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Particle algorithms for maximum likelihood training of latent variable models

Juan Kuntz Jen Ning Lim Adam M. Johansen
Department of Statistics, University of Warwick.

Abstract

Neal and Hinton (1998) recast maximum like-
lihood estimation of any given latent variable
model as the minimization of a free energy func-
tional F , and the EM algorithm as coordinate de-
scent applied to F . Here, we explore alternative
ways to optimize the functional. In particular, we
identify various gradient flows associated with F
and show that their limits coincide with F ’s sta-
tionary points. By discretizing the flows, we ob-
tain practical particle-based algorithms for maxi-
mum likelihood estimation in broad classes of la-
tent variable models. The novel algorithms scale
to high-dimensional settings and perform well in
numerical experiments.

1 INTRODUCTION

In machine learning and statistics, we often use a prob-
abilistic model, pθ(x, y), defined in terms of a vector of
parameters, θ, to infer some quantities, x, that we can-
not observe experimentally from some, y, that we can. A
pragmatic middle ground between Bayesian and frequentist
approaches to this type of problem is the empirical Bayes
(EB) paradigm (Robbins, 1956) wherein we

(S1) learn the parameters from the data: we search for pa-
rameters θ∗ that explain the data y well;

(S2) use θ∗ to infer, and quantify the uncertainty in, x.

Because this approach does not require eliciting a prior
over the parameters, it is particularly appealing for models
whose parameters lack physical interpretations or meaning-
ful prior information; e.g. the generator network in Sec. 3.3.
Steps (S1,2) are typically reformulated technically as

(S1) find a θ∗ maximizing the marginal likelihood,

pθ(y) :=

∫
pθ(x, y)dx;
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(S2) obtain the corresponding posterior distribution,

pθ∗(x|y) :=
pθ∗(x, y)

pθ∗(y)
.

Perhaps the most well-known method for tackling (S1,2)
is the expectation maximization (EM) algorithm (Dempster
et al., 1977): starting from an initial guess θ0, alternate,

(E) compute qk := pθk(·|y),
(M) solve for θk+1 := argmaxθ∈Θ

∫
ℓ(θ, x)qk+1(x)dx,

where ℓ(θ, x) := log(pθ(x, y)) denotes the log-likelihood.
Under general conditions (McLachlan, 2007, Chap. 3), θk
converges to a stationary point θ∗ of the marginal likeli-
hood and qk to the corresponding posterior pθ∗(·|y). In
cases where the above steps are not analytically tractable,
it is common to approximate (E) using Monte Carlo (or
Markov chain Monte Carlo if pθ(·|y) cannot be sampled
directly) and (M) using numerical optimization (e.g. with
a single gradient or Newton step in Euclidean spaces);
cf. Wei and Tanner (1990); Kuk and Cheng (1997); Delyon
et al. (1999); Younes (1999); Kuhn and Lavielle (2004);
Han et al. (2017); Qiu and Wang (2020); Cai (2010); Ni-
jkamp et al. (2020); De Bortoli et al. (2021).

Here, we take a different approach that builds on an in-
sightful observation made by Neal and Hinton (1998) (see
Csiszár and Tusnády (1984) for a precedent): EM can be
recast as a well-known optimization routine applied to a
certain objective. The objective is the ‘free energy’:

F (θ, q) : =

∫
log(q(x))q(x)dx−

∫
ℓ(θ, x)q(x)dx (1)

for all (θ, q) in Θ×P(X ), where Θ denotes the parameter
space and P(X ) the space of probability distributions over
the latent space X . The optimization routine is coordinate
descent: starting from an initial guess θ0, alternate,

(E) solve for qk := argminq∈P(X ) F (θk, q),
(M) solve for θk+1 := argminθ∈Θ F (θ, qk).

The key here is the following result associating the maxima
of pθ(y) with the minima of F :
Theorem 1. For any θ in Θ, the posterior pθ(·|y) :=
pθ(·, y)/pθ(y) minimizes q 7→ F (θ, q). Moreover, pθ(y)
has a global maximum at θ if and only if F has a global
minimum at (θ, pθ(·|y)).
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The theorem follows easily from the same type of ar-
guments as those used to prove Neal and Hinton (1998,
Lem. 1, Thrm. 2). Similar statements can also be made for
local optima, but we refrain from doing so here because it
involves specifying what we mean by ‘local’ in Θ×P(X ).
The point is that finding a maximum of pθ(y) and comput-
ing the corresponding posterior is equivalent to finding a
minimum of F , and this is precisely what EM does. It has
the same drawback as coordinate descent: we must be able
to carry out the coordinate descent steps (or, equivalently,
the EM steps) exactly. Consequently, at least in its original
presentation, EM is limited to relatively simple models.

For more complex models, it is natural to ask: ‘Could we
instead solve (S1,2) by applying a different optimization
routine to F ? What about perhaps the most basic of them
all, gradient descent?’. To affirmatively answer both ques-
tions, we need (a) a sensible notion of a ‘gradient’ for func-
tionals on Θ×P(X ) and (b) practical methods implement-
ing the gradients steps, at least approximately. At the time
of Neal and Hinton (1998)’s publication, these obstacles
had already begun to crumble: Otto and coworkers had in-
troduced (Jordan et al., 1998; Otto, 2001) a notion of gra-
dients for functionals on P(X ) (w.r.t. to the Wasserstein-2
geometry1) and an associated calculus; and Ermak (1975);
Parisi (1981) had proposed the unadjusted Langevin algo-
rithm (ULA, name coined in Roberts and Tweedie (1996))
that turned out to be a practical Monte Carlo approxima-
tion of the corresponding gradient descent algorithm ap-
plied to a particular functional (although this connection
has only been fleshed out much more recently in papers
such as Cheng and Bartlett (2018)). In the ensuing two
decades, these two lines of work have progressed greatly:
Otto et al.’s ideas have been consolidated and imbued with
rigour (Villani, 2009; Ambrosio et al., 2005), analogues
have been established for other geometries on P(X ) (Dun-
can et al., 2019; Garbuno-Inigo et al., 2020; Lu et al., 2019),
and more practical methods have been published (Liu and
Wang, 2016; Garbuno-Inigo et al., 2020; Lu et al., 2019;
Reich and Weissmann, 2021; Chen et al., 2018).

Here, we capitalize on these developments and obtain scal-
able, easy-to-implement algorithms that tackle (S1,2) for
broad classes of models (any for which Θ and X are eu-
clidean and the density pθ(x, y) is differentiable in θ and
x). We consider three methods: an approximation to gradi-
ent descent (Sec. 2), one to Newton’s method (App. C),
and a further ‘marginal gradient’ method (App. D) ap-
plicable to models for which the (M) step is tractable
but the (E) step is not — a surprisingly common situ-
ation in practice. We then study their performance in
three examples (Sec. 3). We conclude with a discussion

1Defining a gradient or ‘direction of maximum ascent’ for a
functional on P(X ) requires quantifying the relative distances of
neighbouring points in P(X ) and, consequently, a metric. Otto et
al.’s original work used the Wasserstein-2 metric on P(X ), hence
the ‘Wasserstein-2 geometry’ jargon; cf. App. A for more details.

of our methods, their limitations, and future research di-
rections (Sec. 4). Code for our examples can be found
at https://github.com/juankuntz/ParEM.

Related literature and contributions. Procedures rem-
iniscent of those in Sec. 2 and Apps. C, D are common-
place in variational inference, e.g. see Kingma and Welling
(2019, Sec. 2). Here, practitioners choose a tractable para-
metric family Q := (qϕ)ϕ∈Φ ⊆ P(X ), parametrized by ϕs
in some set Φ, and solve

(θ∗, ϕ∗) = argmin
(θ,ϕ)∈Θ×Φ

F (θ, qϕ) (2)

using an appropriate optimization algorithm. If Q is suf-
ficiently rich, then (θ∗, qϕ∗) will be close to an optimum
of (θ, q) 7→ F (θ, q) if (θ∗, ϕ∗) is an optimum of (θ, ϕ) 7→
F (θ, qϕ). How rich Q needs to be is a complicated question
and, in practice, Q’s choice is usually dictated by computa-
tional considerations. Because the optimization of interest
is that of (θ, qϕ) over Θ×Q rather than that of (θ, ϕ) over
Θ × Φ, it often proves beneficial to adapt the optimization
routine appropriately. For instance, one could use natural
gradients (Martens, 2020) defined not w.r.t. the Euclidean
geometry on Φ but instead w.r.t. a geometry that accounts
for the effect that changes in ϕ have in qϕ, with changes
in qϕ measured by the KL divergence. In this paper, we
circumvent these issues by working directly in P(X ). We
are also guided by similar considerations when choosing θ
updates (see Apps. C, D in particular): the object of inter-
est here is the distribution pθ(·, y) indexed by θ rather than
θ itself (but, pθ(·, y) is unnormalized, and it is no longer
obvious that natural gradients are sensible).

Well-known algorithms are corner cases of ours. If the pa-
rameter space is trivial (Θ = {θ}) and we use a single
particle (N = 1 in what follows), the methods in Sec. 2
and Apps. C, D reduce to ULA applied to the unnormal-
ized density pθ(·, y). If, on the other hand, the latent space
is trivial, the algorithm in Sec. 2 collapses to gradient de-
scent applied to θ 7→ pθ(y) and that in App. C to New-
ton’s method. Lastly, although we find the EB setting a
natural one for introducing our methods, the EM algorithm
can also be used to tackle many other problems, e.g. see
McLachlan (2007, Chap. 8), and, subject to the limitations
discussed in Sec. 4, so can ours.

The contributions of this paper are as follows:

(1) We identify various gradient flows associated with
F (Sec. 2, Apps. C, D), review the pertinent theory
(App. A), and provide theoretical evidence for their
convergence to F ’s optima (Thrm. 3, App. B.2).

(2) Building on the insights afforded by (1), we de-
rive three novel particle-based alternatives to EM
(Sec. 2, Apps. C, D), study them theoretically
(Sec. 2, Apps. G, F), consider modifications that en-
hance their practical utility (Secs. 2, 3.3), and demon-

https://github.com/juankuntz/ParEM
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strate the latter via several examples (Sec. 3).
(3) We pave the way to other novel methods for max-

imum likelihood estimation in latent variable mod-
els (Sec. 4), be they, for example, optimization-
inspired ones like those in Sec. 2 and Apps. C, D or
pure Monte Carlo approaches like those in App. H.

Our setting, notation, assumptions, rigour, and lack
thereof. In this methodological paper, we favour intu-
ition and clarity of presentation over mathematical rigour.
We believe that all of the statements we make can be
argued rigorously under the appropriate technical condi-
tions, but we do not dwell on what these are. Except
where strictly necessary, we avoid measure-theoretic no-
tation, and we commit the usual notational abuse of con-
flating measures and kernels with their densities w.r.t. to
the Lebesgue measure (this can be remedied by interpreting
equations weakly and replacing density ratios with Radon-
Nikodym derivatives). We also focus on Euclidean pa-
rameter and latent spaces (Θ = RDθ and X = RDx for
Dθ, Dx > 0), although our results and methods apply al-
most unchanged were these to be differentiable Rieman-
nian manifolds. Throughout, 1d and Id respectively de-
note the d-dimensional vector of ones and identity ma-
trix, N (µ,Σ) the normal distribution with mean vector µ
and covariance matrix Σ, and N (x;µ,Σ) its density eval-
uated at x. We also tacitly assume that pθ(x, y) > 0 for
all θ, x, and y; and that (θ, x) 7→ pθ(x, y) is sufficiently
regular that any gradients or Hessians we use are well-
defined and any integral-derivative swaps and applications
of integration-by-parts we do are justified. Furthermore,
we make the following assumption, the violation of which
indicates a poorly parametrized model or insufficiently in-
formative data.
Assumption 1. The marginal likelihood’s super-level sets
{θ ∈ Θ : pθ(y) ≥ l}, for any l > 0, are bounded.

2 PARTICLE GRADIENT DESCENT

The basic gradient descent algorithm for minimizing a dif-
ferentiable function f : Rn → R,

xk+1 = xk − h∇xf(xk), (3)

is the Euler discretization with step size h > 0 of f ’s
continuous-time gradient flow ẋt = −∇xf(xt), where ∇x

denotes the usual Euclidean gradient w.r.t. to x. To ob-
tain an analogue of (3) applicable to F in (1), we identify
an analogue of f ’s gradient flow and discretize it. Here,
we require a sensible notion for F ’s gradient. We use
∇F (θ, q) = (∇θF (θ, q),∇qF (θ, q)), where

∇θF (θ, q) = −
∫

∇θℓ(θ, x)q(x)dx, (4)

∇qF (θ, q) = ∇x ·
[
q∇x log

(
pθ(·, y)
q

)]
. (5)

This is the gradient obtained if we endow Θ with the Eu-
clidean geometry and P(X ) with the Wasserstein-2 one
(see App. B.1). It vanishes if and only if θ is a stationary
point of pθ(y) and q is its corresponding posterior:

Theorem 2 (1st order optimality condition). ∇F (θ, q) =
0 if and only if ∇θpθ(y) = 0 and q = pθ(·|y).

Proof. Examining (4,5) we see that ∇qF (θ, q) = 0 if and
only if q ∝ pθ(·, y). Given that q is a probability dis-
tribution, it follows that ∇qF (θ, q) = 0 if and only if
q = pθ(·|y). The result then follows from

∇θpθ(y) =

∫
∇θpθ(x, y)dx =

∫
∇θℓ(θ, x)pθ(x, y)dx

= pθ(y)

∫
∇θℓ(θ, x)pθ(x|y)dx (6)

= −pθ(y)∇θF (θ, pθ(·|y)).

The gradient flow corresponding to (4,5) reads

θ̇t =

∫
∇θℓ(θt, x)qt(x)dx, (7)

q̇t = ∇x ·
[
qt∇x log

(
qt

pθt(·, y)

)]
. (8)

Given Assumpt. 1 and Thrm. 2, we expect that an extension
of LaSalle’s principle (Carrillo et al., 2020, Thrm. 1) will
show that, as t tends to infinity, θt approaches a stationary
point θ∗ of θ 7→ pθ(y) and qt the corresponding posterior
pθ∗(·|y); see App. B.2 for more on this. Here, we settle for
exponential convergence in the strongly log-concave case:

Theorem 3. Suppose there exists λ > 0 and C > 0 s.t.

∇2ℓ(θ, x) ⪯ −λIDx+Dθ
, ||∇θℓ(θ, x)|| ≤ C

for all (θ, x) in Θ×X . The marginal likelihood θ 7→ pθ(y)
has a unique maximizer θ∗ and there exists C ′ > 0 s.t.

||θt − θ∗|| ≤ C ′e−λt and ||qt − pθ∗(·|y)||L1 ≤ C ′e−λt

for all t ≥ 0.

See App. B.3 for a proof. Eqs. (7,8) can rarely be solved an-
alytically. To overcome this, note that (7,8) is a mean-field
Fokker-Planck equation satisfied by the law of a McKean-
Vlasov SDE (Chaintron and Diez, 2022, Sec. 2.2.2):

dθt =

[∫
∇θℓ(θt, x)qt(x)dx

]
dt, (9)

dXt = ∇xℓ(θt, Xt)dt+
√
2dWt, (10)

where qt denotes Xt’s law and (Wt)t≥0 a Dx-dimensional
Brownian motion. To obtain an implementable algorithm,
we now require a tractable approximation to the integral
in (9) and a discretization of the time axis. For the former,
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Figure 1: Toy hierarchical model. Parameter estimates for Ex. 1 with Dx = 100 latent variables, N = 10 particles, and
both particles and estimates initialized at zero. a PGD estimates θk for three step sizes h. b PGD, PQN, PMGD, and EM
parameter estimates. EM converges without averaging over time. For PGD, PQN, and PMGD, we use optimal step sizes
(respectively, h = 1/51, 2/3, 1, cf. App. F.1) and start averaging once the estimates reach stationarity (i.e. plot shows θk
for k < kb and θ̄k for k ≥ kb with kb = 150, 15, 5 for PGD, PQN, PMGD, respectively). c First 30 steps in b.

we use a finite-sample approximation to qt: we generate
N ≥ 1 particles X1

t , . . . , X
N
t with law qt by solving

dXn
t = ∇xℓ(θt, X

n
t )dt+

√
2dWn

t ∀n ∈ [N ], (11)

with [N ] := {1, . . . , N} and (W 1
t )t≥0, . . . , (W

N
t )t≥0 de-

noting N independent Brownian motions, and exploit

qt ≈
1

N

N∑
n=1

δXn
t

(12)

⇒
∫

∇θℓ(θt, x)qt(x)dx ≈ 1

N

N∑
n=1

∇θℓ(θt, X
n
t ),

where δx denotes a Dirac delta at x. We then obtain the
following approximation to (9,11):

dθt =

[
1

N

N∑
n=1

∇θℓ(θt, X
n
t )

]
dt,

dXn
t = ∇xℓ(θt, X

n
t )dt+

√
2dWn

t ∀n ∈ [N ].

To obtain an implementable algorithm (PGD in Alg. 1), we
discretize the above using the Euler-Maruyama scheme.

After running PGD for a large enough number of steps
K, we approximate a stationary point θ∗ of the marginal
likelihood θ 7→ pθ(y) and its corresponding poste-
rior pθ∗(·|y) with either (a) the final parameter estimates
θK and the final particle cloud’s empirical distribution
qK = N−1

∑N
n=1 δXn

K
; or (b) with time-averaged versions

thereof:

θ̄K :=
1

(K − kb)

K∑
k=kb+1

θk, q̄K :=
1

(K − kb)

K∑
k=kb+1

qk,

(13)
where kb denotes the number of steps discarded as burn-in.

PGD’s behavior. Given the analogy between (3) and
(14,15), we can formulate conjectures for PGD’s behaviour

Algorithm 1 Particle gradient descent (PGD).
1: Inputs: step size h, step number K, particle number
N , and initial particles X1

0 , . . . , X
N
0 & parameters θ0.

2: for k = 0, . . . ,K − 1 do
3: Update the parameter estimates:

θk+1 = θk +
h

N

N∑
n=1

∇θℓ(θk, X
n
k ). (14)

4: Update the particles: for all n = 1, . . . , N ,

Xn
k+1 = Xn

k + h∇xℓ(θk, X
n
k ) +

√
2hWn

k , (15)

with W 1
k , . . . ,W

N
k denoting i.i.d. N (0, IDx

) R.V.s.
5: end for
6: return (θk, qk := N−1

∑N
n=1 δXn

k
)Kk=0.

based on that of (stochastic) gradient descent (note that (14)
involves noisy estimates of F ’s θ-gradient) and Thrm. 2:

(C1) If the step size h is set too large, θk will be unstable.
(C2) Otherwise, after a transient phase, θk will hover

around a stationary point θ∗ of θ 7→ pθ(y), qk around
the corresponding posterior pθ∗(·|y), and (θ̄k, q̄k) will
converge to (θ∗, pθ∗(·|y)).

(C3) Small step sizes lead to long transient phases but low
estimator variance in the stationary phase.

Modulo the bias we discuss at the end of this section, (C1–
3) are what we observe in our experiments:
Example 1. Consider a toy hierarchical model involving
a single scalar unknown parameter θ, Dx i.i.d. mean-θ
unit-variance Gaussian latent variables, and, for each of
these, an independent observed variable with unit-variance
Gaussian law centred at the latent variable:

pθ(x, y) :=

Dx∏
d=1

1

2π
exp

(
− (xd − θ)2

2
− (yd − xd)

2

2

)
.

It is straightforward to verify that the marginal likelihood
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Figure 2: Toy hierarchical model, bias. PMGD estimates for the posterior variance in the Dx = 1 case using the time-
averaged posterior approximation q̄K and no burn-in (kb = 0), as a function of step number K. (a) Even with a small step
size h, using a single particle leads to a significant bias (blue). Growing the particle number N reduces the bias (purple,
magenta). The bias becomes negligible for small h and large N (orange). (b) Even with a large N , a large h leads to
significant bias (solid). Decreasing h reduces the bias (crosses, squares, circles). (c) Adding an accept-reject step removes
(B1) regardless of the h employed, and the remaining bias can be removed by choosing a sufficiently large N .

θ 7→ pθ(y) has a unique maximum, θ∗ = D−1
x

∑Dx

d=1 yd,
and obtain expressions for the corresponding posterior (see
App. E.1). Running PGD, we find that θk is unstable if the
step size h is too large (Fig. 1a, grey). If h is chosen well, θk
approaches θ∗ and hovers around it (Fig. 1a, black solid)
in such a way θ̄k converges to it (Fig. 1b, blue). If h is too
small, the convergence is slow (Fig. 1a, black dashed).

Computational complexity and stochastic gradients.
PGD’s complexity is O(KN [eval. cost of (∇θℓ,∇xℓ)]).
We can mitigate the N factor by vectorizing computations
across particles. In big data settings where evaluating ℓ’s
gradients is expensive, we replace them with stochastic es-
timates thereof similarly as in (Robbins and Monro, 1951;
Welling and Teh, 2011); cf. Sec. 3.3 for an example.

Ill-conditioning, a heuristic, adaptive step sizes, PQN,
and PMGD. For many models, each component of ∇θℓ
is a sum ofD ≫ 1 terms and, consequently, takes large val-
ues. On the other hand, each component of ∇xℓ typically
involves far fewer terms (for instance, two in Ex. 1 while
D = Dx). Hence, the parameter updates in (14) are often
much larger steps than the particle updates in (15). This ill-
conditioning forces us to use small step sizes h to keep θk
stable. This results in ‘poor mixing’ for the particles and
overall slow convergence. In our experiments, we found
that a simple heuristic mitigates the issue: in the parameter
update, divide each component of ∇θℓ by the correspond-
ing number of terms (Dx in Ex. 1, see Sec. 3.2 for another
example). This amounts to pre-multiplying ∇θℓ in (14) by
positive definite matrix Λ and does not alter (14)’s fixed
points. That is, we replace (14) with

θk+1 = θk +
h

N

N∑
n=1

Λ∇θℓ(θk, X
n
k ). (16)

For models with varying time-scales within the θ-

components, we found it helpful to adapt Λ with k simi-
larly as in Adagrad or RMSProp (e.g., cf. Ruder (2016));
see Sec. 3.3 for an example. In cases where inverting ℓ’s
θ-Hessian is not prohibitively expensive, we can alterna-
tively mitigate the ill-conditioning using the PQN algo-
rithm in App. C. (Indeed, for some simple models, (16,15)
coincides with PQN; in more complicated ones, it can be
viewed as a crude approximation thereof.) Lastly, in cases
where the E step is tractable, we can circumvent this issue
with the PMGD algorithm in App. D.

The bias. For PGD, PQN, and PMGD, (C2) above is not
quite true: the estimates produced by the algorithms are
biased in the sense that (θ̄k, q̄k) does not converge exactly
to (θ∗, pθ∗(·|y)), but rather to a point in its vicinity. This
bias stems from two sources:

(B1) h > 0. Euler-Maruyama discretizations of the
Langevin diffusion do not preserve stationary distri-
butions: this can be seen by examining the mean-field
limits of (14,15), cf. App. F.

(B2) N < ∞. Our use of finite particle populations: this
is best understood by studying the continuum limits of
(14,15), cf. App. G.

B1 can be mitigated by decreasing the step size and B2 by
increasing the particle number:

Example 2. Consider again Ex. 1. In this simple case,
(B1,2) do not feature in the θ-estimates (Fig. 1) because
the model ‘is linear in θ’, cf. App. G.1. To observe (B1,2),
we must examine the model’s ‘non-linear aspects’; for in-
stance, the posterior variance whose estimates are biased
(Fig. 2).

Of course, increasingN grows the algorithm’s cost, and ex-
cessively lowering h slows its convergence. It also seems
possible to eliminate (B1) altogether by adding population-
wide accept-reject steps as described in App. H, see Fig. 2c.
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However, we do not dwell on this approach because a
practical downside limits its scalability: the acceptance
probability degenerates for large Dx and N , forcing small
choices of h and slow convergence.

3 NUMERICAL EXPERIMENTS

We examine the performance of our methods by apply-
ing them to train a Bayesian logistic regression model for
breast cancer prediction (Sec. 3.1), a Bayesian neural net-
work for MNIST classification (Sec. 3.2), and a generator
network for image reconstruction and synthesis (Sec. 3.3).

3.1 Bayesian logistic regression

We consider the set-up described in De Bortoli et al. (2021,
Sec. 4.1) and employ the same dataset with 683 data-
points, cf. App. E.2 for details. The latent variables are
the 9 regression weights. We assign an isotropic Gaussian
prior N (θ1Dx , 5IDx) to the weights, and we estimate the
marginal likelihood’s unique maximizer θ∗ (cf. Prop. 1 in
App. E.2 for the uniqueness).

We benchmark our algorithms against the Stochastic Opti-
mization via Unadjusted Langevin (SOUL) algorithm2, re-

2In De Bortoli et al. (2021), the authors allow for step sizes and
particle numbers that change with k. To simplify the comparison
and place all methods on equal footing, we fix a single step size h

cently proposed (De Bortoli et al., 2021) to overcome the
limited scalability of traditional MCMC EM variants. Be-
cause it is a coordinate-wise cousin of PGD (Alg. 1), it al-
lows for straightforward meaningful comparisons with our
methods. SOUL approximates the (M) step by updating
the parameter estimates using a single (stochastic) gradient
step as we do in (14). For the (E) step, it instead runs a sin-
gle ULA chain for N steps, ‘warm-started’ using the pre-
vious chain’s final state (X1

k := XN
k−1): for all n ≤ N − 1,

Xn+1
k = Xn

k + h∇xℓ(θk, X
n
k ) +

√
2hWn

k ; (17)

and then approximates pθk(·|y) using the chain’s empirical
distribution qk := N−1

∑N
n=1 δXn

k
.

The parameter estimates produced by PGD, PQN (App. C),
PMGD (App. D), and SOUL all converge to the same limit
(Fig. 3a). SOUL is known (De Bortoli et al., 2021) to re-
turn accurate estimates of θ∗ for this example, so we pre-
sume that this limit approximately equals θ∗. All algo-
rithms produce posterior approximations with similar pre-
dictive power regardless of the particle number N (Tab. 1;
see also Tab. 4 in App. E.2): the task is simple and it is
straightforward to achieve good performance. In particular,
the posteriors are unimodal and peaked (e.g. see De Bortoli
et al. (2021, Fig. 2)) and approximated well using a single
particle in the vicinity of their modes. The variance of the

and particle number N .

Table 1: Bayesian logistic regression. Test errors achieved using time-averaged posterior approximation q̄400, with N =
1, 10, 100, and corresponding computation times (averaged over 100 replicates).

N = 1 N = 10 N = 100

Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

PGD 3.58 ± 0.78 0.03 ± 0.01 3.55 ± 0.60 0.09 ± 0.01 3.46 ± 0.32 1.22 ± 0.34
PQN 3.54 ± 0.77 0.03 ± 0.00 3.49 ± 0.60 0.09 ± 0.00 3.47 ± 0.33 1.17 ± 0.26
PMGD 3.56 ± 0.69 0.03 ± 0.00 3.65 ± 0.68 0.09 ± 0.01 3.44 ± 0.33 1.15 ± 0.18
SOUL 3.53 ± 0.72 0.03 ± 0.00 3.60 ± 0.60 0.25 ± 0.01 3.43 ± 0.35 13.4 ± 0.23
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stationary PGD, PQN, and PMGD estimates seems to de-
cay linearly with N (Tab. 4); which is unsurprising given
that these algorithms are Monte Carlo methods.

We found three noteworthy differences between SOUL and
our methods. First, the computations in (15,44) are eas-
ily vectorized across particles while those in (17) must
be done in serial. This results in our algorithms running
faster, with the gap in computation times growing with N
(Tab. 1). Second, SOUL tends to produce narrower approx-
imations than our methods (Fig. 3b). This stems from the
strong sequential correlations of the particles X1

k , . . . , X
N
k

in (17). In contrast, the particles in our algorithms are only
weakly correlated through the (mean-field) parameter es-
timates. Last, if θk is initialized far from θ∗ and the par-
ticles are initialized far from pθ∗(·|y)’s mode, then SOUL
exhibits a shorter transient than our algorithms (Fig. 3c).
This is because SOUL updates a single particle N times
per parameter update and quickly locates the current poste-
riors’s mode, while our algorithms are stuck slowly moving
N particles, one update per parameter update, to the pos-
teriors’s mode. However, in this example, we found little
benefit in using multiple particles until the transient phase
is over. Low variance estimates of θ∗ are most efficiently
obtained using a single particle in the transient phase and
switching to PGD or PQN with multiple particles in the sta-
tionary phase (App. E.2); if predictive performance is the
sole concern, then any method with a single particle per-
formed well.

As an additional baseline, we run mean-field Gaussian vari-
ational inference (MFG VI); c.f. App. E.2 for details. MFG
VI’s parameter estimates converge to the same limit as
those of the other algorithms (Fig. 3a,c). The algorithm
achieves similar test errors (3.65%±0.01%) as PGD, PQN,
and PMGD but produces narrower posterior approxima-
tions (Fig. 3b).

3.2 Bayesian neural network

To test our algorithms on an example with more complex
posteriors, we turn to Bayesian neural networks whose
posteriors are notoriously multimodal. In particular, we
consider the setting of Yao et al. (2022, Sec. 6.5) and apply
a simple two-layer neural network to classify MNIST
images, cf. App. E.3 for details. Similarly to Yao et al.
(2022), we avoid big data issues by subsampling 1000
data points with labels 4, 9. The input layer has 40 nodes
and 784 inputs, and the output layer has 2 nodes. The
latent variables are the weights, w ∈ R40×784, of the input
layer and those, v ∈ R2×40, of the output layer. As in
Yao et al. (2022), we assign zero-mean isotropic Gaussian
priors to the weights with respective variances e2α and
e2β . However, rather than assigning hyperpriors to α and
β, we instead learn them from the data (i.e. θ := (α, β)).
To avoid memory issues, we only store the current particle
cloud and use its empirical distribution to approximate the
posteriors (rather than the time-averaged version in (13)).

Table 2: Bayesian neural network. Test errors achieved using the final particle cloud X1
500, . . . , X

N
500, with N =

1, 10, 100, and corresponding computation times (averaged over 10 replicates).

N = 1 N = 10 N = 100

Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

PGD 7.45 ± 2.03 4.10 ± 0.26 3.20 ± 1.12 10.4 ± 1.2 2.45 ± 0.99 76.6 ± 0.4
PQN 7.45 ± 1.60 4.12 ± 0.21 3.45 ± 1.04 10.0 ± 0.2 2.34 ± 0.81 74.0 ± 0.3
PMGD 7.24 ± 1.75 3.27 ± 0.13 3.75 ± 1.38 9.12 ± 0.2 2.45 ± 0.81 72.1 ± 0.5
SOUL 6.25 ± 1.54 5.02 ± 0.20 7.25 ± 1.38 36.5 ± 0.1 6.85 ± 1.42 364.0 ± 5.3
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PGD (Sec. 2), PQN (App. C), PMGD (App. D), and
SOUL (Sec. 3.1) all exhibit a short transient in their
parameter estimates and predictive performances, after
which the estimates appear to converge to different local
maxima of the marginal likelihood (Fig. 4a) and the
performances of PGD, PQN, and PMGD show a slow,
moderate increase (Fig. 4c). SOUL achieves noticeably
worse predictive performance (Fig 4c) and shows little
improvement with larger particle numbers N (Tab. 2).
We believe this is due to the peaked SOUL posterior
approximations (Fig. 4b) caused by the strong correlations
among the SOUL particles. Just as in Sec. 3.1, PGD, PQN,
and PMGD all run significantly faster than SOUL due to
the former three’s vectorization, and the gap also widens
with N (Tab. 2).

3.3 Generator network

To test our methods on a more challenging example, we
turn to generator networks (Goodfellow et al., 2020; Han
et al., 2017; Nijkamp et al., 2020) applied to two image
datasets: MNIST and CelebA (both 32 × 32). These are
generative models used for a variety of tasks, including im-
age reconstruction and synthesis. They assume that each
image y in the dataset is generated by independently sam-
pling a latent variable x from a Gaussian prior, mapping
x to the image space through a convolutional neural net-
work fθ parametrized by θ, and adding Gaussian noise
ϵ: y = fθ(x) + ϵ. We use 10, 000 training images for
MNIST, 40, 000 for CelebA, and a network with 13 layers
and Dθ ≈ 350, 000 parameters similar to those in Nijkamp
et al. (2020). In total, the model involves Dx = 640, 000
latent variables for MNIST and Dx = 2, 560, 000 for
CelebA (64 per training image). We train it as in Han
et al. (2017); Nijkamp et al. (2020) by searching for pa-
rameters θ that maximize the likelihood of the training
set. To do so, we use PGD, slightly tweaked to cope with
the problem’s high dimensionality and exploding/vanishing
gradient issues caused by fθ’s depth. In particular, we re-
place the gradients in (14,15) with subsampled versions
thereof and adapt the step sizes in (14) similarly as in RM-
SProp (Hinton et al., 2012). To benchmark PGD’s perfor-
mance, we also train the model as a variational autoencoder
(VAE; i.e. using variational approximations to the poste-
riors rather than particle-based ones, Kingma and Welling
(2013)), with alternating back propagation (ABP; Han et al.
(2017)), and with short-run MCMC (SR; Nijkamp et al.
(2020)). The latter two are variants of (14, 17) specifically
proposed for training generator networks. They both ap-
proximate the posterior pθk(·|y) using only (17)’s final state
(i.e. with qk := δXN

k
) and, in the case of SR, the chains are

not ‘persistent’ (i.e. rather than initializing X1
k at XN

k−1 it
is sampled from the prior). For ABP and SR, we also sub-
sample gradients and adapt the step size just as with PGD.
See App. E.4 for the full details.

We evaluate the learned generators fθ by applying them to
inpaint occluded test images and synthesize fake images.
In the inpainting task, the generator learned with PGD out-
performed the others for MNIST (Tab. 3, see also Fig. 5
in App. E.4). For CelebA, both SR and PGD did well.
In the synthesis task, all methods did poorly when we fol-
lowed the usual approach of generating images by drawing
latent variables from the prior and mapping them through
fθ (cf. Fig. 6 in App. E.4). For the reasons explained in
App. E.4, we instead opted to draw latent variables from a
Gaussian approximation to the aggregate posterior (Aneja
et al., 2021) which significantly improved the fidelity of the
images generated (Fig. 7 in App. E.4). With this approach,
PGD outperformed the other algorithms, although all four
methods performed comparably for CelebA (Tab. 3). Us-
ing more refined approximations to the aggregate posterior
led to further improvements (Fig. 8 in App. E.4).

Table 3: Generator network. (Inpainting) Mean squared
error averaged for 1000 test images. (Synthesis) Fréchet
Inception distance (Heusel et al., 2017) computed using
200 test images. (All results averaged over 3 replicates).

Inpainting (10−2) Synthesis

MNIST CelebA MNIST CelebA

PGD 4.14.14.1± 0.3 2.02.02.0± 0.0 717171± 2.4 100100100± 2.7
ABP 5.2± 0.1 2.9± 0.1 92± 3.0 106± 1.3
SR 7.4± 0.3 2.02.02.0± 0.0 95± 1.5 102± 2.3
VAE 10± 0.7 3.3± 0.1 148± 9.3 104± 0.4

4 DISCUSSION

In contrast to EM and its many variants, we view max-
imum likelihood estimation of latent variable models as
a joint problem over θ and q rather than an alternating-
coordinate-wise one, and thereby open the door to numer-
ous new algorithms for solving the problem (be they, for in-
stance, optimization-inspired ones, along the lines of those
in Sec. 2 and Apps. C, D, or purely Monte-Carlo ones of the
type in App. H). This perspective, of course, is not entirely
unprecedented: even in p.6 of our starting point (Neal and
Hinton, 1998), the authors mention in passing the possibil-
ity of optimizing F ‘simultaneously’ over θ and q, and this
idea has been taken up enthusiastically in the VI literature,
e.g. Kingma and Welling (2019, Sec. 2). However, outside
of variational inference, we have struggled to locate papers
following up on the idea.

We propose three particle-based algorithms for maxi-
mum likelihood training of latent variable models: PGD
(Sec. 2), PQN (App. C), and PMGD (App. D). Practi-
cally, we find these algorithms appealing because they
are simple to implement and tune, apply to broad classes
of models (i.e. those on Euclidean spaces with differ-
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entiable densities), and, above all, are scalable. For
instance, as discussed in Sec. 2, PGD’s total cost is
O(KN [eval. cost of (∇θℓ,∇xℓ)]) which, for many mod-
els in the literature, is linear in the dimensions of the
data, latent variables, and parameters. For big data sce-
narios where this still proves prohibitive, we advise re-
placing ℓ’s derivatives with unbiased estimates thereof as
we did for the generator network (Sec. 3.3; see also Rob-
bins and Monro (1951); Welling and Teh (2011); Nemeth
and Fearnhead (2021)). Lastly, much like in De Bortoli
et al. (2021), we circumvent the degeneracy with latent
variable dimension that plagues common MCMC meth-
ods (e.g. see Beskos et al. (2013); Vogrinc et al. (2022);
Kuntz et al. (2019a,b) and references therein) by avoiding
accept-reject steps and employing ULA kernels (known to
have favourable properties; cf. Dalalyan (2017); Durmus
and Moulines (2017, 2019)).

Theoretically, we find PGD, PQN, and PMGD attractive
because they re-use the previously computed posterior ap-
proximation at each update step, and ‘warm-starts’ along
these lines are known to be beneficial for methods reliant
on the ULA kernel (Dalalyan, 2017; Durmus and Moulines,
2017, 2019). This stands in contrast with previous Monte
Carlo EM alternatives (cf. Sec. 1) which, at best, initialize
the chain for the parameter current update at the final state
of the preceding update’s chain. This results in our meth-
ods achieving better performance for models with complex
multimodal posteriors (Sec. 3.2). It proved a disadvantage
for models with simple peaked unimodal posteriors where
piecemeal evolving an entire particle cloud leads to long
transients for poor initializations (Sec. 3.1). However, this
issue was easily mitigated by warm-starting our algorithms
using a preliminary single-particle run (App. E.2).

We see several interesting lines of future work including (a)
the theoretical analysis of the algorithms proposed in this
paper, (b) the study of variants thereof, and (c) the inves-
tigation of other particle-based methods obtained by view-
ing the EM problem ‘jointly over θ and q’ rather than in a
coordinate-wise manner. For (a), we believe that Dalalyan
(2017); Durmus and Moulines (2017, 2019); De Bortoli
et al. (2021) might be good jumping-off points. Aside from
the variants discussed in Sec. 2, for (b), we have in mind
adapting step sizes and particle numbers as the algorithms
run: it seems natural to use cruder posterior approxima-
tions and larger step sizes early on in F ’s optimization,
cf. Wei and Tanner (1990); Gu and Kong (1998); Delyon
et al. (1999); Younes (1999); Kuhn and Lavielle (2004);
Cai (2010); De Bortoli et al. (2021); Robbins and Monro
(1951) for similar ideas. In particular, by decreasing the
step size h and increasing the particle number N with the
step number k, it is likely possible to eliminate the asymp-
totic bias (Sec. 2). For (c), this might amount to switching
the geometry on Θ × P(X ) w.r.t. which we define gradi-
ents and following a discretization procedure analogous to

that in Sec. 2. For instance, using a Stein geometry leads
to a generalization of SVGD (Liu and Wang, 2016) which
makes more extensive use of the particle cloud at the price
of a higher computational cost. Alternatively, one could
search for analogues of other well-known optimization al-
gorithms applied to F aside from gradient descent (e.g.
ones for Nesterov acceleration and mirror descent along
the lines of Ma et al. (2019); Cheng et al. (2018); Tagh-
vaei and Mehta (2019); Wang and Li (2022) and Ahn and
Chewi (2021); Jiang (2021); Hsieh et al. (2018); Chewi
et al. (2020); Zhang et al. (2020), resp.) or a Metropolis-
Hastings method of the type in App. H.

Limitations. Our algorithms, like EM and most alterna-
tives thereto (but not all, e.g. Doucet et al. (2002); Johansen
et al. (2008)), only return stationary points of the marginal
likelihood and not necessarily global optima. Moreover,
at least as presented here, our algorithms are limited to
Euclidean parameter and latent spaces and models with
differentiable densities. This said, they apply almost un-
changed were the spaces to be Riemannian manifolds (e.g.
see Boumal (2022)). For discrete spaces, it might be pos-
sible to adapt the techniques in Zhang et al. (2022); Grath-
wohl et al. (2021); Sun et al. (2022). Lastly, some com-
mon non-differentiabilities can be dealt with by incorpo-
rating proximal operators into our algorithms along the
lines of Parikh and Boyd (2014); Pereyra (2016); Durmus
et al. (2019, 2018); Bernton (2018); Fernandez Vidal et al.
(2020); De Bortoli et al. (2020); Salim et al. (2020); Salim
and Richtarik (2020).
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K. S. Zhang, G. Peyré, J. Fadili, and M. Pereyra.
Wasserstein control of mirror Langevin Monte
Carlo. In Proceedings of Thirty Third Conference
on Learning Theory, pages 3814–3841, 2020. URL
https://proceedings.mlr.press/v125/
zhang20a.html.

R. Zhang, X. Liu, and Q. Liu. A Langevin-like
sampler for discrete distributions. In Proceed-
ings of the 39th International Conference on Ma-
chine Learning, pages 26375–26396, 2022. URL
https://proceedings.mlr.press/v162/
zhang22t.html.

https://proceedings.neurips.cc/paper/2020/file/91cff01af640a24e7f9f7a5ab407889f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/91cff01af640a24e7f9f7a5ab407889f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/91cff01af640a24e7f9f7a5ab407889f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/91cff01af640a24e7f9f7a5ab407889f-Paper.pdf
https://doi.org/10.48550/ARXIV.2206.14897
https://doi.org/10.48550/ARXIV.2206.14897
https://proceedings.mlr.press/v97/taghvaei19a.html
https://proceedings.mlr.press/v97/taghvaei19a.html
https://proceedings.mlr.press/v84/tomczak18a.html
https://proceedings.mlr.press/v84/tomczak18a.html
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.48550/ARXIV.2201.01123
https://doi.org/10.48550/ARXIV.2201.01123
https://doi.org/10.1007/s10915-021-01709-3
https://doi.org/10.1007/s10915-021-01709-3
https://doi.org/10.1080/01621459.1990.10474930
https://doi.org/10.1080/01621459.1990.10474930
https://icml.cc/Conferences/2011/papers/398_icmlpaper.pdf
https://icml.cc/Conferences/2011/papers/398_icmlpaper.pdf
https://doi.org/10.1073/pnas.87.23.9193
https://doi.org/10.1073/pnas.87.23.9193
http://jmlr.org/papers/v23/20-1426.html
http://jmlr.org/papers/v23/20-1426.html
https://doi.org/10.1080/17442509908834179
https://doi.org/10.1080/17442509908834179
https://doi.org/10.48550/ARXIV.2112.00945
https://doi.org/10.48550/ARXIV.2112.00945
https://proceedings.mlr.press/v125/zhang20a.html
https://proceedings.mlr.press/v125/zhang20a.html
https://proceedings.mlr.press/v162/zhang22t.html
https://proceedings.mlr.press/v162/zhang22t.html


Juan Kuntz, Jen Ning Lim, Adam M. Johansen

Particle algorithms for maximum likelihood training of latent variable models:
Supplementary Materials

A AN INFORMAL CRASH COURSE IN CALCULUS ON Θ× P(X ) 15

B PROOF OF THEOREM 3 AND FURTHER THEORETICAL DETAILS FOR SEC. 2 19

C PARTICLE QUASI-NEWTON (PQN) 23

D PARTICLE MARGINAL GRADIENT DESCENT (PMGD) 26

E EXPERIMENTAL DETAILS AND FURTHER NUMERICAL RESULTS 28

F THE MEAN-FIELD LIMITS AND THE TIME-DISCRETIZATION BIAS 39

G THE CONTINUUM LIMITS AND THE FINITE-POPULATION-SIZE BIAS 42

H METROPOLIS-HASTINGS METHODS 44

A AN INFORMAL CRASH COURSE IN CALCULUS ON Θ× P(X )

This appendix assumes that the reader is familiar with rudimentary Riemannian geometry not exceeding the level of Boumal
(2022, Chap. 3).

Otto et al.’s observation (Jordan et al., 1998; Otto, 2001) was that, even though P(X ) is not technically a Riemannian
manifold, we can often treat it as one and apply the rules we have for calculus on Riemannian manifolds almost unchanged.
While rigorously establishing these facts is an involved matter (Ambrosio et al., 2005; Villani, 2009), the basic ideas are
very accessible. Here we review these ideas, but in the slightly generalized setting of M := Θ × P(X ). To treat M as a
Riemannian manifold we require three things:

• for each (θ, q) in M, a tangent space T(θ,q)M: a linear space containing the directions we can move in from (θ, q);

• for each (θ, q) in M, a cotangent space T ∗
(θ,q)M dual to T(θ,q)M with a duality pairing

⟨·, ·⟩(θ,q) : T(θ,q)M×T ∗
(θ,q)M → R;

• and a Riemannian metric g = (g(θ,q))(θ,q)∈M, with g(θ,q) denoting an inner product on T(θ,q)M for each (θ, q) in M.

Once we have chosen the above, defining a sensible notion for the gradient of a functional on M will be a simple matter.

An abuse of notation. The tangent spaces (T(θ,q)M)(θ,q)∈M that we use will be copies of a single space T M (and, in
particular, independent of (θ, q)). Hence, we drop the (θ, q) subscripts to simplify the notation. Similarly for the cotangent
spaces and duality pairings.
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A.1 Tangent and cotangent spaces

M is defined as the product of Θ and P(X ), so we find sensible tangent spaces, T Θ and T P(X ), for these two and set
that for M to be their product:

T M = T Θ× T P(X ).

The cotangent spaces then obey an analogous relationship,

T ∗M = T ∗Θ× T ∗P(X ),

and we can express the duality pairing for (T M, T ∗M) in terms of those for (T Θ, T ∗Θ) and (T P(X ), T ∗P(X )):

⟨(τ,m), (v, f)⟩ = ⟨τ, v⟩+ ⟨m, f⟩ ∀(τ,m) ∈ T M, (v, f) ∈ T ∗M.

Tangent and cotangent spaces for Θ. Throughout the paper we focus on Euclidean parameter spaces (Θ = RDθ ), in
which case the tangent spaces are just copies of the parameter space: T Θ = RDθ . The cotangent spaces are also copies of
RDθ and the duality pairing is the Euclidean inner product:

⟨τ, v⟩ :=
Dθ∑
i=1

τivi ∀τ ∈ T Θ, v ∈ T ∗Θ.

The above said, modulo the re-insertion of θ subscripts, the ensuing discussion would apply unchanged were Θ to be any
sufficiently-differentiable finite-dimensional Riemannian manifold.

Tangent and cotangent spaces for P(X ). To keep the exposition simple, we restrict P(X ) to the set of probabil-
ity measures with strictly positive densities w.r.t. to the Lebesgue measure dx and identify a measure with its density.
(Circumventing this restriction and giving a fully rigorous treatment of our results requires employing the techniques of
Ambrosio et al. (2005).) With this restriction, the tangent spaces are simple and do not depend on q:

T P(X ) :=

{
functions m : X → R satisfying

∫
m(x)dx = 0

}
.

The cotangent spaces can be identified with the space of equivalence classes of functions that differ by an additive constant,

T ∗P(X ) := {f : Rn → R}/R;

and the duality pairing is given by

⟨m, f⟩ :=
∫
f(x)m(x)dx ∀m ∈ T P(X ), f ∈ T ∗P(X ).

Note that, in the above and throughout, we commit the usual notational abuse using f to denote both a function and the
equivalence class to which it belongs. We also tacitly assume that the measurability and integrability conditions required
for our integrals to make sense are satisfied.

A.2 Riemannian metrics

We define each metric g = (g(θ,q))(θ,q)∈M in terms of a tensor G = (G(θ,q))(θ,q)∈M and the duality pairing:

g(θ,q)((τ,m), (τ ′,m′)) :=
〈
(τ,m), G(θ,q)(τ

′,m′)
〉

∀(θ, q) ∈ M.

By a tensor G we mean a collection indexed by (θ, q) in M of invertible, self-adjoint, positive-definite, linear maps from
T M to T ∗M. Most of the tensors G(θ,q) we will consider are ‘block-diagonal’:〈

(τ,m), G(θ,q)(τ
′,m′)

〉
=
〈
τ,G(θ,q)τ

′〉+ 〈m,G(θ,q)m
′〉 =: g(θ,q)(τ, τ

′) + g(θ,q)(m,m
′),

where G(θ,q) and G(θ,q) respectively denote tensors on Θ and P(X ). In this case, we write diag(G(θ,q),G(θ,q)) for G(θ,q)

If any of the above do not depend on θ, we omit it from the subscript, and similarly for q.

Although there are many options that one could consider for the G(θ,q) block (e.g. see Duncan et al. (2019); Garbuno-Inigo
et al. (2020); Lu et al. (2019)), we focus on two, the first for practical reasons and the second for theoretical ones:
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Wasserstein-2. The tensor GWq is defined by its inverse

(GWq )−1f := −∇x · (q∇xf). (18)

Using integration-by-parts, we find that

gWq (m,m′) =

∫
⟨∇xf(x),∇xf

′(x)⟩ q(x)dx ∀q ∈ P(X ),

where f, f ′ are the unique (up to an additive constant) solutions to m = (GWq )−1f and m′ = (GWq )−1f ′ and ⟨·, ·⟩
denotes the Euclidean inner product on RDx . The tensor’s name stems from the fact that the distance metric induced
by gWq on P(X ) coincides with the Wasserstein-2 distance from optimal transport, e.g. see Ambrosio et al. (2005, p.
168).

Fisher-Rao. The tensor is GFRq m := m/q and has inverse

((GFRq )−1f)(x) = q(x)

[
f(x)−

∫
f(x)q(x)dx

]
. (19)

Hence,

gFRq (m,m′) :=

∫
m(x)

q(x)

m′(x)

q(x)
q(x)dx ∀q ∈ P(X ).

Its name stems from the fact that the usual Fisher-Rao metric on a parameter space Φ ⊆ RDϕ indexing a parametric
family (qϕ)ϕ∈Φ is obtained by pulling gFRq back through ϕ 7→ qϕ:

gpullbackϕ (β, β′) = gFRqϕ (⟨β,∇ϕqϕ⟩ , ⟨β′,∇ϕqϕ⟩) =
∫

⟨β,∇ϕqϕ(x)⟩
qϕ(x)

⟨β′,∇ϕqϕ(x)⟩
qϕ(x)

qϕ(x)dx

=

∫
⟨β,∇ϕ log(qϕ(x))⟩ ⟨β′,∇ϕ log(qϕ(x))⟩ qϕ(x)dx =

〈
β, Iϕβ′〉 ,

where Iϕ denotes the Fisher information matrix, i.e.

Iϕ :=

(∫
∂ log(qϕ)

∂ϕi
(x)

∂ log(qϕ)

∂ϕj
(x)qϕ(x)dx

)Dϕ

ij=1

.

A.3 Gradients

Given a Riemannian metric g on M, the gradient of a functional E on M is defined as the unique vector field ∇gE :
M → T M satisfying

g(θ,q)(∇gE(θ, q), (τ,m)) = lim
t→0

E(θ + tτ, q + tm)− E(θ, q)

t
∀(τ,m) ∈ T M, (θ, q) ∈ M. (20)

The following identity often simplifies gradient calculations:

∇gE(θ, q) = G−1
θ,qδE(θ, q) ∀(θ, q) ∈ M, (21)

where δE : M → T ∗M denotes E’s first variation3: the unique cotangent vector field satisfying

⟨(τ,m), δE(θ, q)⟩ = lim
t→0

E(θ + tτ, q + tm)− E(θ, q)

t
∀(τ,m) ∈ T M, (θ, q) ∈ M. (22)

In turn, δE’s computation can be simplified using δE = (δθE, δqE), where δθ and δq denote the first variations on Θ and
P(X ) (defined analogously to (22) but for the maps θ 7→ E(θ, q) and q 7→ E(θ, q), respectively).

3Here lies the reason why we use the extra machinery of cotangent vectors, duality pairings, etc. Ideally, we would like to define
δE for a functional E on P(X ) to be the gradient w.r.t. the ‘flat L2’ metric on P(X ): gL

2

q (m,m′) :=
∫
m(x)m′(x)dx. (This is

precisely what we do in Euclidean spaces, only w.r.t. the Euclidean metric.) However, doing so would require replacing δE(q) with
δE(q) −

∫
δE(q)dx so that it lies in the tangent space (all tangent vectors must have zero mass). But the integral

∫
δE(q)dx will not

be well-defined in most cases and we hit a wall.
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Lemma 1. In the case of the free energy, F in (1), δF (θ, q) = (δθF (θ, q), δqF (θ, q)) where

δθF (θ, q) = −
∫

∇θℓ(θ, x)q(x)dx, δqF (θ, q) = log

(
q

pθ(·, y)

)
, ∀(θ, q) ∈ M.

Proof. We need to show that, for any given (θ, q) in M,

F (θ + tτ, q) = F (θ, q)− t

〈
τ,

∫
∇θℓ(θ, x)q(x)dx

〉
+ o(t) ∀τ ∈ T Θ, (23)

F (θ, q + tm) = F (θ, q) + t

〈
m, log

(
q

pθ(·, y)

)〉
+ o(t) ∀m ∈ T P(X ). (24)

We begin with (23): ℓ(θ + tτ, x) = ℓ(θ, x) + t ⟨τ,∇θℓ(θ, x)⟩+ o(t) and, so4,

F (θ + tτ, q) =F (θ, q) +

∫
ℓ(θ, x)q(x)dx−

∫
ℓ(θ + tτ, x)q(x)dx

=F (θ, q)−
∫

[t ⟨τ,∇θℓ(θ, x)⟩+ o(t)] q(x)dx

=F (θ, q)− t

〈
τ,

∫
∇θℓ(θ, x)q(x)dx

〉
+ o(t).

For (24) instead note that log(z + t)(z + t) = log(z)z + [log(z) + 1]t+ o(t), whence

F (θ, q + tm) =

∫
log(q(x) + tm(x))(q(x) + tm(x))dx−

∫
ℓ(θ, x)(q(x) + tm(x))dx

=

∫
[log(q(x))q(x) + [log(q(x)) + 1]tm(x) + o(t)] dx

−
∫
ℓ(θ, x)q(x)dx− t

∫
log(pθ(x, y))m(x)dx

=F (θ, q) + t

∫
[log(q(x))− log(pθ(x, y))]m(x)dx+ t

∫
m(x)dx+ o(t);

and (24) follows because
∫
m(x)dx = 0 given that m belongs to T P(X ) (cf. App. A.1).

For metrics g with a block-diagonal tensor diag(G(θ,q),G(θ,q)), we have one final simplification:

∇gE(θ, q) = (G−1
θ,qδθE(θ, q),G−1

θ,qδqE(θ, q)) ∀(θ, q) ∈ M. (25)

The direction of maximum descent. To gain some intuition regarding what we actually do by ‘taking a step in the
direction of −∇gE(θ, q)’, note that, for sufficiently regular functionals E,

E(θ + τ, q +m) ≈ E(θ, q) + ⟨(τ,m), δE(θ, q)⟩ = E(θ, q) + g(θ,q)((τ,m),∇gE(θ, q)) (26)

for any given point given point (θ, q) in M and ‘small’ tangent vectors (τ,m) in T M, with the equality holding exactly
in the limit as “(τ,m)’s size tends to zero”. To quantify “(τ,m)’s size”, we use the norm on T M induced by our metric:

||(τ,m)||g(θ,q) := g(θ,q)((τ,m), (τ,m)).

Armed with the above, we can then ask ‘out of all tangent vectors (τ,m) of size ε, which lead to the greatest decrease in
E at (θ, q)?’. That is, which (τ∗,m∗) solve

min
||(τ,m)||g

(θ,q)
=ε
E(θ + τ, q +m)?

4The o(t) term in ℓ(θ + tτ, x)’s expansion depends on x. Hence, to rigorously derive the ensuing expansion for F (θ, t + τ, q), we
require conditions on ℓ and/or q guaranteeing that

∫
o(t, x)q(x)dx = o(t). We abstain from stating such conditions to not complicate

the exposition.
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Were we to swap E(θ+ τ, q+m) in the above with its approximation in (26), the Cauchy-Schwarz inequality would then
tell us that (τ∗,m∗) equals the (appropriately rescaled) gradient −ε∇gE(θ, q)/ ||∇gE(θ, q)||g(θ,q):

argmin
||(τ,m)||g

(θ,q)
=ε

E(θ + τ, q +m) ≈ argmin
||(τ,m)||g

(θ,q)
=ε

g(θ,q)((τ,m),∇gE(θ, q)) =
ε∇gE(θ, q)

||∇gE(θ, q)||g(θ,q)
.

Assuming that the above equality holds exactly as ε→ 0, we find that ∇gE(θ, q) points in the direction of steepest descent
for E at (θ, q) in the geometry defined by g (that is, using the norm induced by g to measure the length of vectors).

Minimizing quadratic functionals. We are now faced with the question ‘which geometry or metric g should we use to
define gradients?’. While in practice this question often gets usurped by the more pragmatic ‘which geometries lead to
gradient flows that can be efficiently approximated?’, considering which geometries are most attractive, even if only in a
theoretical sense, still proves insightful. A straightforward way to approach this question is noting that (21) implies that
∇gE(θ, q) solves

Gθ,q(τ,m) = δE(θ, q).

It follows that (θ, q)−∇g
(θ,q)E(θ, q) minimizes a quadratic approximation to E around (θ, q):

∇gE(θ, q) = argmin
(τ,m)∈T M

{
E(θ, q) + ⟨(τ,m), δE(θ, q)⟩+ 1

2
⟨Gθ,q(τ,m), (τ,m)⟩

}
. (27)

From this vantage point, it seems natural to pick G so that the objective in (27) closely approximates E around (θ, q). We
revisit this point for the free energy F in App. C.

B PROOF OF THEOREM 3 AND FURTHER THEORETICAL DETAILS FOR SEC. 2

B.1 (4,5) as a gradient

Here, we use the geometry on M = Θ × P(X ) which leads to the gradient flow with the cheapest and most straightfor-
ward approximations that we know of (e.g. compare with the geometries in Liu and Wang (2016); Garbuno-Inigo et al.
(2020), analogously extended from P(X ) to M): the one obtained as the product of the Euclidean geometry on Θ and
the Wasserstein-2 geometry on P(X ). More formally, the geometry induced by the metric with block-diagonal tensor
diag(IDθ

,GWq ) (cf. App. A.2), where IDθ
denotes the identity operator on T Θ (i.e. IDθ

τ = τ for all τ in T Θ) and GWq the
Wasserstein-2 tensor on P(X ) in (18). Combining Lem. 1 and (18,25) we find that F ’s gradient is given by (4,5), and its
corresponding gradient flow by (7,8).

B.2 On the convergence of the gradient flow

As we will show below, if (θt, qt)t≥0 satisfies (7,8), then

It := −dF (θt, qt)
dt

= ||θ̇t||2 +
∫

||∇xRt(x)||2 qt(x)dx ≥ 0, (28)

where Rt(x) := log(pθt(x, y)/qt(x)) and ||·|| denotes the Euclidean norm on RDθ or RDx , as appropriate. In other
words, the free energy is non-increasing along (7,8)’s solutions: F (θt, qt) ≤ F (θ0, q0) for all t ≥ 0. Moreover, because
q 7→ F (θ, q) is minimized at pθ(·|y) (Thrm. 1),

log(pθt(y)) =

∫
log

(
pθt(x, y)

pθt(x|y)

)
pθt(x|y)dx = −F (θt, pθt(·|y)) ≥ −F (θt, qt) ≥ −F (θ0, q0) ∀t ≥ 0;

and it follows from Assumpt. 1 that {θt}t≥0 is relatively compact. Hence, an extension of LaSalle’s principle along the
lines of Carrillo et al. (2020) should imply that, as t tends to infinity, (θt, qt) approaches the set of points that make (28)’s
RHS vanish. But we can re-write the RHS as

g((θ̇t, q̇t), (θ̇t, q̇t)) = g(∇F (θt, qt),∇F (θt, qt)) ≤ 0,

where g denotes the metric described in App. B.1 and ∇ the corresponding gradient (whose components are given by (4,5)).
In other words, (θt, qt) approaches the set of pairs that make F ’s gradient vanish. Thrm. 2 tells us that these pairs (θ∗, q∗)
are precisely those for which θ∗ is a stationary point of the marginal likelihood and q∗ is its corresponding posterior
pθ∗(·|y).
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Proof of (28). Using the chain rule and integration by parts, we find that

d

dt

∫
ℓ(θt, x)qt(x)dx =

∫
dℓ(θt, x)

dt
qt(x)dx+

∫
ℓ(θt, x)q̇t(x)dx

=

∫ 〈
∇θℓ(θt, x), θ̇t

〉
qt(x)dx−

∫
ℓ(θt, x)∇x · [qt(x)∇xRt(x)] dx

= ||θ̇t||2 +
∫

⟨∇xℓ(θt, x),∇xRt(x)⟩ qt(x)dx,

and

d

dt

∫
log(qt(x))qt(x)dx =

∫
[log(qt(x)) + 1]q̇t(x)dx = −

∫
[log(qt(x)) + 1]∇x · [qt(x)∇xRt(x)] dx

=

∫
⟨∇x log(qt(x)),∇xRt(x)⟩ qt(x)dx,

where ⟨·, ·⟩ denotes the Euclidean inner product on RDθ or RDx , as appropriate. Re-arranging, we obtain (28).

B.3 Proof of Theorem 3

For models with sufficiently regular strongly log-concave densities, it is straightforward to give a more complete argument
for (θt, qt)t≥0’s convergence than that in App. B.2. In these cases, the marginal likelihood has a unique maximizer:

Theorem 4. Suppose that (θ, x) 7→ ℓ(θ, x) is twice continuously differentiable. Moreover, that ℓ is strictly concave or, in
other words, that its Hessian negative definite everywhere:

∇2ℓ(θ, x) =

[
∇2
θℓ(θ, x) ∇θ∇xℓ(θ, x)

∇x∇θℓ(θ, x) ∇2
xℓ(θ, x)

]
≺ 0 ∀θ ∈ Θ, x ∈ X . (29)

Then, the marginal likelihood θ 7→ pθ(y) has a unique maximizer and no other stationary point.

Proof. Because ∇θpθ(y) = pθ(y)∇θ log(pθ(y)) and z 7→ log(z) is a strictly increasing function, it suffices to show that
θ 7→ log(pθ(y)) is strictly concave. To this end, note that

∇2
θ log(pθ(y)) = ∇θ

∇θpθ(y)

pθ(y)
=

∇2
θpθ(y)

pθ(y)
− ∇θpθ(y)⊗∇θpθ(y)

pθ(y)2
,

where v ⊗ v′ := (vivj)
Dθ
ij=1 for any vectors v, v′ ∈ RDθ . But,

∇θpθ(y) =

∫
∇θpθ(x, y)dx =

∫
∇θℓ(θ, x)pθ(x, y)dx,

∇2
θpθ(y) =

∫
∇2
θℓ(θ, x)pθ(x, y)dx+

∫
∇θℓ(θ, x)⊗∇θpθ(x, y)dx

=

∫
∇2
θℓ(θ, x)pθ(x, y)dx+

∫
∇θℓ(θ, x)⊗∇θℓ(θ, x)pθ(x, y)dx;

and, so,

∇2
θ log(pθ(y)) =

∫
∇2
θℓ(θ, x)pθ(x|y)dx+Σ(θ),

where
Σ(θ) :=

∫
∇θℓ(θ, x)⊗∇θℓ(θ, x)pθ(x|y)dx−

∫
∇θℓ(θ, x)pθ(x|y)dx⊗

∫
∇θℓ(θ, x)pθ(x|y)dx.

By the Brascamp-Lieb concentration inequality (Brascamp and Lieb, 1976, Thrm. 4.1),

Σ(θ) ⪯
∫

∇θ∇xℓ(θ, x)[−∇2
x log(pθ(x|y))]−1∇x∇θℓ(θ, x)pθ(x|y)dx

= −
∫

∇θ∇xℓ(θ, x)[∇2
xℓ(θ, x)]

−1∇x∇θℓ(θ, x)pθ(x|y)dx.
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In short,

∇2
θ log(pθ(y)) ⪯

∫ [
∇2
θℓ(θ, x)−∇θ∇xℓ(θ, x)[∇2

xℓ(θ, x)]
−1∇x∇θℓ(θ, x)

]
pθ(x|y)dx.

The integrand is the Schur complement of ℓ’s Hessian and, hence, negative definite for all (θ, x). Moreover, because ∇2
xℓ

is negative definite everywhere and ℓ is twice-continuously differentiable, the integrand varies continuously in x; whence
it follows that the integral is negative definite for all θ. In other words, θ 7→ log(pθ(y)) is strictly concave.

We are now ready to tackle Theorem 3’s proof:

Proof of Theorem 3. As we will show below,
dIt
dt

≤ 2λIt; (30)

from which it follows that It ≤ e−2λtI0. Hence,∫ ∞

0

∣∣∣∣∣∣θ̇t∣∣∣∣∣∣ dt ≤ ∫ ∞

0

e−λt
√
I0dt =

√
I0
λ
.

Thus, θ∞ :=
∫∞
0
θ̇tdt is well-defined and θt converges to θ∞ exponentially fast:

||θ∞ − θt|| ≤
∣∣∣∣∣∣∣∣∫ ∞

t

θ̇sds

∣∣∣∣∣∣∣∣ ≤ ∫ ∞

t

∣∣∣∣∣∣θ̇s∣∣∣∣∣∣ ds ≤ √
I0
λ
e−λt.

Next, using the fact that log(pθt(x|y)/qt(x)) = Rt − log(pθt(y)), we find that∫
||∇xRt(x)||2 qt(x)dx =

∫ ∣∣∣∣∣∣∣∣∇x log

(
pθt(x|y)
qt(x)

)∣∣∣∣∣∣∣∣2 qt(x)dx.
Because ∇2

x log(pθt(x|y)) = ∇2
xℓ(θt, x) ⪯ −λIDx

for all t ≥ 0, a logarithmic Sobolev inequality and the Csiszár-
Kullback-Pinsker inequality, Thrm. 1 and (12) in Markowich and Villani (2000) respectively, then imply that

1

2
||qt − pθt(·|y)||

2
L1 ≤ KL(qt||pθt(·|y)) ≤

∫
||∇xRt(x)||2 qt(x)dx ≤ e−2λtI0.

As we will show below, the boundedness assumption on ℓ’s θ-gradient implies that θ 7→ pθ(·|y) is a Lipschitz map from
(Θ, ||·||) to (P(X ), ||·||L1

):

||pθ(·|y)− pθ′(·|y)|| ≤ 2C ||θ − θ′|| . (31)

Applying the triangle inequality we then find that qt converges exponentially fast to pθ∞(·|y):

||qt − pθ∞(·|y)||L1 ≤ ||pθt(·|y)− pθ∞(·|y)||L1 + ||qt − pθt(·|y)||L1 ≤ 2C ||θt − θ∞||+
√

2I0e
−λt

≤ (2C +
√
2)
√
I0e

−λt.

Given Thrm. 4, the only thing we have left to do is argue that the limit θ∞ is a stationary point of the marginal likelihood.
This follows from (6), the bounded convergence theorem, and our assumption that ∇θℓ is bounded:

∇θpθ∞(y)

pθ∞(y)
=

∫
∇θℓ(θ∞, x)pθ∞(x|y)dx = lim

n→∞

∫
∇θℓ(θn, x)pθn(x|y)dx

= lim
n→∞

[
θ̇n +

∫
∇θℓ(θn, x)[pθn(x|y)− qn(x)]dx

]
= 0.
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Proof of (30). Here, we adapt the arguments in Markowich and Villani (2000, Sec. 5) and Arnold et al. (2001, Sec. 2.3).
Let’s start: (d||θ̇t||2/dt) = 2

〈
θ̇t, θ̈t

〉
and, using the notation introduced in (29),

θ̈t =
d

dt
θ̇t =

d

dt

∫
∇θℓ(θt, x)qt(x)dx =

∫ [
d

dt
∇θℓ(θt, x)

]
qt(x)dx+

∫
∇θℓ(θt, x)q̇t(x)dx

=

∫
∇2
θℓ(θt, x)θ̇tqt(x)dx−

∫
∇θℓ(θt, x)∇x · [qt(x)∇xRt(x)] dx

=

∫
∇2
θℓ(θt, x)θ̇tqt(x)dx+

∫
[∇θ∇xℓ(θt, x)]∇xRt(x)qt(x)dx,

where the last equality follows from integration by parts. Hence,

d

dt
||θ̇t||2 =2

∫ [〈
θ̇t,∇2

θℓ(θt, x)θ̇t

〉
+
〈
θ̇t, [∇θ∇xℓ(θt, x)]∇xRt(x)

〉]
qt(x)dx. (32)

Similarly,

d

dt

∫
||Rt(x)||2 qt(x)dx =

∫ [
d

dt
||∇xRt(x)||2

]
qt(x)dx+

∫
||∇xRt(x)||2 q̇t(x)dx.

But, with lt(x) := log(qt(x)),

d

dt
∇xRt(x) =

d

dt
∇xℓ(θt, x)−

d

dt
∇xlt(x) = [∇x∇θℓ(θt, x)]θ̇t −∇x

d

dt
lt(x),

⇒ d

dt
||∇xRt(x)||2 = 2

〈
∇xRt(x),

d

dt
∇xRt(x)

〉
= 2

〈
∇xRt(x), [∇x∇θℓ(θt, x)]θ̇t

〉
− 2

〈
∇xRt(x),∇x

d

dt
lt(x)

〉
,

⇒
∫ [

d

dt
||∇xRt(x)||2

]
qt(x)dx

= 2

∫ [〈
∇xRt(x), [∇x∇θℓ(θt, x)]θ̇t

〉
−
〈
∇xRt(x),∇x

d

dt
lt(x)

〉]
qt(x)dx;

and ∫
||∇xRt(x)||2 q̇t(x)dx =

∫ 〈
∇x ||∇xRt(x)||2,∇xRt(x)

〉
qt(x)dx

= 2

∫ 〈
∇xRt(x),∇2

xRt(x)∇xRt(x)
〉
qt(x)dx

= 2

∫ [〈
∇xRt(x),∇2

xℓ(θt, x)∇xRt(x)
〉
−
〈
∇xRt(x),∇2

xlt(x)∇xRt(x)
〉]
qt(x)dx.

Putting the above together, we find that

dIt
dt

=2

∫ 〈
(θ̇t,∇xRt(x)),∇2ℓ(θt, x)(θ̇t,∇xRt(x))

〉
qt(x)dx

− 2

∫ 〈
∇xRt(x),∇x

d

dt
lt(x) +∇2

xlt(x)∇xRt(x)

〉
qt(x)dx

≤− 2λIt − 2

∫ 〈
∇xRt(x),∇x

d

dt
lt(x) +∇2

xlt(x)∇xRt(x)

〉
qt(x)dx =: −2λIt − 2A.

(The inequality follows from our assumption that (θ, x) 7→ pθ(x, y) is λ-strongly log-concave.) We now need to show that
A is no greater than zero. To this end, note that

d

dt
lt(x) =

q̇t(x)

qt(x)
= −∇x · [qt(x)∇xRt(x)]

qt(x)
= −⟨∇xqt(x),∇xRt(x)⟩

qt(x)
−∆xRt(x)

= −⟨∇xlt(x),∇xRt(x)⟩ −∆xRt(x),
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where ∆x denotes the Laplacian operator; from which it follows that

∇x
d

dt
lt(x) =−∇2

xlt(x)∇xRt(x)−∇2
xRt(x)∇xlt(x)−∇x∆xRt(x).

Bochner’s formula tells us that

−⟨∇xRt(x),∇x∆xRt(x)⟩ = tr([∇2
xRt(x)]

T∇2
xRt(x))−

1

2
∆x ||∇xRt(x)||2 ,

where tr(·) denotes the trace operator. But

−1

2

∫
qt(x)∆x ||∇xRt(x)||2 dx =

1

2

∫ 〈
∇xqt(x),∇x ||∇xRt(x)||2

〉
dx

=

∫ 〈
∇xlt(x),∇2

xRt(x)∇xRt(x)
〉
qt(x)dx.

Hence,

A =

∫
tr([∇2

xRt(x)]
T∇2

xRt(x))qt(x)dx ≥ 0.

Proof of (31). The mean value theorem tells us that, for each θ, θ′, x, there exists a ψ such that

|pθ(x|y)− pθ′(x|y)| = |⟨θ − θ′,∇θpψ(x|y)⟩| ≤ ||θ − θ′|| ||∇θpψ(x|y)|| .

We will now show that ||∇θpψ(x|y)|| ≤ 2Cpψ(x|y), from which the claim will follow:∫
|pθ(x|y)− pθ′(x|y)| dx ≤ ||θ − θ′||

∫
||∇θpψ(x|y)|| dx ≤ 2C ||θ − θ′|| .

To obtain ||∇θpψ(x|y)|| ≤ 2Cpψ(x|y), note that

∇ψpψ(x|y) =
∇θpψ(x, y)

pψ(y)
− ∇θpψ(y)

pψ(y)

pψ(x, y)

pψ(y)

=

[
∇θℓ(ψ, x)−

∫
∇θℓ(ψ, x

′)pψ(x
′|y)dx′

]
pψ(x|y).

But, ∣∣∣∣∣∣∣∣∇θℓ(ψ, x)−
∫

∇θℓ(ψ, x
′)pψ(x

′|y)
∣∣∣∣∣∣∣∣ ≤ ||∇θℓ(ψ, x)||+

∣∣∣∣∣∣∣∣∫ ∇θℓ(ψ, x
′)pψ(x

′|y)dx′
∣∣∣∣∣∣∣∣

≤ C +

∫
||∇θℓ(ψ, x

′)|| pψ(x′|y)dx′ ≤ 2C.

C PARTICLE QUASI-NEWTON (PQN)

A variant of PGD (Alg. 1) that also seems to resolve the ill-conditioning discussed in Sec. 2 and, furthermore, achieves
faster convergence is PQN (Alg. 2). In short, it amounts to replacing the parameter estimates’ update equation (14) with
(33), where ∇2

θℓ(θ, x) denotes the log-likelihood’s θ-Hessian (which we assume is full-rank for all (θ, x) in Θ × X ). In
PQN, we also use θK , qK , or (13) to obtain estimates of the marginal likelihood’s stationary points and their associated
posteriors. (33,15) arises as a discretization of (8) and

θ̇t = −
[∫

∇2
θℓ(θt, x)qt(x)dx

]−1 ∫
∇θℓ(θt, x)qt(x)dx, (34)
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Algorithm 2 Particle Quasi-Newton (PQN).
1: Inputs: step size h, step number K, particle number N , and initial particles X1

0 , . . . , X
N
0 and parameters θ0.

2: for k = 0, . . . ,K − 1 do
3: Update the parameter estimates:

θk+1 = θk − h

[
N∑
n=1

∇2
θℓ(θk, X

n
k )

]−1 N∑
n=1

∇θℓ(θk, X
n
k ). (33)

4: Update the particles: for all n = 1, . . . , N ,

Xn
k+1 = Xn

k + h∇xℓ(θk, X
n
k ) +

√
2hWn

k ,

with W 1
k , . . . ,W

N
k denoting i.i.d. N (0, IDx

) R.V.s.
5: end for
6: return (θk, qk := N−1

∑N
n=1 δXn

k
)Kk=0.

In turn, (34,8) is satisfied by the law of the following McKean-Vlasov SDE:

dθt = −
[∫

∇2
θℓ(θt, x)qt(x)dx

]−1 [∫
∇θℓ(θt, x)qt(x)dx

]
dt, dXt = ∇xℓ(θt, Xt)dt+

√
2dWt, (35)

where qt denotes Xt’s law and (Wt)t≥0 a standard Dx-dimensional Brownian motion. We obtain (33) by following the
same steps as in Sec. 2, only with (35) replacing (9,10) and an extra approximation in (12):

[∫
∇2
θℓ(θt, x)qt(x)dx

]−1

≈

[
1

N

N∑
n=1

∇2
θℓ(θt, X

n
t )

]−1

.

(34,8) form an approximation to F ’s Newton flow (analogous to (7,8) except that we follow the Newton direction rather
than the negative gradient), see Apps. C.1–C.3 below. Our full-rank assumption implies that (34,8)’s fixed points are F ’s
stationary points, and Thrm. 2 applies as before.

At first glance, (33) mitigates the ill-conditioning discussed in Sec. 2 for the same reason that (16) does: ∇2
θℓ’s entries

generally have a similar number of terms to ∇θℓ’s, which prevents excessively large parameter updates. In fact, for the
toy model in Ex. 1, ∇2

θℓ ≡ −Λ−1 = −Dx and (16,33) coincide. A bit less superficially, this might be because the RHS
of the equations in (34,8) approximate F ’s Newton direction (c.f. App. C.3) at (θt, qt) and, hence, better account for the
effect that the updates have on F ’s value. This is also the reason why we believe that (33,15) often converges faster than
(14,15), e.g. see Fig. 1b,c and App. F.1. The price to pay is the extra cost incurred by the Hessian evaluations and the matrix
inversion in (33), which, absent any special structure in ∇2

θℓ (e.g. diagonal or banded), results in PQN’s computational
complexity equalling

O(K[D3
θ +N [eval. cost of (∇θℓ,∇xℓ,∇2

θℓ)]]).

The evaluation costs of (∇θℓ,∇xℓ,∇2
θℓ) is often linear in Dx and Dθ, making PQN an attractive choice for models with

Dx ≫ Dθ like those in Ex. 1 and Sec. 3.2; see also the Bayesian GANs in Saatci and Wilson (2017) and the generalized
Bradley-Terry models in Caron and Doucet (2012) for more examples.

C.1 A differential geometry perspective on Newton’s method for minimizing functions on Euclidean spaces

Throughout this section and Apps. C.2, C.3, we assume that the reader is acquainted with the contents of App. A. To moti-
vate the flow (34,8) we discretized to obtain PQN, recall that Newton’s method for minimizing a (say, twice-differentiable
and strictly convex) function f : Rn → R,

xk+1 = xk − h[∇2
xf(xk)]

−1∇xf(xk) ∀k = 1, 2, . . . ,

is the Euler discretization of the Newton flow:

ẋt = −[∇2
xf(xt)]

−1∇xf(xt) ∀t ≥ 0, (36)
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At each point in time t, the flow follows the Newton direction vN (x) := −[∇2
xf(x)]

−1∇xf(x) at xt (i.e. with x = xt).
The appropriate analogue of (21) shows that vN is precisely f ’s gradient ∇gN

f w.r.t. the Riemmanian metric gN associated
with the tensor (∇2

xf(x))x∈Rn . This is an appealing choice because the geometry induced by gN on Rn makes f isotropic,
at least to second order:

f(x+ tv) = f(x) + t ⟨∇xf(x), v⟩+
t2

2

〈
∇2
xf(x)v, v

〉
+ o(t2) (37)

= f(x) + tgN (∇gN

f(x), v) +
t2

2
gNx (v, v) + o(t2),

by Taylor’s Theorem. In other words, by replacing ∇x with ∇gN

we mitigate bad conditioning in f which, for the
reasons discussed in Boyd and Vandenberghe (2004, Secs. 9.4.4, 9.5.1) and illustrated in Boyd and Vandenberghe (2004,
Figs. 9.14, 9.15), generally makes vN (x) a much better update direction than the Euclidean gradient ∇xf(x). In what
follows, we derive the analogue of the Newton direction for the free energy F . Doing so requires identifying an appropriate
notion for F ’s Hessian, which we achieve using an expansion of the form in (37).

C.2 A second order Taylor expansion for F

By definition,

F (θ + tτ, q + tm) =

∫
log(q(x) + tm(x))(q(x) + tm(x))dx

−
∫
ℓ(θ + tτ, x)(q(x) + tm(x))dx.

But log(z + t)(z + t) = log(z)z + [log(z) + 1]t+ t2/(2z) + o(t2) and, so,∫
log(q(x) + tm(x))(q(x) + tm(x))dx =

∫
log(q(x))q(x)dx+ t

∫
log(q(x))m(x)dx (38)

+
t2

2

∫ (
m(x)

q(x)

)2

q(x)dx+ o(t2).

(Here, we have used that
∫
m(x)dx = 0 because m belongs to T P(X ). Rigorously arguing the above requires considera-

tions similar to those in Footnote 4.) Similarly,∫
ℓ(θ + tτ, x)(q(x) + tm(x)) =

∫
log(pθ(x, y))q(x)dx+ t

∫
⟨∇θℓ(θ, x), τ⟩ q(x)dx

+ t

∫
log(pθ(x, y))m(x)dx+

t2

2

∫ 〈
τ,∇2

θℓ(θ, x)τ
〉
q(x)dx

+ t2
∫

⟨∇θℓ(θ, x), τ⟩m(x)dx+ o(t2).

Putting the above together with (38) and applying Lem. 1, we obtain that

F (θ + tτ, q + tm) = F (θ, q) + t ⟨(τ,m), δF (θ, q)⟩+ t2

2
⟨(τ,m),HF (θ, q)(τ,m)⟩+ o(t2). (39)

where HF (θ, q) denotes the linear map from T M to T ∗M defined by

HF (θ, q)(τ,m) =

(
−
[∫

∇2
θℓ(θ, x)q(x)dx

]
τ −

∫
∇θℓ(θ, x)m(x)dx,

m

q
− ⟨∇θℓ(θ, ·), τ⟩

)
. (40)

A comparison of (37,39) seems to imply that HF (θ, q) might be a sensible analogue for F ’s Hessian. Alternatively, we
may view HF (θ, q) as the ‘matrix’

HF (θ, q) :=

[
−
∫
∇2
θℓ(θ, x)q(x)dx −∇θℓ(θ, ·)

−∇θℓ(θ, ·) q−1

]
. (41)
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C.3 The Newton direction and flow, and tractable approximations thereof

Suppose that F ’s Hessian operator, HF in (40), is invertible everywhere on M. Similarly as with f in App. C.1, we set
F ’s Newton direction at (θ, q) to be

(τN ,mN )(θ, q) := −[HF (θ, q)]
−1δF (θ, q), (42)

where δF denotes F ’s first variation in Lem. 1. Alternatively, assuming further that HF is positive definite everywhere,
we can view (τN ,mN ) as F ’s negative gradient ∇gNF with respect to the metric,

gN(θ,q)((τ,m), (τ,m)) := ⟨(τ,m),HF (θ, q)(τ,m)⟩ ,

which makes F isotropic, at least to second order: by (39),

F (θ + tτ, q + tm) = F (θ, q) + tgN(θ,q)((τ,m),∇gNF (θ, q)) +
t2

2
gN(θ,q)((τ,m), (τ,m)) + o(t2).

Unfortunately, we know of no closed-form expressions for (τN ,mN ) or computationally tractable approximations to the
corresponding flow. However, it is straightforward to find approximations to HF that have both:

Block diagonal approximations HF and quasi-Newton directions. Consider the block-diagonal approximation
to HF obtained by zeroing the off-diagonal blocks in (41):

HF (θ, q) ≈ diag

(
−
∫

∇2
θℓ(θ, x)q(x)dx, q

−1

)
=: diag(G(θ,q),G

FR
q ). (43)

In other words, GFRq is the Fisher-Rao tensor on P(X ) (cf. App. A.2), while G(θ,q) is the tensor obtained by integrating
the negative log-likelihood’s θ-Hessian w.r.t. q. Using (25) and Lem. 1, we find that the resulting ‘quasi-Newton’ direction
(τQN ,mQN ) equals

τQN (θ, q) = −
[∫

∇2
θℓ(θ, x)q(x)dx

]−1 ∫
∇θℓ(θ, x)q(x)dx,

(mQN (θ, q))(x) = q(x)

[
log

(
pθ(x, y)

q(x)

)
−
∫

log

(
pθ(x, y)

q(x)

)
q(x)dx

]
;

and the corresponding gradient flow reads

θ̇t = τQN (θt, qt) q̇t = mQN (θt, qt).

While it is likely possible that the above flow can be approximated computationally using techniques along the lines of those
in Lu et al. (2019); Zhang et al. (2021), this would require estimating the log-density log(q(x)) of particle approximations
q, a complication we opted to avoid in this paper. Instead, we (crudely) further approximate (43) by replacing the Fisher-
Rao block GFRq with a Wasserstein-2 block GWq (cf. App. A.2). The τQN (θ, q)-component of the quasi-Newton remains
unchanged, the mQN (θ, q)-component is now given by ∇x · [q∇x log(q/pθ(·, y))], and we obtain the flow in (34,8).

D PARTICLE MARGINAL GRADIENT DESCENT (PMGD)

For a surprising number of models in the literature, the (M) step is tractable. In particular:

Assumption 2. For each q in P(X ), θ 7→ F (θ, q) has a unique stationary point θ∗(q).

Moreover, we are able to compute this point θ∗(x1:N ) := θ∗(q) whenever q = N−1
∑N
n=1 δxn for x1:N = (x1, . . . , xN )

in XN . In these cases, we can run PMGD (Alg. 3) instead of PGD (Alg. 1).

PMGD’s update equation (44) approximates the Wasserstein-2 gradient flow (cf. App. D.1 below) of the ‘marginal objec-
tive’ F∗(q) := F (θ∗(q), q):

q̇t = −∇F∗(qt), where ∇F∗(q) = ∇x ·
[
q∇x log

(
pθ∗(q)(·, y)

q

)]
. (45)
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Algorithm 3 Particle Marginal Gradient Descent (PMGD).
1: Inputs: step size h, step number K, particle number N , and initial particles X1

0 , . . . , X
N
0 and parameters θ0.

2: for k = 0, . . . ,K − 1 do
3: Update the particles: for all n = 1, . . . , N ,

Xn
k+1 = Xn

k + h∇xℓ(θ∗(X
1:N
k ), Xn

k ) +
√
2hWn

k (44)

with W 1
k , . . . ,W

N
k denoting i.i.d. N (0, IDx

) R.V.s.
4: end for
5: return (θk := θ∗(X

1:N
k ), qk := N−1

∑N
n=1 δXn

k
)Kk=0.

In particular, (45) is satisfied by the law of the following McKean-Vlasov SDE:

dXt = ∇xℓ(θ∗(qt), Xt)dt+
√
2dWt, (46)

where qt denotes Xt’s law and (Wt)t≥0 a standard Brownian motion. We obtain (44) by following the same steps as in
Sec. 2, only with (46) substituting (9,10) and the approximations in (12) replaced by

qt ≈
1

N

N∑
n=1

δXn
t

⇒ θ∗(qt) ≈ θ∗

(
1

N

N∑
n=1

δXn
t

)
.

Thrm. 2 is easily adapted to this setting:

Theorem 5. θ = θ∗(q) and ∇F∗(q) = 0 if and only if ∇θpθ(y) = 0 and q = pθ(·|y).

Proof. Given Thrm. 2, we need only show that ∇F (θ, q) = 0 if and only if θ = θ∗(q) and ∇F∗(q) = 0. However,
Assumpt. 2 implies that ∇θF (θ, q) = 0 if and only if θ = θ∗(q). The result then follows because (45) implies that
∇F∗(q) = 0 if and only if q = pθ∗(q)(·|y).

Exploiting the availability of θ∗(q) seems to improve the convergence. For example, see Fig. 1b,c (in fact, for this simple
model, it is straightforward to find theoretical evidence supporting this, cf. App. F.1). PMGD’s complexity is

O(K[N [eval. cost of ∇xℓ] + [eval. cost of θ∗]]).

Lastly, we point out that in cases where θ∗(x1:N ) is not analytically tractable, butDθ is small (at least in comparison toDx),
we can instead approximately compute θ∗(X1:N

k ) using an appropriate optimization routine (warm-starting θ∗(X1:N
k )’s

computation using θ∗(X1:N
k−1)).

D.1 The marginal objective’s gradient

Here, we use the Wasserstein-2 geometry on P(X ): that induced by the Wasserstein-2 metric gW with tensor (GWq )q∈P(X ),
cf. App. A.2. As we will now show, the marginal objective F∗’s gradient ∇F∗(qt) w.r.t. to this metric is given by (45)’s
RHS.. Given (18), substituting P(X ) for M in (21), we find that

∇F∗(q) = −∇x · [q∇xδF∗(q)],

where δF∗ denotes F∗’s first variation (defined analogously to (22)). Hence, we need only show that δF∗ =
log(q/pθ∗(q)(·, y)) or, equivalently, that

F∗(q + tm) = F∗(q) + t

〈
log

(
q

pθ∗(q)(·, y)

)
,m

〉
+ o(t). (47)

To argue (47), we assume that θ∗ : P(X ) → R defines a differentiable functional: for each q in P(X ) there exists a linear
map Dqθ∗ from T P(X ) to T Θ satisfying

(Dqθ∗)m = lim
t→0

θ∗(q + tm)− θ∗(q)

t
∀m ∈ TqP(X ).
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Because, with ||τ || denoting the Euclidean norm of τ := θ∗(q + tm)− θ∗(q),

ℓ(θ∗(q + tm), x) = ℓ(θ∗(q), x) + t ⟨τ,∇θℓ(θ∗(q), x)⟩+ o(||τ ||),

it follows from θ∗’s differentiability that

ℓ(θ∗(q + tm), x) = ℓ(θ∗(q), x) + t ⟨(Dqθ∗)m,∇θℓ(θ∗(q), x)⟩+ o(t).

For this reason, ∫
ℓ(θ∗(q + tm), x)(q(x) + tm(x))dx

=

∫
[ℓ(θ∗(q), x) + t ⟨(Dqθ∗)m,∇θℓ(θ∗(q), x)⟩+ o(t)] (q(x) + tm(x))dx

=

∫
ℓ(θ∗(q), x)q(x)dx+ t

∫
ℓ(θ∗(q), x)m(x)dx

+ t

〈
(Dqθ∗)m,

∫
∇θℓ(θ∗(q), x)q(x)dx

〉
+ o(t). (48)

(Rigorously arguing the above requires considerations similar to those in Footnote 4.) But, by definition, θ∗(q) minimizes
θ 7→ F (θ, q), and we have that ∫

∇θℓ(θ∗(q), x)q(x)dx = ∇θF (θ∗(q), q) = 0.

Given that F∗(q) = F (θ∗(q), q), combining the above with (38,48) then yields (47).

E EXPERIMENTAL DETAILS AND FURTHER NUMERICAL RESULTS

We implement the methods using Python 3, JAX (Bradbury et al., 2018), and PyTorch (Paszke et al., 2019), and we carry
out all experiments using a Google Colab Pro subscription.

E.1 Toy hierarchical model

Synthetic data. We generate the data y synthetically by sampling pθ(x, y) in Ex. 1 with θ set to 1.

The marginal likelihood’s global maximum and the corresponding posterior. To obtain closed-form expressions for
these, we rewrite the model density, pθ(x, y) in Ex. 1, in matrix-vector notation:

pθ(x, y) = N (y;x, IDx
)N (x; θ1Dx

, IDx
) ∀θ ∈ R, x, y ∈ RDx . (49)

Combining the expressions in Bishop (2006, p. 92) with the Sherman-Morrison formula, we then find that

pθ(y) = N (y; θ1Dx
, 2IDx

), pθ(x|y) = N
(
x;
y + θ1Dx

2
,
1

2
IDx

)
. (50)

Because

∇θ log(pθ(y)) = 1TDx
(y − 1Dxθ) = 1TDx

y −Dxθ,

it follows the data’s empirical mean is the marginal likelihood’s unique maximizer θ∗, and plugging it into (50) we obtain
an expression for the corresponding posterior:

θ∗ =
1TDx

y

Dx
, pθ∗(x|y) = N

(
x;

1

2

[
y +

1TDx
y

Dx

]
,
1

2
IDx

)
. (51)
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Implementation details for PGD, PQN, and PMGD. Taking derivatives of (49)’s log, we find that

∇θℓ(θ, x) = 1TDx
(x− θ1Dx

), ∇2
θℓ ≡ −Dx, ∇xℓ(θ, x) = y − x− (x− θ1Dx

). (52)

Given that

∇θF (θ, q) = −
∫

∇θℓ(θ, x)q(x)dx = −1TDx

[∫
xq(x)dx− θ1Dx

]
, (53)

Assumpt. 2 is satisfied with

θ∗(q) =
1TDx

Dx

∫
xq(x)dx ∀q ∈ P(X ) ⇒ θ∗(x

1:N ) =
1TNDx

x1:N

NDx
∀x1:N ∈ XN . (54)

Given (52,54), PGD’s (Alg. 1) updates then read (55,56), PQN’s (Alg. 2) read (56,57), and PMGD’s (Alg. 3) reads (58):

θk+1 = θk + hDx

[
θ∗(X

1:N
k )− θk

]
, (55)

X1:N
k+1 = X1:N

k + h[yN + θk1NDx
− 2X1:N

k ] +
√
2hW 1:N

k , (56)

θk+1 = θk + h
[
θ∗(X

1:N
k )− θk

]
, (57)

X1:N
k+1 = X1:N

k + h
[
yN + θ∗(X

1:N
k )1NDx

− 2X1:N
k

]
+

√
2hW 1:N

k , (58)

where yN stacks N copies of y, X1:N
k := (X1

k , . . . , X
N
k ), and similarly for X1:N

k+1 and W 1:N
k . Because the θ-gradient

in (52) is a sum of Dx terms, Λ in (16) simply equals D−1
x and the tweaked version PGD parameter update (16) coincides

with PQN’s (57).

Implementation details for EM. Given (50,54), the EM steps read

(E) qk := N
(
y + θk1Dx

2
,
1

2
IDx

)
, (M) θk+1 :=

1

2

(
1TDx

y

Dx
+ θk

)
.

E.2 Bayesian logistic regression

Dataset. We use the Wisconsin Breast Cancer dataset Y (Wolberg and Mangasarian, 1990), created by Dr. William H.
Wolberg at the University of Wisconsin Hospitals, and freely available at

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original).

It contains 683 datapoints5 each with nine features f ∈ R9 extracted from a digitized image of a fine needle aspirate of a
breast mass and an accompanying label l indicating whether the mass is benign (l = 0) or malign (l = 1). We normalize
the features so that each has mean zero and unit standard deviation across the dataset. We split the dataset into 80/20
training and testing sets, Ytrain and Ytest.

Model. Emulating De Bortoli et al. (2021, Sec. 4.1), we employ standard Bayesian logistic regression with Gaussian
priors. That is, we assume that the datapoints’ labels are conditionally independent given the features f and regression
weights x ∈ RDx:=9, each label with Bernoulli law and mean s(fTx), where s(z) := ez/(1 + ez) denotes the standard
logistic function; and we assign the prior N (θ1Dx , 5IDx) to the weights x, where θ denotes the (scalar) parameter to be
estimated. The model’s density is given by:

pθ(x,Ytrain) = N (x; θ1Dx , 5IDx)
∏

(f,l)∈Ytrain

s(fTx)l[1− s(fTx)]1−l;

and it follows that

ℓ(θ, x) =
∑

(f,l)∈Ytrain

[lfTx− log(1 + ef
T x)]− ||x− 1Dxθ||

2

5
. (59)

The marginal likelihood has a unique maximizer:

5After removal of the 16 datapoints with missing features.

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
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Proposition 1. If fT1Dx ̸= 0 for at least one (l, f) in Ytrain, then θ 7→ pθ(Ytrain) =
∫
pθ(x,Ytrain)dx has a single

maximizer θ∗ and no other stationary points.

Proof. Given Thrm. 4 in App. B.2, we need only argue that ℓ is strictly concave. Taking gradients of (59), we find that

∇2ℓ(θ, x) =
1

5

[
−Dx 1TDx

1Dx
−IDx

]
−

∑
(f,l)∈Ytrain

s(fTx)[1− s(fTx)]f ⊗ f.

The leftmost matrix has a single nonnegative eigenvalue. It equals zero, its geometric multiplicity is one, and its corre-
sponding eigenvector is the vector of ones 1Dx+1. However,

vT

 ∑
(f,l)∈Ytrain

s(fTx)[1− s(fTx)]f ⊗ f

 v =
∑

(f,l)∈Ytrain

s(fTx)[1− s(fTx)](fT v)2 ≥ 0

for all v in RDx . By assumption, fT1Dx
̸= 0 for at least one feature vector f in the test set, and the above inequality is

strict if v ̸= 1Dx
. It then follows that

zT∇2ℓ(θ, x)z < 0 ∀z ∈ RDx+1, θ ∈ Θ, x ∈ X ;

or, in other words, that ℓ is strictly concave.

Implementation details. Taking gradients of (59), we obtain

∇θℓ(θ, x) =
1TDx

x−Dxθ

5
, ∇2

θℓ ≡ −Dx

5
, ∇xℓ(θ, x) =

θ1Dx
− x

5
+

∑
(f,l)∈Ytrain

[l − s(fTx)]f,

The same manipulations as in (53) show that Assumpt. 2 is satisfied with θ∗(q) and θ∗(x
1:N ) as in (54). Hence,

PGD’s (Alg. 1) updates read (60,61), PQN’s (Alg. 2) read (61,62), and PMGD’s (Alg. 3) reads (63):

θk+1 = θk + h(Dx/5)[θ∗(X
1:N
k )− θk], (60)

Xn
k+1 = Xn

k + h

θk1Dx
−Xn

k

5
+

∑
(f,l)∈Ytrain

[l − s(fTXn
k )]f

+
√
2hWn

k ∀n ∈ [N ], (61)

θk+1 = θk + h[θ∗(X
1:N
k )− θk], (62)

Xn
k+1 = Xn

k + h

θ∗(X1:N
k )1Dx −Xn

k

5
+

∑
(f,l)∈Ytrain

[l − s(fTXn
k )]f

+
√
2hWn

k ∀n ∈ [N ]. (63)

SOUL’s (Sec. 3.1) updates read (60), X0
k+1 = XN

k , and

Xn+1
k+1 = Xn

k+1 + h

θk1Dx
−Xn

k+1

5
+

∑
(f,l)∈Ytrain

[l − s(fTXn
k+1)]f

+
√
2hWn

k+1 ∀n ∈ [N − 1].

For MFG VI, we use a product-form Gaussian qϕ := N (µ, diag(σ2(s)) as the variational approximation, where
diag(σ2(s)) denotes a diagonal matrix with σ2(s) := Softplus(s) on its diagonal and ϕ := (µ, s) in R2Dx denote the
variational parameters. The variational free energy then reads

F (θ, ϕ) = −1

2

[
Dx∑
i=1

log(σ2
i (s)) +Dx[log(2π) + 1]

]
−
∫
ℓ(θ, x)qϕ(x)dx.

Using the reparametrization trick (Kingma and Welling, 2013), we find that

F (θ, ϕ) ≈ −1

2

[
Dx∑
i=1

log(σ2
i (s)) +Dx[log(2π) + 1]

]
− 1

N

N∑
n=1

ℓ(θ, µ+ diag(σ(s))ϵn),

where ϵ1, . . . , ϵN denote i.i.d. samples drawn from N (0, IDx) (we set N to 100: the maximum number of particles we use
for PGD, PQN, PMGD, and SOUL). We then minimize the RHS over (θ, ϕ) using gradient descent.
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Predictive performance metrics. Given a new feature vector f̂ , we would ideally predict its label l̂ using the posterior
predictive distribution associated with the marginal likelihood’s maximizer θ∗. In other words, using

pθ∗(l̂|f̂ ,Ytrain) =

∫
p(l̂|f̂ , x)pθ∗(x|Ytrain)dx =

∫
s(f̂Tx)l̂[1− s(f̂Tx)]1−l̂pθ∗(x|Ytrain)dx.

However, pθ∗(x|Ytrain) is unknown. So, we replace it with a particle approximation q =M−1
∑M
m=1 δZm thereof obtained

using PGD, PQN, PMGD, SOUL, or MFG VI6:

pθ∗(l̂|f̂ ,Ytrain) ≈
∫
s(f̂Tx)l̂[1− s(f̂Tx)]1−l̂q(dx)

=
1

M

M∑
m=1

s(f̂TZm)l̂[1− s(f̂TZm)]1−l̂ =: g(l̂|f̂). (64)

We use two metrics to evaluate the approximation’s predictive power. First, the average classification error over the test set
Ytest, i.e. the fraction of mislabelled test points were we to assign to each of them the label maximizing (64)’s RHS:

Error :=
1

|Ytest|
∑

(f,l)∈Ytest

∣∣∣l − l̂(f)
∣∣∣ , where l̂(f) := argmax

l̂∈{0,1}
g(l̂|f). (65)

The second metric is the so-called log pointwise predictive density (LPPD, e.g. Vehtari et al. (2017)):

LPPD :=
1

|Ytest|
∑

(f,l)∈Ytest

log(g(l|f)). (66)

Interest in this metric stems from the assumption that the data is drawn independently from a ‘data-generating process’
p(dl, df), in which case, for large test sets,

LPPD ≈
∫

log(g(l|f))p(dl, df)

=

∫ [∫
log

(
g(l|f))
p(l|f)

)
p(dl|f)

]
p(df) +

∫
log(p(l|f))p(dl, df)

= −
∫
KL(g(·|f))||p(·|f))p(df) +

∫
log(p(l|f))p(dl, df).

In other words, the larger LPPD is, the smaller we can expect the mean KL divergence between our classifier g(l|f) and
the optimal classifier p(l|f).

Numerical results. To investigate the algorithms’ performances, we ran them 100 times, each time using a different
random 80/20 training/testing split of the data. In all runs we employed a step size of h = 0.01 (which ensured that
no algorithm was on the verge of becoming unstable while simultaneously not being excessively small), K = 400 steps,
and N = 1, 10, 100 particles. Tab. 1 shows the test errors (65) and computation times, and Tab. 4 the corresponding
LPPDs (66) and stationary empirical variances of the parameter estimates. For the predictive performance metrics, we
initialized the estimates and particles at zero (as in De Bortoli et al. (2021)) and used the time-averaged approximations
q̄400, cf. (13), with a burn-in of kb = 200. (Warm-starting did not lead to any improvements here.) By k = 200, the PQN
parameter estimates have not yet reached the stationary phase (Fig. 3a). Hence, for the variance estimates, we warm-start
the algorithms using a preliminary run of PGD (with K = 400, h = 0.01, and a single particle N = 1) and then compute
the estimates using a full K = 400 run of the corresponding algorithm.

E.3 Bayesian neural network

Dataset. We use the MNIST (Lecun et al., 1998) dataset Y , available under the terms of the Creative Commons
Attribution-Share Alike 3.0 license at

6For MFG VI, we set M to 20100 and draw Z1, . . . , ZM independently from qϕ∗ , where ϕ∗ denotes the optimized variational
parameters.
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http://yann.lecun.com/exdb/mnist/.

It contains 70, 000 28 × 28 grayscale images f ∈ R784 of handwritten digits each accompanied its corresponding label l.
We avoid big data issues by subsampling 1000 datapoints with labels 4 and 9 just as in Yao et al. (2022) (except that we
pick the labels 4 and 9 rather than 1 and 2 to make the problem more challenging). We normalize the 784 features so that
each has mean zero and unit standard deviation across the dataset. We split the dataset into 80/20 training and testing sets,
Ytrain and Ytest.

Model. Following Yao et al. (2022), we employ a Bayesian two-layer neural network with tanh activation functions,
a softmax output layer, and Gaussian priors on the weights (however, we simplify matters by setting all network biases
to zero). That is, we assume that the datapoints’ labels are conditionally independent given the features f and network
weights x := (w, v) (where w ∈ RDw:=40×784=31360 and w0 ∈ RDv:=2×40=80) with law

p(l|f, x) ∝ exp

 40∑
j=1

vlj tanh

(
784∑
i=1

wjifi

) . (67)

Also as in Yao et al. (2022), we assign we assign the prior N (0Dw
, e2αIDw

) to the input layer’s weights and
N (0Dv

, e2βIDv
) to those of the output layer, where 0d denotes the d-dimensional vector of zeros. However, rather than

assigning a hyperprior to α, β, we instead learn them from the data (i.e. θ := (α, β)). The model’s density is given by:

pθ(x,Ytrain) = N (w;0Dw , e
2αIDw)N (v;0Dv , e

2βIDv )
∏

(f,l)∈Ytrain

p(l|f, x).

Implementation details. The necessary θ-gradients and θ-Hessian are straightforward to compute by hand:

∇θℓ(θ, x) =

[
||w||2 e−2α −Dw

||v||2 e−2β −Dv

]
, ∇2

θℓ(θ, x) = −
[
2 ||w||2 e−2α 0

0 2 ||v||2 e−2β

]
.

For the x-gradients, we use JAX’s grad function (implementing a version of autograd). Given that

∇θF (θ, q) = −
∫

∇θℓ(θ, x)q(x)dx = −
[
e−2α

∫
||w||2 q(w)dw −Dw

e−2β
∫
||v||2 q(v)dv −Dv

]
,

where q(w) and q(v) respectively denote q’s w and v marginals, Assumpt. 2 is satisfied with

θ∗(q) =

[
α∗(q)
β∗(q)

]
=

 1
2 log

(
D−1
w

∫
||w||2 q(w)dw

)
1
2 log

(
D−1
v

∫
||v||2 q(v)dv

)  ∀q ∈ P(X ),

⇒ θ∗(x
1:N ) =

[
α∗(x

1:N )
β∗(x

1:N )

]
=

 1
2 log

(
[NDw]

−1
∑N
n=1 ||wn||

2
)

1
2 log

(
[NDv]

−1
∑N
n=1 ||vn||

2
)  ∀x1:N = (w1:N , v1:N ) ∈ XN .

The PGD, PQN, PMGD, and SOUL updates are obtained by plugging the expressions above into (14,15), (33,15), (44), and
(14,17), respectively. To avoid memory issues, we only store the current particle cloud and use its empirical distribution to

Table 4: Bayesian logistic regression. Log pointwise predictive densities and stationary variances achieved using time-
averaged posterior approximation q̄400, with N = 1, 10, 100, and corresponding computation times (averaged over 100
replicates). See details in the text.

N = 1 N = 10 N = 100

LPPD (×10−2) Var. (×10−4) LPPD (×10−2) Var. (×10−4) LPPD (×10−2) Var. (×10−4)

PGD -9.73 ± 1.04 14.1 ± 13.6 -9.40 ± 0.28 1.25 ± 1.01 -9.38 ± 0.08 0.13 ± 0.10
PQN -9.65 ± 0.87 7.33 ± 6.63 -9.41 ± 0.27 0.72 ± 0.73 -9.41 ± 0.09 0.06 ± 0.06
PMGD -9.61 ± 0.86 106 ± 36.7 -9.48 ± 0.27 10.7 ± 4.38 -9.39 ± 0.07 1.03 ± 0.35
SOUL -9.73 ± 0.94 11.7 ± 10.7 -9.41 ± 0.27 2.78 ± 2.23 -9.39 ± 0.09 0.28 ± 0.6

http://yann.lecun.com/exdb/mnist/
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approximate the posteriors (rather than a time-averaged version thereof). We initialize the parameter estimates at zero and
the weights at samples drawn independently from the priors.

Given the high dimensionality of the latent variables, PGD and SOUL prove less stable than PQN and PMGD (the former
lose stability around h ≈ 10−4 and the latter around h ≈ 1). Hence, we stabilize PGD and SOUL using the heuristic (16)
discussed in Sec. 2. This simply entails respectively dividing the α and β gradients by Dw and Dv . We then set h := 0.1
which ensures that no algorithm is close to losing stability.

Predictive performance metrics. We use the test error and log pointwise predictive density defined as in (65,66), only
with the classifier g(l|f) now given by N−1

∑N
n=1 p(l|f,Xn

K), where p(l|f, x) is as in (67) and X1:N
K denotes the final

particle cloud produced by PGD, PQN, PMGD, or SOUL.

E.4 Generator network

Datasets. We use two datasets of images, the MNIST dataset described in App. E.3, and the CelebA dataset (Liu et al.,
2015). The latter contains 202, 599 178 × 218 color images of celebrity faces. In both cases, we resize the images to
be 32 × 32 and normalize pixel values so that they lie in [−1, 1]. We also randomly pick M := 10, 000 (MNIST) or
M := 40, 000 (CelebA) images y1:M := (ym)Mm=1 for training and reserve the rest for testing.

Model. The model assumes that each image ym is generated independently of all others by:

1. drawing a latent variable xm from a zero-mean unit-variance Gaussian distribution p(x) := N (x|0, Idx) on a dx :=
64-dimensional latent space Rdx ;

2. mapping xm to the image space Rdy (with dy = 32×32 for MNIST and dy = 3×32×32 for CelebA) via a generator
fθ: a neural network parameterized by some parameters θ in RDθ ;

3. adding zero-mean 0.012-variance Gaussian noise: ym = fθ(x
m) + ϵm where (ϵm)Mm=1 is a sequence of i.i.d. R.V.s

with law N (0, 0.012Idy ).

In full, the model’s density is given by

pθ(x
1:M , y1:M ) =

M∏
m=1

pθ(x
m, ym), (68)

where

pθ(x
m, ym) = pθ(y

m|xm)p(xm), with pθ(y
m|xm) := N (ym|fθ(xm), 0.012Idy ).

For fθ we use a convolutional neural network with an architecture emulating that in Nijkamp et al. (2020), see below for
details. In total, it has 355, 457 parameters and 64 ×M = 640, 000 latent variables for MNIST, and 357, 507 parameters
and 64×M = 2, 560, 000 latent variables for CelebA.

Network architecture. The network is composed of layers of 4 basic types:

• lθ: fully-connected linear layers,
• cθ: convolutional layers,
• cTθ : transpose convolutional layers,
• bθ : batch normalization layers.

These are interwoven with GELU activation functions. First, the above are assembled to create 2 further types of layers:

• ‘projection’ layers πθ := GELU ◦ bθ ◦ cTθ ◦ GELU ◦ bθ ◦ lθ;
• ‘deterministic’ layers dθ = GELU ◦ bθ ◦ cθ ◦GELU ◦ bθ ◦ cθ + I where I denotes the identity operator (i.e., the layer

has a skip connection).

The network itself then consists of a projection layer followed by two deterministic layers, a transpose convolutional layer,
and a tanh activation function:

fθ = tanh ◦cTθ ◦ dθ ◦ dθ ◦ πθ.
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Training. Training the model entails searching for parameters θ∗ maximizing the likelihood θ 7→ pθ(y
1:M ) of the training

set y1:M , at least locally. We do so using 4 different approaches: PGD (Alg. 1), alternating back propagation (ABP; Han
et al. (2017)), short-run MCMC (SR; Nijkamp et al. (2020)), and variational inference (i.e. appending to the model an
inference network, so turning it into a variational autoencoder, VAE; Kingma and Welling (2013)). In all cases, we use
PyTorch to implement the algorithm and compute the necessary gradients.

Training (PGD). We use PGD slightly modified to better cope with the high evaluation cost of the log-likelihood’s
gradients. In particular, we replace ∇θ in the parameter update (14) with an unbiased estimator thereof obtained by
subsampling the training set:

∇θℓ(θ, x
1:M ) =

M∑
m=1

∇θ log(pθ(y
m|xm)) =M

[
1

M

M∑
m=1

∇θ log(pθ(y
m|xm))

]

≈M

[
1

MB

∑
m∈B

∇θ log(pθ(y
m|xm))

]
=

M

MB

∑
m∈B

∇θ log(pθ(y
m|xm)),

where B denotes a random subset of [M ] := {1, . . . ,M} and MB its cardinality. To mitigate the varying magnitudes
among the entries of

∇θ log(pθ(y
m|xm)) =

1

0.012
[ym − fθ(x

m)]T∇θfθ(x
m)

and improve the training, we use a modified version of the heuristic (16) discussed in Sec. 2. As in the heuristic, we rescale
each entry by a scalar, only that, this time, we allow the scalars to vary with the iteration count k. We choose these scalars
as in RMSprop (Hinton et al., 2012) using the default values of PyTorch 1.12’s implementation (cf. the documentation). In
full, we update the parameter estimates θk using

θk+1 = θk + hλΛk
M

NMB

[
N∑
n=1

∑
m∈Bk

∇θ log pθk(y
m|Xn,m

k )

]
, (69)

where (Xn)Nn=1 = ((Xn,m)Mm=1)
N
n=1 denotes the particle cloud at the kth iteration, Λk a diagonal matrix containing the

RMSprop step sizes, λ a scalar that we tune by hand to mitigate differences between the scales of log-likelihood’s θ and x
gradients, and Bk indexes the image batch used in the kth parameter update (these are drawn uniformly at random without
replacement until the dataset is exhausted, at which point the dataset is shuffled and the procedure is repeated).

In the particle updates, we subsample the x-gradients using the same image batches. Given the product-form structure
in (68), this has the effect of only updating particle components index by the batches. That is, the kth update reads:

Xn,m
k+1 = Xn,m

k + h∇x log pθk(X
n,m
k , ym) +

√
2hWn,m

k ∀m ∈ Bk, Xn,m
k+1 = Xn,m

k , ∀m ̸∈ Bk, n ∈ [N ]. (70)

We initialized all particles by drawing independent samples from the Gaussian prior p(x).

Training (ABP and SR). As mentioned in Sec. 3.3, both ABP (Han et al., 2017) and SR (Nijkamp et al., 2020) are
variants7 of (14,17) proposed specifically for training generator networks. Just as for PGD above, for ABP and SR we
subsample the gradients and adapt the parameter step sizes using RMSProp. However, ABP and SR use only (17)’s final
state to approximate the posterior pθk(·|y1:M ) (they approximate it with δXN

k
); and so the parameter updates read

θk+1 = θk + hλΛk
M

MB

[ ∑
m∈Bk

∇θ log pθk(y
m|XN,m

k )

]
, (71)

where MB,Λk, λ are as in (69). To update the particles, we run a version of (17) with gradients subsampled similarly as
in (70):

Xn+1,m
k = Xn,m

k + h∇x log pθk(X
n,m
k , ym) +

√
2hWn,m

k ∀m ∈ Bk, Xn+1,m
k = Xn,m

k ∀m ̸∈ Bk, n ∈ [N − 1].
(72)

7Our implementations of ABP and SR are slight tweaks of their original presentations. In particular, in Han et al. (2017) where ABP
was introduced, the problems considered were small enough that no gradient subsampling was required, while here it is. As for SR,
in Nijkamp et al. (2020), the authors additionally adaptively set the step size h using a variational optimization approach. We abstain
from doing so to simplify the comparison and place PGD, ABP, and SR in as equal footing as possible.

https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
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In the case of ABP, the above chain is ‘persistent’: X1
k is initialized at XN

k−1 for k > 0. In that of SR, it is not: X1
k is drawn

from the prior p(x) for k > 0. In both cases, X1
0 is drawn from the prior.

With the above choices, PGD, ABP, and SR all carry a similar computational cost for the same iteration number K and
particle number N .

Hyperparameters (PGD, ABP, and SR). We chose the hyper-parameters featuring in (69–72) as follows:

• KKK,NNN . We found that, modulo some noise, test errors for all three algorithms decrease monotonically with increasing
iteration count K and particle number N . We chose K large enough that increasing it further lead to no more
noticeable improvements in test errors (K = 39, 500 for MNIST and K = 78, 250 for CelebA). We set the particle
number N to 10 which we found to be a good compromise between training times and performance on test errors
(larger N values did result in small, but noticeable, decreases in test errors).

• hhh, λλλ. We chose these parameters small enough that no algorithm was on the verge of becoming unstable but large
enough that the training was not excessively slow (h = 10−3, λ = 10−4 for MNIST and h = 10−4, λ = 2.5× 10−4

for CelebA). We did not observe a significant change in test errors by varying these values by ± an order of magnitude
(the only noticeable effect was that smaller values led to slower training).

• MBMBMB. In general, we observed that the larger the batch size, the quicker the training. Its value seemed to affect little
the test errors after training. We set the batch size to 128, which ensured that no virtual memory was required during
training while not being excessively small.

Training (VAE). VAEs (Kingma and Welling, 2013) are variational inference methods where a parametric approximation
qϕ(x

1:M ) to the posterior p(x1:M |y1:M ) is chosen and training consists of solving (2) with an appropriate optimization
algorithm. VAEs use approximations of the sort

qϕ(x
1:M |y1:M ) =

M∏
m=1

qϕ(x
m|ym), where qϕ(x

m|ym) = N (xm; gmean
ϕ (ym), diag(gvar

ϕ (ym))),

with gmean
ϕ , gvar

ϕ : Rdy → Rdx denoting neural networks parametrized by ϕ and diag(gvar
ϕ (ym)) a diagonal matrix with

gvar
ϕ (ym) on its diagonal. We follow the common choice, e.g. Kingma and Welling (2013, App.C.2), of setting

gmean
ϕ = lmean

ϕ ◦ gϕ, gvar
ϕ = SoftPlus ◦ lvar

ϕ ◦ gϕ

where lmean
ϕ and lvar

ϕ are fully connected linear layers and gϕ denotes a third network whose parameters are shared across
gmean
ϕ and gvar

ϕ . For gϕ we use a simple convolutional network with RELU activation functions:

gϕ = lϕ ◦mpϕ ◦ ReLU ◦ cϕ ◦mpϕ ◦ ReLU ◦ cϕ,

where lϕ denotes a fully connected layer, cϕ convolutional layers, and mpϕ max pooling layers. In total, the networks
gmean
ϕ , gvar

ϕ involve 1, 119, 552 parameters for MNIST and 1, 119, 840 for CelebA.

We train the model by simultaneously running RMSprop (Hinton et al., 2012) for the model parameters θ and
Adam (Kingma and Ba, 2014) for the variational parameters ϕ, both with learning rates of 10−3 and all other values
set to their defaults in PyTorch 1.12’s implementations of RMSprop and Adam (cf. here and here).

Inpainting. We use generators fθK trained with PGD, ABP, SR, and VAE to recover images y = (yi)
dy
i=1 that have been

corrupted by masking some of their pixels. To do so, we follow the approach taken in Nijkamp et al. (2020, Sec. 5.3): we
search for latent variables that maximize the likelihood of the corrupted image yc,

xmle = argmaxx∈Rdx log p(yc|x) = argminx∈Rdx∥yc − fθK (x)∥22 = argminx∈Rdx

∑
i ̸∈M

[yi − fθK (x)i]
2, (73)

where M indexes the masked pixels. Then, we recover the image by mapping xmle through the generator: y ≈ fθ(xmle).
To (approximately) solve the above we use 4 randomly initialized runs of Adam (Kingma and Ba, 2014), each a thousand
steps long. We set the learning rate adaptively using Pytorch’s ReduceLROnPlateau scheduler with an initial learning rate
of 1 and all other Adam parameters set to their Pytorch 1.12 defaults. With this approach, and the PGD-trained generator,
we obtained the inpaintings shown in Fig. 5.

https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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CelebAMNIST

Original Masked Inpainted Original Masked Inpainted
Figure 5: Inpainted images obtained using the generator fθ trained with PGD as described in the text.

Image synthesis. Regardless of the algorithm we used for training, synthesizing images following the usual approach
of drawing latent variables x from the prior p(x) and mapping them through the trained generator fθK gave poor results
(e.g. Fig. 6). This is a known issue for these types of models. For example, as explained in Aneja et al. (2021):

“Variational autoencoders (VAEs) are one of the powerful likelihood-based generative models with applica-
tions in many domains. However, they struggle to generate high-quality images, especially when samples are
obtained from the prior without any tempering. One explanation for VAEs’ poor generative quality is the prior
hole problem: the prior distribution fails to match the aggregate approximate posterior. Due to this mismatch,
there exist areas in the latent space with high density under the prior that do not correspond to any encoded
image. Samples from those areas are decoded to corrupted images.”

More specifically, in all four algorithms, we approximate the posterior pθk(x
1:M |y1:M ) using a product-form8 distribution:

qk(dx
1:M ) =

M∏
m=1

qmk (dxm);

where qmk (dx) := N−1
∑N
n=1 δXn,m

k
(dx) for PGD, qmk (dx) := δXN,m

k
(dx) for ABP and SR, and qmk (dx) := qϕk

(dx|ym)

for VAE. Emulating9 the calculations in Hoffman and Johnson (2016), we find that

F (θk, qk) =

M∑
m=1

∫
log

(
qmk (xm)

p(xm)pθk(y
m|xm)

)
qm(xm)dxm ≥

M∑
m=1

KL(qmk ||p) ≥MKL(qaggk ||p), (74)

where

qaggk (dx) :=
1

M

M∑
m=1

qm(dx)

8This is not quite true for PGD, ABP, and SR as (69–72) correlate (Xn,m
k )n∈[N ],m∈[M ] through θk. However, for large M and MB,

these correlations are small, and we ignore them here to simplify the discussion.
9These calculations are only formal in the case of PGD, ABP, and SR because q1k, . . . , q

M
k have no densities w.r.t. the Lebesgue

measure.
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CelebAMNIST

Figure 6: Images synthesized by drawing samples from the Gaussian prior p(x) and mapping them through the generator
fθK trained with PGD.

denotes the aggregate (approximate) posterior (Aneja et al., 2021). To derive the rightmost inequality in (74) note that

M∑
m=1

KL(qmk ||p)−MKL(qaggk ||p) =
M∑
m=1

∫
log

(
qmk (x)

qaggk (x)

)
qmk (x)dx

=

M∑
m=1

∫
log

(
qmk (x)

Mqaggk (x)

)
qmk (x)dx+M log(M)

=M

∫ [ M∑
m=1

log

(
qmk (x)

Mqaggk (x)

)
qmk (x)

Mqaggk (x)

]
qaggk (x)dx+Mlog(M)

For each x, the term inside the square brackets is the negative entropy of the distribution
(

qmk (x)
Mqagg

k (x)

)M
m=1

and, hence,

bounded below by − log(M); and (74) follows.

(74) shows that the free energy is bounded below by M times the KL divergence between the aggregate posterior qaggk and
the prior p. As noted in (Rosca et al., 2018):

“VAEs are unable to match the marginal latent posterior (aggregate posterior) to the prior. This will re-
sult in a failure to learn the data distribution, and manifests in a discrepancy in quality between samples and
reconstructions from the model.”

In our experiments, we observed the same phenomenon for PGD, ABP, SR, and VAE. In all four cases, it appears that the
model learns to generate qualitatively meaningful images in the regions of the latent space where the aggregate posterior
places mass but not in those where the prior does.

To overcome the bottleneck in (74) and improve the image generation, a variety of schemes that learn the prior as well as
the generator fθ have been proposed in the literature (e.g. Tomczak and Welling (2018); Bauer and Mnih (2019); Klushyn
et al. (2019); Dai and Wipf (2019); Pang et al. (2020); Aneja et al. (2021)). We limit ourselves to simply fitting a Gaussian
N (µ,Σ) to the (trained) aggregate posterior qaggK . For PGD, ABP, and SR, qaggK is an empirical distribution of the form



Particle algorithms for maximum likelihood training of latent variable models

CelebAMNIST

Figure 7: Images synthesized by sampling a Gaussian approximation of the PGD aggregate posterior.

J−1
∑J
j=1 δZj and we fit N (µ,Σ) using qaggK ’s empirical mean and covariance:

µ :=
1

J

J∑
j=1

Zj , Σ :=
1

J − 1

J∑
j=1

(Zj − µ)(Zj − µ)T .

In the case of VAE, we first build an empirical distribution J−1
∑J
j=1 δZj by drawing 10 samples from each q1k, . . . , q

M
k ,

and then proceed as above. Synthesizing images by drawing samples from N (µ,Σ) and mapping them through fθ then
produces substantially higher quality images (Fig. 7). Building more refined approximations of the aggregate posterior
further improves the images (Fig. 8).

Performance metrics. To evaluate the performance the trained generators fθK in the inpainting task, we mask and inpaint
1000 images y1, . . . , y1000 randomly chosen from the test set. For each of these, we solve (73) to obtain matching latent
variable vectors x1, . . . , x1000 and inpainted images fθ(x1), . . . , fθ(x1000). We then compute the latter’s mean squared
error (averaged over both pixels and test images):

MSE =
1

1000dy

1000∑
m=1

dy∑
i=1

[ymi − fθ(x
m)i]

2.

To evaluate the performance of the trained generators fθK in the synthesis task, we synthesize 200 images as described
above, randomly pick 200 images from the test set, and compute the corresponding Fréchet Inception Distance (FID;
Heusel et al. (2017)) with the Inception v3 classifier (Szegedy et al., 2016) between these two ensembles — we use
TorchMetrics’s (Detlefsen et al., 2022) implementation of FID. In the case of the greyscale MNIST images, this requires
mirroring the image across the three colour channels. We recognize that there are conceptual difficulties with this ad hoc
approach, especially given that the training data for Inception v3 differs qualitatively from the MNIST images. However,
we verified that there is a qualitative (as judged by eye) improvement in image quality associated with increasing FID
score computed in this way and felt it sensible to follow this now-established approach for this dataset (e.g. see the papers
reporting FID scores for MNIST on paperswithcode.com).

https://paperswithcode.com/sota/image-generation-on-mnist
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Figure 8: Images synthesized using by sampling a 500-component mixture of Gaussian approximation of the PGD aggre-
gate posterior. To fit the mixture, we applied scikit-learn’s default procedure to J−1

∑J
j=1 δZj .

F THE MEAN-FIELD LIMITS AND THE TIME-DISCRETIZATION BIAS

The mean-field (N → ∞) limits of PGD’s update equations, (14,15), are (75,76), those of PQN’s, (33,15), are (77,76), and
that of PMGD’s, (44), is (78):

θk+1 = θk + h

∫
∇θℓ(θk, x)qk(x)dx, (75)

Xk+1 = Xk + h∇xℓ(θk, Xk) +
√
2hWk, (76)

θk+1 = θk − h
[
∇2
θℓ(θ, x)qk(x)dx

]−1
∫

∇θℓ(θk, x)qk(x)dx, (77)

Xk+1 = Xk + h∇xℓ(θ∗(qk), Xk) +
√
2hWk. (78)

where, in all cases, qk denotes Xk’s law and, in (78) we are assuming that Assumpt. 2 holds. We can re-write (75,77) as

θk+1 = u(θk, qk), (79)

where u : Θ× P(X ) → Θ denotes an ‘update’ operator satisfying

∀(θ, q) ∈ Θ× P(X ), ∇θF (θ, q) = 0 ⇒ u(θ, q) = θ. (80)

Now, (76,79)’s joint law qk(dθ, dx) satisfies

qk+1(dψ, dz) =

∫
θ,x

qk(dθ, dx)δu(θ,qk)(dψ)Kθ(x, dz), (81)

where Kθ denotes the ULA kernel:

Kθ(x, dz) = Kθ(x, z)dz := N (z;x+ h∇xℓ(θ, x), 2hIDx
) dz ∀x ∈ X , θ ∈ Θ. (82)

What we would like is for
π(dθ, dx) := δθ∗(dθ)pθ∗(dx|y)

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
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to be a fixed point of (81) whenever θ∗ is a maximizer of θ 7→ pθ(y) and pθ∗(dx|y) is the corresponding posterior. However,
applying Thrm. 2 and (80), we find that∫

θ,x

π(dθ, dx)δu(θ,π(dx))(dψ)Kθ(x, dz) =

∫
θ,x

δθ∗(dθ)pθ∗(dx|y)δu(θ,pθ∗ (dx|y))(dψ)Kθ(x, dz)

= δu(θ∗,pθ∗ (dx|y))(dψ)

∫
x

pθ∗(dx|y)Kθ∗(x, dz)

= δθ∗(dψ)

∫
x

pθ∗(dx|y)Kθ∗(x, dz).

Hence, π is a fixed point of (81) if and only pθ∗(dx|y) is a stationary distribution of Kθ∗(x, dz):

pθ∗(z|y) =
∫
pθ∗(x|y)Kθ∗(x, z)dx (83)

However, we know this is not the case because the ULA kernel is biased, e.g. see Roberts and Tweedie (1996).

The case of (78) is similar: qk satisfies

qk+1(z) =

∫
qk(x)Kθ∗(qk)(x, z)dx.

Given that θ∗(pθ∗(·|y)) = θ∗ (Thrm. 2), we have that pθ∗(·|y) is a fixed point of the above if and only if (83) holds, which
it does not.

An obvious way to get (83) to hold is replacing the ULA kernel Kθ with a kernel whose stationary distribution is the
posterior pθ(·|y) (e.g. by adding an accept-reject step to the ULA kernel). This removes the time-discretization bias in the
mean-field regime. In App. H, we will see another (slightly less obvious) way to do so.

F.1 Rates of convergence for Ex. 1

To investigate the rate of convergence of PGD, PQN, and PMGD in the case of the toy hierarchical model (Ex. 1), we
examine the mean-field limits (75–78) which respectively read:

θk+1 = θk + hDx[νk − θk], (84)

Xk+1 = Xk + h[y + θk1Dx
− 2Xk] +

√
2hWk, (85)

θk+1 = θk + h [νk − θk] , (86)

Xk+1 = Xk + h [y + νk1Dx
− 2Xk] +

√
2hWk. (87)

where, in all cases, νk := E
[
1TDx

Xk/Dx

]
denotes the mean of the average of Xk’s components. Left-multiplying (85,87)

by D−1
x 1TDx

and taking expectations in, we respectively find that

νk+1 = νk + h[1TDx
y/Dx + θk − 2νk] (88)

νk+1 = νk + h
[
1TDx

y/Dx − νk
]
. (89)

Note that both (84,88) and (86,88) have a unique fixed point (θ∞, ν∞) given by θ∞ = ν∞ = θ∗, where θ∗ = 1TDx
y/Dx

denotes the marginal likelihood’s unique maximizer (cf. App. E.1). Re-writing (84,88) and (86,88) in matrix-vector nota-
tion, [

θk+1

νk+1

]
= AGh

[
θk
νk

]
+

[
0

h1TDx
y/Dx

]
where AGh :=

[
1− hDx hDx

h 1− 2h

]
,[

θk+1

νk+1

]
= ANh

[
θk
νk

]
+

[
0

h1TDx
y/Dx

]
where ANh :=

[
1− h h
h 1− 2h

]
,

then clarifies that θk’s speed of convergence to θ∗ is O(ρkG,h) in the case of (84,88) and O(ρkN,h) in that of (86,88), where
ρG,h denotes AGh ’s spectral radius and ρN,h denotes ANh ’s. After some quick algebra, we find that

ρG,h = max

{∣∣∣∣∣1− h

(
1 +

Dx

2
±
√
D2
x + 4

2

)∣∣∣∣∣
}
, ρN,h = max

{∣∣∣∣∣1− h

(
3

2
±

√
5

2

)∣∣∣∣∣
}
.
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As for PMGD’s mean-field limit (87), recall that we use θ∗(qk) = D−1
x 1TDx

∫
xqk(x)dx = νk to estimate θ∗, where qk

denotes Xk’s law, and note that νk in (89) converges to θ∗ at a rate of O(ρkM,h), where ρM,h := |1− h|. Two observations
are in order:

• Dependence on Dx. In the case of PGD, the radius ρG,h depends on the dimension Dx of the latent space. For
large dimensions, ρG,h ≈ |1− h(1 +Dx)| implying that PGD is stable only for very small step sizes (roughly, those
smaller than 2/(1 + Dx)), which explains the need for the tweak (16). On the other hand, the radii for PQN and
PMGD are independent of Dx. For these reasons, tuning the step size for PGD proves challenging and delicately
depends on Dx, while tuning it for PQN and PMGD is straightforward and does not require taking Dx into account.

• Relative speeds. For all step sizes, ρG,h and ρN,h are both bounded below by ρM,h (see Fig. 9), implying that PMGD
always converges faster than PGD and PQN, at least in the mean-field regime. It is not necessarily the case that
ρN,h ≤ ρG,h: for small step sizes, this fails to hold. However, the range of hs for which ρN,h > ρG,h decreases
precipitously with the latent space dimension Dx (Fig. 9). Hence, we expect PQN to outperform PGD unless we use
very small step sizes (likely, those too small to achieve any reasonable convergence speed).
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Figure 9: Spectral radii ρG,h (PGD), ρN,h (PQN), and ρM,h (PMGD) as a function of step size h.

Consider now the matter of choosing the step size h that achieves the fastest convergence for each algorithm. That is, the
h that minimizes the corresponding radius. It is straightforward to verify that

hG =
2

2 +Dx
, hN =

2

3
, hM = 1, with ρG =

√
D2
x + 4

Dx + 2
, ρN =

√
5

3
, ρM = 0,

where hG, hN , hM respectively denote the optimal step sizes for PGD, PQN, and PMGD, and ρG, ρN , ρM the correspond-
ing radii. Note that, ρG ≥ ρN ≥ ρM whenever Dx ≥ 4. Hence, except for very low dimensional cases with well-tuned
step sizes, PQN will outperform PGD. PMGD will always outperform either. Moreover, ρG → 1 as Dx → ∞ and, hence,
PGD’s convergence speed degenerates with increasing latent space dimension regardless of the step size h that we use.
That of PQN does not and, if we tune the algorithm well, will be O([2/3]k) for all Dx. Setting h := 1 in (89), we find
that, regardless of Dx, PMGD’s parameter estimates will converge in a single step, at least in the mean-field regime. Of
course, this fails to materialize when we run the algorithm in practice because the noise in (87) exacts an O(1/

√
KNDx)

error in our time-averaged estimates, which is what we see in Fig. 1c (similar considerations also apply to PGD and PQN
in stationarity). Lastly, we ought to mention that we have observed these behaviours replicated across other numerical
experiments, hinting that they might hold more widely. However, until an analysis establishing so becomes available, we
only count this as anecdotal evidence.
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G THE CONTINUUM LIMITS AND THE FINITE-POPULATION-SIZE BIAS

For the sake of simplicity, suppose that Assumpt. 2 holds. The continuum limits (h → 0) of PGD’s update equations,
(14,15), are (90,91), those of PQN’s, (33,15), are (92,91), and that of PMGD’s, (44), is (93):

dθt =
1

N

[
N∑
n=1

∇θℓ(θt, X
n
t )

]
dt, (90)

dXn
t = ∇xℓ(θt, X

n
t )dt+

√
2dWn

t ∀n ∈ [N ], (91)

dθt = −

[
N∑
n=1

∇2
θℓ(θt, X

n
t )

]−1 [ N∑
n=1

∇θℓ(θt, X
n
t )

]
dt, (92)

dXn
t = ∇xℓ(θ∗(X

1:N
t ), Xn

t )dt+
√
2dWn

t ∀n ∈ [N ]. (93)

As shown below, (93)’s law satisfies

q̇t(x
1:N ) = ∇x1:N ·

[
qt(x

1:N )∇x1:N log

(
qt(x

1:N )

ρN (x1:N )

)]
, (94)

where ρN is the (unnormalized) distribution on XN given by

ρN (x1:N ) :=

N∏
n=1

pθ∗(x1:N )(x
n, y) (95)

Clearly, the (unique) normalized fixed point of (94) (i.e. the stationary distribution of (93)) is

πN (x1:N ) :=
ρN (x1:N )

ZN
where ZN :=

∫
ρN (x1:N )dx1:N . (96)

As also shown below, (90,91)’s law satisfies

q̇t(θ, x
1:N ) =∇x1:N ·

[
qt(θ, x

1:N )∇x1:N log

(
qt(θ, x

1:N )∏N
n=1 pθ(x

n, y)

)]
(97)

−∇θ ·

[
qt(θ, x

1:N )

N

N∑
n=1

∇θℓ(θ, x
n)

]
,

where, if necessary, the above should be interpreted weakly. Because
∑N
n=1 ∇θℓ(θ∗(x

1:N ), xn) = 0 by θ∗(x1:N )’s defini-
tion, it is easy to check that

πN (dθ, dx1:N ) = δθ∗(x1:N )(dθ)πN (x1:N )dx1:N

is a fixed point of (97) (i.e. a stationary distribution of (90,91)). Similar manipulations show that the above is also a
stationary distribution of (91,92). Our algorithms use the empirical distribution of the particles to approximate the posterior.
Hence, for the estimates they produce to be ‘unbiased’, it would have to be the case that∫ (

θ∗(x
1:N ),

1

N

N∑
n=1

δxn(dx)

)
πN (dx1:N ) = (θ∗, pθ∗(dx|y)),

for some stationary point θ∗ of θ 7→ pθ(y). However, because θ∗(x1:N ) is invariant to permutations of x1:N ’s components,
πN ’s definition in (95,96) implies that its marginals πN (dx1), . . . , πN (dxN ) all equal the same distribution, µN on X .
Hence, ∫ (

1

N

N∑
n=1

δxn(dx)

)
πN (dx1:N ) =

1

N

N∑
n=1

∫
δxn(dx)πN (dxn) =

1

N

N∑
n=1

∫
δxn(dx)µN (dxn)

=
1

N

N∑
n=1

∫
µN (dx) = µN (dx).
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In summary, for our algorithms to yield unbiased estimates, it would need to be the case that(∫
θ∗(x

1:N )πN (dx1:N ), µN (dx)

)
= (θ∗, pθ∗(dx|y)).

It is easy to find examples in which the above fails to hold (see, for instance, App. G.1).

Proof of (94). (93)’s Fokker-Planck equation (e.g. see Chaintron and Diez (2022)) reads

q̇t(x
1:N ) =−

N∑
n=1

∇xn · [qt(x1:N )∇xnℓ(θ∗(x
1:N ), xn)] +

N∑
n=1

∇xn · ∇xnqt(x
1:N ). (98)

But

−∇x1:N ·
[
qt(x

1:N )∇x1:N log

(
ρN (x1:N )

qt(x1:N )

)]
= −

N∑
n=1

∇xn ·
[
qt(x

1:N )∇xn log

(
ρN (x1:N )

qt(x1:N )

)]
, (99)

and, using ρN (x1:N )’s definition in (95),

∇xn log

(
ρN (x1:N )

qt(x1:N )

)
=∇xn log(ρN (x1:N ))−∇xn log(qt(x

1:N ))

=∇xnℓ(θ∗(x
1:N ), xn) +

N∑
m=1

∇θℓ(θ∗(x
1:N ), xm) · ∇xmθ∗(x

1:N )

− ∇xnqt(x
1:N )

qt(x1:N )
. (100)

But, θ∗(x1:N )’s definition implies that

∇x1θ∗(x
1:N ) = · · · = ∇xN θ∗(x

1:N ),

N∑
m=1

∇θℓ(θ∗(x
1:N ), xm) = 0.

Hence, the middle term in (100)’s RHS equals zero and (94) follows from (98,99).

Proof of (97). This is straightforward: (90,91)’s Fokker-Planck equation (e.g. see Chaintron and Diez (2022)) reads

q̇t(θ, x
1:N ) =−∇θ ·

[
qt(θ, x

1:N )

N

N∑
n=1

∇θℓ(θ, x
n)

]
−

N∑
n=1

∇xn · [qt(θ, x1:N )∇xnℓ(θ, xn)]

+

N∑
n=1

∇xn · ∇xnqt(θ, x
1:N ).

But,

∇x1:N ·

[
qt(θ, x

1:N )∇x1:N log

(∏N
n=1 pθ(x

n, y)

qt(θ, x1:N )

)]

=

N∑
n=1

∇xn ·

[
qt(θ, x

1:N )∇xn log

(∏N
n=1 pθ(x

n, y)

qt(θ, x1:N )

)]

=

N∑
n=1

∇xn ·
[
qt(θ, x

1:N )

(
∇xnℓ(θ, xn)− ∇xnqt(θ, x

1:N )

qt(θ, x1:N )

)]

=

N∑
n=1

∇xn · [qt(θ, x1:N )∇xnℓ(θ, xn)] +

N∑
n=1

∇xn · ∇xnqt(θ, x
1:N ).
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G.1 Continuum limits for Ex. 1

By (54) and ρN ’s definition in (95),

ρN (x1:N ) =

N∏
n=1

exp

−1

2
||y − xn||2 − 1

2

∣∣∣∣∣
∣∣∣∣∣xn −

1TNDx
x1:N

NDx
1Dx

∣∣∣∣∣
∣∣∣∣∣
2


= exp

−1

2

∣∣∣∣y1:N − x1:N
∣∣∣∣2 − 1

2

∣∣∣∣∣
∣∣∣∣∣x1:N −

1TNDx
x1:N

NDx
1NDx

∣∣∣∣∣
∣∣∣∣∣
2
 ,

where y1:N stacks N copies of y. Applying the expressions in Bishop (2006, p. 92) and the Sherman–Morrison formula,
we find that

πN (x1:N ) =
ρN (x1:N )∫

ρN (x1:N )dx1:N
= N

(
x1:N ;

1

2

(
yN +

1TDx
y

Dx
1NDx

)
,
1

2

(
INDx +

1NDx
1TNDx

NDx

))
;

whose marginals are equal to

µN (x) = N

(
x;

1

2

(
y +

1TDx
y

Dx
1

)
,
1

2

(
IDx

+
1Dx1

T
Dx

NDx

))
.

Comparing with (51), we see that the covariance matrix is slightly off with a O(N−1) error. However, due to the linearity
in the model, there is no bias in the θ estimates:∫

θ∗(x
1:N )πN (x1:N )dx1:N =

1TNDx

∫
x1:NπN (x1:N )dx1:N

NDx

=
1

2NDx

(
1TNDx

yN +
1TNDx

1NDx
1TDx

y

Dx

)
=

1TDx
y

Dx
= θ∗.

H METROPOLIS-HASTINGS METHODS

As mentioned at the end of App. F, one fairly obvious way to try to remove the bias (B1, Sec. 2) from the estimates
produced by PGD, PQN, and PMGD is to replace the ULA kernels with ‘exact’ kernels whose stationary distributions
coincide with the posteriors (e.g. by adding an accept-reject step to each individual particle update). Here, we consider
other, slightly less obvious and (to the best of our knowledge) novel extensions of the Metropolis-Hastings algorithm
(e.g. see Andrieu et al. (2003)) that also tackle (S1,2 in Sec. 1). While these methods need not necessarily be associated
with an optimization routine, their comprehension is also aided by viewing (S1,2) as a joint problem over θ and q. The
methods have one practical downside that limits their scalability: similar to standard Metropolis-Hastings algorithms (e.g.
see Beskos et al. (2013); Vogrinc et al. (2022); Kuntz et al. (2019a,b) and references therein), the acceptance probability
degenerates with increasing latent variable dimensions Dx and the particle numbers N . This, in turn, forces us to choose
small step sizes h for large Dx and N , which leads to slow convergence. This is why we focused on the ‘unadjusted’
methods in the main text rather than the Metropolized ones in this appendix.

H.1 Marginal variants

Suppose that Assumpt. 2 holds and, for the sake of discussion, that the marginal likelihood θ 7→ pθ(y) has a unique
maximizer θ∗. Notice that the entire particle system (X1:N

k )∞k=0 := (X1
k , . . . , X

N
k )∞k=0 generated by PMGD (44) is a

Markov chain taking values in XN . Its kernel is given by

KN (x1:N , z1:N ) :=

N∏
n=1

Kθ∗(x1:N )(x
n, zn),

where Kθ denotes the ULA kernel in (82). (The precise form of Kθ is immaterial to the ensuing discussion as long as,
for each θ, Kθ is a Markov kernel on X .) Ideally, KN ’s stationary distribution would be

∏N
n=1 pθ∗(x

n|y) but (B1,2 in
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Algorithm 4 The marginal MH method.
1: Initial conditions: X1:N

0 := (X1
0 , . . . , X

N
0 ).

2: for k = 0, . . . ,K − 1 do
3: Propose: draw Z1:N = (Z1, . . . , ZN ) from KN .
4: Generate uniform R.V.: draw Uk from the uniform distribution on [0, 1].
5: if If Uk ≤ a(X1:N

k , Z1:N ), with a(·, ·) as in (101) then
6: Accept: set X1:N

k+1 := Z1:N .
7: else
8: Reject: set X1:N

k+1 := X1:N
k .

9: end if
10: end for

Sec. 2) preclude it. Correcting for this using an accept-reject step requires evaluating
∏N
n=1 pθ∗(x

n, y), which we cannot do
because θ∗ is unknown. We can, however, evaluate ρN (x1:N ) in (95) and instead add an accept-reject step with acceptance
probability

aN (x1:N , z1:N ) := 1 ∧
(
ρN (z1:N )KN (z1:N , x1:N )

ρN (x1:N )KN (x1:N , z1:N )

)
. (101)

Running Alg. 4, we then obtain a chain (X1:N
k )∞k=0 whose stationary distribution is given by ρN (x1:N )’s normalization,

πN (x1:N ) in (96). Under Assumpt. 2, πN (x1:N ) is the unique fixed point of the continuum limits of PGD, PQN, and
PMGD, see App. G. In other words, by imposing the accept-reject step, we have removed the (B1, Sec. 2) source of bias
(see Fig. 2c).

The other source, (B2, Sec. 2) due to the finite population size, remains, but it can be mitigated by growing N . In
particular, by its definition, θ∗(x1:N ) is invariant to permutations x1:N ’s components. Hence, the components of any
vector (X1, . . . , XN ) drawn from πN are exchangeable (similarly for (X1

k , . . . , X
N
k ) in Alg. 4). By chaos (e.g. Chaintron

and Diez (2022); Hauray and Mischler (2014)), we expect that, under appropriate technical conditions, there exists a
distribution π in P(X ) to which all of πN ’s marginals converge. It should follow that, under πN ,

1

N

N∑
n=1

δxn ≈ π ⇒ θ∗(x
1:N ) = θ∗

(
1

N

N∑
n=1

δxn

)
≈ θ∗(π),

with the above holding exactly in the N → ∞ limit. Marginalising (95,96) and taking limits we would then find that
π(x) ∝ pθ∗(π)(x, y). In other words, π satisfies the first order optimality condition for F∗ in Thrm. 5: ∇F∗(π) = 0. It
then follows from θ∗(q)’s definition and Thrm. 5, that θ∗(π) is a stationary point of θ 7→ pθ(y) and π is the corresponding
posterior pθ∗(π)(·|y). While we yet lack rigorous statements formalizing this discussion, it is easy to verify that it holds true
for analytically tractable models (e.g. App. G.1), and our numerical experiments seem to corroborate it further (e.g. Fig. 2c).

H.2 Joint variants

We can also mitigate (B1, Sec. 2) for PGD (Alg. 1) and PQN (Alg. 2) using a population-wide accept-reject step along the
lines of that in App. H.1. To begin, note that these algorithms are special cases of

θk+1 = u(θk, q
N
k ) with qNk :=

1

N

N∑
n=1

δXn
k
, (102)

X1:N
k+1 ∼ Kθk

N (X1:N
k , ·) with Kθ

N (x1:N , z1:N ) :=

N∏
n=1

Kθ(x
n, zn), (103)

where Kθ denotes a Markov kernel on X for each θ in Θ (in particular, the ULA kernel in (82), but this is once again
unimportant) and u denotes an update operator satisfying (80). Clearly, (θk, X1

k , . . . , X
N
k )∞k=0 forms a Markov chain with

transition kernel

KN ((θ, x1:N ), (dψ, dz1:N )) = δu(θ,δ̄x1:N )(dψ)K
θ
N (x1:N , dz1:N ) where δ̄x1:N :=

1

N

N∑
n=1

δxn .
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Algorithm 5 The joint MH method.
1: Initial conditions: θ0 and X1:N

0 := (X1
0 , . . . , X

N
0 ).

2: for k = 0, . . . ,K − 1 do
3: Propose: set ψ := u

(
θk, N

−1
∑N
n=1 δXn

k

)
and draw Z1:N from Kθk

N .
4: Generate uniform R.V.: draw Uk independently from the uniform distribution on [0, 1].
5: if Uk ≤ a((θk, X

1:N
k , (ψ,Z1:N )), with a(·, ·) as in (104) then

6: Accept: set θk+1 := ψ and X1:N
k+1 := Z1:N .

7: else
8: Reject: set θk+1 := θk and X1:N

k+1 := X1:N
k .

9: end if
10: end for

Emulating our steps in App. H.1, we impose an accept-reject step with acceptance probability

aN ((x1:N , θ), (z1:N , ψ)) := 1 ∧

(
Kψ
N (z1:N , x1:N )

Kθ
N (x1:N , z1:N )

N∏
n=1

pψ(z
n, y)

pθ(xn, y)

)
, (104)

so obtaining Alg. 5.

We have so far failed to obtain analytical expressions for the resulting chain’s stationary distributions. However, it is
straightforward to find heuristic arguments suggesting that, as N → ∞, the (θ, xn)-marginal, for any n, of these distri-
butions approaches measures of the form δθ∗(dθ)pθ∗(x

n|y)dxn, where θ∗ is a stationary point of the marginal likelihood.
In particular, note that the i.i.d. structure in Kθ

N ’s definition ensures that the particle system is exchangeable (hence,
X1
k , . . . , X

N
k all have the same law qk). By propagation of chaos (e.g. see Chaintron and Diez (2022)), it is reasonable to

expect that, for large N , the particle’s empirical distribution, qNk in (102), closely approximates qk:

qNk ≈ qk.

Suppose that the above holds exactly, and consider the resulting ‘idealized version’ (θ̃k, X̃1:N
k ) of the chain (θk, X

1:N
k )

produced by Alg. 5: just as in (102,103), except that the empirical distribution qNk in (102) is replaced by the exact law qk.
The idealized chain’s one-dimensional law µk(dθ, dx

1:N ) satisfies

µk+1(dψ, dz
1:N ) =

∫
µk(dθ, dx

1:N )P qkN ((θ, x1:N ), (dψ, dz1:N )), (105)

where the ‘idealized kernel’ P qN is given by

P qN ((θ, x1:N ), (dψ, dz1:N )) =aN ((θ, x1:N ), (ψ, z1:N ))δu(θ,q)(dψ)K
θ
N (x1:N , z1:N )dz1:N

+ [1− a((θ, x1:N ), (ψ, z1:N ))]δθ(dψ)δx1:N (dz1:N ).

It is then straightforward to show that, for any stationary point θ∗ of the marginal likelihood,

π∗
N (dθ, dx) := δθ∗(dθ)

N∏
n=1

pθ∗(x
n|y)dxn

is a stationary distribution of the idealized chain in the sense that

(θ̃0, X̃
1:N
0 ) ∼ π∗

N ⇒ (θ̃k, X̃
1:N
k ) ∼ π∗

N ∀k = 1, 2, . . . (106)

In particular, detailed balance holds: for any (θ, x1:N ) ̸= (ψ, z1:N ) satisfying

Kψ
N (z1:N , x1:N )

N∏
n=1

pψ(z
n, y) ≤ Kθ

N (x1:N , z1:N )

N∏
n=1

pθ(x
n, y), (107)

⇒ aN ((θ, x1:N ), (ψ, z1:N )) =
Kψ
N (z1:N , x1:N )

Kθ
N (x1:N , z1:N )

N∏
n=1

pψ(z
n, y)

pθ(xn, y)
, aN ((ψ, z1:N ), (θ, x1:N )) = 1,
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we have that, with π∗(·) := pθ∗(·|y),

π∗
N (dθ, dx1:N )Pπ∗

N ((θ, x1:N ), (dψ, dz1:N ))

= δθ∗(dθ)

(
N∏
n=1

pθ∗(x
n|y)

)
aN ((θ, x1:N ), (ψ, z1:N ))δu(θ,π∗)(dψ)K

θ
N (x1:N , z1:N )dx1:Ndz1:N

= δθ∗(dθ)

(
N∏
n=1

pθ∗(x
n|y)pψ(z

n, y)

pθ(xn, y)

)
δu(θ,π∗)(dψ)K

ψ
N (z1:N , x1:N )dx1:Ndz1:N

= δθ∗(dθ)

(
N∏
n=1

pθ∗(x
n|y) pψ(z

n, y)

pθ∗(x
n, y)

)
δu(θ∗,π∗)(dψ)K

ψ
N (z1:N , x1:N )dx1:Ndz1:N

= δu(θ∗,π∗)(dθ)

(
N∏
n=1

pθ∗(z
n, y)

pθ∗(y)

)
δθ∗(dψ)K

ψ
N (z1:N , x1:N )dx1:Ndz1:N

= δu(ψ,π∗)(dθ)

(
N∏
n=1

pθ∗(z
n|y)

)
δθ∗(dψ)K

ψ
N (z1:N , x1:N )dx1:Ndz1:N

= δu(ψ,π∗)(dθ)

(
N∏
n=1

pθ∗(z
n|y)

)
aN ((ψ, z1:N ), (θ, x1:N ))δθ∗(dψ)K

ψ
N (z1:N , x1:N )dx1:Ndz1:Nz

= π∗
N (dψ, dz1:N )Pπ∗

N ((ψ, z1:N ), (dθ, dx1:N )).

Reversing the roles of (θ, x1:N ) and (ψ, z1:N ), we find that the above also holds should the inequality (107) be reversed.
Because it holds trivially if (θ, x1:N ) = (ψ, z1:N ), integrating both sides over (θ, x1:N ), we find that∫

π∗
N (dθ, dx1:N )Pπ∗

N ((θ, x1:N ), (dψ, dz1:N )) = π∗
N (dψ, dz1:N );

and (106) follows from (105).
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