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CELL MEMBRANE FEATURE DETECTION USING GRAPH NEURAL NETWORKS

Edward Offord, E. Josiah Lutton, Till Bretschneider

Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom

ABSTRACT

Many cellular processes involve complex deformations of the
cell surface, which are difficult to automatically detect and
analyse in 3D microscopy images. One issue faced by mod-
ern machine learning methods is that 3D microscopy images
are large and require a high computational load to analyse. To
simplify this problem, we propose a graph convolutional neu-
ral network applied to a triangulated mesh of the cell surface,
where nodes are associated with geometric and intensity fea-
tures of biomarkers on or near the surface. Here, we focus on
identification of macropinocytic cups on the surface of Dic-
tyostelium cells, structures involved in the uptake of extracel-
lular fluid. The network classifies each node into belonging
to a cup or not, enabling subsequent studies of the detailed
distribution of molecules regulating fluid uptake in cells. We
show that a simple network architecture can identify key fea-
tures of the surface, suggesting that these methods have strong
potential for advancing the analysis of cell surface dynamics.

Index Terms— Macropinocytosis, Microscopy, Cell Bi-
ology, Graph Convolutional Neural Networks

1. INTRODUCTION AND RELATED WORK

The cytoplasmic membrane is fundamental in integrating cell
signalling and cellular mechanics. Recent advances in mi-
croscopy and whole-cell segmentation methods (for exam-
ple [1, 2, 3]) make it possible to capture highly complex dy-
namic cell surfaces in 3D, at an unprecedented level of detail.
However, analysis of the detailed structure of these surfaces
presents a major challenge. One option is to classify features
directly in 3D images [4, 5, 6], but restricting the problem to
analysing the cell surface as a triangulated mesh can dramat-
ically reduce the computational load. A linear SVM has been
shown to accurately classify simple motifs on cell surfaces,
but the surface needs to be split into convex patches first [7].

We propose the use of graph convolutional neural net-
works (GCNs) as the ideal tool for feature detection on the
closed surface mesh. GCNs are analogous to convolutional
neural networks used in image processing, but are able to ac-
count for the irregular structure of a graph [8]. Graph neural
networks have previously been applied to other biomedical
imaging problems (e.g. [9, 10]), and more broadly in bioin-
formatics [11].
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Fig. 1. Triangulated surface of a Dictyostelium cell with
macropinocytic cups, expressing fluorescent markers for PIP3
and actin. PIP3 is a signalling molecule localizing cups. Actin
is a cytoskeletal protein, providing the mechanical force to
shape cups. Vertex colours represent intensities for A: Actin;
B: PIP3; C: Areas of positive (red) and negative (blue) Gaus-
sian curvature; D: Actin (red) and PIP3 (green) channels
merged, cups encircled in black.

Here we use GCNs for segmenting crown-like structures
known as cups on the surface of a Dictyostelium cell, as
shown in Figure 1, which are involved in non-specific extra-
cellular fluid uptake (macropinocytosis [12]). Macropinocy-
tosis is used by cancer cells for feeding [13] and is a method
viruses and bacteria can hijack to enter cells [12], but despite
its medical relevance it has been poorly studied so far, owing
to its complex 3D dynamics making analysis difficult.

2. METHOD

2.1. Data acquisition and pre-processing

Dictyostelium cells expressing fluorescent markers for actin
and PIP3 were recorded with a lattice light sheet micro-
scope [14], yielding movies with planar pixel size 0.104 µm,
z-spacing 0.162 µm, and frame rate 2–3 seconds. Whole cell
segmentation was performed using the curvature-enhanced
random walker [1]. Triangulated surface meshes were gener-
ated from these segmented images using Matlab’s isosurface
function, giving meshes with approximately 105 vertices.
Fluorescence values were assigned to each vertex as outlined



Layer structure Input Output
Convolutional layer I/
PReLU/ dropout n× 6 n× 6

Convolutional layer II/
PReLU/ dropout n× 6 n× 4

Convolutional layer III/
PReLU/ dropout n× 4 n× 2

Convolutional layer IV/
sigmoid n× 2 n× 1 probability map

Table 1. Architecture of the GCN (n: number of nodes)

in [15]. Briefly, each vertex was assigned the maximum flu-
orescence value in each channel along a line scan normal to
the surface. Line scans were truncated so that distance to the
surface was always increasing along the line, preventing lines
reaching other parts of the surface. Surfaces were manually
annotated using MiCellAnnGELo [16], labelling the vertices
of all cups in each frame and recording the locations of the
centres of the cups. Binary vertex labels for the training set
are 1 if a vertex is inside a macropinocytic cup, 0 otherwise,
as shown in Figure 2A.

Graphs are defined by cell surface triangulations, with a 6-
dimensional feature vector assigned to each vertex (x/y/z co-
ordinates, two biomarker intensities, and Gaussian curvature).
Coordinates and intensities were normalized to [0, 1] within
each time frame. The surface in each time frame was rotated
randomly in 3 dimensions to prevent over fitting to coordinate
data. Curvature is calculated using the trimesh python library
(see [17] for details) without smoothing.

Two time-series containing 200 frames were processed as
above, and split into training (180), and testing (20) datasets.
From the training set 160 frames were used for training and
20 used for validation selected using 9-fold cross-validation.
Test samples were manually selected such that they are sig-
nificantly different from existing training data and have a high
proportion of macropinocytic cups, in order to ensure a vari-
ety of unseen cups are used for testing.

2.2. Architecture and Optimization

The GCN uses convolutional layers [18] developed for node
and graph classification, with the former being relevant here.
It consists of 4 graph convolutional layers, using PReLU (with
a parameter of 0.2) as a non-linear activation function, and
dropout layers in between (see Table 1). The convolutional
layers reduce the dimensionality of the feature vector until the
last layer outputs a probability value, utilizing a sigmoid acti-
vation function. To optimize the weights, Adam optimization
with a learning rate of 0.05 is used on a loss calculated from
binary cross entropy. The model was trained for 250 epochs.
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Fig. 2. A: Manually labelled input. Yellow: Macropinocytic
cups; purple: Background. B: Probabilities to be part of a
cup, predicted by the GCN model. C: Areas of the surface
in B above the threshold. D: Segmented cups, given as the
connected components of C above a minimum size.

2.3. Cup extraction

The model outputs a probability for each vertex of the mesh
to be part of a macropinocytic cup, as shown in Figure 2B.
For predicting cups on the surface, a threshold of 25% was
applied to the probability map. Figure 3 shows averaged line
profiles from the centre of a cup going outwards. As is ex-
pected, a probability of 50% is found at a distance where the
annotated label drops off from 1. Biologically, a cup is how-
ever better defined by the extension of its PIP3 domain. PIP3
is a phospholipid signalling molecule in the cell membrane
that regulates cup formation. The 25% probability threshold
approximately coincides with where PIP3 drops to the back-
ground level outside a cup. It also defines where we find a
good overlap between the ground truth cups and the predicted
cups. However, manual annotation of ground truth cups is
subjective and was done rather liberally, so that for the train-
ing set a small region outside of the cup boundary, which is
mostly discernible by its high curvature, was still included in
the annotation, as seen in Figure 2A. It is possible that the
prediction provided by the model is closer to a useful defini-
tion at a 50% threshold where the probability intersects with
the cup boundary defined by the highly curved rim.

Surfaces were then divided into connected components
with label 1 in the predicted labelling. Components contain-
ing fewer than 1% of the total number of vertices were dis-
carded. The remaining components represent separated pre-
dicted cups. An example of this method is shown in Figure 2.
The same process was applied to the manual labels for assess-
ing of individual cup detection accuracy in Section 3.1. Note
that multiple cups that are touching each other on the surface
are considered part of the same cup.



Fig. 3. Plot of the spatial distribution of features within cups,
against the model prediction (probability to be inside a cup).
Distances (geodesic) are given in units of image voxels. Flu-
orescence, curvature and annotated labels for each vertex are
plotted against their distance from the nearest cup centre.
Smoothing is applied as a moving average across each feature.
Cup boundary delineates the area within a cup, extending up
to the rim.

3. RESULTS AND DISCUSSION

3.1. Segmentation and detection

Results of the graph neural network are evaluated using the
cell segmentation benchmark [19] and the Hausdorff distance,
both adapted for application to surface feature detection. The
cell segmentation benchmark is a combination of a segmen-
tation score (SEG) and detection score (DET) used for com-
paring the accuracy of cell segmentation in images contain-
ing one or more cells. We apply this measure by considering
segmentation of each cup as analogous to that of a cell in
a multi-cell image, with mesh vertices replacing image pix-
els in this adaptation. The Hausdorff distance is a measure
of how far apart two sets are at most. We apply this to our
problem by again looking at each cup on the surface, using
geodesic distance to measure the difference between predic-
tion and ground truth.

The segmentation score (SEG) is based on the Jaccard in-
dex J(SGT , SP ) = |SGT ∩ SP |/|SGT ∪ SP |, for a predicted
cup vertex set SP and the ground truth cup vertex set SGT .
The SEG score also requires that the matching criterion

|SGT ∩ SP | > 0.5 · |SGT |

is met. The SEG score for a cup with ground truth ver-
tices SGT is 0 if no predicted cup satisfies the matching
criterion, otherwise it is given as J(SGT , SP ) for matching
a predicted cup with vertices SP . The final SEG score for a
frame is taken as the average over all ground truth cups. DET

Metric Mean Standard dev Min Max
SEG 0.79 0.04 0.71 0.86
DET 0.98 0.02 0.95 1.00
H 0.18 0.05 0.10 0.26

Table 2. SEG: Jaccard index of predicted cup regions
and ground truth cups. DET: accuracy of detecting cups.
H: Hausdorff distance

is calculated using:

DET = 1− min(AOGMD,AOGMD0)

AOGMD0

where AOGMD stands for Acyclic Oriented Graphs Match-
ing Detection, measuring the model’s ability to detect all im-
portant features in a single time frame, given by

AOGMD = NS + FN + FP,

where NS (node split) is the number of predicted cups
matched with more than one ground truth cup, FN (false neg-
ative) is the number of unmatched ground truth cups, and FP
(false positive) is the number of unmatched predicted cups.
AOGMD0 represents a score for a graph with no predicted
cups on the surface.

The Hausdorff distance is computed by comparing the
boundary vertices of the sets SGT and SP for all pairs of
sets meeting the matching criterion above. The distance from
some point p ∈ S to another set S′ on a surface M is given as

d(p, S′) = min
q∈S′

dM (p, q),

where dM is the geodesic distance on M . The Hausdorff dis-
tance H between SGT and SP is given by

H(SGT , SP ) = max{ max
p∈SGT

d(p, SP ),max
q∈SP

d(SGT , q)}.

To contextualise the result, the Hausdorff distance is calcu-
lated as a proportion of the diameter D of a predicted cup
with vertex set S, given by

D = max
p,q∈S

{d(p, q)}.

The Hausdorff distance for each time frame is the mean value
of H/D for all matched pairs SGT and SP .

Results are shown in Table 2, calculated across 20 un-
seen examples from a single time series. High DET values
recorded suggest that the trained model is able to correctly
identify macropinocytic cups with few errors and the SEG
score indicates these identified regions have significant over-
lap with the ground truth. The Hausdorff distance is relatively
high in these measurements, implying the cup boundary is
harder for the model to correctly identify.

For comparison, Ostu threholding [20] was applied to the
PIP3 channel of the test data, achieving mean scores of 0.44,



0.80, 0.35 across the SEG, DET and Hausdorff distance re-
spectively. A better result was obtained through manually
tuning a threshold value to the test dataset, (SEG = 0.75,
DET = 0.94, Hausdorff = 0.22), but as shown in Figure 4,
more complex cups cannot be fully characterised by PIP3 lev-
els. Furthermore, applying this threshold to other frames pro-
duced much worse results (in some cases SEG= 0.33, DET=
0.66). Comparison to more recent approaches (e.g. [4, 7])
was not practical in the current study due to the different data
formats required for these methods.

3.2. Macropinocytic cup analysis

By identifying macropinocytic cups on the cell surface it is
possible to analyse the distribution of different fluorescent
biomarkers associated with cups. An example can be found
in Figure 3 where, for each vertex, the geodesic distance from
the nearest manually identified centre of a macropinocytic cup
is recorded. Using this distance to sort the vertices, the fea-
tures PIP3, actin, and Gaussian curvature, along with man-
ual labels are compared with the predicted label probability
across the 20 unseen test examples. For clarification, each
feature is smoothed after sorting, calculated using a moving
average with a window of 5000 vertices, out of a total of ap-
proximately 105 vertices per frame.

Qualitative inspection helps determining the latent fac-
tors learnt by the model, and to confirm it is detecting re-
lationships in the data that a simpler method such as colour
thresholding could not achieve. Figure 4 shows two exam-
ples of paths through macropinocytic cups and their corre-
sponding fluorescence, label, and predicted label probabil-
ity values. The first one shows the model has learnt that
areas of high intensity fluorescence are strong indicators of
belonging to a macropinocytic cup, with the probability fol-
lowing closely the PIP3 profile. However, the more com-
plex second example shows, that PIP3 alone is not necessar-
ily a good proxy for defining cups. The prediction clearly
employs a non-linear combination of features, demonstrating
that GCNs are an ideal tool to tackle the problem of segment-
ing macropinocytic cups.

4. CONCLUSION AND FUTURE WORK

This paper demonstrates the utility of graph neural networks
to answer biological questions on cell surface dynamics. De-
spite a relatively simple architecture, the GCN applied to our
problem is able to successfully detect macropinocytic cups on
the cell surface, which using filters operating on the 3D vol-
ume data would be very difficult to achieve. The network is
able to segment these structures with reasonable accuracy, al-
though this problem is ill-defined due to the irregularity of the
cups making it difficult to produce ground truth annotations.

The two main results of this work are that 1) we are able to
count cups, with applications in, for example mutant classifi-
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Fig. 4. Measuring surface values of individual cups. Lines
drawn along the surface through two cups (A,C) with fluo-
rescence, prediction, and input label values recorded along
each line (B,D). While cup A shows prediction values closely
aligned with PIP3 fluorescence (B), this pattern is not fol-
lowed in the more complex cup C, as shown in D.

cation, and 2) by extracting macropinocytic cups we can track
how distributions of signalling molecules and their effectors
change over time, and analyse geometric features such as cup
area, size, and perimeter, as well as their life span. All these
measurements provide valuable insight into detailed mecha-
nisms of cup formation.

Building on this pilot study, we aim to utilise more com-
plex network architectures in the future to improve segmenta-
tion accuracy and extend the model to apply to other fluores-
cent markers. Gao and Ji, for example, show how popular U-
nets can be translated into the framework of GCNs [21]. Due
to the generalized nature of neural networks, this approach is
also applicable to other important biological problems, such
as cell migration.
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