 0.495 0.535 0.419–0.650

original glcm JointAver-
age

(‘C’, 2.884522523620075), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 10), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.018889093800706636)

0.714 0.894 0.802–0.987 0.700 0.900 0.742–1.000 0.501 0.591 0.478–0.703

original glcm JointEn-
ergy

(‘C’, 1.199944589432079), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 45), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.09140428650296156)

0.500 0.851 0.767–0.934 0.500 0.933 0.814–1.000 0.500 0.478 0.361–0.594

original glcm JointAver-
age

(‘C’, 2.884522523620075), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 10), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.018889093800706636)

0.714 0.894 0.802–0.987 0.700 0.900 0.742–1.000 0.501 0.591 0.478–0.703

original glcm Joint En-
ergy

(‘C’, 1.199944589432079), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 45), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.09140428650296156)

0.500 0.851 0.767-0.934 0.500 0.933 0.814–1.000 0.500 0.478 0.361–0.594

original glcm Joint En-
tropy

(‘C’, 2.8485013507009964), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 1666), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0003388234219221265)

0.710 0.883 0.758-1.000 0.800 0.933 0.814–1.000 0.462 0.500 0.383–0.616

original glcm MCC (‘C’, 3.7544969295345636), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 7337), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.02150123778633736)

0.500 0.454 0.342–0.565 0.500 0.533 0.213–0.854 0.500 0.593 0.470–0.717

original glcm Maximum
Probability

(‘C’, 3.749171778156825), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 4), (‘max iter’, 9343), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.039031034588965174)

0.500 0.156 0.076–0.235 0.500 0.100 −0.058–
0.258

0.500 0.558 0.441–0.674

original glcm Sum Aver-
age

(‘C’, 1.2810898302218976), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 3097), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.07161938424684904)

0.714 0.894 0.802–0.987 0.700 0.900 0.742–1.000 0.501 0.591 0.478–0.703

original glcm Sum En-
tropy

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 5), (‘max
iter’, 8498), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
1× 10−7)

0.705 0.901 0.793–1.000 0.800 0.900 0.741–1.000 0.452 0.586 0.473–0.699

original glcm Sum
Squares

(‘C’, 1.305357350462431), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 339), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0006889623638318466)

0.755 0.895 0.754–1.000 0.800 0.967 0.890–1.000 0.452 0.554 0.440–0.668

original gldm Depen-
dence Entropy

(‘C’, 3.7717457451609153), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 14), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.009597244103991846)

0.539 0.807 0.605–1.000 0.500 0.917 0.743–1.000 0.500 0.812 0.729–0.896
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Table A2. Cont.

Feature Params ACC
Training

AUC
Training

AUC CI ACC
Test

AUC
Test

AUC Test
CI

ACC
Val

AUC
Val

AUC Val CI

original gldm Depen-
dence Non-Uniformity

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 5), (‘max
iter’, 10), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
1× 10−7)

0.598 0.696 0.359–1.000 0.800 0.933 0.814–1.000 0.468 0.502 0.381–0.623

original gldm Depen-
dence Non-Uniformity
Normalized

(‘C’, 3.9397386998320325), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 5358), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.058125565483952035)

0.500 0.805 0.647–0.963 0.500 0.883 0.718–1.000 0.500 0.370 0.253–0.486

original gldm Depen-
dence Variance

(‘C’, 3.908072013043827), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 1551), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.026849446139380312)

0.639 0.795 0.620–0.970 0.658 0.850 0.660–1.000 0.443 0.303 0.191–0.415

original gldm Gray
Level Non-Uniformity

(‘C’, 3.1826657805845513), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 9909), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0008888365484206898)

0.676 0.779 0.447–1.000 0.558 0.600 0.288–0.912 0.474 0.468 0.344–0.593

original gldm Gray
Level Variance

(‘C’, 1.8552309464866807), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 4836), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0019131772861938168)

0.730 0.899 0.756–1.000 0.800 0.967 0.890–1.000 0.468 0.551 0.437–0.666

original gldm High Gray
Level Emphasis

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 5), (‘max
iter’, 10000), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.04047765497803527)

0.823 0.906 0.812–0.999 0.700 0.967 0.888–1.000 0.484 0.602 0.490–0.713

original gldm Large De-
pendence Emphasis

(‘C’, 1.0588224326821771), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 9519), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.047865873089018005)

0.673 0.828 0.648–1.000 0.700 0.883 0.718–1.000 0.459 0.351 0.234–0.468

original gldm Large
Dependence High Gray
Level Emphasis

(‘C’, 3.1168548949137724), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 2), (‘max iter’, 1217), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0838087387972799)

0.500 0.557 0.111–1.000 0.500 0.467 0.123–0.810 0.500 0.753 0.640–0.865

original gldm LowGray
LevelEmphasis

(‘C’, 2.8291349845222524), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 7077), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.03740604869362484)

0.500 0.500 nan–nan 0.500 0.500 nan–nan 0.500 0.500 nan–nan

original gldm SmallDe-
pendenceEmphasis

(‘C’, 3.9838817245979876), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 1542), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0008766419147272496)

0.710 0.867 0.699–1.000 0.800 0.900 0.742–1.000 0.534 0.407 0.287–0.527

original gldm Small
Dependence High Gray
Level Emphasis

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 2), (‘max
iter’, 2813), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.05195113774499899)

0.773 0.929 0.832–1.000 0.800 0.983 0.937–1.000 0.491 0.525 0.409–0.641
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Table A2. Cont.

Feature Params ACC
Training

AUC
Training

AUC CI ACC
Test

AUC
Test

AUC Test
CI

ACC
Val

AUC
Val

AUC Val CI

original firstorder
RobustMeanAbsolut-
eDeviation

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 2), (‘max
iter’, 6466), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
1× 10−7)

0.654 0.856 0.767–0.945 0.658 0.867 0.679–1.000 0.495 0.535 0.419–0.650

original gldm Small
Dependence Low Gray
Level Emphasis

(‘C’, 2.030332175989515), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 5234), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.006906386148325776)

0.500 0.381 −0.008–
0.770

0.500 0.333 0.034–0.633 0.500 0.282 0.176–0.387

original glrlm Gray
Level Non-Uniformity

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 3), (‘max
iter’, 10), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.1)

0.662 0.751 0.421–1.000 0.558 0.550 0.211–0.889 0.467 0.486 0.361–0.612

original glrlm Gray
Level Non-Uniformity
Normalized

(‘C’, 3.8458368662008255), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 3), (‘max iter’, 3365), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.014454416417432375)

0.500 0.133 0.011–0.255 0.500 0.117 −0.050–
0.283

0.500 0.457 0.341–0.573

original glrlm Gray
Level Variance

(‘C’, 1.6722052556540499), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 10), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.1)

0.723 0.905 0.764–1.000 0.700 0.967 0.890–1.000 0.432 0.554 0.440–0.668

original glrlm High Gray
Level RunEmphasis

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 5), (‘max
iter’, 10000), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.05118583169143218)

0.812 0.906 0.812–0.999 0.700 0.967 0.888–1.000 0.476 0.606 0.494–0.717

original glrlm Long Run
Emphasis

(‘C’, 3.833856019580739), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 1631), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.03501141624853724)

0.639 0.844 0.675–1.000 0.600 0.883 0.718-1.000 0.467 0.362 0.244–0.480

original glrlm Long Run
High Gray Level Empha-
sis

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 3), (‘max
iter’, 4806), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.018730143457553885)

0.753 0.884 0.740–1.000 0.700 0.967 0.890–1.000 0.500 0.654 0.545–0.762

original glrlm LongRun-
LowGray LevelEmpha-
sis

(‘C’, 2.6289220027281743), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 7056), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.09003136591880305)

0.500 0.861 0.738–0.984 0.500 0.867 0.680–1.000 0.500 0.657 0.547–0.767

original glrlm Low Gray
Level Run Emphasis

(‘C’, 2.2376337828274573), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 4), (‘max iter’, 7747), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.07030672418295693)

0.500 0.157 −0.012–
0.325

0.500 0.133 −0.054–
0.320

0.500 0.310 0.204-0.417

original glrlm RunEn-
tropy

(‘C’, 3.3114257300096157), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 121), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0194354228138649)

0.690 0.889 0.748–1.000 0.700 0.917 0.780–1.000 0.464 0.606 0.493–0.718

original glrlm Run
Length Non-Uniformity

(‘C’, 1.4366614662702664), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 1), (‘max iter’, 2709), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.03928484749498973)

0.500 0.611 0.104–1.000 0.500 0.967 0.890–1.000 0.500 0.555 0.434–0.676
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Table A2. Cont.

Feature Params ACC
Training

AUC
Training

AUC CI ACC
Test

AUC
Test

AUC Test
CI

ACC
Val

AUC
Val

AUC Val CI

original glrlm Run
Length Non-Uniformity
Normalized

(‘C’, 2.6720853872765495), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 3), (‘max iter’, 3774), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.07427424237615005)

0.500 0.839 0.684–0.993 0.500 0.900 0.742–1.000 0.500 0.378 0.259–0.496

original glrlm RunPer-
centage

(‘C’, 2.6023123244300974), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 291), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.049781425459564835)

0.500 0.839 0.684–0.993 0.500 0.883 0.718–1.000 0.500 0.370 0.251–0.488

original glrlm RunVari-
ance

(‘C’, 3.61481821528191), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 10), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 1× 10−7)

0.564 0.834 0.651–1.000 0.600 0.867 0.689–1.000 0.467 0.347 0.231–0.464

original glrlm Short-
RunEmphasis

(‘C’, 2.732198485448542), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 974), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.01734471841788434)

0.500 0.839 0.684–0.993 0.500 0.900 0.742–1.000 0.500 0.377 0.258–0.495

original glrlm Short Run
High Gray Level Empha-
sis

(‘C’, 3.9351523410188607), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 2339), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.06576459057456105)

0.787 0.906 0.812-0.999 0.800 0.967 0.888-1.000 0.476 0.594 0.482-0.706

original glrlm Short Run
Low Gray Level Empha-
sis

(‘C’, 3.4237606654811574), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 1707), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.06073466346615761)

0.500 0.833 0.660-1.000 0.500 0.867 0.680-1.000 0.500 0.695 0.590–0.801

original glszm Gray
Level Non-Uniformity

(‘C’, 3.8458029875767066), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 2474), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.04148253163117249)

0.500 0.635 0.355–0.915 0.500 0.850 0.661–1.000 0.500 0.428 0.306–0.549

original glszm Gray
Level Non-Uniformity
Normalized

(‘C’, 3.600665976879018), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 1678), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.05947499893500212)

0.500 0.894 0.770–1.000 0.500 0.983 0.937–1.000 0.500 0.573 0.459–0.687

original glszm Gray
Level Variance

(‘C’, 2.901196262126115), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 10), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.03774426454693599)

0.749 0.860 0.721–0.999 0.800 1.000 nan–nan 0.453 0.575 0.461–0.688

original glszm High
Gray Level Zone Em-
phasis

(‘C’, 3.478204583582132), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 1616), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.09703590654231291)

0.762 0.905 0.829–0.981 0.800 0.983 0.937–1.000 0.453 0.601 0.489–0.712

original glszm Large
Area Emphasis

(‘C’, 1.6046715254557193), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 6822), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.07800900631220041)

0.648 0.851 0.652–1.000 0.700 0.867 0.689–1.000 0.490 0.378 0.260–0.496
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Table A2. Cont.

Feature Params ACC
Training

AUC
Training

AUC CI ACC
Test

AUC
Test

AUC Test
CI

ACC
Val

AUC
Val

AUC Val CI

original glszm Large
Area High Gray Level
Emphasis

(‘C’, 1.8487035352590049), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 1179), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.05701958294758005)

0.553 0.812 0.550–1.000 0.700 0.850 0.653–1.000 0.483 0.357 0.236–0.478

original glszm Large
Area Low Gray Level
Emphasis

(‘C’, 2.3369045710562144), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 7065), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.08366919609286493)

0.673 0.853 0.674–1.000 0.558 0.867 0.690–1.000 0.467 0.425 0.307–0.543

original glszm Low Gray
Level Zone Emphasis

(‘C’, 2.0825064626116987), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 469), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.05187162786375553)

0.500 0.500 nan–nan 0.500 0.500 nan–nan 0.500 0.500 nan–nan

original glszm Size Zone
Non-Uniformity

(‘C’, 3.4968658660509293), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 5119), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.09985912291392018)

0.705 0.849 0.793–0.905 0.800 0.967 0.890–1.000 0.475 0.489 0.370–0.609

original glszm Size
Zone Non-Uniformity
Normalized

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 3), (‘max
iter’, 1220), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.0010447413452487947)

0.653 0.907 0.773–1.000 0.700 0.967 0.888–1.000 0.496 0.429 0.309–0.549

original glszm Small
Area Emphasis

(‘C’, 3.6221746139345705), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 813), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.004130953766069213)

0.614 0.896 0.738–1.000 0.600 0.967 0.888–1.000 0.520 0.427 0.308–0.547

original glszm Small
Area High Gray Level
Emphasis

(‘C’, 2.6240187371586012), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 3622), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.08556868775028845)

0.762 0.900 0.795–1.000 0.800 1.000 nan–nan 0.478 0.553 0.439–0.667

original glszm Small
Area Low Gray Level
Emphasis

(‘C’, 1.7064389360641852), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 1), (‘max iter’, 9885), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.07794842268900995)

0.500 0.837 0.733–0.941 0.500 0.867 0.688–1.000 0.500 0.590 0.478–0.702

original glszm Zone En-
tropy

(‘C’, 2.8550691194553095), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 3433), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.06520910207277585)

0.500 0.708 0.456–0.960 0.500 0.883 0.678–1.000 0.500 0.772 0.680–0.864

original glszm Zone Per-
centage

(‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 2), (‘max
iter’, 956), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
1× 10−7)

0.710 0.874 0.698-1.000 0.800 0.900 0.742–1.000 0.534 0.409 0.290–0.529

original glszm Zone
Variance

(‘C’, 2.2299373803328835), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 8739), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.05624148106047668)

0.623 0.850 0.654–1.000 0.700 0.867 0.689–1.000 0.490 0.375 0.258–0.493
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Table A2. Cont.

Feature Params ACC
Training

AUC
Training

AUC CI ACC
Test

AUC
Test

AUC Test
CI

ACC
Val

AUC
Val

AUC Val CI

original shape Flatness (‘C’, 3.26351153620514), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 4285), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.07375765313681576)

0.500 0.500 nan–nan 0.500 0.500 nan–nan 0.500 0.500 nan–nan

original shape Least
Axis Length

(‘C’, 2.226917940773356), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 2), (‘max iter’, 9542), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.05189302090817439)

0.500 0.587 0.222–0.952 0.500 0.800 0.566–1.000 0.500 0.650 0.529–0.772

original shape Major
Axis Length

(‘C’, 1.1143625492476652), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 6549), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.00031345515541475905)

0.550 0.645 0.410–0.881 0.500 0.367 0.019–0.715 0.500 0.518 0.397–0.639

original shape Maxi-
mum2D DiameterCol-
umn

(‘C’, 1.0021818324304934), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 2), (‘max iter’, 8894), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0929830142217613)

0.500 0.451 0.057–0.844 0.500 0.583 0.220–0.947 0.500 0.492 0.372–0.611

original shape Maxi-
mum2D DiameterRow

(‘C’, 3.3024304072681905), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 2), (‘max iter’, 4036), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.09059059637632817)

0.500 0.415 0.083–0.748 0.500 0.650 0.331–0.969 0.500 0.491 0.370–0.612

original shape Maxi-
mum2D DiameterSlice

(‘C’, 1.5124941175869826), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 4), (‘max iter’, 8130), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0765168304164115)

0.500 0.497 0.287–0.706 0.500 0.833 0.632–1.000 0.500 0.691 0.581–0.802

original shape Maxi-
mum3D Diameter

(‘C’, 3.1109766854613072), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 3), (‘max iter’, 6978), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.017060855705831286)

0.500 0.429 0.070–0.789 0.500 0.617 0.251–0.983 0.500 0.490 0.369–0.610

original shape Mesh Vol-
ume

(‘C’, 3.3281428672743534), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 3), (‘max iter’, 7246), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.06893000237976868)

0.500 0.527 0.048–1.000 0.500 0.850 0.655–1.000 0.500 0.588 0.467–0.708

original shape Minor
Axis Length

(‘C’, 1.5859938721531885), (‘dual’, False), (‘fit intercept’, False), (‘intercept
scaling’, 2), (‘max iter’, 6160), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.09283436723767415)

0.500 0.447 0.166–0.727 0.500 0.900 0.742–1.000 0.500 0.716 0.609–0.822

original shape Spheric-
ity

(‘C’, 2.003303146456421), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 3), (‘max iter’, 7530), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.07357167804542747)

0.500 0.494 0.201-0.787 0.500 0.383 0.035-0.732 0.500 0.522 0.398–0.646

original shape Surface
Area

(‘C’, 1.9839469572178487), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 2239), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.0922515508141599)

0.500 0.516 0.019–1.000 0.500 0.850 0.660–1.000 0.500 0.553 0.432–0.674
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Table A2. Cont.

Feature Params ACC
Training

AUC
Training

AUC CI ACC
Test

AUC
Test

AUC Test
CI

ACC
Val

AUC
Val

AUC Val CI

original shape Surface
Volume Ratio

(‘C’, 3.499156350599231), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 6863), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.08640779329555863)

0.500 0.500 nan–nan 0.500 0.500 nan–nan 0.500 0.500 nan–nan

original shape Voxel Vol-
ume

(‘C’, 3.7936962680325133), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 2), (‘max iter’, 4309), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.051928537070625225)

0.500 0.532 0.046–1.000 0.500 0.850 0.655–1.000 0.500 0.587 0.466–0.707

SUV 50 (‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 5), (‘max
iter’, 10,000), (‘penalty’, ‘l1’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
1× 10−7)

0.667 0.803 0.557–1.000 0.700 1.000 nan–nan 0.518 0.534 0.412–0.656

SUV 60 (‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 4), (‘max
iter’, 4189), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
1× 10−7)

0.581 0.763 0.403–1.000 0.700 1.000 nan–nan 0.525 0.518 0.393–0.642

SUV 70 (‘C’, 3.159539333749517), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 4), (‘max iter’, 2546), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.04748372286529402)

0.556 0.737 0.372–1.000 0.700 0.967 0.888–1.000 0.517 0.511 0.385–0.637

SUV 80 (‘C’, 4.0), (‘dual’, False), (‘fit intercept’, True), (‘intercept scaling’, 5), (‘max
iter’, 1110), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’, ‘liblinear’), (‘tol’,
0.023117444595346284)

0.581 0.730 0.398–1.000 0.800 0.950 0.839–1.000 0.522 0.495 0.369–0.622

SUV 90 (‘C’, 3.1704526969890265), (‘dual’, False), (‘fit intercept’, True), (‘intercept
scaling’, 5), (‘max iter’, 10), (‘penalty’, ‘l2’), (‘random state’, 1), (‘solver’,
‘liblinear’), (‘tol’, 0.027440275486626378)

0.606 0.753 0.423–1.000 0.800 0.933 0.791–1.000 0.508 0.493 0.368–0.619
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Appendix C. Diagnostic Performance of Fingerprint A in All Classifiers

Table A3. Diagnostic performance of Fingerprint A.

ML Type ACC
Training ACC CI AUC

Training AUC CI ACC Test AUC Test AUC Test
CI ACC Val AUC Val AUC Val

CI

rf 0.738 0.141 0.900 [0.789 1.] 0.8 0.983 [0.937 1.] 0.748 0.923 [0.835 1.]

lgr 0.736 0.149 0.905 [0.808 1.] 0.8 0.966 [0.890 1.] 0.769 0.880 [0.762
0.998]

dt 0.850 0.023 0.850 [0.798
0.902] 0.858 0.858 [0.646 1.] 0.748 0.748 [0.591

0.905]

gpc 0.5 0 0.5 [nan nan] 0.5 0.5 [nan nan] 0.5 0.5 [nan nan]

sgd 0.525 0.043 0.525 [0.427
0.622] 0.5 0.5 [nan nan] 0.5 0.5 [nan nan]

perc 0.642 0.153 0.895 [0.846
0.943] 0.5 0.966 [0.887 1.] 0.5 0.880 [0.766

0.994]

pasagr 0.552 0.086 0.891 [0.750 1.] 0.7 0.95 [0.854 1.] 0.519 0.891 [0.770 1.]

nnet 0.602 0.132 0.613 [0.276
0.951] 0.716 0.7 [0.435

0.964] 0.831 0.824 [0.680
0.967]

kneigh 0.718 0.129 0.816 [0.712
0.919] 0.758 0.833 [0.603 1.] 0.806 0.840 [0.699

0.981

Appendix D. Diagnostic Performance of Fingerprint B in All Classifiers

Table A4. Diagnostic performance of Fingerprint B.

ML Type ACC_Training ACC CI AUC Training AUC CI ACC Test AUC Test AUC CI Test ACC Val AUC Val AUC CI Val

rf 0.8 0.056 0.768 [0.51346925
1.] 0.958 0.958 [0.86887363

1.] 0.81 0.893 [0.78622024
1.]

lgr 0.819 0.05 0.864 [0.69097375
1.] 0.875 0.967 [0.89005795

1.] 0.786 0.895 [0.79316199
0.99669309]

svm 0.722 0.088 0.769 [0.59542127
0.94291207] 0.6 0.833 [0.63196618

1.] 0.667 0.859 [0.73004966
0.98734165]

dt 0.5 0.125 0.73 [0.40364462
1.] 0.8 0.617 [0.15542111

1.] 0.853 0.857 [0.72781114
0.98595698]

gpc 0.686 0.089 0.836 [0.70011143
0.97211079] 0.7 0.9 [0.74118659

1.] 0.685 0.884
[0.76955265
0.9985633

]

sgd 0.819 0.06 0.858 [0.70163664
1.] 0.875 0.967 [0.89005795

1.] 0.786 0.902 [0.80403173
1.]

perc 0.776 0.1 0.894 [0.73675941
1.] 0.717 0.883 [0.70838888

1.] 0.79 0.783
[0.60065059
0.9645668

]

pasagr 0.736 0.115 0.881 [0.72343443
1.] 0.775 0.883 [0.70825031

1.] 0.788 0.862 [0.74025575
0.98438193]

nnet 0.661 0.128 0.809 [0.59762327
1.] 0.675 0.867 [0.68965505

1.] 0.81 0.902 [0.80195173
1.]

kneigh 0.668 0.094 0.735 [0.5274969
0.9425031] 0.6 0.6 [0.26131101

0.93868899] 0.768 0.88 [0.76858261
0.99228696]
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