
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

HpGAN: Sequence Search With Generative
Adversarial Networks

Mingxing Zhang, Zhengchun Zhou , Lanping Li , Zilong Liu , Meng Yang, and Yanghe Feng

Abstract— Sequences play an important role in many
engineering applications. Searching sequences with desired prop-
erties has long been an intriguing but also challenging research
topic. This article proposes a novel method, called HpGAN,
to search desired sequences algorithmically using generative
adversarial networks (GANs). HpGAN is based on the idea of
zero-sum game to train a generative model, which can generate
sequences with characteristics similar to the training sequences.
In HpGAN, we design the Hopfield network as an encoder
to avoid the limitations of GAN in generating discrete data.
Compared with traditional sequence construction by algebraic
tools, HpGAN is particularly suitable for complex problems
which are intractable by mathematical analysis. We demonstrate
the search capabilities of HpGAN in two applications: 1) HpGAN
successfully found many different mutually orthogonal comple-
mentary sequence sets (MOCSSs) and optimal odd-length binary
Z-complementary pairs (OB-ZCPs) which are not part of the
training set. In the literature, both MOCSSs and OB-ZCPs
have found wide applications in wireless communications and
2) HpGAN found new sequences which achieve a four-times
increase of signal-to-interference ratio—benchmarked against the
well-known Legendre sequences—of a mismatched filter (MMF)
estimator in pulse compression radar systems. These sequences
outperform those found by AlphaSeq.

Index Terms— Generative adversarial networks (GANs), Hop-
field network, mutually orthogonal complementary sequence set
(MOCSS), odd-length binary Z-complementary pairs (OB-ZCPs),
pulse compression radar.

I. INTRODUCTION

ASEQUENCE is a list of elements arranged in a specific
order. Good sequences form a core component of many

Manuscript received December 9, 2020; revised June 19, 2021 and
September 5, 2021; accepted November 1, 2021. The work of Mingxing
Zhang and Zhengchun Zhou was supported in part by the National Natural
Science Foundation of China under Grant 62071397 and Grant 62131016.
(Corresponding authors: Zhengchun Zhou; Yanghe Feng.)

Mingxing Zhang and Zhengchun Zhou are with the School of Information
Science and Technology, Southwest Jiaotong University, Chengdu 610031,
China, and also with the State Key Laboratory of Cryptology, Beijing 100878,
China (e-mail: mingxingzhang@my.swjtu.edu.cn; zzc@swjtu.edu.cn).

Lanping Li is with the School of Electrical Engineering and Informa-
tion, Southwest Petroleum University, Chengdu 610500, China (e-mail:
lilanping523@gmail.com).

Zilong Liu is with the School of Computer Science and Electronics
Engineering, University of Essex, Colchester CO4 3SQ, U.K. (e-mail:
zilong.liu@essex.ac.uk).

Meng Yang is with the School of Mathematics, Southwest Jiaotong Univer-
sity, Chengdu 610031, China (e-mail: mekryang@gmail.com).

Yanghe Feng is with the College of Systems Engineering, National
University of Defense Technology, Changsha 410073, China (e-mail:
fengyanghe@nudt.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3126944.

Digital Object Identifier 10.1109/TNNLS.2021.3126944

information systems. As rapidly evolving wireless mobile
communication technologies meet the increasingly stringent
and diverse requirements of various data services, it is critical
to design sequences with different properties. For example,
sequences with low autocorrelation are widely used in pulse
compression radars, sonars and channel synchronization of
digital communication [1]. Also, orthogonal sequence sets are
used to distinguish signals from different users in cellular
code-division multiple access (CDMA) systems [2].

In the open literature, sequences are commonly designed
by algebraists using mathematical tools such as finite field
theory, algebraic number theory, and character theory. How-
ever, in practical scenarios, it may be difficult to construct
sequences using specific mathematical tools. To facilitate
the use of mathematical tools, some constraints in terms of
sequence lengths, alphabet size, and set size may be imposed.
For example, Davis and Jedwab constructed polyphase Golay
complementary sets of sequences by generalized Boolean
function, but the sequence lengths are restricted to 2m, where
m is nonnegative integer numbers [3].

Algorithm design is another direction of obtaining good
sequences. A key issue here is whether good sequences can be
found within a reasonable time by algorithms. There are two
major types of sequence search algorithms: one is optimization
algorithms through specific mathematical analysis, and the
other is heuristic algorithms that generate high-quality solu-
tions in a reasonable time for practical use, although there is
no guarantee of finding a globally optimal solution [4]. A good
optimization algorithm can effectively find sequences with
guaranteed convergence [5]–[8]. However, such optimization
algorithms need to be carefully designed case by case and their
derivations may not be straightforward. Heuristic algorithms
are not so sensitive to specific problems and can handle
complex optimization problems efficiently, such as simulated
annealing [9], [10], evolutionary algorithm [11], [12], and
neural network [13].

In principle, deep learning is based on an architecture
of linearly weighted processing layers that are connected
mimicking the neurons in a human brain. In recent years,
deep learning has provided a significant improvement in per-
formance compared with conventional hand-crafted schemes
in many fields [14], [15]. Far more than merely a tool for
cognitive tasks such as image recognition, deep learning shows
great potential for applications in communication systems.
For instance, the end-to-end optimization of the physical
layer of a communication system by autoencoder has led to
enhanced performances than conventional solutions [16]–[21].

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0228-7119
https://orcid.org/0000-0003-3032-077X
https://orcid.org/0000-0002-5851-4261
https://orcid.org/0000-0003-1608-8695

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

In [17] and [18], the constellation mapping and demapping
of symbols on each subcarrier are determined adaptively
through an autoencoder in order to jointly optimize both the
bit error rate (BER) and the peak-to-mean envelope power
ratio (PMEPR) of an orthogonal frequency division multiplex-
ing (OFDM) system. In the field of communication security,
to prevent external intrusions, clustering algorithms have been
combined with neural networks to enhance the system’s ability
to detect abnormal data [19], [22], [23]. Moreover, deep
learning and reinforcement learning (RL) have been employed
to improve the spectrum allocation so as to avoid mutual
interference [24]–[29].

Deep learning has also received considerable attention in
the field of sequence design owing to its capability of approx-
imating complex nonlinear functions and various optimization
methods [30], [31]. In 2020, based on the basic framework of
AlphaGo, Shao et al. [30] proposed a new RL model AlphaSeq
to discover sequences. AlphaSeq treats the sequence discovery
problem as an episodic symbol-filling game, in which a
player fills symbols in the vacant positions of a sequence set
sequentially during an episode of the game. In [31], the deep
residual neural network constructed with the sequence metric
as the loss function showed better results than the existing
optimization algorithms. However, the above two methods are
limited in some special scenarios in which the design criteria
for good sequences are complex or may not be formulated
by a mathematical expression. In this work, we focus on
a novel network structure based on generative adversarial
networks (GANs) to tackle the aforementioned problem.

GAN is a class of generative models that have been pro-
posed by Goodfellow et al. [32]. GAN consists of a generative
net G and discriminative net D, the framework of which
corresponds to a minimax two-player game. Specifically, the
generative net G is used to capture the data distribution, whilst
the discriminative net D helps estimate the probability that
a sample came from the training data rather than G. This
approach has been widely applied in computer vision for
generating samples of natural images [33].

That being said, GAN is designed to generate real-valued
continuous data and may have some limitations when dealing
with discrete data. The reason is that the discrete output
of the generative model makes it difficult to transfer the
gradient update from the discriminant model to the generative
model [34], [35]. Yu et al. [35] proposed a generative model
SeqGAN that can generate discrete data. The SeqGAN directly
performs gradient policy updates to bypass the generator
differentiation problem. This is done by combining RL and
GAN, using the output of D as a reward for RL, and then
updating G with the policy gradient of RL. SeqGAN has
achieved remarkable successes in natural language (such as
speech language and music generation) by using recurrent
neural networks (RNNs) as the generator G. Similar to
AlphaSeq, SeqGAN generates a sequence by symbol filling,
where a symbol is generated each time with RNN guessing.
However, the discriminator D can only assess the reward of
the complete sequence, and cannot evaluate the reward of
the current generated partial sequence and its impact on the
subsequent generated complete sequence. Thus, to evaluate

the score for an intermediate symbol, the authors applied a
Monte Carlo search to sample the unknown last remaining
symbols. As a result, a high computational complexity may
be inevitable.

In this article, aiming for sequences that may be difficult to
generate with systematic constructions, we propose a new net-
work architecture called HpGAN. In HpGAN, we design the
encoder and decoder through the Hopfield network [36], [37],
where the encoder can convert discrete data into continuous
data, and the decoder can restore continuous data to discrete
data. The encoding module has two main functions: one is
to enable GAN to produce continuous data and the other is
to solve the problem of small samples faced by GAN. Both
the generative net G and the discriminative net D in HpGAN
are multiple layers of perceptron (MLP), which are easy to
implement with lower computational complexity than other
networks, such as convolutional neural networks (CNNs).

The major contributions of this work are summarized as
follows.

1) We have proposed a new GAN-based paradigm,
HpGAN, to discover binary sequences with the desired
correlation properties. In HpGAN, the Hopfield network
is adopted to design decoder and encoder, which solves
the problem of GAN in generating discrete sequences.
Since the encoder and decoder only require a few simple
vector operations, they can be readily applied to existing
frameworks with marginal training overheads.

2) We have employed HpGAN to search for the following
two classes of sequences that are not from the training
set.

a) Complementary and near-complementary
sequences that have found wide applications
in wireless communications such as interference
suppression and PMEPR reduction in multicarrier
CDMA (MC-CDMA) systems.

b) Phase-coded sequences for pulse compression
radar systems. The generated sequences dis-
play a significant improvement in performance
when compared with the well-known Legen-
dre sequences and the sequences generated by
AlphaSeq.

The remainder of this article is organized as follows.
Section II formulates the sequence search problem and out-
lines the framework of HpGAN. Sections III and IV present
the applications of HpGAN for Optimal Sequence Sets and
phase-coded sequences, respectively. Section V concludes this
article. Throughout this article, lowercase bold letters denote
vectors and uppercase bold letters denote matrices.

II. METHODOLOGY

A. Problem Formulation

Let C = {x1, x2, . . . , xM } denote a binary sequence set
which consists of M different sequences of the same length N ,
where the kth sequence is given by xk = [x1, x2, . . . , xN]T
with xi = {−1, 1} for all 1 ≤ i ≤ N . Let M(C) be a measure
of the goodness of sequence set C. Our objective is to find
a sequence set C∗ with the best M∗ with certain criteria.
For example, an optimal sequence set whose maximum cross

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: HpGAN: SEQUENCE SEARCH WITH GENERATIVE ADVERSARIAL NETWORKS 3

correlation meets the celebrated Welch bound is desired for
the mitigation of multiuser interference when it is applied in
CDMA. Exhaustive search of optimal binary sequence sets
may be infeasible due to the prohibitively high complexity of
O(2M N).

Let PC be the probability distribution function of all
sequence sets with M(C) ≤ ξ , i.e., PC = P(M(C) ≤ ξ),
where C ∈ � and � denote the solution space of all binary
sequence sets C. The problem of sequence search can be
transformed into the task of training a generative model G
to learn the probability distribution function PC . By doing so,
new sequence sets can be obtained with probability distribution
function PG . We adopt the idea of GAN by regarding the
task of learning the probability distribution function PC as
a zero-sum game. The core idea of GAN is based on Nash
equilibrium in game theory. It sets the two parties involved in
the game as a generator G and a discriminator D. The purpose
of the G is to learn the real data distribution PC as much as
possible, while the purpose of the D is to judge whether the
input data comes from PC or PG as much as possible. In order
to win the game, these two players need to constantly optimize
and improve their generating ability and discriminating ability,
respectively, until a Nash equilibrium is attained.

In general, the calculation of the metric function M(C) is
time-consuming. For some special scenarios, it may not be
possible to use mathematical formulas to accurately measure
the properties of sequences. Fortunately, GAN avoids the
above problems by learning the probability distribution PC of
the training sequences. In GAN, D and G play the following
two-player minimax game with value function V (G, D) [32]:
min

G
max

D
V (G, D) = EC∼PC(C)

[
log D(C)

]
+Ez∼Pz(z)

[
log(1− D(G(z)))

]
where z and Pz represent noise and noise probability distrib-
utions, respectively.

B. Methodology

It is necessary to obtain a large amount of training data
when searching sequences by GAN. It is easy to generate
sequences with good rather than the best M(C) as training
data by existing algorithms or constructions, such as stochastic
search methods. Unfortunately, the application of GAN suffers
from two problems. First, GAN is designed for generating
real-valued, continuous data but has difficulties in directly
generating sequences of discrete data, such as discrete phase
sequences. This is because in GANs, the generator starts
with random sampling, followed by a determistic transform,
according to the model parameters. As such, the gradient of
the loss from discriminant model D with respect to the outputs
by G is used to guide the generative model G (parameters) to
slightly change the generated value to make it more realistic.
If the generated data are based on discrete phases, the “slight
change” guidance from the discriminative net makes little
sense because there may be no corresponding phase for such
slight change in the limited dictionary space. Second, it is
difficult for GAN to learn the real distribution, when there
is a small amount of training data. Roughly speaking, the

Fig. 1. Iterative algorithmic framework of HpGAN. The training dataset is
iteratively updated to improve the search capability of GAN until equilibrium
is attained.

more sampled data we have, the closer the learned probability
distribution approaching the true one. However, even with
the existing algorithms or constructions, the available training
datasets are still very limited.

In this article, to address the above two difficulties,
we develop a new network framework called HpGAN by
combining Hopfield network and GAN, in which we design
an encode method to map binary sequences to a continu-
ous interval. Then we exploit the discrete Hopfield network
framework to decode the generated continuous datasets into
the binary ones when GAN reaches equilibrium. The overall
algorithmic framework of HpGAN is as shown in Fig. 1. First
of all, we generate a dataset through the existing algorithm
or structure as the initial sample dataset, compile the discrete
dataset into a continuous dataset by using the encoder and then
feed the encoded dataset into GAN. A generator G which can
generate data similar to the training data is obtained when
the GAN reaches the Nash equilibrium. Second, the generator
obtains a large amount of data and selects some good datasets
as new samples to update the initial samples. Through the
iterative process, GAN can progressively generate a better
dataset than the initial samples.

In what follows, we introduce these components and the
relationship between them in more detail.

1) Encoder: The encoder is designed not only to transform
discrete data into continuous data but also plays an important
role in expanding the training dataset. The encoder is defined
as follows.

Definition 1: Let SP = {x1, x2, . . . , x P } be a sample
dataset with P discrete sequences, then the corresponding
continuous sample is

y = 1

N

⎡
⎣ P∑

p=1

[
x p

(
x p

)T − I
]
− b

⎤
⎦ (1)

where N is the length of sequence x p, I , and b are the identity
matrix and bias vector, respectively.

In HpGAN, in order to eliminate the dimensional influence
between data features, we limit the data normalization to
[−1, 1], i.e., (1/N)

∑P
i=1[x p(x p)

T− I]. The bias vector b rep-
resents random noise, which is used to increase the tolerance
of encoding. Another advantage is to improve the exploration
ability of the model. The specific steps of the encoding process
are as follows.

1) Choose a number P less than N at random, i.e., P ≤ N ,
where N is a priori constant.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. DHNN architecture with three neurons, in which neuron i is connected
to neuron j with the weight wi j ∈ (−1, 1), and bi is the bias of neuron i .
Each neuron is connected to all neurons of the network.

2) Choose P samples in S at random, and transform them
into continuous sample by (1).

3) Repeat the above steps until enough datasets are gener-
ated.

In this way, we can obtain sufficient different datasets
to effectively solve the problem of small samples.
In Section II-B.2, we will explain the validity of continuous
datasets.

2) Decoder: In this section, we introduce our designed
decoder based on the discrete Hopfield neural net-
work (DHNN) framework. DHNN is a single-layer full feed-
back neural network with n neurons. Fig. 2 shows a DHNN
architecture with three neurons, where wi j denotes the weight
value connecting neuron i to neuron j and bi is the bias of
neuron i . xi is called the state of neuron i , and the set x =
{x1, x2, x3} of all neuron states constitutes the state of feedback
network. The input of the feedback network is the initial value
of the network, which is expressed as x(0) = {x (0)

1 , x (0)
2 , x (0)

3 }.
In the dynamic evolution process of the network from the
initial state x(0), the state transition rule of each neuron can
be expressed as follows:

x j = f
(
net j

)
, j = 1, 2, 3 (2)

where f (·) denotes the activate function. Specifically, the
symbolic function is used as f (·) in DHNN, that is,

f
(
net j

) = sgn
(
net j

) =
{

1, net j ≥ 0

−1, net j < 0.
(3)

The neti is the net input of neuron i , which be defined as

net j =
n∑

j=1

(
wi j xi − bi

)
, i = 1, 2, 3 (4)

where wi i = 0, wi j = w j i .
In DHNN, there are two dynamic evolution methods: syn-

chronous update and asynchronous update. In the synchronous
update mode, all neurons in the network adjust the state
at the same time. In contrast, in the asynchronous update
mode, only one neuron state is adjusted while the others
remain unchanged. In general, DHNN evolves faster in the

synchronous update mode, but it is easy to fall into an infinite
loop, and the opposite is true in asynchronous update mode.
Example 1 shows the detailed steps of the above two update
modes.

Example 1: Let us consider a DHNN with the same tran-
sition architecture illustrated in Fig. 2. The weight matrix and
bias vector are W , b, respectively, where

W =
⎡
⎣ w11 w21 w31

w12 w22 w32

w13 w23 w33

⎤
⎦ =

⎡
⎣ 0 −0.5 0.2
−0.5 0 0.6
0.2 0.6 0

⎤
⎦

b = [b1, b2, b3] = [−0.1, 0, 0.1]. (5)

Let the initial state of DHNN be x(0) = {x (0)
1 , x (0)

2 , x (0)
3 } ={1,−1, 1}. Then, for the two update methods, the next state

of the network is as follows:
In the synchronous update mode, the next state is

x(1) = {x (1)
1 , x (1)

2 , x (1)
3 }, where

⎡
⎣ x (1)

1

x (1)
2

x (1)
3

⎤
⎦ = f

⎛
⎝W ·

⎡
⎣ x (0)

1

x (0)
2

x (0)
3

⎤
⎦−

⎡
⎣ b1

b2

b3

⎤
⎦

⎞
⎠ =

⎡
⎣ 1

1
−1

⎤
⎦. (6)

In the asynchronous update mode, we randomly select a
neuron to update its state, assuming x (0)

1 is selected, then the
next state x(1) = {x (1)

1 , x (1)
2 , x (1)

3 }, where

x (1)
1 = f

(
w11 · x (0)

1 +w21 · x (0)
1 + w31 · x (0)

1 − b1

)
= −1

x (1)
2 = x (0)

2 , x (1)
3 = x (0)

3 . (7)

In [37], the concept of the energy function is introduced into
the Hopfield neural network, which provides a reliable basis
for judging the stability of network operation. The running
process of DHNN is the evolution of states by dynamics. For
an arbitrary initial state x(0), it evolves in the way of energy
reduction, and finally reaches a stable state x. The stable
state x is called the Hopfield network attractor which satisfies
x = f (W x − b), where W and b are weight matrix and bias
vector, respectively. The key of Hopfield as a decoder is how
to effectively decode the continuous data y in Definition 1
into discrete sequence xi . In this work, the sequence xi is
used as the attractor of the Hopfield network to solve this
problem. Furthermore, we propose Theorem 1 below to ensure
the feasibility of Hopfield network decoding.

Theorem 1: Let X P = {x1, x2, . . . , x P } be a sequence set,
which consists of P binary sequences with same length N .
Then in the synchronous update mode, the sequences x p or
−x p, p = 1, 2, . . . , P , are the attractors of the DHNN with
the weight matrix W =∑P

p=1[x p(x p)
T−I] and no bias terms,

that is

f
(
W x p

) =
{

x p, (N − P) − (m1 + m2 + · · · + m P) ≥ 0

−x p, (N − P) − (m1 + m2 + · · · + m P) < 0

(8)

where mk = (xk)
T x p, k = 1, . . . , p − 1, p + 1, . . . , P and

f (·) be the symbolic function.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: HpGAN: SEQUENCE SEARCH WITH GENERATIVE ADVERSARIAL NETWORKS 5

Proof: Since each symbol of the sequence set X is 1 or −1,
we have

(xk)
T x p =

{
mk, p �= k

N, p = k,
k = 1, 2, . . . , N (9)

where −N ≤ m p ≤ N . Thus, we have

W x p

=
P∑

k=1

[
xk(xk)

T − I
]
x p =

P∑
k=1

[
xk(xk)

T x p − x p
]

= x1(x1)
T x p + · · · + x p

(
x p

)T
x p + · · · + x P(x P)T x p

− Px p

= (m1x1 + m2x2 + · · · + m P x P)+ (N − P)x p. (10)

Since each symbol of sequences is 1 or −1, (8) can be
rewritten as

f
(
W x p

)
= f

[
(m1x1 + m2x2 + · · · + m P x P)+ (N − P)x p

]
= sgn

[
(m1x1 + m2x2 + · · · + m P x P)+ (N − P)x p

]
=

{
x p, (N − P)− (m1 + m2 + · · · + m P) ≥ 0

−x p, (N − P)− (m1 + m2 + · · · + m P) < 0.
(11)

This completes the proof. �
Remark 1: In the asynchronous update mode, the equation

in Theorem 1 is written as

f
(
W x p

)
=

{
x p, (N − P) − (m1 + m2 + · · · + m P) ≥ 0

x̂, (N − P) − (m1 + m2 + · · · + m P) < 0
(12)

where x̂ does not belong to the sequence set X P , meaning
that DHNN converges to attractors other than X P . It is easy
to see that the smaller of P , the greater the probability that
x p is the attractor of DHNN.

If DHNN evolves in an asynchronous update mode, when
weight matrix W is a symmetric matrix, the network will
converge to an attractor. However, when the network evolves in
a synchronous update mode, W must be a nonnegative definite
symmetric matrix, otherwise the network may oscillate [39].
Therefore, in this work, we selected a suitable P through
experiments and adopted a generalized asynchronous update
mode. Specifically, DHNN randomly updates the state of k
neurons every time it evolves to avoid the drawbacks of
synchronous and asynchronous update modes.

In HpGAN, DHNN is designed through the weight W ,
which is the continuous matrix that generated by the decoder
with P suitable binary sequences. It can be guaranteed that the
decoder can successfully map to the original binary sequences
when DHNN converges to a stable state by Theorem 1.
Example 2 visually shows a basic process of HpGAN.

Example 2: Consider a binary sequence set C =
{x1, x2, . . . , xM} which consists of M different sequences of
the same length N = 3. Randomly select P sequences from
C and encode them as continuous data W , where we assume

P = 2, x1 = [1, 1,−1], x2 = [1,−1, 1]. By Definition 1 (no
bias terms), we have

W =
⎡
⎣ 0 0 0

0 0 − 2
3

0 − 2
3 0

⎤
⎦ (13)

then feed continuous data W as training data into GAN. When
GAN reaches equilibrium, GAN generate a new continuous
data W � which is similar to W . We assume

W � =
⎡
⎣ 0.01 0 0

0 0 −0.65
0 −0.67 0

⎤
⎦ (14)

and exploit it as the weight matrix of DHNN with three
neurons. Through the dynamic evolution of DHNN, we can
know that for any initial state, when DHNN is stable, DHNN
will always converge to x1 or x2.

Remark 2: It is also feasible to design encoders and
decoders with other neural networks, such as autoencoders.
Two specific reasons for choosing Hopfield networks over
other encoders/decoder for discretization are:

1) DHNN is easy to build and very convenient to update
the training set. Specifically, the weights and biases of
the DHNN can be designed with simple multiplication
calculations, instead of long training.

2) DHNN has good interpretability with a guaranteed
decoding rate.

Overall, in one iteration, there are three main steps.

1) All 2-D continuous data generated by the encoder are
used as training data of GAN.

2) GAN model is trained until it reaches Nash equilibrium.
3) The generator generates continuous 2-D data and con-

verts it into binary sequences by the decoder.

Since GAN can generate data with similar characteristics to
training data, i.e., |M(CTrain) −M(CGAN)| < ε, where ε is a
constant, M(CTrain) and M(CGAN) are the metric of training
data and generate data, respectively. In the next iteration,
we update the initial binary sequences with the generated
better ones. For example, to minimize M(C), we replace CT1

in the training set with CG1, when M(CG1) < M(CT1), where
CT1 ∈ M(CTrain) and CG1 ∈ M(CGAN). In this way, the
sequences in the training set get improved after every iteration,
and intuitively the average metric M̄(C) of the training set
gradually decrease. Therefore, the sequences generated by
GAN also gets improved after every iteration. The pseudocode
for HpGAN is given in Algorithm 1.

In Sections III and IV, we demonstrate the searching
capabilities of HpGAN in two applications: in Section III,
we use HpGAN to search some complementary and
near-complementary sequences which are not from the training
set; in Section IV, we use HpGAN to search new phase-coded
sequences for pulse compression radar systems. In the two
applications, in order to highlight the advantages of discrete
sequences generated by HpGAN, we compare the binary
sequences generated by GAN and HpGAN, respectively.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 HpGAN
Initialization:

Generate a binary sequence set S as training dataset
through existing algorithms or constructions.
Initialize the parameters W and b of GAN.

while 1 do:
1: Generate the continuous training dataset Scon by the

encoder.
2: Train GAN with the continuous dataset Scon.
3: Generate continuous dataset SGAN by the generator,

until GAN reaches Nash equilibrium.
4: Transform SGAN into binary sequences Sbin by the

decoder.
5: Compute metric M(CGAN), and select M sequences with

good M(C) to update a new dataset Snew, where CGAN ∈
Sbin.
6: Update dataset, i.e., S ← Snew.
end

III. HPGAN FOR COMPLEMENTARY AND

NEAR-COMPLEMENTARY SEQUENCES

Golay complementary pairs (GCPs) were proposed by
Golay in his work on infrared spectrometry in 1949 [40],
where their mathematical properties were studied in 1961 [41].
The existing known binary GCPs only have even-lengths in
the form of 2α · 10β · 26γ where α, β, γ are nonnegative
integers satisfying α + β + γ ≥ 1 [42], [43]. Motivated by
the limited admissible lengths of binary GCPs, Fan et al. [44]
proposed “Z-complementary pair (ZCP)” which features zero
aperiodic auto-correlation sums for certain out-of-phase time-
shifts around the in-phase position. Such a region is called a
zero-correlation zone (ZCZ). Up to date, GCPs and odd-length
binary ZCPs (OB-ZCPs) have found numerous applications
in wireless engineering such as radar sensing [45], channel
estimation [46], synchronization in 3G standard [47], and
PMEPR reduction [3], [48]. The concept of complementary
pairs was extended later to mutually orthogonal complemen-
tary sequence set (MOCSS) [49], which are widely used in
MC-CDMA systems to eliminate multipath interference and
multiuser interference [50], [51].

Let us consider a MOCSS C = {cm
j (n) : j = 0, 1, . . . , J −

1;m = 0, 1, . . . , M−1; n = 0, 1, . . . , N−1} which have zero
auto- and cross correlation sum properties for all nontrivial
nonzero time shifts. Specifically.

1) Ideal Aperiodic Auto-Correlation Function (AAF): For
the M sequences assigned to a user j , i.e., {cm

j : m =
0, 1, . . . , M−1}, the sum of the AAF of these sequences
is zero for any nonzero shift

AAF j(τ) =
M−1∑
m=0

N−1−τ∑
n=0

cm
j (n)cm

j (n + τ) = 0 (15)

where delay τ = −N + 1, . . . , N − 1, τ �= 0. Any
sequence in this set is called a complementary set
sequence (CSS). In particular, when M = 2, the set
is called a GCP, and any constituent sequence in this
pair is called a Golay sequence (GS) [49].

2) Ideal Aperiodic Cross Correlation Function (ACF): For
two flocks of complementary codes assigned to users j1
and j2, i.e., {cm

j1
, cm

j2
: m = 0, 1, . . . , M − 1}, the sum

of their ACFs is always zero irrespective of the relative
shift

ACF j1, j2(τ) =
M−1∑
m=0

N−1−τ∑
n=0

cm
j1(n)cm

j2(n + τ) = 0 (16)

where τ = −N + 1, . . . , N − 1 and j1 �= j2.

Some known constructions of MOCSS are available in [52].
In Section III-A, we make use of HpGAN to search MOCSS.
Our goal is to investigate and evaluate the capability of
HpGAN, i.e., whether it can search for some MOCSSs which
are not in the training dataset.

A. HpGAN for MOCSSs

In this section, we use HpGAN to search MOCSSs. As men-
tioned above, a MOCSS should satisfy (15) and (16) at the
same time. Hence, we consider the following metric function
M(C) which is the sum of all the nontrivial aperiodic auto-
and cross correlation squares of a sequence set C:

1) Metric Function: For a binary sequence set C = {xm
j (n) :

j = 0, 1, . . . , J − 1;m = 1, 2, . . . , M − 1; n = 0, 1, . . . , N −
1; xm

j (n) ∈ {−1, 1}} consisting of M J sequences of same
length N , the metric function M(C) is defined below

M(C) =
J−1∑
j=0

N−1∑
τ=−N+1

|AAF j (τ)|

+
J−1∑
j1=0

J−1∑
j2= j1+1

N−1∑
τ=−N+1

|ACF j1, j2(τ)|. (17)

For MOCSSs, it is desired to have M∗ = inf M(C) = 0.
Our goal is to demonstrate the effectiveness of HpGAN by
generating new MOCSSs.

2) Training Dataset: Generating sufficient training data
is a prerequisite of using HpGAN, and the quality of the
training sequence sets determines the performance of HpGAN.
In this article, we exploit some known constructions in [12] to
generate a training datasets Strain, which contains 200 different
MOCSSs, where M(C) = 0, C ∈ Strain and J = 2,
M = 2, N = 8 for each C.

3) Encoder: We regard each sequence set C as a sequence
of length 32. Based on Definition 1, we design an encoder
to convert discrete data into continuous data. Specifically,
we generated 500 continuous data as the training dataset of
GAN by (1) with random P and b. In general, the larger of
P and b, the more samples can be generated, but the lower
the decoding accuracy. From Fig. 3, we can see that there is
a decoding accuracy when both P and b take relatively small
numbers. Therefore, considering the diversity of generated
data and the decoding accuracy, we set P ≤ 4 and b ∈ [0, 0.4]
in HpGAN.

4) GAN: Both the generative model G and the discriminant
model D in HpGAN are implemented by multilayer percep-
trons. Each perceptron contains three layers of neurons: input
layer, hidden layer, and output layer. The input of the generator

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: HpGAN: SEQUENCE SEARCH WITH GENERATIVE ADVERSARIAL NETWORKS 7

TABLE I

PARAMETERS OF HPGAN

Fig. 3. Illustration of the decoding accuracy with the two parameters P and
bias. (a) Decoding accuracy with the change of parameter P . (b) Decoding
accuracy with the change of parameter b.

is a random noise vector z, where z obeys uniform distribution,
i.e., z ∼ U(−1, 1). In the process of training GAN, the
minibatch size was set to 100, and we randomly sampled five
minibatches without replacement from the 500 continuous data
to train the GAN. The parameter settings of HpGAN are listed
in Table I. OG and ID were set to 1024. Since the perceptron
model can only process 1-D data, we converted all training
data into 1-D data with a length of 32 × 32 and fed them into
HpGAN. The discriminator is equivalent to a two-class model,
thus OD was set to 1. Other parameters may be modified
according to the effectiveness of the model.

5) Decoder: The decoder is a DHNN with 32 neurons
which uses the generated data as its weight matrix and then
decodes the generated data through the dynamic evolution of
DHNN. We employ asynchronous updates to evolve DHNN.
Specifically, during each update of DHNN, only five neurons
are randomly selected to update. For example, when only one

neuron i is updated, the evolution formula of DHNN is as
follows:

x j(t + 1) =
{

sgn
(
net j(t)

)
, j = i

x j(t), j �= i,
j = 1, 2, . . . , n. (18)

By this method, the search space can be increased, making
it easier to get better results.

B. Performance Evaluation

We evaluated the search performances of HpGAN on a PC
with Intel Xeon W-2125 CPU at 4 GHz and 16 GB RAM.
In this experiment, the number of iterations of the network was
set to 104. In each iteration, we calculated the loss values of the
generative model and the discriminant model to observe the
convergence of HpGAN. To monitor the evolution of HpGAN,
we evaluated the search ability of HpGAN every 100 iterations
by calculating the metric M(C) of 100 sequence sets generated
by the current generator. We exploited the minimum metric
min[M] and the mean metric E[M] in the generated sequence
sets to reflect the search effect and search trend of HpGAN.

We have compared the performances of HpGAN and GAN
in sequence generation tasks to demonstrate the necessity of
encoding in HpGAN. We have used the MOCSSs as training
data and fed it to GAN without encoding, where GAN and
HpGAN have the same structure. The loss values of the
generator and discriminator of HpGAN and GAN are shown
in Figs. 4 and 5, respectively. It can be seen from these two
figures that after 2500 iterations, the loss values of the HpGAN
discriminator gradually decrease and converge, and the loss
values of the generator gradually become flat. However, the
loss values of GAN do not converge, but exhibit an exponential
growth trend.

Next, we compare the sequence set generation effects of
HpGAN, SeqGAN, and GAN, as shown in Fig. 6, where
triangles and circles, respectively, represent the min[M] and
E[M] in the generated 100 sequence sets; the blue, green,
and red lines represent the sequence set generation process
of GAN, SeqGAN, and HpGAN, respectively. As shown in
Fig. 6, after 2500 iterations, the min[M] of HpGAN reaches
the optimal value, and its E[M] shows a decreasing trend
with network iterations. However, the min[M] and E[M]
of the sequence sets generated by GAN are not significantly
improved. This shows that it is difficult for GAN to learn the
effective features of the training sequences, when GAN is used
to directly train binary sequences without encoding. Similar to
GAN, with the continuous training of SeqGAN, the min[M]

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Loss values of the generator and the discriminator of HpGAN with
the change of the number of iterations. After 2500 iterations, the values of the
generative model and the discriminant model tend to be flat. (a) Loss values
of the discriminator with the change of the number of iterations. (b) Loss
values of the generator with the change of the number of iterations.

and E[M] of the generated sequence set fluctuate within a
certain range. Although the effect of SeqGAN in generating
sequence sets is better than that of GAN, it can also be seen
that it has not learned the effective features of the sequence at
present. Over the course of training, HpGAN generated 10 000
sequence sets, from which we found 119 different MOCSSs
with M(C) = 0, and none of these sequence sets belong to
the training sequence sets.

It is worth noting that the purpose of HpGAN is to train
the generator to learn the probability distribution function
PC of the training data C so that it can generate data with
similar characteristics to the training data. Once the training
is completed, we can directly use the generator to quickly
generate a large amount of new data without retraining.
To prevent the problem of mode collapse in HpGAN, during
the training of HpGAN, we denote the number of different
sequence sets in the 100 sequence sets generated each time
as d . From Fig. 7, the diversity of the generated sequence
will decrease as the network continues to be trained, but after
the network is trained 10 000 times, the difference rate of the
HpGAN generated sequence set is still above 50%.

C. HpGAN for Optimal and Suboptimal OB-ZCPs

In this section, to further demonstrate that the sequences
generated by HpGAN may not be produced by systematic
construction, we search optimal and suboptimal OB-ZCPs by
HpGAN. In this experiment, we constructed 128 of OB-ZCPs

Fig. 5. Loss values of the generator and discriminator of GAN. During the
training process, the loss values of the discriminator gradually approaches
zero, while the loss values of the generator show a rapid increase. (a) Loss
values of the discriminator with the change of the number of iterations.
(b) Loss values of the generator with the change of the number of iterations.

Fig. 6. Comparison among the min[M] and E[M] of the sequence set
obtained through GAN, SeqGAN, and HpGAN.

of length 15 by the approach in [53] as the training data. This
was done by deleting the first or last element of the binary
GCPs of length 16. In the training data, the maximum ZCZ
length of all OB-ZCPs is 4. In addition, the minimum PMEPR
(interested readers may refer to [3], [48], [53] and references
therein for more details) of each sequence in the training data
is 1.7272. We designed HpGAN whose network structure and
parameters are the same as those of HpGAN when searching
for MOCSSs in Section III-A.

After the experiment, we found 140 OB-ZCPs, where none
of them belong to the training data. In particular, an opti-
mal Type-I OB-ZCP sType-I, Type-II OB-ZCP sType-II and

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: HpGAN: SEQUENCE SEARCH WITH GENERATIVE ADVERSARIAL NETWORKS 9

Fig. 7. In the training of HpGAN, the number of sequence sets that are
different from each other in 100 sequence sets generated by HpGAN each
100 iterations.

suboptimal OB-ZCP ssuboptimal found by HbGAN as shown at
the bottom of the page.

A plot of their individual aperiodic auto-correlation sum
magnitudes is shown in Fig. 8. One can see that the sType-I and
sType-II are optimal. A suboptimal OB-ZCP ssuboptimal found by
HpGAN is shown in Fig. 9. HpGAN also found the sequence
with PMEPR metric PMEPR(sPMEPR) ≈ 1.6667, as shown at
the bottom of the next page, which is better than any sequence
in the training data.

IV. HPGAN FOR PULSE COMPRESSION RADAR

In modern complex applications, the radar is required to
have a large detection range and high resolution. However, for
a pulsed radar system that transmits a fixed carrier frequency,
its resolution is inversely proportional to the transmitted
pulsewidth. Thus, there is a tradeoff between distance and
resolution. Pulse compression radar can take into account the
detection range and resolution at the same time by modulated
pulses [30], [54], [55]. The key is to use modulated pulses
(e.g., phase-coded pulse) rather than conventional nonmodu-
lated pulses.

Let s be a binary probing sequence of length N , and y
denotes the received sequence of length N . Let {hn}N−1

n=−N+1,n �=0
denote the corresponding amplitude coefficients for the adja-
cent range bins or clutter patches. Jn denote a shift matrix
that takes into account the fact which the clutter returns from
adjacent range bins need different propagation times to reach
the radar receiver [55]

Jn =

⎡
⎢⎢⎢⎢⎢⎣

n︷ ︸︸ ︷
0 · · · 0 1 0

. . .

1
0

⎤
⎥⎥⎥⎥⎥⎦

N×N

= JT
−n, n = 1, 2, . . . , N − 1. (19)

Fig. 8. AAF sum magnitudes of OB-ZCP sType-I, OB-ZCP sType-II and
suboptimal OB-ZCP ssuboptimal, respectively. (a) For Type-I OB-ZCP sType-I.
(b) For Type-II OB-ZCP sType-II. (c) For suboptimal OB-ZCP ssuboptimal.

Following the definition in [55] and [56], after subpulse-
matched filtering (MF) and analog-to-digital conversion,
we can write the received sequence y as:

y = h0s +
N−1∑

n=1−N,n �=0

hnJn s + w (20)

where w denotes the additive white Gaussian noise (AWGN).
Given the received sequence y, the radar’s objective is

to estimate h0, where h0 corresponds to the range bin of
interest. To this end, the operation of a conventional receiver

sType-I =
[−1 −1 +1 −1 −1 +1 −1 −1 −1 +1 −1 +1 −1 +1 +1
−1 +1 +1 +1 +1 −1 −1 −1 +1 +1 −1 +1 +1 +1 +1

]

sType-II =
[−1 +1 −1 +1 −1 −1 −1 −1 +1 +1 −1 +1 +1 −1 −1
+1 +1 +1 +1 +1 −1 +1 +1 +1 −1 −1 −1 +1 +1 −1

]

ssuboptimal =
[−1 +1 +1 −1 −1 +1 +1 +1 −1 −1 −1 −1 −1 +1 −1
−1 −1 +1 −1 +1 −1 −1 −1 −1 −1 −1 +1 +1 −1 +1

]
.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

is described by the following equation [38], [55]–[59]:

ĥ0 = sT y
sT s
= h0 +

N−1∑
n=1−N,n �=0

hn
sT Jn s
sT s

(21)

where the AWGN is ignored since the received signal is
interference-limited. Because h0 and {hn}N−1

n=−N N+1,n �=0 are
unknown, it is reasonable to define the signal-to-interference
ratio (SIR) ϒMF at the output of the above receiver is as
follows:

ϒMF =
(
sT s

)2∑N−1
n=1−N,n �=0

(
sT Jn s

)2 . (22)

There is a rich body of literature on maximizing ϒMF over
the set of binary sequences, which is referred to as the well-
known “merit factor problem” [57]–[61]. For such sequences,
the best-known merit factor of 14.08 is achieved by the Barker
sequence of length 13 [62].

In the presence of Gaussian white noise, the above MF
estimator can provide the largest signal-to-noise ratio (SNR).
However, some clutters may cause interference to the received
information, especially in the scene of weak target detection.
Hence, interference suppression is important. This motivates
the design of mismatched filter (MMF) estimators to suppress
the interference of clutter [55], [56], [63].

The MMF estimator uses a general real-valued sequence x
instead of the phase sequence s, and correlates the received
sequence, giving

ĥ0 = xT y
xT s
= h0 +

N−1∑
n=1−N,n �=0

hn
xT Jn s
xT s

. (23)

The receiver optimizes x by maximizing the following
formula:

ϒMMF =
(
xT s

)2∑N−1
n=1−N,n �=0

(
xT Jn s

)2 . (24)

It has been shown in [56] that, given a phase code s, the
optimal sequence x that maximizes ϒMMF is x∗ = R−1s,
where matrix R is given by

R =
N−1∑

n=1−N,n �=0

Jn ssT JT
n . (25)

Substituting x∗ = R−1s into (24), we have

ϒMMF = sT R−1s. (26)

Note that ϒMMF only depends on the phase code s. Hence,
the objective for the design of the MMF estimator is then to
discover a phase-code s that can maximize ϒMMF in (26).

A. HpGAN for Pulse Compression Radar

In this section, we use HpGAN to search the phase
sequences for pulse compression radar which maximize the
metric M(s). The metric M(s) is defined as

M(s) = sT R−1s (27)

where matrix R is given by (25).
Massive training data is a necessary condition for HpGAN.

Unfortunately, there are no suitable mathematical construc-
tions that can generate a large number of sequences with good
metric M(s) with an identical length. For this, we employed a
genetic algorithm (GA) to generate 250 different sequences as
the training sequences of HpGAN. In the GA, we used random
sequences as parents and then searched for sequences through
crossover, mutation, and selection operations where the fitness
function is the metric M(s). For the MMF estimator, these
sequences which are generated by GA yielded SIR ϒMMF ∈
[10, 21].

For this application, the main architecture of HpGAN is
similar to that of the network in Section III. Major differences
in the specific design and parameter selection are summarized
as follows.

1) In the encoder, we aim to increase the diversity of
encoded sequences while ensuring high decoding accu-
racy. Therefore, the number of sample sequences in
definition 1 is set to P ≤ 8, because of the larger
sequence length than that in Section III, whilst the bias
vector is still set to b ∈ [0, 0.4].

2) Since we need to convert the encoded 2-D sequences
into 1-D and then feed it into the GAN, the length of
the training sequences is 59 × 59. A simple perceptron
model is difficult to effectively extract the characteristics
of the training data. Therefore, we use a multilayer
perceptron as the generative model and discriminant
model in HpGAN, in which each perceptron contains
two hidden layers in this experiment. The parameters
settings are listed in Table II.

3) In this experiment, our goal is not to generate sequences
similar to the initial training sequences but to generate
sequences that are better than the initial sequences. How-
ever, training the network with only initial sequences
cannot achieve our goal, because the principle of GAN
is to generate data with similar characteristics to the
training data. In this regard, the sequences that we
generate during network training are better than the
initial sequences, as new training sequences update the
initial sequences. Moreover, after every 2500 iterations
(according to our experience, the model reaches equilib-
rium after 2500 iterations), we exploit the current model
to generate a new sequence set Snew to update the initial
training sequence set Sinit, i.e., Sinit ← Snew.

sPMEPR =
[−1 −1 −1 +1 +1 +1 −1 +1 −1 +1 −1 −1 +1 −1 −1

]

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: HpGAN: SEQUENCE SEARCH WITH GENERATIVE ADVERSARIAL NETWORKS 11

TABLE II

PARAMETERS OF HPGAN

B. Performance Evaluation

In the experiment, HpGAN was executed 2× 104 iterations
to train the model in order to generate better sequences.
According to our testing experience, GAN reached equilibrium
after about 2500 iterations. Furthermore, after 2500 iterations
of GAN, GAN can generate sequences with similar char-
acteristics to the training sequences. Therefore, we updated
the training set with the sequences generated by GAN after
every 2500 iterations and train the network again. When the
training set is updated for the kth time, we exploit the current
generative model to generate a large amount of data, and
select 100 different sequences as the new training set Snew.
Since the mean metric of the sequences in the initial training
set Sinit is 13 and we also consider the learning ability of
HpGAN, the metric of sequence in the new training is set to
M(s) ≥ 13+3×k, s ∈ Snew. After each update of the training
set, GAN learns the sequences in Snew, and the average metric
of the generated sequences is M̄(s�) ≈M(s), where s� is the
sequence generated by the current GAN. As in Section III,
we calculate the loss values of the generative model and the
discriminant model to observe the convergence of the network.
To monitor the evolution of HpGAN, every 100 iterations,
we evaluated the searching capability of HpGAN and record
their mean metric E[M] and maximum metric max[M].
We exploit the minimum metric max[M] and the mean metric
E[M] in the generated sequence sets to reflect the search
effect and search trend of HpGAN.

From Fig. 9, we can see that after 2500 iterations, the
loss functions of HpGAN gradually converge. Each time the
training set is updated, the loss functions of the model fluctuate
and then gradually stabilize showing how the model makes
adjustment after the training set is updated.

The evolution curves of the mean metric E(M) and maxi-
mum metric max(M) with respect to the number of iterations
are shown in Fig. 10. We can see that the overall trends of
E(M) and max(M) is gradually increase with the number
of iterations, especially after updating the training set, both
E(M) and max(M) get greatly improved. For the MMF
estimator, the well-known Legendre sequence yields M(sL) ≈
10.98, which is represented by the brown dashed line in
the figure. The green and purple dashed lines represent the
average metric E(M)init ≈ 13.34 and the maximum metric
max(M)init ≈ 23.25 of the initial training set, respectively.
These sequences are all obtained by GA and are better than the
Legendre sequence, among which the best sequence is denoted
as sGA. To compare with the performance of AlphaSeq,

Fig. 9. Loss values of the generator and discriminator of HpGAN. Each time
the training set is updated, the loss functions of the model fluctuate and then
gradually stabilize. (a) Loss values of the discriminator of HpGAN. (b) Loss
values of the generator of HpGAN.

Fig. 10. Training process of HpGAN to search a phase-coded sequence for
pulse compression radar with the evolution curves of the mean metric E(M)
and the maximum metric max(M).

we also marked the metric M(sAlpha) ≈ 33.45 of the best
sequence sAlpha obtained by AlphaSeq with a yellow dashed
line.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

It can be seen from Fig. 10 that after 2500 iterations of
training the network with the initial training data, the network
can generate some sequences which are better than that from
the training set, but the mean value of the generated sequences
is lower than E(M)init. After the training set is updated for
the first time, the sequences generated by HpGAN are better
than the initial training set as a whole, and as the training set
is updated again, the metric of the sequences generated by
the network gets improved again. In particular, after 17 500
iterations, HpGAN has found sequences whose metrics are
better than max(M)Alpha, and the mean metric of HpGAN
generated sequences is close to max(M)Alpha. This figure also
demonstrates that HpGAN is an effective search tool, which
can continuously improve the search ability as the training set
is updated.

When HpGAN training is completed, we can exploit the
generator to quickly generate sequences with linear com-
plexity. After the 20 000th iteration, we exploit the generator
searches a sequence with metric M(sHpGAN) ≈ 42.07

sHpGAN

= [1010101010101010110101101011001101001111

0000011111111111111].

Compared to the well-known Legendre sequence, sHpGAN

increases the SNR of the MMF estimator in the pulse com-
pression radar system by four times. Moreover, compared to
sAlpha and sGA, sHpGAN improves the SIR by 8.62 and 18.82 at
output of an MMF estimator, respectively.

V. CONCLUSION

In this article, we proposed a novel algorithm for search-
ing sequences based on GAN, which is called HpGAN.
In the HpGAN training process, since the network is updated
inversely according to the loss function, the calculation of the
metric function of the sequence is avoided. As a result, the
computational complexity is reduced, making HpGAN more
applicable to many different application scenarios, especially
for those with complex metric functions.

We demonstrated the search ability of HpGAN through
two applications. In the first application, we successfully
found MOCSSs and optimal/suboptimal OB-ZCPs, showing
that HpGAN is capable of achieving global optimal solutions
and can obtain more results based on existing tools. In the
second application, based on the training set generated by the
GA algorithm, HpGAN found a new sequence, which is far
superior to the existing sequences for increasing the SNR of
the MMF estimator in the pulse compression radar system.
Compared with the sequence discovered by AlphaSeq, the
sequence found by HpGAN improves the SIR by 8.62 at the
output of an MMF estimator.

As future work, more efficient GAN architecture for
sequences may be designed. For example, it is likely to use
deep CNNs or residual neural networks to build generative
models and discriminative models so as to better extract the
features of sequences. Designing a more suitable encoder and
decoder is an interesting research problem for searching longer
sequences.

REFERENCES

[1] S. Mertens, “Exhaustive search for low-autocorrelation binary
sequences,” J. Phys. A, Math. Gen., vol. 29, no. 18, pp. 473–481, 1996.

[2] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication,
vol. 122. Reading, MA, USA: Addison-Wesley, 1995.

[3] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM,
Golay complementary sequences, and Reed–Muller codes,” IEEE Trans.
Inf. Theory, vol. 45, no. 7, pp. 2397–2417, Nov. 1999.

[4] D. Pham and D. Karaboga, Intelligent Optimisation Techniques: Genetic
Algorithms Tabu Search Simulated Annealing and Neural Networks.
Springer, 2012.

[5] P. Stoica, H. He, and J. Li, “New algorithms for designing unimod-
ular sequences with good correlation properties,” IEEE Trans. Signal
Process., vol. 57, no. 4, pp. 1415–1425, Apr. 2009.

[6] M. Soltanalian and P. Stoica, “Computational design of sequences with
good correlation properties,” IEEE Trans. Signal Process., vol. 60, no. 5,
pp. 2180–2193, May 2012.

[7] J. Song, P. Babu, and D. P. Palomar, “Optimization methods for
designing sequences with low autocorrelation sidelobes,” IEEE Trans.
Signal Process., vol. 63, no. 15, pp. 3998–4009, Aug. 2015.

[8] M. A. Kerahroodi, A. Aubry, A. D. Maio, M. M. Naghsh, and
M. Modarres-Hashemi, “A coordinate-descent framework to design low
PSL/ISL sequences,” IEEE Trans. Signal Process., vol. 65, no. 22,
pp. 5942–5956, Nov. 2017.

[9] H. Deng, “Synthesis of binary sequences with good autocorrelation and
crosscorrelation properties by simulated annealing,” IEEE Trans. Aerosp.
Electron. Syst., vol. 32, no. 1, pp. 98–107, Jan. 1996.

[10] H. Deng, “Polyphase code design for orthogonal netted radar systems,”
IEEE Trans. Signal Process., vol. 52, no. 11, pp. 3126–3135, Nov. 2004.

[11] X. Deng and P. Fan, “New binary sequences with good aperiodic
autocorrelations obtained by evolutionary algorithm,” IEEE Commun.
Lett., vol. 3, no. 10, pp. 288–290, Oct. 1999.

[12] W. H. Mow, K.-L. Du, and W. H. Wu, “New evolutionary search for long
low autocorrelation binary sequences,” IEEE Trans. Aerosp. Electron.
Syst., vol. 51, no. 1, pp. 290–303, Jan. 2015.

[13] F. Hu, P. Z. Fan, M. Darnell, and F. Jin, “Binary sequences with good
aperiodic autocorrelation functions obtained by neural network search,”
Electron. Lett., vol. 33, no. 8, pp. 688–689, Apr. 1997.

[14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[16] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate:
Channel auto-encoders, domain specific regularizers, and attention,” in
Proc. IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT), Dec. 2016,
pp. 223–228.

[17] M. Kim, W. Lee, and D.-H. Cho, “A novel PAPR reduction scheme for
OFDM system based on deep learning,” IEEE Commun. Lett., vol. 22,
no. 3, pp. 510–513, Mar. 2018.

[18] J. Kim, B. Lee, H. Lee, Y. Kim, and J. Lee, “Deep learning-assisted
multi-dimensional modulation and resource mapping for advanced
OFDM systems,” in Proc. IEEE Globecom Workshops (GC Wkshps),
Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–6.

[19] A. Alhussain, H. Kurdi, and L. Altoaimy, “A neural network-based
trust management system for edge devices in peer-to-peer networks,”
Comput., Mater. Continua, vol. 59, no. 3, pp. 805–816, 2019.

[20] M. Kim, N.-I. Kim, W. Lee, and D.-H. Cho, “Deep learning-aided
SCMA,” IEEE Commun. Lett., vol. 22, no. 4, pp. 720–723, Apr. 2018.

[21] H. Kim, S. Oh, and P. Viswanath, “Physical layer communication via
deep learning,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 5–18,
May 2020.

[22] A. Maamar and K. Benahmed, “A hybrid model for anomalies detection
in AMI system combining K-means clustering and deep neural network,”
Comput., Mater. Continua, vol. 60, no. 1, pp. 15–39, 2019.

[23] J. Wang, Y. Gao, W. Liu, W. Wu, and S.-J. Lim, “An asynchronous
clustering and mobile data gathering schema based on timer mechanism
in wireless sensor networks,” Comput., Mater. Continua, vol. 58, no. 3,
pp. 711–725, 2019.

[24] H. Li, “Multiagent Q-learning for Aloha-like spectrum access in cog-
nitive radio systems,” EURASIP J. Wireless Commun. Netw., vol. 2010,
no. 1, Dec. 2010, Art. no. 876216.

[25] L. R. Faganello, R. Kunst, C. B. Both, L. Z. Granville, and J. Rochol,
“Improving reinforcement learning algorithms for dynamic spectrum
allocation in cognitive sensor networks,” in Proc. IEEE Wireless Com-
mun. Netw. Conf. (WCNC), Apr. 2013, pp. 35–40.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: HpGAN: SEQUENCE SEARCH WITH GENERATIVE ADVERSARIAL NETWORKS 13

[26] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep rein-
forcement learning for dynamic multichannel access in wireless net-
works,” IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2, pp. 257–265,
Jun. 2018.

[27] H.-H. Chang, H. Song, Y. Yi, J. Zhang, H. He, and L. Liu, “Distributive
dynamic spectrum access through deep reinforcement learning: A reser-
voir computing-based approach,” IEEE Internet Things J., vol. 6, no. 2,
pp. 1938–1948, Apr. 2019.

[28] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for
distributed dynamic spectrum access,” IEEE Trans. Wireless Commun.,
vol. 18, no. 1, pp. 310–323, Jan. 2019.

[29] P. Liu, Y. Liu, T. Huang, Y. Lu, and X. Wang, “Decentralized auto-
motive radar spectrum allocation to avoid mutual interference using
reinforcement learning,” IEEE Trans. Aerosp. Electron. Syst., vol. 57,
no. 1, pp. 190–205, Feb. 2021.

[30] Y. Shao, S. C. Liew, and T. Wang, “AlphaSeq: Sequence discovery with
deep reinforcement learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 9, pp. 3319–3333, Sep. 2020.

[31] J. Hu, Z. Wei, Y. Li, H. Li, and J. Wu, “Designing unimodular
waveform(s) for MIMO radar by deep learning method,” IEEE Trans.
Aerosp. Electron. Syst., vol. 57, no. 2, pp. 1184–1196, Apr. 2021.

[32] I. Goodfellow et al., “Generative adversarial nets,” in Proc. NIPS, 2014,
pp. 2672–2680.

[33] E. L. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep generative
image models using a Laplacian pyramid of adversarial networks,” in
Proc. NIPS, Jan. 2015, pp. 1486–1494.

[34] F. Huszár, “How (not) to train your generative model: Scheduled
sampling, likelihood, adversary?” 2015, arXiv:1511.05101.

[35] L. T. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence generative
adversarial nets with policy gradient,” in Proc. AAAI, Feb. 2017,
pp. 2852–2858.

[36] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci. USA, vol. 79,
no. 8, pp. 2554–2558, 1982.

[37] J. J. Hopfield and D. W. Tank, “‘Neural’ computation of deci-
sion in optimisation problems,” Biol. Cybern., vol. 52, pp. 141–152,
Jul. 1985.

[38] M. Golay, “The merit factor of Legendre sequences (corresp.),” IEEE
Trans. Inf. Theory, vol. IT-29, no. 6, pp. 934–936, Nov. 1983.

[39] L. Q. Han, Artificial Neural Network Theory, Design and Application.
Beijing, China: Chemical Industry Press, 2007.

[40] M. J. E. Golay, “Multi-slit spectrometry,” J. Opt. Soc. Amer., vol. 39,
no. 6, pp. 437–444, 1949.

[41] M. Golay, “Complementary series,” IRE Trans. Inf. Theory, vol. 7, no. 2,
pp. 82–87, Apr. 1961.

[42] P. Fan and M. Darnell, Sequence Design for Communications Applica-
tions. New York, NY, USA: Wiley, 1996.

[43] M. G. Parker, K. G. Paterson, and C. Tellambura, “Golay comple-
mentary sequences,” in Wiley Encyclopedia of Telecommunications,
J. G. Proakis, Ed. New York, NY, USA: Wiley, 2002.

[44] P. Fan, W. Yuan, and Y. Tu, “Z-complementary binary sequences,” IEEE
Signal Process. Lett., vol. 14, no. 8, pp. 509–512, Aug. 2007.

[45] A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, “Doppler
resilient Golay complementary waveforms,” IEEE Trans. Inf. Theory,
vol. 54, no. 9, pp. 4254–4266, Sep. 2008.

[46] H. M. Wang, X. Q. Gao, B. Jiang, X. H. You, and W. Hong, “Effi-
cient MIMO channel estimation using complementary sequences,” IET
Commun., vol. 1, no. 5, pp. 962–969, Oct. 2007.

[47] B. M. Popović, “Method and apparatus for efficient synchroniza-
tion in spread spectrum communications,” U.S. Patent 6 567 482 B1,
May 20, 2003.

[48] Z. Liu and Y. L. Guan, “16-QAM almost-complementary sequences
with low PMEPR,” IEEE Trans. Commun., vol. 64, no. 2, pp. 668–679,
Feb. 2016.

[49] Z. Liu, Y. L. Guan, and W. H. Mow, “Asymptotically locally optimal
weight vector design for a tighter correlation lower bound of quasi-
complementary sequence sets,” IEEE Trans. Signal Process., vol. 65,
no. 12, pp. 3107–3119, Jun. 2017.

[50] Z. Liu, Y. L. Guan, and H. H. Chen, “Fractional-delay-resilient receiver
design for interference-free MC-CDMA communications based on com-
plete complementary codes,” IEEE Trans. Wireless Commun., vol. 14,
no. 3, pp. 1226–1236, Mar. 2015.

[51] S.-Y. Sun, H.-H. Chen, and W.-X. Meng, “A survey on complementary-
coded MIMO CDMA wireless communications,” IEEE Commun. Sur-
veys Tuts., vol. 17, no. 1, pp. 52–69, 1st Quart., 2015.

[52] H. H. Chen, The Next Generation CDMA Technologies. Hoboken, NJ,
USA: Wiley, 2007.

[53] Z. Liu, U. Parampalli, and Y. L. Guan, “Optimal odd-length binary
Z-complementary pairs,” IEEE Trans. Inf. Theory, vol. 60, no. 9,
pp. 5768–5781, Sep. 2014.

[54] M. Shinriki and H. Takase, “Binary codes for multirange-resolution radar
and pulse-compression properties,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 50, no. 2, pp. 1549–1555, Apr. 2014.

[55] R. M. Davis, R. L. Facnte, and R. P. Perry, “Phase-coded waveforms for
radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 1, pp. 401–408,
Jan. 2007.

[56] P. Stoica, J. Li, and M. Xue, “On sequences with good correlation
properties: A new perspective,” in Proc. IEEE Inf. Theory Workshop
(ITW), Jul. 2007, pp. 1–5.

[57] M. Golay, “The merit factor of long low autocorrelation binary
sequences,” IEEE Trans. Inf. Theory, vol. IT-28, no. 3, pp. 543–549,
May 1982.

[58] T. Høholdt, “The merit factor problem for binary sequences,” in Proc.
Int. Symp. Appl. Algebra, Algebr. Algorithms, Error-Correcting Codes
(AAECC). Berlin, Germany: Springer, 2006, pp. 51–59.

[59] J. Jedwab, “What can be used instead of a Barker sequence?” Contemp.
Math., vol. 461, pp. 153–178, Feb. 2008.

[60] J. Jedwab, “A survey of the merit factor problem for binary sequences,”
in Sequences and Their Applications—SETA (Lecture Notes in Com-
puter Science), vol. 3486, T. Helleseth, D. Sarwate, H. Y. Song, and
K. Yang, Eds. Heidelberg, Germany: Springer, 2005, pp. 30–55.

[61] R. Ferguson and J. Knauer, “Optimization methods for binary
sequences—The merit factor problem,” in Proc. MITACS 6th Annu.
Conf. Calgary, AB, Canada: Univ. Calgary, May 2005.

[62] R. H. Barker, “Group synchronizing of binary digital systems,” in
Communication Theory, W. Jackson, Ed. London, U.K.: Butterworths,
1953.

[63] M. J. Lindenfeld, “Mismatched filters for incoherent pulse compression
in laser radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 2,
pp. 1252–1260, Apr. 2021.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on March 02,2023 at 13:02:52 UTC from IEEE Xplore. Restrictions apply.

