IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Detection of and Countermeasure against Thermal
Covert Channel in Many-core Systems

Hengli Huang, Xiaohang Wang, Member, IEEE, Yingtao Jiang, Amit Kumar Singh, Member, IEEE
Mei Yang, Member, IEEE and Letian Huang

Abstract—The thermal covert channels (TCC’s) in many-core
systems can cause detrimental data breaches. In this paper, we
present a three-step scheme to detect and fight against such TCC
attacks. Specifically, in the detection step, each core calculates the
spectrum of its own CPU workload traces that are collected over a
few fixed time intervals, and then it applies a frequency scanning
method to detect if there exists any TCC attack. In the next
positioning step, the logical cores running the transmitter threads
are located. In the last step, the physical CPU cores suspiciously
engaging in a TCC attack have to undertake Dynamic Voltage
Frequency Scaling (DVFS) such that any possible TCC trace will
be essentially wiped out. Our experiments have confirmed that
on average 97% of the TCC attacks can be detected, and with
the proposed defense, the packet error rate (PER) of a TCC
attack can soar to more than 70%, literally shutting down the
attack in practical terms. The performance penalty caused by
the inclusion of the proposed DVFS countermeasures is found to
be only 3% for an 8x8 many-core system.

Index Terms—Many-core Systems, Thermal Covert Channel,
Defense against Covert Channel Attack.

I. INTRODUCTION

HIP-LEVEL security can be compromised by the exis-

tence of covert channels through which an attacker can
gain unauthorized access to sensitive information and the legit-
imate users are left in the dark. Of many communication media
(e.g., heat transfer, timing, or inaudible sound) available for
the construction of covert channels, thermal covert channels
(TCC) by means of heat transfer can be particularly dangerous
(1], [2].

Like any other communication systems, a thermal covert
channel involves a transmitter and receiver pair. Essentially,
a transmitter admits sensitive data and transmits the thermal
signals, while a receiver on the other end of data transmission

H. Huang and X. Wang are with the School of Software Engineering, South
China University of Technology, China. (e-mail: sehenry @mail.scut.edu.cn,
xiaohangwang @scut.edu.cn). Xiaohang Wang is the corresponding author.

Y. Jiang and M. Yang are with the Department of Electrical and Com-
puter Engineering, University of Nevada, Las Vegas, USA. (e-mail: ying-
tao.jiang @unlv.edu, mei.yang@unlv.edu)

A. K. Singh is with the School of Computer Science and Electronic
Engineering, University of Essex, UK. (e-mail: a.k.singh@essex.ac.uk)

L. Huang is with the University of Electronic Science and Technology of
China, Chengdu 610054, China. (e-mail: huanglt@uestc.edu.cn)

This research program is supported by the Natural Science Foundation of
Guangdong Province No. 2018 A030313166, Pear] River S&T Nova Program
of Guangzhou No. 201806010038, the Fundamental Research Funds for the
Central Universities No. 2019MS087, Open Research Grant of State Key
Laboratory of Computer Architecture Institute of Computing Technology Chi-
nese Academy of Sciences No. CARCH201916, Natural Science Foundation
of China No. 61971200, the Key Laboratory of Big Data and Intelligent
Robot (South China University of Technology), Ministry of Education, and the
National Key Research and Development Program of China No. 2019QY0705.

Temperature / °C
| |
N
o
| |

Secured zone Non-secured zone Temperature variation
Fig. 1. A 1-hop TCC communication in an 8-core system. The arrow from
core A to core B indicates the direction of heat flow between the two cores.

777777

0 0

reads its thermal sensor and recovers the original sensitive data
transmitted. In the example illustrated in Fig. 1 featuring an
eight-core chip, there exists a covert channel between core
A and core B, and core A sits in a secured zone where
sensitive information is not supposed to be shared with the
cores outside this zone, while core B is in a non-secured zone.
The transmitter on core A can convert the sensitive data (e.g.,
user passwords) into temperature signals by regulating the
core’s activities and correspondingly its power consumption.
In this example, bit ‘1’ is represented as a sequence of rise and
fall of temperature, while bit ‘0’ is represented as no change
in temperature. The temperature signals can travel through
the chip by heat transfer among the processor cores, and
eventually the thermal signals reach the destination, core B,
where they can be picked up by core B’s local thermal sensor,
and subsequently, the original data can be recovered.

Since a thermal covert channel, as described in the above
example, is committed to transmit thermal signals over a chip,
it is prone to be disrupted/degraded by thermal noise and
ambient temperature fluctuations. Recently, there have been
new designs of thermal covert channels that have improved
throughput and noise immunity. Masti et al. [1], for in-
stance, built a 1-hop TCC channel (a channel’s transmitter
and receiver are one hop/core apart) that could achieve a
throughput of 1.33 bps with a bit error rate (BER) of 11%
on a commercially available platform. Later on, a separate
study [12] demonstrated that an intra-core TCC channel (a
channel that both the receiver and the transmitter have access
to the same thermal sensors or the same thermal data files)
has a throughput higher than 45bps, and it also demonstrated
a 1-hop channel with a throughput of higher than 5bps with a
BER less than 1%.

Apparently, the ever-improving performance of the ther-
mal covert channels poses even greater risks and danger
to data/information security in today’s ubiquitous multi-
core/many-core systems. Although it is stated in [12] that
TCC can be countered by limiting the accessibility to thermal
information or by decreasing the resolution of sensors, as in
[28], the receiver can infer temperature by means of measuring
the memory access delay. In fact, in most off-the-shell com-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

T() EIR(D)

(D)

Fig. 2. An example of jamming multiple TCC’s in a many core system. T(2),
R(¢) and J(%) are the ¢-th transmitter, receiver and jammer cores, respectively.
The red arrow is the direction of heat flow.

mercial computers, thermal sensor information can be accessed
by user programs (receiver). A naive countermeasure to fight
against TCC attack is to produce jamming noise with the
same transmission frequency as TCC. However, it fails to
jam a channel which is enhanced by exploiting frequency-
hopping spread spectrum (FHSS) [32]. Using full band jam-
ming or designing an enhanced jamming model to track
the transmission frequency will cause huge implementation
overhead. In addition, jamming tends to pause a normal task
running in a neighbor core to generating thermal noise. As
shown in Fig. 2, if a many-core system (e.g., 8 x 8) has
multiple TCCs and each TCC is away from the other, in
this case, blocking one TCC needs one neighbor core to run
the jamming, which wastes a lot of legitimate cores thus
lead to poor performance. In this paper, we attempt to avoid
these problems by proposing a countermeasure against thermal
covert channel attack inspired by a DVFS-based observation
illustrated in Fig. 3.

With DVFS
60
Without DVFS 50
e}
“ S 40
o
z 230
3 =
Z £
=
g 10 TCC at 100Hz
<
0 gl [LAkl A 0
0 5 100 150 200 0 50 100 150
Frequency / Hz Frequency / Hz
(a) (b)
Average PER
100
<
e 50
m
a
_— —
TCC 150Hz TCC 100Hz

[Without DVFS [IDVES at S00MHz

(©

Fig. 3. The spectra of the thermal signals of the transmitter core with
and without DVFS turned on. Note that the transmitter and the receiver are
physically adjacent to each other in this example. (a) and (b) are the spectra
of the thermal signals generated by the transmitter core when the transmission
frequency is 100Hz, and the working CPU frequency of the transmitter core
is 2000MHz and 500MHz, respectively; and (c) is the comparison of average
packet error rate (PER) of the thermal signals received by the receiver when
the DVFS is turned on and off at the transmitter core.

Assume that a many-core system in Fig. 3 has a thermal
covert channel with a transmission frequency of 100Hz. The
frequency level (CPU working frequency) of the transmitter
core is set to be 2GHz, which is fairly typical in modern many-
core systems. Also assume that the transmitter and the receiver
run their dedicated programs for transmission and receiving,
respectively, and their neighboring cores run a few threads
created by a multi-threaded application (e.g., Barnes from

SPLASH-2). The thermal signals without DVFS or with DVFS
applied on the tranmitter core, generated by the transmitter are
shown in Fig. 3(a) and 3(b), respectively. One can see that
the data transmitted over the thermal covert channel can be
successfully recovered when no DVEFES is applied (Fig. 3(c)),
with an average packet error rate (PER) of 5%. However, if
the CPU frequency of the transmitter core drops to S00MHz,
as a result of dynamic voltage and frequency scaling (DVES),
the thermal signals received by the receiver suffer a high PER
(88% in Fig. 3(c)), in this case, no signal around 100Hz can
be detected. In addition, when we change the transmission
frequency to 150Hz (Fig. 3(c)), the average PERs at the
receiver side are 5% and 86% without and with DVFS turned
on, respectively.

The comparison in Fig. 3(c) motivates us that once the
DVEFS is applied to the exact transmitter core, a TCC attack
cannot work with a high PER.

Although DVFS can be used to countermeasure the thermal
covert channel attack, as shown in Fig. 3, blindly applying
this technique may lead to significant performance loss. In
the worst case, when all the suspicious cores run at their
lowest frequency levels (e.g., S00MHz), the performance can
drop to an unacceptably low level. This performance issue is
thus addressed along with the proposed countermeasure that
includes three major steps.

During the first step, a detection scheme is applied to a
many-core system to check if it encounters any thermal covert
channel attack.

In the second step, the threads involved in a thermal covert
channel are determined.

In the third step, for all the found TCC threads identified
engaging in a thermal covert channel from the previous step,
a DVFS-based countermeasure is applied to the cores where
those threads run to shut down any possible TCC signal
transmission at a minimum cost to the system performance.

This detection and countermeasure method to thwart covert
thermal channel attack marks a significant extension of our
previous work [3], summarized below.

1) The detection algorithm is simplified by eliminating the

module of bandpass filtering. Our previous work uses
a bandpass filter to filter out the signals that are out
of every band of interest, after which the signal’s peak
amplitude is determined. This process incurs substaintial
amount of processing time to scan through the entire
frequency band in one detection cycle. Instead, we only
need to calculate the spectra of the signals once in a
detection cycle with this improved detection algorithm.

2) The detection algorithm is also modified in the way
that it can handle TCC whose transmitter and receiver
communicate over two different channels. Our previous
work restricted to deal with the transmitter and the re-
ceiver operating over one channel, and used the detected
channel to locate a pair of TCC transceiver cores.

3) Intra-core channel is taken into consideration while de-
signing the countermeasure scheme. There are two types
of intra-core channels: i) The receiver and transmitter
threads are both located at the same physical core and
they share the same thermal sensors; and ii) The receiver

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

and the transmitter have access to the same thermal data
files. An intra-core channel can leak sensitive data more
effectively than other type channels. Detection of TCC
is better performed at the logical core level to exactly
pin down the threads of intra-core channels.

4) We introduce the CPU workloads per logical core as
a better metric for the detection of TCC threads that
are associated with logical cores. Previous work found
out a pair of transmitter receiver cores by detecting the
thermal signals, which fails when the transmitter and
receiver threads run in the same physical core. Instead,
detecting CPU workloads of each logical core can locate
a TCC pair even for intra-core channels.

5) Experiments are substantially extended, including the
experiments on a 3D many-core system and on a modern
real machine. We also show our proposed countermea-
sure is suitable for shutting down the TCC enhanced by
FHSS (Frequency Hopping Spread Spectrum).

The rest of this paper is organized as follows. Section II
surveys the previous works and provides the preliminaries
about the thermal covert channel attacks. Section III presents
the details regarding the defense against TCC. In Section IV,
the proposed countermeasure is experimentally verified, and
the results are reported. Finally, Section V concludes this

paper.

II. RELATED WORK AND PRELIMINARIES
A. Covert Channels

Covert channel attacks impose a major security threat
against literally any part or aspect of our computer and infor-
mation systems, ranging from cloud systems [15], operating
system [16], to multi/many-core chips [17], etc. Covert chan-
nels can be established using a wide range of communication
media that span from inaudible sound [18], inter-arrival timing
of packets [19]-[21], light [22], [23], magnetic field [24], [25]
to voltage [13]. At the chip level, covert channels can exploit
cache-timing [17], dynamic frequency scaling [26], [27], etc.,
for data transmissions.

Unlike many types of covert channels, a thermal covert
channel does not rely on any shared resources such as cache
and memory, which helps it easily circumvent modern sys-
tem’s defense. Relying on a simple on-off keying line coding
scheme to encode bit ‘1’ and bit ‘0’, a thermal covert channel
over an x86-based platform could transmit data with a BER
of 11% and a throughput of 1.33 bps, as demonstrated in [1].
Bartolini et al. [12] adopted a Manchester encoding scheme,
and they managed to improve the efficiency of a thermal covert
channel over a real machine with a throughput of higher than
5bps and a BER lower than 1% for a 1-hop channel, and with
a throughput of higher than 45bps for an intra-core channel. A
different encoding scheme based on non-return-to-zero (NRZ)
was adopted in [2], and it was shown that a properly high
transmission frequency could significantly prevent the heat
noise from interfering other active cores. Furthermore, in [28],
without reading any thermal sensors, the receiver can infer
temperature by means of measuring the access delay of DRAM
memory which is on top of the system-on-chip (SoC).

Although thermal covert channel attacks are perceived to
impose an increasingly severe security threat to today’s multi-
core systems, yet there has little work done to develop a
defense or countermeasure against it, especially a TCC that
can only detected at runtime and is turned on for a short period
of time.

In [1], a possible countermeasure was proposed. By re-
stricting processor cores’ access to the thermal sensors, and
particularly separating processes that run on the same core
or two neighboring cores and isolating cores temporally and
spatially, the effectiveness of a TCC, if it ever exists, was
supposed to be constrained. One major drawback of this
scheme also stems from its requirement to limit processor
cores from accessing the thermal sensors that are critical for a
many-core chip’s power/thermal managment as well as its safe
operation. As a matter of fact, limiting/restricting a processor
core to access to the thermal sensors does not prevent TCC
from obtaining the thermal information (thermal signal); such
information can actually be estimated through other means,
like measuring the memory access delay, which is the case in
[28]. In addition, there is no guarantee that the transmitter and
receiver of a TCC can be detected and mitigated by separating
processes.

Another countermeasure against TCC was suggested in [33],
with a set of rules specific to FPGA devices. Essentially, an
FPGA device needs to be heated up or cooled down to a
known temperature (i.e., the device goes through a thermal
reset) before the device is available to the next user. Another
big piece of the countermeasure is to enforce a minimum idle
period between users to allow the FPGA to cool down and
stay at a steady temperature between users. All these rules in
[33] cannot stop TCC. When a TCC is active during runtime,
it generates its own thermal signals.

Johann and Ozgur [34] tended to mitigate thermal side chan-
nel (TSC) by decorrelating thermal patterns from power and
program activities, and their scheme focused on optimizing the
floorplans of heterogeneous 3D ICs at design time. However,
this method has nothing to do with the runtime detection and
mitigation of TCC.

B. Key Components and Functionalities

As shown in Fig. 1, the attacker of a TCC relies on a
transmitter-receiver pair to launch and sustain an attack. A
transmitter in this context is a specially designed program
running on a processing core sitting in the secured zone,
while a receiver is a program running on a processing core
outside the secured zone. Note that the secured zone in a multi-
core platform provides secure environment and is commonly
supported by technologies like ARM TrustZone [4] and Intel
software-guard extensions (SGX) [5]. Bascially, Intel SGX
relies on a container called ’Enclave’ to protect user privacy
code and data from being accessed outside the container, and it
has a mechamism to allow users to specify which code should
be made private. Unfortunately, both the ARM TrustZone and
Intel SGX are found vulnerable to side channel attacks [6], [7];
it was demonstrated in [8] that the SGX could be compromised
by exposing it to voltage-induced hardware faults. In this

Amit
Highlight

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

study, we assume that any secured zone is vulnerable to
attacks, and the transmitter program capable of launching a
TCC can be injected into the secured zone through software
updates or some other means. The receiver, since it is installed
in a non-secured zone, can be easily implanted by the hacker.

To covertly transmit secret information from a secured
zone to a non-secured one, the TCC programs need to create
and measure temperature signals. Except very few cases as
reported in [28], which measured the decay rate of the DRAM
cells to identify heat transfer of a thermal covert channel,
most of the TCCs require access to on-chip digital thermal
sensors (DTS) to acquire the temperature information across
the chip [1], [2], [12]. The attacker (both the transmitter and
the receiver) of a TCC can access the local thermal sensors’
data by reading some specific control registers (e.g., Model
Specific Register in Intel’s x86 processors) [10]. Although only
privileged instructions can access the MSR, the attacker can
acquire such privilege indirectly, through installed temperature
monitoring software, or through the sysfs system in Linux
[11].

The two most important parameters for on-chip thermal
sensors are the refresh rate and resolution of thermal sensors.
For Intel MSR and coretemp [11], the refresh rates are 1000
times per second and 500 times per second, respectively, which
correspondingly set the highest transmission frequencies to
be 500Hz and 250Hz, as dictated by the Nyquist sampling
theorem. In this paper, we thus let the transmission frequency
of an TCC attack fall into the range of DC to 500Hz. As
for the resolution, the on-chip DTS sensors of several off-
the-shelf CPU cores have a resolution of 1°C [13] and the
state-of-the-art thermal sensors can even reach a resolution
of 0.12°C [14]. It has been anticipated that sensors with an
even higher resolution (0.1°C [9] or better) will emerge in
many-core systems, which will enable TCC to run at a higher
transmission frequency.

Opposite to the attacker that relies on a transmitter/receiver
pair stands the defender. The defender is a global manager
which might be in the secured zone and has the privilege to
read all the cores’ temperatures. In addition, the defender shall
be able to monitor all the cores’ workloads (e.g., instructions
per cycle, IPC) in real time by reading their retired instructions
and unhalted reference cycles from their performance counter
registers [10]. To make its defence more efficient, the defender
may distribute the necessary defence tools, such as detection
and blocking programs, to run on any core that it deems
necessary.

C. TCC Communication Architecture

A thermal covert channel involves a transmitter and a
receiver pair, and the signal flow is shown in Fig. 4. The
transmitter reads the sensitive data and packetizes them with
a padded Error Correcting Code (ECC). Besides data packets
defined in the communication protocol, there are other types of
packets, namely request (i.e., Connect Request and End) and
acknowledgement (i.e., Connect ACK and Data ACK) packets.

Once a packet to be transmitted is created, it needs to be
converted to the thermal signal for transmission. Basically,

(Process of transmitter h
Data Protocol ECC . Signal
. . — Modulation —
Input coding coding output
- i J
Heat transfer
(Process of receiver h
Signals Demodulatio ECC Protocol Data
input n decoding decoding output
& J

Fig. 4. The elements and signal flow of a communication system through a
thermal covert channel: from the transmitter to the receiver.

the packet to be transmitted dictates the transmitter core’s
program to generate temperature signals by letting the core
run computation-intensive code to boost the temperature of
the core or insert idle CPU cycles to cool it down.

On the receiver side, it picks up the temperature signal from
its local thermal sensor, and demodulates the thermal signal
and converts it back into the binary bit streams. Next, the
receiver examines the ECC code for packet integrity purpose.
If the received packet is determined uncompromised during
the transmission, the receiver extracts the data fields from the
packet; otherwise, the receiver discards the binary bit streams
and waits for retransmission.

D. Channelization and Communication Flow

Hereandafter we consider that the TCC includes both intra-
core channels and inter-core channels. As for an inter-core
channel, the receiver can only read its local temperature sensor,
and the receiver and the transmitter are at different cores.
When the transmitter and the receiver are physically next to
each other, they form a 1-hop channel, as the case between
core A and core B shown in Fig. 1.

The transmitter and the receiver first need to reach an
agreement on the transmission frequency for the thermal covert
channel. The flow of a communication session, modified from
the scheme introduced in [2], is shown in Fig. 5(a).

1. To initiate a session, the transmitter sends a connect
request packet to the receiver and waits for a reply.

2. When the receiver identifies that the received packet is a
legitimate request packet, it replies with an acknowledgement
(i.e., Connect ACK) packet to the transmitter. If the transmitter
does not receive a Connect ACK packet within certain amount
of time, it assumes the packet did not go through and then
sends another request packet.

3. The transmitter transmits data packets to the receiver after
receiving a Connect ACK packet.

4. The receiver keeps receiving data packets sent from the
transmitter. Every time when a data packet is received, the
receiver replies an acknowledgement (Data ACK) packet to
the transmitter. If the transmitter does not receive a Data ACK
packet within certain amount of time, it assumes the last packet
got lost and thus resends the packet. If the receiver receives the
same data packet more than once, it just discards the duplicate
packet and replies with a Data ACK packet.

5.The transmitter sends a termination (End) packet to notify
the receiver to end the current session.

Amit
Highlight

Amit
Highlight

Amit
Highlight

Amit
Highlight

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

6. If the receiver receives an End control packet, it ter-
minates this session. If the End packet is corrupted during
transmission, the receiver exits this session after its waiting
time is expired.

Communication flow

Transmitter_I. Connect Request Receiver

| 2 Comect ACK—
E——

. 4. Data ACK

(b)
Fig. 5. (a) Illustration of a communication session, (b)The waveforms of the
2ASK modulation for Eqns. (1)-(3).

E. Transmitter

A transmitter has the following modules.

1. Data input module, which runs on a core within a secured
zone, collects sensitive data/information and then converts it
into a bit stream.

2. Protocol coding module, where the transmitter generates
data and control packets (i.e., request or acknowledgement
packets) that do not include ECC codes.

3. ECC coding module, where an ECC code is added to
every data packet.

4. Modulation module, where the amplitude shift keying
(ASK) modulation, illustrated in Fig. 5(b), is adopted to
modulate the data packets with a transmission frequency f;
given below,

e2ask () = s(t) x c(t) (1)
s(t) = Zan X g(t —n X tp))
ty=1/f 3)

where s(t) is the signal to be transmitted, ¢(t) is the carrier
signal, a(n) is the logic value (‘1’ or ‘0’) of the n-th bit, ¢, is
the temporal duration of a signal duty cycle, and ¢(t) is the
baseband pulse waveform with a duration of ;.

To make the carrier signal c(t) periodical with a frequency
of f;, the NRZ encoding scheme in [2] is employed to avoid
continuous temperature build-up when transmitting continuous
‘I’s, as shown in Fig. 6(a). In this NRZ encoding, a ‘1’ is
represented as a rise in temperature followed by a fall, as
shown in Fig. 6(b). A single bit ‘1’ spans two times, t; and
tll

ty =1 +1; 4

where t; is the duration of the thermal signal at a high
temperature level, and ¢; is the duration of the thermal signal
at a low temperature level. Bit ‘0’ is represented as a low
temperature with a duration of ;.

5. Signal output module, where the transmitter sends out the
signal by controlling the power consumption of the transmitter
core. That is, the transmitter runs computation-intensive code
with the sole purpose to generate heat to create a high
temperature, and it inserts idle cycles, which gives time for the
running core to cool down, thus creating a low temperature.

Signal I 11 11 1101 11gjgnal 1 11 11 11 01 11
\ \ [\

Power [————— [Power | [[[,

I | I
| Temperam

[\ [

| I I
(a) (b)
Fig. 6. An example of line coding that creates thermal signals from the data
to be transmitted. (a) Waveform of temperature variations controlled by the

traditional on-off keying [1], (b) waveform of temperature variations with the
NRZ scheme in [2].

Temper%ture

F. Receiver

A receiver also has five modules, and their functionalities
are descibed below.

1. Signal input module: This module is responsible to
sample its local thermal sensor with a sampling frequency k
(k >=2) times higher than that of the highest transmission
frequency, as dictated by the Nyquist sampling theorem.

2. Demodulation module: The receiver uses a bandpass filter
with its center frequency tuned to the transmission frequency
to filter out the signals out of band. After filtering, the decision-
making module decides on the binary value of the signal by
comparing the signal amplitude against preset thresholds. That
is,

(&)

g - 1 A > Ao(fi)
0 A < Ao(fy)

where S; is the binary value of the i-th bit, A; is the amplitude
of the i-th bit after filtering, and Ag(f;) is a preset threshold
at frequency f;.

3. ECC decoding module, where ECC of the received packet
is calculated. If the ECC does not match the data in the packet
and the errors are deemed not correctable, the packet is marked
so. Otherwise, the data packet is considered uncompromised
over the transmission and it will be processed further.

4. Protocol decoding module, where a received packet is
inspected in search for a specific preamble (e.g., 101010).

o If the packet doesn’t contain such a preamble, which
could get lost during the transmission, the packet is
discarded. Once the packet is marked as ‘incorrectable’,
the receiver sends an acknowledgement packet back to
the transmitter and asks for a resend.

o If the received packet contains a correct preamble, the
receiver sends a positive acknowledgement (i.e., Data
ACK or Connect ACK) packet to the transmitter.

5. Data output module, where a recognized data packet’s
data fields get extracted.

IIT. COUNTERMEASURES AGAINST THERMAL
COVERT CHANNEL ATTACKS

To fight against the thermal covert channel attack, the
proposed countermeasure essentially consists of three major
steps: detection, positioning, and traffic blocking. All the
three steps are initiated by a core designated as the global
manager. We assume that the system supports hyper-threading

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

(simultaneous-multithreading, SMT), which is becoming com-
monplace in today’s multi-core processors. The detection is
performed at logical core level, and a physical core can host
one or multiple logical cores.

A. Spectrum analysis of TCC

0 Spectrum of IPC with TCC

80Spectrum of IPC without TCC
T
|
TCC at 50Hz > A | B:<40dB
|
g % 60 | A: noisy band
< ° !
o |
E 240 ' [B:TCC band
= £ !
o - P
j=5
5 £20
< I
EABERS
0 0 il 111 1o
0 20 40 60 80 0 10 20 30 40 50

Frequency / Hz

Frequency / Hz

() (b)
Fig. 7. (a) The spectrum of IPC values of a logical core where a transmitter
thread runs. The transmission frequency is 50Hz. (b) The spectrum of IPC
values of a normal logical core where a thread of a typical multi-threaded
application (i.e., Bodytrack from PARSEC) runs.

Since the encoding scheme of a TCC attack is often not
known a priori, we have to rely on analyzing the thermal
signals in frequency domain. First of all, the frequency band
from DC to 10Hz (referred as band A) is treated as noisy
channel and the frequency band higher than 10Hz is treated as
a band suitable for TCC transmission, since the thermal noise
from other cores is concentrated at band A and experiments
show that the average PER of TCC in band A is higher than
50%. Thus, we set the detection frequencies of the signals
fall into the range of 10Hz to 500Hz (referred as band B).
Unfortunately, detecting the thermal signal of TCC is not
suitable for separating a normal logical core from a TCC
logical core since a thermal sensor is shared by multiple logical
cores for systems that support hyper-threading. For example,
if the transmitter and receiver threads both run in the same
physical core in a hyper-threading system, our previous work
[3] can’t find out a pair of physical cores whose thermal signals
are deemed as TCC signals. Instead, for the first time, we
propose exploiting the instantaneous CPU workload (measured
as instructions per cycle, IPC) to be a better metric to analyze
the TCC’s behavior.

Fig. 7 shows the spectrum of the IPC values of a logical
core with and without a transmitter thread running on it. One
can see that when a logical core runs a transmitter thread (as
shown in Fig. 7(a)) or a normal thread (as shown in Fig. 7(b)),
the signal amplitudes of the IPC values of that logical core
are higher or lower than a threshold p (i.e., 40dB) in band B,
respectively. One can easily find out the working frequency of
TCC at which the signal amplitude is the highest (as shown
in Fig. 7(a)) in band B.

To make the threshold p in band B more general, that
is, independent for different applications, the threshold is
statistically determined using a method described in the Ap-
pendix. After the threshold p is determined offline, We use a
frequency-scanning-based detection that runs through band B
to find out the suspicious threads, as summarized in Section
I-B.

B. Overview of the proposed countermeasure

F 1.Detect IPC signals No

2. Locate
transmitters

Any thread
suspicious?

Running in
secured zong

| 3 Block by
DVFS

Fig. 8. The procedure of the proposed countermeasure.

Here a detection cycle refers to the time in the detection
step and the positioning step. A global manager is a thread to
control all these three steps. The three steps are shown in Fig.
8.

Step 1 (Detection): First, the global manager samples all
cores’ IPC values and it is assumed that the global manager has
the privilege to read all cores’ register values (i.e., IPC related
registers). Then the global manager commands all cores to use
a frequency-scanning-based detection that runs through band
B to find out all suspicious threads whose signal amplitudes
of IPC values are higher than p. The global manager may run
multiple detection cycles to identify an attack.

Step 2 (Positioning): In this step, the global manager tries
to locate the threads (essentially the logical cores running the
threads) that engage in data transmissions in the secured zone.
Due to the physical protection nature of the secured zone (e.g.,
an ’Enclave’ is enabled by the processor reserved memory
(PRM) [5]), if the global manager cannot access the address
space of some threads, those detected threads are deemed
as transmitters. Note that a legitimate application may well
behave like a TCC that transmits data at some fixed frequency.

Step 3 (Traffic blocking): In the last step, if the previous step
provides the positions of TCC logical cores, the physical cores
which the detected logical cores belong to are applied DVFS
with a sole purpose to block communications within a thermal
covert channel. Note that once killing a legitimate thread, the
entire multi-threaded application may be terminated.

The global manager runs these three steps repeatedly, and
once it receives all cores’ reports, it will ask the TCC cores to
take traffic blocking step and continues to initiate a new de-
tection cycle to sample all cores’ IPC values. Assume that the
times of sampling all cores’ IPC values, all cores’ frequency
scanning detection, and positioning transmitter threads are ¢,
to, and t3, respectively, so the time of each detection cycle is
t1+t2+t3 which is shown in Fig. 9. When the global manager
core is sampling IPC values, other cores have an interval, ¢;
(i.e., 2 seconds in our experiments), to run their normal tasks.
Since the TCC almost only works during 1, our proposed
method can always detect TCC cores.

All of the notations used in Algorithm 1 are listed in Table I.

C. Detection

As shown in Fig. 10 the global manager commands each
logical core to detect whether there is a possible attack or
not, and each logical core performs detection individually
and reports to the global manager with its findings. In each

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

| b t | t3| cycle 2 ‘ cycle 3 | cycle 4
I I T I I ™ |
-

cycle 1

Fig. 9. The detection cycles.

TABLE I
NOTATIONS USED IN ALGORITHMS 1

Notation Description

IPC; The CPU workload traces (IPC) of logical core ¢

recorded in a detection cycle.

p A preset amplitude threshold for the detection of IPC
signal.

Af Frequency incremental as needed in Fast Fourier trans-

form (FFT) and it is set to be 1Hz in this study.

Ne Number of logical cores in the SoC.

L A list of the transmitter logical cores during a detection
cycle with a length of n.. This list is initialized to be
empty.

F The available frequency set. The elements span from
10Hz to the upper bound of band B with an incremen-
tal of Af.

A mapping set with each element made of a “key-
value” pair corresponding to the mapping between a
“key” and a “value”. Here a “key” of an element is a
signal frequency from the spectrum of /PC};, and the
corresponding “value” is the signal amplitude at the
frequency “key”.

DPipc;

Pipe; (f)

The “value” of an element of p;p., at the frequency

of f.

Global
manager

Sample and record all
cores’ IPC values

[

Core 1
| | | |

Scan Scan Scan
frequencie frequencie frequencie

| l l |

Detection
results

Core 2

Fig. 10. Detection scheme. The ‘Scan frequencies’ means the core scans the
entire power spectrum of IPC signal.

detection cycle, the global manager samples and records each
logical core’s IPC profiles over a time window, say ¢; seconds
(i.e., 2 seconds in our experiments), and it then asks each
logical core to execute a frequency scanning process to search
for any existing TCC channels. This detection task is set to
supersede any other tasks of a logical core is performing.

1) Frequency-Scanning-Based Detection of TCC Channels:
In a detection cycle, the system checks which signal fre-
quencies are available for TCC channels. As listed in Alg.
1, the frequency—scanning-based detection algorithm works as
follows.

Step 1. The global manager initiates a detection cycle to
see if there is any possible TCC channel; upon receiving the

Algorithm 1: Frequency-scanning-based detection at
core i(1 < i <m..)

Input: /PC;, p, L, F, and Af.
1 Initialization: f < 10H z;

2 begin
3 calculate the spectrum of signal I PC; using the
Fast Fourier transform (FFT) algorithm;
4 fill p;p., with all the “frequency-amplitude”
elements from spectrum of I PCj;
5 while f € F do
6 if DPipc; (f) >p then
7 add i to L;
8 report logical core 7 to the global manager;
9 return.
10 end
1 f=f+Af
12 end
13 send a message to the global manager that no TCC
channel is found in core .
14 end

command from the global manager to start a new detection
cycle, each logical core extracts the spectrum of its IPC signals
(see lines 3 and 4 in Alg. 1). Then each logical core scans
the entire spectrum in a linear sweeping fashion with an
incremental of Af (see lines 5 and 11 in Alg. 1).

Step 2. During the frequency scanning process, each logical
core determines the amplitudes of the IPC signals (see lines 6
to 10 in Alg. 1). By comparing the signal amplitudes against
the threshold p, one can decide whether the signals are actually
from a covert channel or not (see line 6 in Alg. 1). Note that
a normal application running on a core may be detected as
a suspicious core; this false positive, with a low probability
(typically 5% following the threshold computation method
in Appendix), is acceptable in this step. Once a suspicious
channel is detected in a logical core 7, the position ¢ is added
to list L (see line 7 in Alg. 1).

Step 3. At the end of a detection cycle, if a logical core
confirms that a TCC attack is present, it reports its findings,
i.e., the position of the detected logical core, to the global
manager (see line 8 in Alg. 1). Otherwise, the logical core
can conclude that no TCC attack has been found in the current
detection cycle and reports so to the global manager (see line
13 in Alg. 1).

Step 4. If the global manager finds no TCC channel exists
in any of the logical cores, it initiates a new detection cycle.
Then, it will start all over from step 1 again.

If the global manager receives a notification of the existence
of a TCC channel, it begins to locate all transmitter logical
cores, as described in the next subsection.

D. Positioning the Logical Cores Affected by a Thermal
Covert Channel Attack

A message that a logical core sends to the global manager at
the end of a detection cycle contains two parts of information:
1) a confirmation that one possible TCC channel is found,

Amit
Highlight

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

and 2) the position of that logical core. If the global manager
receives such a message, it begins to find the logical cores
running in a secured zone.

This positioning step involves 2 steps and is explained
below.

Step 1. For each detected thread in list L (see Table 1),
where L stores all the detected logical cores during a detection
cycle, the global manager checks whether the address space of
that thread can be accessed or not. If the answer is yes, core
1, the position of that thread, is considered as a normal logical
core outside a secured zone, and as so, it is removed from list
L. Note that in a short time (e.g., 2 seconds), we assume a
TCC thread keeps running in a dedicated logical core.

Step 2. At the end of each detection cycle, if the global
manager decides to locate one or more logical cores that harbor
a TCC attack (i.e., list L is not empty), it exits the positioning
step and turns to the next traffic blocking step (Section III-E).
If the global manager fails to locate a transmitter logical core,
it initiates a new detection cycle as an attempt to collect extra
information.

E. Blocking the Thermal Covert Channel Attack

Once a core in list L is identified to be associated with a
TCC, a countermeasure shall follow to block any future TCC
transmission. Here we assume that a TCC thread keeps running
on a dedicated logical core throughout a full communication
session or even beyond. We apply DVFS to the CPU core
where the detected threads run to block the transmission.
Scaling down the frequency level can effectively change the
temperature signal drastically so that the the receiver will
experience extremely high PER that, in the end, no meaningful
TCC communication is possible (i.e., no data can be faithfully
received).

Note that in today’s multi-core processors that hyper-
threading is becoming commonplace, more than likely, the
physical cores in a TCC may also run some legitimate threads
other than the TCC threads. In this case, the proposed DVFS
strategy should take into account of both the security require-
ments and system performance issues. As a tradeoff, a variable
down-up rate, (8, herein is introduced, which is defined as
the ratio of the temporal duration of the low frequency level,
denoted as £ 4oun, to temporal duration of the normal frequency
level, denoted as t,,,. That is,

5 = tdown/tup (6)

As shown in Fig. 11, when the transmitter core is running
at its typical frequency level (e.g., 2.5GHz), the temperature
signal may see a sharp rise and fall when encoding signal
‘1’; however, the signal amplitude is much lower than before
when the frequency of the transmitter core drops to a lower
level (e.g., 500MHz) for a duration of 4., and then returns
to its typical value for a duration of t,,. By enforcing the
down-up rate, the frequency cycles through low (to 500 MHz
in Fig. 11) and high levels (back to 2.5 GHz).

The traffic blocking involves the following major steps.

Step 1. The global manager calculates the duration ¢,(=
1/f:) of one signal cycle. Here f; is fixed to 500Hz since

signal code ; 1 ; 0 ; 1

normal F 1§V@J e _

DVFS control

low F level |
! >« 1 T
I 1*down I
I. | |

temperature Wlth varying F lcvcks

Fig. 11. An example showing the blocking scheme.

the transmitter and receiver may use different channels to
communicate.

Step 2. During the period of 0.5t;, the global manager first
demands the suspicious core to scale down its frequency to
a randomly selected low frequency level for a duration of
taown, after which the frequency of that core will be allowed
to restore to its normal level.

Step 3. The global manager always checks whether another
TCC channel is present or not for each detection cycle, and
also checks whether the supposedly blocked channels are
still active or not for every m detection cycles. Here m is
set to be an integer randomly selected from 1 to 10. If the
global manager finds another TCC channel that is associated
with a different core, it gets back to the positioning step
while keeping all the currently detected TCC transmission(s)
blocked. If the global manager does not find any TCC channels
in currently blocked cores, it recovers the frequency levels of
those cores to their normal ones to reduce the performance
loss.

1V. EXPERIMENTAL EVALUATION
A. Experimental Setup

Two sets of experiments are performed on respective 2D
and 3D many-core processors. Mostly, these experiments are
performed using a many-core simulator, Sniper-v7.2 [29],
with McPAT-v1.0 integrated as the power model. We also
adopt the Hotspot-v6.0 thermal model to dynamically generate
temperatures for all the cores. We choose a few benchmarks
from PARSEC and SPLASH-2 and they will be treated as the
thermal noise to a TCC. The accuracy of simulation tempera-
tures is set to be 0.12°C [14] and 1°C for simulations in both
2D and 3D many-core systems, respectively. A resolution of
0.12°C means that the temperature output from the Hotspot
model has a precision of 0.12°C. The detailed configuration
of Sniper, Hotspot, and TCC programs are tabulated in Table
I

1) Experimental Configurations of the 2D Many-core Sys-
tem: The channels include inter-core and intra-core channels.
As for an inter-core channel, two physically separated cores
are paired together as part of a TCC, while all the other cores
are running legitimate threads from the selected benchmarks.
Specifically, each physical core runs two simultaneous mul-
tithreading (SMT) threads, and both the transmitter core and
the receiver core run a TCC thread and a thread spawned by
the benchmarks. As for an intra-core channel, the two logical

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

TABLE II
SIMULATION CONFIGURATION

Sniper configuration
x86-64

Instruction set architec-
ture

Mesh

3D mesh, with each layer has its own 2D mesh
and the layers are connected vertically through
Through-Silicon-Vias (TSV) [31].

Number of cores (2D) 3x3/4x4/8x8
Number of cores (3D) 3x3x3/4x4x3/8x8x%x3
SMT | 2

2D Network topology

3D Network topology

Number of
threads per core

Technology node (nm) | 22
2500/1.0,

Frequency and volt- 1000/0.7, 800/0.68, 700/0.66,

age levels of CPUs | 600/0.64, 500/0.6, 400/0.5

(MHz/V)

Benckmarks of PAR- | Blackscholes, Canneal, Fluidanimate, Stream-
SEC cluster, Swaptions, X-264, Dedup, Freqmine.
Benckmarks of | Raytrace, Barnes.

SPLASH-2

Configuration for an integrated Hotspot

Chip thickness 0.15mm

Silicon thermal con- | 100W/(m - K)
ductivity

Silicon specific heat | 1.75 x 108J/(m3 - K)
capacity

Heat sink side 0.06m

Heat sink thickness 6.9mm

Heat sink thermal con- | 400W/(m - K)

ductivity

Specific heat capacity | 3.55 x 106J/(m3 - K)

of heat sink

Configuration for TCC programs
10Hz, 20Hz, 50Hz, 80Hz, 100 Hz, 150 Hz, etc.

Transmission

frequency
Preamble of a packet 101010.
Packet size in bits 64.

Distance between
a transmitter and a
receiver

intra-core/1 hop.

Bandpass filter using
by the receiver

bandwidth of bandpass
filter

window-based FIR (finite impulse response)
filter.

4Hz.

cores in the same physical core are able to run transmitter and
receiver programs.

2) Experimental Scenarios of the 2D Many-core System:
The TCC communications are set to be point to point. For
each experiment, packets are transmitted randomly for 1000
times and the result is then averaged. Effectiveness of a TCC
attack is measured in terms of the packet error rate (PER),
as opposed to bit error rate (BER). The PER is defined as
follows.

PER = N./N x 100% (7

where N is the total number of packets transmitted, and N, is
the number of packets failed to be correctly recognized. The
experiments performed on the 2D many-core system include
the following scenarios:

100Hz
Request, Data

Transmitter Receiver

120Hz
Ack

Fig. 12. An example showing the transmitter and receiver communicate using
two different channels. A is the transmitter and B is the receiver.

¢ Measuring the PER’s of a TCC communication under
different thermal noise environments in a 4 x4 many-core
system.

e Measuring the PER’s of a TCC communication under
different system sizes.

o Measuring the PER’s of a TCC communication without
applying DVES control to the transmitter core.

e Measuring the PER’s of TCC communication when ap-
plying DVFES control to the transmitter core.

« Evaluating the performance loss of legitimate applications
when exploiting DVFS control to the transmitter core.

For all experiments below, the transmitter and receiver of
each TCC can communicate with each other in two different
channels. As shown in Fig. 12, A is assumed the transmitter in
a secured zone and B is the receiver in an unsecured zone. Note
that both the transmitter and receiver can transmit information
to each other according to the communication protocol, and
each time we can only detect a thread (logical core) that
is transmitting data. When A transmits data to B, A uses a
transmission frequency of 100Hz, and B extracts data at the
frequency of 100Hz. When B transmits data to A (e.g., applies
ACK or resend request to B), B uses a transmission frequency
of 120Hz, and A extracts data at the frequency of 120Hz. Note
that once the transmitter and receiver use two or more channels
to communicate, our previous work [3] that positioning two
cores by finding the same channel can not detect such TCC
attacks.

3) Measurements on the Real Machine: The machine
adopted in this study is a quad-core eight-thread Intel Core
17-7700HQ processor clocked at 2.8GHz. We fix the fan speed
to the maximum and let other cores sleep, and only the
transmitter core and receiver core are active like the work
in [12]. The PER’s of a TCC communication before and after
applying DVFS control to the transmitter core are measured.

4) Experimental Configurations of the 3D Many-core Sys-
tem: We will evaluate both inter-core channels and intra-core
channels of the 3D many-core system where its floorplan
follows the one used in [30]. As for an inter-core channel,
the receiver core is right below the transmitter core. The other
configurations are set to be the same as those of the 2D many-
core case. In a 3D many-core system, the vertical layers are
connected by the TSV’s (Through-Silicon-Vias). Note that the
thermal correlation in the vertical direction is higher than that
in the horizontal, thus, the vertically placed inter-core channels
are more efficient than those inter-core channels in a 2D many-
core system.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

Average PER

PER %
2

400 500 800 850 900
CPU frequency / MHz

’ifrcqminc l:lraylracc [Jcanneal [EMothers ‘

Fig. 13. The PER’s of the 2D 1-hop channels running at different frequency
levels under different thermal noise environments in a 4x4 many-core
system. There are four cases: “raytrace” means the benchmark Raytrace from
SPLASH-2 is running in the system, and the heat generated by running the
threads of Raytrace is thermal noise to a TCC. ‘freqmine’ and ‘canneal’ mean
the benchmarks Freqmine and Canneal from PARSEC are running in the
system, respectively. ‘others’ include the benchmarks Barnes, Blackscholes,
X-264, Fluidanimate, Swaptions, and Dedup.

B. Selecting the Parameters for Defense

In order to balance between the security requirements
(measured by the PER of a TCC communication) and system
performance, the parameters of the defense scheme need to be
selected first in the experiment.

Fig. 13 shows the simulation results of average PER’s of
the 1-hop channels as the transmitter core runs at differ-
ent frequencies. Note that when the CPU frequency of the
transmitter core is 900MHz or lower, all the PER’s of the
2D 1-hop channels under thermal noise generated by running
the benchmarks listed as ‘others’ in Fig. 13 are 95%=1%.
One can see that when the frequency level of a transmitter
core drops to 800MHz or even lower, in all cases, the TCC
communication sees a high PER (e.g., more than 70%) for the
1-hop channels. In addition, when transmitting a single bit,
if we randomly choose the frequency level of the transmitter
core to be 500MHz, 600MHz, 700MHz, and 800MHz, the
average PER of the intra-core channels is significantly higher
than 70%. In most cases, the PER reaches 95%. As for the real
machine, since the allowed frequency spans from 800MHz to
2800MHz, we set the low frequency list to include 800MHz,
900MHz, and 1100MHz. The PER’s of a TCC in a real
machine, in all these cases, are higher than 60%. Therefore,
in the following experiments, we include S00MHz, 600MHz,
700MHz, and 800MHz into the low frequency list (vs. the
normal frequnency of 2500MHz) to defend against both inter-
core and intra-core channels.

Once a TCC attack is confirmed, the CPU frequencies of
the transmitter core and the reeiver core can be randomly
selected from the low frequencies list. However, if we keep the
frequency level of the CPU core at a low level all the time,
other legitimate applications running on this same physical
core will also be adversely affected, and the performance loss
(PL) is defined as:

Tavg — T0 % 100% 8)

Tavg

PL =

where 74,4 is the average performance (IPC, instruction per
cycle) of an application when no DVEFES control is applied, and
mo is the average performance of an application when DVFS
control is in effect.

Average PER
100 5

80
60
40

Average PL

PER %
PL %
&~
%

4.6
(=)} w“ o (=2
= T @
— ~

525
6.14
7.33
15.67
525
6.14

M

15.67

8 8

(@) (b)
Fig. 14. (a) The average PER of TCC communication with respect to 3. (b)
The average performance loss (PL) of a normal application with respect to
. The TCC programs coexist with a mixture of 4 multi-threaded benchmarks
serving as the noise source in a 4x4 many-core system.

To help balance the security requirements and performance,
the value of needs to be properly selected. Fig. 14(a)-(b)
show the PER of the TCC communication and the average
performance loss with respect to different values of /3. From
Fig. 14(a), one can see that the average PER increases as (3
increases. It remains below 36% until S reaches 7.33. While
B is set to 9, PER soars to 90%. As shown in Fig. 14(b),
the performance loss also increases as (3 increases. In all the
following experiments, 3 is set to be 9 and ¢, is limited to
5% of one signal duty cycle.

C. Experimental Results

1) Results of TCC attacks: The PER’s of TCC are measured
when there are two TCC logical cores in the system with all
the other logical cores running legitimate applications from
the benchmarks PARSEC and SPLASH-2 as the background
noise to the TCC. Table III shows both simulations and real
machine’s results.

As for the simulations, the 1-hop channels are working
with a transmission frequency of 100Hz and CPU frequency
level of 2500MHz in a 4x4 many-core system. From Table
III, one can see that the PER of the TCC receiver of the
2D 1-hop channels are below 1% for most situations. The
reason why the 1-hop channels suffer a high PER (i.e., 25%)
with the thermal noise from PARSEC-Streamcluster is that the
application temperature has frequency components in band B.

As for the TCC’s in real machine, the average PER’s of
an intra-core channel and a 1-hop channel are below 5% with
the transmission frequeny of 100Hz and 15Hz, respectively.
Note that an intra-core channel does not need to transfer
heat between two neighboring cores, and the transmission
frequency of an intra-core channel can go much higher than
that of inter-core channels, with the sensor resolution of 1°C.

From Fig. 15, one can see that the average PER’s of TCC
communications in all 2D and 3D many-core cases are below
7%, as long as the DVFS control is not applied. With such low
PER, the TCC certainly poses a serious threat to any system.

2) Evaluation of the Detection Scheme: The detection step
actually needs to identify whether there is a TCC attack or
not, and if one attack is found, the transmitters associated
with the TCC need to be positioned. The positioning accuracy
is denoted as P,...

1 Pdetected = Ptransmitter
Pacc = . (9)
0 otherwise

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

TABLE III
PER’S OF TCC COMMUNICATION

PER’s of 1-hop TCC’s in Simulations
Benchmarks PER Benchmarks PER
Barnes 0.24% Raytrace % 0.2%
Freqmine 0.12% Blackschole 0.15%
Canneal 0.5% Fluidanamite% 0.32%
Swaptions 0.71% X264 1.25%
Dedup 3% Streamcluster% 25%

PER’s of TCC in real machine
TCC types PER TCC types PER
Intra-core 3% 1-hop 5%

Average PER without DVFS
8

mm 2D same-core
== 2D I-hop

== 3D same-core
= 3D I-hop

3x3 4x4 mix4 mix8
System size

Fig. 15. The average PER’s of a TCC communication under different system
configurations and scenarios. Mix4 (Mix8) is the case that the thermal noise
seen by a TCC is from a mixture of 4 (8) multi-threaded benchmarks. As
for the 3D mesh, the 4x4 system size means that each layer consists of 4x4
cores, and so on.

TABLE IV
DETECTION ACCURACY OF Pgcc

System sizes Pace
2D 3x3 0.98
2D 4x4 0.975
2D 8x38 0.97
3D 3x3x%3 0.98
3D 4x4x3 0.972
3D 8x8x3 0.96

where Petecteq 18 the position (core id) of the detected TCC
cores, and Py qnsmitter 18 the actual position of the transmitter
cores.

From Table IV, one can see that the average accuracy of
positioning transceiver is around 97%. By using the proposed
detection strategy, we can almost always identify a TCC attack,
should it ever exist, and correspondingly, the position(s) of the
transmitter core(s) can be accurately determined.

3) Defense Results: With the proposed countermeasure,
once a TCC attack is detected to transmit over a freqeuncy in
band B, the TCC transmitter core’s frequency level is changed
with a down-up rate 3 of 9.

As for the real machine (shown in Table. V), with our
proposed countermeasure, the average PER’s of an intra-core
channel (with frequencies ranging from 10Hz to 150Hz) and
a 1-hop channel (with frequencies ranging from 10Hz to
20Hz) in the real machine are higher than 70%. Note that
with the resolution limitation of thermal sensors and low
thermal correlation between cores, the 1-hop TCC’s in our
real machine can hardly transmit signals with frequency higher

TABLE V
PER’S IN REAL MACHINE WHEN APPLYING THE PROPOSED
COUNTERMEASURE
TCC types PER
Intra-core 72%
1-hop 100%
Average PER Average PER
100 mm 2D same-core 100;= %B 5ie1hm0e—core
== 2D I'hOP_ == 3D same-core
96 == 3D same-core 90/= 3D I-hop

= 3D I-hop
92

88
84

PER %

80,

PER %

70

10 50
Transmission frequency / Hz

150 200

3x3 4x4 mix4 mix8
System size

() (b)
Fig. 16. (a) The average PER results of TCC communication with our pro-
posed countermeasure with different system sizes. The transmission frequency
of the TCC is 100Hz. (b) The average PER results of the TCC communication
in a 4x4 system with different transmission frequencies within band B. The
CPU frequency of TCC cores drops to S00MHz before TCC running.

than 20Hz, even without applying DVFS.

As for the simulation results, from Fig. 16(a), one can see
that the average PER’s of the TCC attacks with a transmission
frequency of 100Hz across all the systems with different sizes
is higher than 82%. With such a high PER, no meaningful
communications can be sustained; that is, our defense strategy
can effectively shut down TCC attacks.

To evaluate how the proposed countermeasure affect the
FHSS, we first drop the CPU frequencies of both the trans-
mitter core and receiver core to S00MHz. The transmission
frequency of the TCC dynamically changes with a range
of 10Hz, 50Hz, 150Hz, and 200Hz. From Fig. 16(b), one
can see that once the CPU core is applied our proposed
countermeasure, the TCC cannot survive with the transmission
frequencies in band B, with PER higher than 70% for all the
situations. Therefore, we can draw the conclusion that once the
TCC cores are detected and blocked by the proposed counter-
measure, attempting to change transmission frequencies within
band B will not bring in any additional benefit.

4) Average Performance Loss: Note that scaling down the
CPU frequency of the physical transmitter core will also
negatively impact performance of a legitimate logical core.
Fortunately, the TCC programs are not active all the time.
After finishing transmission, they return to be inactive. There-
fore, we apply DVFS countermeasure to block a TCC attack
working in band B only when an attack is identified being
active. If the global manager does not detect a TCC channel
on the same transmitter core next time, the frequency level of
the core is tuned back to a normal one. We denote the ratio
of the time of TCC being inactive to the time of TCC being
active to be 7.

We assume that a TCC thread may share the same phys-
ical core with a thread of a legitimate application, and the
performance loss of the legitimate application is 0% if we
do not apply DVES to block TCC. When we apply DVES

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

Average PL 0 Average PL
30 3 == simple method
25 = the proposed
s 20 X6
2 15 x4
10 2
5
0

3x3 4x4 mix4 mix8
System size

01 24919
T

(@ (b)
Fig. 17. (a) The average PL results with different 7’s. ‘0’ means that the
TCC keeps active all the time. (b) The average PL results with different
system sizes with 7 set to 4.

to the physical cores of TCC, the performance loss of that
legitimate application is calculated by Eqn. 8. Fig. 17 shows
the average performance loss (PL) of normal applications,
including all the false positives (i.e., the cases that the normal
cores are mistakenly treated as TCC cores). Our proposed
countermeasure with a down-up rate 3 of 9 (5=9) is compared
against a simple countermeasure that keeps the transmitter core
running at fixed voltage and frequency levels once a TCC
attack is detected.

From Fig. 17(a), one can see that in a 4x4 many-core
system, when 7 increases, the average P L decreases. As TCC
stays inactive much longer than being active, the performance
loss actually is less than 6% when 7 is greater than 4. From
Fig. 17(b), one can see that the average PL result of our
proposed countermeasure is always lower than that of the
simple countermeasure for different system sizes. The average
PL of our prosposed countermeasure in a 3x3 many-core
system is below 9%. As the system size or the number of
benchmarks in a system increases, the average PL of normal
applications decreases since the threads trend to be scheduled
to the cores that are not malicious. Therefore, in a large many-
core system, the average performance loss of our proposed
countermeasure is considered low (e.g., below 3% for an 8x8
system).

From Figs. 17(a) and (b), one can see that the PL of our
proposed countermeasure is 12% lower than that of the simple
countermeasure. Thus, our proposed countermeasure is better
than the simple countermeasure at a modest cost of perfor-
mance. The performance loss of our proposed countermeasure
is quite low, i.e., the PL is below 3% for a large many-core
system.

D. Overhead of the Proposed Countermeasure

As shown in Fig. 9, a detection cycle spans multiple phases:
tl, tg, and t3.

During ¢; (2 seconds in our experiments), except the logical
core functioning as the global manager, all the other cores
are allowed to run their own tasks, both normal and potential
TCC tasks. Thus, only the global manager thread incurs some
overhead. When calculating each core’s IPC value, the global
manager needs to perform 2 subtract instructions and 1 divide
instruction, which consumes a total of 28 clock cycles (based
on the clock cycles of arithmetic operations of an architecture
reported in [36]). Since the number of temperature traces
recorded for 2 seconds with a sampling frequency of 1000Hz

is fewer than 2048, for a system with n. logical cores and
clocked at 2GHz (i.e., 2 x 10? cycles per second), the global
manager actually takes 57344 xn, (i.e., 2048 x 28 x n.) clock
cycles or 28xn.us (i.e, 57344/(2 x 10%) x 10° x n.) to
complete sampling all the cores’ IPC values.

During 2, an N-point fast Fourier transform needs to
peform about Ny complex multiplications [35] where

fot = (N/Q) X 10g2N (10)

We assume each real number multiplication has 20 clock
cycles [36] and each complex multiplication involves 4 (i.e.,
2 complex number contains 2 real numbers and 2 imaginary
numbers) real number multiplications. For a 2048-point FFT
calculation, 11264 multiplications of real numbers is needed,
which corresponds to 901120 clock cycles, or run time of
0.45ms with a core clock running at 2GHz.

During t3, the global manager needs to check whether the
address space of each detected thread (thread’s private stack
address) can be accessed or not, which only includes memory
access for at most n. times, and takes lower than 0.01 X n.us.

Putting all the phases together, one can see that although
a detection cycle on average can last 2s, when n. < 100,
the runtime of the proposed detection accounts for lower than
0.17% (i.e., (28 x n. + 450 + 0.01 x n.)/(2 x 105)) of the
execution time of the normal applications.

From MCcPAT, each core’s average power consumption is
around 9W and 13.5W during ¢; and t», respectively. When
n. < 100, the energy consumption overhead of the proposed
countermeasure is lower than 3.4% (i.e., (x/(x+9x2), where
2 =9x%x28xn.x 1075 +13.5 x 0.45 x n. x 1073) of the
total energy consumption of the whole system.

Note that calculation of the threshold is typically done
offline, following the procedure provided in Appendix. In
general, the runtime overhead in terms of cycle count and
energy consumption of our proposed countermeasure is fairly
modest.

V. CONCLUSION

In this paper, a three-step detection and countermeasure
scheme was proposed to defend against TCC attacks that
poses severe security threats to many-core systems. During
the first detection step, a frequency scanning method is applied
to examine the CPU-workloads to identify any possible TCC
attack. In the following positioning step, the TCC logical cores
are located. In the final traffic blocking step, a TCC attack can
be blocked by applying DVFS to the cores participating in the
TCC. Experimental results have confirmed that the proposed
countermeasures could practically shut down TCC attacks by
forcing their transmissions to undergo extremely high PER
(>70%) at a very modest performance loss (< 3% in an §x8
many-core system). With its low complexity and overhead,
the proposed countermeasure is a suitable scheme that can be
adopted by many-core systems to fight against TCC attacks.

REFERENCES

[11 R. J. Masti, D. Rai, A. Ranganathan, C. Miiller, L. Thiele, and S.
Capkun, “Thermal covert channels on multi-core platforms”, in Proc.
USENIX Security Symp., 2015, pp. 865-880.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

[2] Z. Long, X. Wang, Y. Jiang, G. Cui, L. Zhang, and T. S. T. Mak,
“Improving the efficiency of thermal covert channels in multi-/many-core
systems”, in Proc. Design, Automation & Test in Europe Conf. &
Exhibition, 2018, pp. 1459-1464.

[3] H. Huang, X. Wang, Y. Jiang, A. K. Singh, M. Yang and L. Huang. “On
countermeasures against the thermal covert channel attacks targeting
many-core systems”, in Proc. Design Automation Conf., 2020.

[4] ARM, “Building a secure system using TrustZone technology”,
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492¢/PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf.

[5] V. Costan and S. Devadas, “Intel SGX explained”, Cryptology ePrint
Archive, vol. 2016, pp. 86, 2016.

[6] B. Lapid and A. Wool, “Cache-attacks on the ARM TrustZone
implementations of AES-256 and AES-256-GCM via GPU-based
analysis”, Cryptology ePrint Archive, vol. 2018, pp. 621, 2018.

[71 Y. Wu, W. Zheng, B. Mao and X. Wu, “Leaks or not: a framework for
evaluating cache timing side channel attacks in SGX”, in Proc. Smart
World, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation, 2018, pp.
1467-1470.

[8] P. Qiu, D. Wang, Y. Lyu and G. Qu, “VoltJockey: breaching TrustZone by
software-controlled voltage manipulation over multi-core frequencies”,
in Proc. Computer and Communications Security Conf., 2019, pp.
195-209.

[9] Sining Pan, Cagri Gurleyuk, Matheus F. Pimenta, and Kofi A. A.
Makinwa, “A 0.12mm? wien-bridge temperature sensor with 0.1°C (30)
inaccuracy from -40°C to 180°C”, in Proc. IEEE Int’l Solid- State
Circuits Conf., 2019, pp.184-186.

[10] “8th gen intel core processor family
https://www.intel.com/content/www/us/en/products/docs/
processors/core/8th-gen-core-datasheet-vol-1.html.

[11] “CoreTemp”, https://www.alcpu.com/CoreTemp/.

[12] D. B. Bartolini, P. Miedl, and L. Thiele, “On the capacity of thermal
covert channels in multicores”, in Proc. European Conf. Computer
Systems, 2016, pp. 24:1-24:16.

[13] R. E. G. Dennis, C. D. K. Nguyen, S. H. Gillani and M. B. Tahoori,
“Voltage-based covert channels in multi-tenant FPGAs”, Cryptology
ePrint Archive, vol. 2019, pp. 1394, 2019.

[14] S.Panand K. A. A. Makinwa, “A 0.25 mm?-resistor-based temperature
sensor with an inaccuracy of 0.12 °C (30) from -55 °C to 125 °C”, J.
Solid-State Circuits, vol. 53, no. 12, pp. 3347-3355, 2018.

[15] Z. Wu, X. Zhang, and H. Wang, “Whispers in the hyper-space:
high-speed covert channel attacks in the cloud”, in Proc. Usenix Security
Symp., 2012, pp.159-173.

[16] Y. Xu, M. Bailey, F. Jahanian, K. R. Joshi, M. A. Hiltunen and R. D.
Schlichting, “An exploration of L2 cache covert channels in virtualized
environments”, in Proc. Cloud Computing Security Workshop, 2011, pp.
29-40

[17] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture”, in Proc. Computer Security Applications Conf., 2006, pp.
473-482.

[18] L. Deshotels, “Inaudible sound as a covert channel in mobile devices”,
in Proc. Workshop on Offensive Technologie, 2014.

[19] S. Cabuk, C. E. Brodley and C. Shields, “IP covert timing
channels: design and detection”, in Proc. ACM Conf. Computer and
Communications Security, 2004, pp. 178-187.

[20] C. Jie and G. Venkataramani, “CC-Hunter: uncovering covert timing
channels on shared processor hardware”, in Proc. IEEE/ACM Int’l Symp.
Microarchitecture, 2014, pp. 216-228.

[21] X. Zhang, Y. Tan, C. Liang, Y. Li and J. Li, “A covert channel
over VOLTE via adjusting silence periods”, IEEE Access, vol. 6, pp.
9292-9302, 2018.

[22] M. Guri, O. Hasson, G. Kedma and Y. Elovici, “VisiSploit: an optical
covert-channel to leak data through an air-gap”, CoRR, abs/1607.03946,
2016.

[23] W. Liu, X. Zhou, J. Huo and K. Yan. “Modeling of visible light
channel based on matrix reconstruction, in Proc. Int’l Conf. Wireless &
Optical Communications, 2016.

[24] N. Matyunin, J. Szefer, S. Biedermann and S. Katzenbeisser, “Covert
channels using mobile device’s magnetic field sensors”, in Proc. Asia &
South Pacific Design Automation Conf., 2016, pp. 525-532.

[25] M. Guri, M. Monitz and Y. Elovici, “USBee: air-gap covert-channel
via electromagnetic emission from USB”, in Proc. Privacy, Security &
Trus, 2016, pp. 264-268.

datasheet”,

[26] M. Alagappan, J. Rajendran, M. Doroslovacki and G. Venkataramani,
“DFS covert channels on multi-core platforms”, in Proc. IFIP/IEEE Int’l
Conf. Very Large Scale Integration, 2017, pp. 1-6.

[27] E. M. Benhani and L. Bossuet, “DVFS as a security failure of
TrustZone-enabled heterogeneous SoC”, CoRR, abs/1902.08517, 2019.

[28] S. Chen, W. Xiong, Y. Xu, B. Li and J. Szefer, “Thermal covert
channels leveraging package-on-package DRAM”, in Proc. IEEE Int’l
Conf. Trust, Security and Privacy in Computing and Communications,
2019, pp. 319-326.

[29] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur and L. Eeckhout,
“An evaluation of high-level mechanistic core models”, ACM Trans.
Architecture and Code Optimization, vol. 11, no. 11, pp. 28:1-28:25,
2014.

[30] K. Y. Jheng, C. H. Chao, H. Y. Wang and A. Y. Wu, “Traffic-thermal
mutual-coupling co-simulation platform for three-dimensional network-
on-chip”, in Proc. IEEE Int’l Symp. VLSI Design Automation and Test,
2010.

[31] B. Li, X. Wang, A. K. Singh and T. S. T. Mak, “On runtime
communication- and thermal-aware application mapping in 3D NoC”, in
Proc. IEEE/ACM Int’l Symp. Networks-on-Chip, 2017, pp. 16:1-16:8.

[32] M. Strasser, C. Popper, and S. Capkun, “Efficient uncoordinated FHSS
anti-jamming communication”, in Proc. Int’l Symp. Mobile Ad Hoc
Netw. Comput., 2009, pp. 207-218.

[33] Shanquan Tian, and Jakub Szefer, “Temporal thermal covert channels
in cloud FPGAs”, in Proc. Int’l Symp. Field-Programmable Gate
Arrays, 2019, pp. 298-303.

[34] Johann Knechtel, and Ozgur Sinanoglu, “On mitigation of side-channel
attacks in 3D ICs: decorrelating thermal patterns from power and
activity”, in Proc. Design Automation Conf., 2017, pp. 12:1-12:6.

[35] “FFT (fast fourier transform) waveform analysis”,
https://www.dataq.com/data-acquisition/general-education-tutorials/fft-
fast-fourier-transform-waveform-analysis.html.

[36] “80x86 instruction set”, http://www.penguin.cz/ literakl/intel/intel.html.

[37] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo,
“CLKSCREW: exposing the perils of security-oblivious energy
management”, in Proc. Usenix Security Symp., 2017, pp. 1057-1074.

APPENDIX

The threshold p needs to be determined for different many-
core architectures or system sizes. Herein we provide a generic
method for calculating p.

Step 1. Sample IPC values of the noise (i.e., IPC of the
normal applications) and get the average noise amplitude p; .

Step 2. Sample IPC values of TCC and get the maximum
signal amplitude p;, of TCC.

Step 3. For a threshold p ranging from p; to py, apply the
proposed detection and countermeasure to get the detection
accuracy as well as PER.

Step 4. From the results in Step 3, assign p with a value
that leads to a detection accuracy higher than 95% and the
maximum PER.

Note that based on the signal amplitude, p is obtained for
each individual core offline.

The procedures to verify whether the selected threshold p
is higher than the noise or not are given below.

Step 1: Identifying distribution of signal amplitude:

Assume that the signal in the range of 10Hz to 500Hz
follows the Gaussian distribution with a probability density
function (pdf), f(z),

(z—b)2
fx)=axe *2

(1)

where a and k are coefficients, b is the mean value of z, and
¢? is the variance of x.

This pdf function in Eqn. (11) is used as a regression model
for the signal amplitude. As in the experiment, the R-squared
values (coefficients of determination) are found to be close to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

1, the assumption that the signal amplitudes over the frequency
of interest obeys the Gaussian distribution is well justified.
Step 2: Performing the hypothesis testing:
To prove that our selection of signal amplitude thresholds,
p, is almost always higher than normal signal amplitude, two
hypotheses are used:

o Hj, the null hypothesis that the expected mean value p of
signal amplitudes is greater than or equal to an assumed
value, uo; and

e M, the alternative hypothesis which is the complement
to Hy. o is set to be p, that is, po=p.

Ho:p = po.
Hy: < uo-
A significance level « is chosen to be a=0.05, and n signal
amplitudes, are sampled to form a random variable X. Its
sample mean X and sample variance s are given below:

o1&
X =- X; 12
- ; (12)
2 = Ly (X; — X)? (13)
n—1 = ‘
where X is the i-th sample value of X.
Since the amplitudes, X, obeys the Gaussian

distribution: X ~ N(u,0?), the chosen test statistic g is
set to be _
g2t
Note that ¢ obeys t-distribution with n—1 degrees of freedom.
That is, ¢ ~t(n—1) when Hj is true, with the sample
standard deviation s and n samples.
As the acceptance region of ¢ is given as ¢ > —t,2(n — 1).
We have <
— Mo
— > -1 n—1
s - ety
where t,(n) is the a-th quantile of ¢-distribution and « is the
chosen significance level.

Plg> ~tapn—-1)}=1-a

(14)

(15)

(16)

where P(z) is the probability of x and « is the chosen
significance level.
Then the confidence interval of p is given by:

[—o00, X + X to/a(n —1)] a7

5
Vn

It is found that p is far away from the confidence interval
defined in Eqn. (17), and thus, we reject hypothesis H at the
significance level of 0.05. That is, when the signal frequency
falls into (10,500Hz], our selection of p, which is equals to
1o mentioned above, is higher than normal signal amplitudes
with a probability of 95% at the significance level of of 0.05.

Hengli Huang Hengli Huang received his bachelor degree in software
engineering from South China University of Technology (SCUT), Guangzhou,
China. He is pursuing his master degree in the school of software engineering,
SCUT. His research interests include system security and NoC-based systems.

Xiaohang Wang Xiaohang Wang received the B. Eng. and Ph. D. degree
in communication and electronic engineering from Zhejiang University, in
2006 and 2011, respectively. He is currently an associate professor at South
China University of Technology. He was the receipt of PDP 2015 and VLSI-
SoC 2014 Best Paper Awards. His research interests include many-core
architecture, power efficient architectures, optimal control, and NoC-based
systems.

Yingtao Jiang Yingtao Jiang received his Ph. D. in Computer Science from
the University of Texas at Dallas in 2001. Upon graduation, he immediately
joined the Department of Electrical and Computer Engineering (ECE), Uni-
versity of Nevada, Las Vegas, where he was promoted to full professor in
2013, and subsequently served as the ECE Department Chair between 2015
and 2018. Currently, he is the associate dean of the college of engineering
at the same university. His research interests include algorithms, computer
architectures, VLSI, networking, nanotechnologies, efc.

Amit Kumar Singh Amit Kumar Singh (M’09) is a Lecturer at University of
Essex, UK. He received the B.Tech. degree in Electronics Engineering from
Indian Institute of Technology (Indian School of Mines), Dhanbad, India,
in 2006, and the Ph. D. degree from the School of Computer Engineering,
Nanyang Technological University (NTU), Singapore, in 2013. He was with
HCL Technologies, India for year and half until 2008. He has a post-
doctoral research experience for over five years at several reputed universities.
His current research interests are system level design-time and runtime
optimizations of 2D and 3D multi-core systems for performance, energy,
temperature, reliability and security. He has published over 80 papers in
reputed journals/conferences, and received several best paper awards, e.g.
ICCES 2017, ISORC 2016 and PDP 2015. He has served on the TPC of
prestigious IEEE/ACM conferences DAC, DATE, CASES and CODES+ISSS.

Mei Yang Mei Yang received her Ph. D. in Computer Science from the
University of Texas at Dallas in Aug. 2003. In Aug. 2004, she joined in the
Department of Electrical and Computer Engineering, University of Nevada,
Las Vegas, where she was promoted to full professor in 2016. Her research
interests include computer architectures, interconnection networks, machine
learning, and embedded systems.

Letian Huang Letian Huang received the MS and Ph. D. degrees in
communication and information system from the University of Electronic
Science and Technology of China (UESTC), Chengdu, China in 2009 and
2016, respectively. He is an associate professor with UESTC. His scientific
work contains more than 40 publications including book chapters, journal
articles and conference papers. His research interests include heterogeneous
multi-core system-on-chips, network-on-chips, and mixed signal IC design.

