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ABSTRACT
Particle filters are often used for tracking objects within a

scene. As the prediction model of a particle filter is often

implemented using basic movement predictions such as ran-

dom walk, constant velocity or acceleration, these models will

usually be incorrect. Therefore, this paper proposes a new

approach, based on a Canonical Correlation Analysis (CCA)

tracking method which provides an object specific motion

model. This model is used to construct a proposal distribu-

tion of the prediction model which predicts new states, in-

creasing the robustness of the particle filter. Results confirm

an increase in accuracy compared to state-of-the-art methods.

Index Terms— Object tracking, Canonical Correlation

Analysis, prediction model, particle filter

1. INTRODUCTION

Predicting the movement of an object over time is difficult

when prior knowledge about its motion is lacking. While

deterministic tracking approaches provide fixed predictions

based on the current and past information, probabilistic track-

ing is better capable of modeling uncertainties by estimating

a proposal distribution rather than a single prediction. Using

this distribution, the scenario is narrowed down to possible

states which have to be compared to measurements to find

out which will most likely be the object’s true state.

1.1. Deterministic tracking

One example of deterministic tracking is tracking by detec-

tion, where the object is detected in each frame using a certain

deterministic technique. Another method uses a flock of fea-

tures [1], where a dense area of features within a frame pro-

vides a position estimation. Mean-shift tracking [2] finds a

local maximum on a given confidence map of the new frame.
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As the former methods usually rely on a simple appear-

ance model such as color or edges, they are better suited for

tracking shape changing objects compared to methods relying

on higher level features. However, for tracking rigid objects

more accurate results can be achieved by taking the rigidity

into account. Linear regression methods such as Active Ap-

pearance Models (AAM) [3] or Active Shape Models (ASM)

[4] allow to include spatial information of the object. While

ASM is based only on the shape of an object, AAM also in-

cludes appearance based features. Similar to AAM and ASM,

a Canonical Correlation Analysis (CCA) [5] based tracker has

been proposed by J. Zepeda et al. [6]. This method also finds

a linear regression between object positions and its respective

appearances. However, CCA is a fast discriminative method

whereas AAM or ASM are slower generative methods.

1.2. Probabilistic tracking

In any tracker some assumptions are made about the expected

motion, yet this model will usually be imperfect. When

assuming the deviations from the motion model behave as

(Gaussian) noise, probabilistic models are able to deal with

this noise. A general probabilistic approach would be the

Bayes filter as explained in [7]. This algorithm calculates

the probabilities of possible states and provides an estimated

state of the object being tracked. A prior distribution contains

possible starting states and corresponding probabilities. The

Bayes filter consists of two phases for every new frame: A

prediction phase which provides a proposal distribution of the

next state, and an observation phase which measures the like-

lihoods of the estimates states. Finally, states are updated by

combining the likelihood with the predicted new state in order

to obtain a posterior distribution and a posterior estimate.

Kalman filters and particle filters are the most common

examples of a Bayesian filter. A Kalman filter assumes a lin-

ear motion, a linear observation and Gaussian distributions

for approximating the actual distribution. A particle filter on

the other hand, uses a discrete approximation by means of
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Monte Carlo samples for approximating the actual distribu-

tion, which makes it suitable for tracking motion in a real-life

scene as this motion will likely have non-linear behavior.

1.3. Our approach

Because common prediction methods in probabilistic trackers

(random walk, constant velocity, constant acceleration) often

fail to predict real-life (non-linear) motion, yet are still fre-

quently used (for example [8] and [9]) we propose a more

accurate method by introducing an advanced deterministic

tracker within these probabilistic trackers. As we intend to

include spatial information, CCA was chosen for its compu-

tational simplicity. To the best of our knowledge, this deter-

ministic tracker has never been integrated within a probabilis-

tic framework. As shown in Figure 1, the CCA based tracker

consists of an initialization, training and tracking phase. A

particle filter is provided with an already mentioned predic-

tion and observation model. The former will incorporate the

tracking phase of a CCA based tracker.

Fig. 1. Overview of method integration.

Although possible, not all degrees of freedom will be

tracked by this method. A restriction has been made to in-

clude only 2D translations (tx,ty), scaling (tz) and rotations

around the z-axis (θz). Adding more degrees of freedom or

allowing non-rigid objects is possible, yet lowers the reliabil-

ity of the CCA tracker or requires a longer training duration.

Although any object can be tracked, this paper will provide

a rigid hand tracking approach as an example. In the follow-

ing sections, this approach will be elaborated. First, our CCA

based tracker will be explained in Section 2. Next, the parti-

cle filter and integration of the new prediction model will be

covered during Section 3. Finally, results and a conclusion

will be given in the final sections.

2. CCA BASED TRACKER

2.1. Initialization phase

After manually selecting the user’s hand within the first frame

of a video sequence, a reference image patch is created from

a selected region of interest. After applying a hand mask, the

image is converted and rescaled to a 65× 95 grayscale image

similar to Figure 2(a). This image patch is called the reference

image patch, as it will be a reference during both training and

tracking phases. The resolution is empirically chosen to still

contain enough information for training different states, with-

out providing too much overhead during tracking.

2.2. Training phase

After obtaining the reference image patch, a dataset Qa is

populated from generated hand position image patches based

on this reference image patch. By applying translation, rota-

tion and scaling operations on the underlying image, we are

able to create image patches which represent movement. Fig-

ure 2 provides image patch examples of a 2D translation (b),

a scaling (c) and a rotation (d), created from the reference im-

age patch (a). During training we want to find a correlation

between these patches and their respective states as explained

in section 2.3.

(a) (b) (c) (d)

Fig. 2. Reference patch and possible trained positions.

Before Qa is populated, the pixels of image patches are

stored in image patch vectors xi. Each image patch vector is

normalized by the norm of all pixel values within the corre-

sponding patch in order to allow for changes in illumination.

Finally, the reference image patch vector is subtracted from

each image patch vector as shown in Equation (1). The re-

sulting vectors ai are stored in Qa.

ai = xnorm
i − xnorm

ref (1)

A different dataset Qs will contain state vectors s as shown

in Equation (2), which correspond to the generated image

patches stored in Qa.

s = [tx, ty, tz, θz] (2)

Although it is possible to find a correlation based on these

two datasets, they are separated into three groups to avoid the

curse of dimensionality; 2D translations, scaling and rotations

around the z-axis. By introducing this state separation and

assuming independence amongst these clusters, the training

sets require less data to find a reliable linear correlation and

states can be tracked hierarchically within a particle filter.

As different users and scenarios provide different refer-

ence image patches, no optimal training set can be provided

for every scenario. Hence, time needed to find an accurate

linear correlation should be minimized as training needs to be

performed before every tracking session. The training posi-

tions for each state are obtained by random sampling a nor-

mal distribution as illustrated in Figure 3, and contain 200



2D translations, 80 scaled images and 80 rotations. Because
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Fig. 3. Trained positions for all state groups.

of the separation of states, the three pairs of datasets will be

trained separately. Three motion model matrices will be gen-

erated corresponding to their respective state group. However,

in the next section we will assume a general state vector s and

only one pair of datasets to avoid confusion as we explain how

to retrieve the mentioned motion model matrices.

2.3. Finding correlation using CCA

After populating two groups of data Qa and Qs, a correlation

can be found between the canonical variates of these sets. Af-

ter centering all vectors in Qa and Qs around zero, resulting

in Aa and As respectively, we can assume wa and ws to be

the unknown direction vectors of optimal correlations for Aa

and As. By projecting the datasets onto these vectors, the

canonical variates za (3) and zs (4) are obtained.

za = Aawa (3)

zs = Asws (4)

The cross-correlation ρ as defined in Equation (5) should now

be maximized (ρ ≈ 1) to obtain the maximum correlation

between the datasets.

ρ =
zTa zs√

zTa za
√

zTs zs
(5)

As ρ is not affected by rescaling the canonical variates, we

can introduce the following constraints:

zTa za = wT
a A

T
aAawa = 1 (6)

zTs zs = wT
s A

T
s Asws = 1 (7)

Where AT
aAa = Σaa and AT

s As = Σss are covariance ma-

trices. We now use the constraints above and solve the max-

imization problem in Lagrange form as shown in [5]. The

following equations govern CCA:

(ΣT
asΣ

−1
aaΣas − ρ2Σss)ws = 0 (8)

(ΣasΣ
−1
ss Σ

T
as − ρ2Σaa)wa = 0 (9)

Where AT
aAs = Σas is again, a covariance matrix. These

generalized eigenvalue problems are solved using the method

elaborated in [5]. By computing singular value decomposi-

tions of Aa = UaDaV
T
a and As = UsDsV

T
s and finally

UT
a Us = UDV T , we find sets of canonical variates Wa (10)

and Ws (11):

Wa = VaD
−1
a U (10)

Ws = VsD
−1
s V (11)

As we want the correlation to be maximized (ρ ≈ 1),

WaAa ≈ WsAs becomes valid. This equation also holds

for new data instead of the datasets Aa and As, for example

a new image patch vector a and a state vector s. Substituting

(10) and (11) in this formula, we can retrieve the state vector

s by (12).

s = VaD
−1
a UV TDsV

T
s a (12)

Where G = VaD
−1
a UV TDsV

T
s is called the motion model

matrix which will be used during tracking. Keep in mind that

there will actually be three matrices Gtxty , Gtz and Gθz , as

training states were separated.

2.4. Tracking phase

When training is complete and motion models are generated,

the tracker will start at an initial position s0. Each frame, an

image patch vector at is created from this frame using the last

known position st−1. The image patch vector is then used in

(13) to find the object’s estimated current position st.

st = st−1 +Gat (13)

However, we actually have three state groups and three mo-

tion model matrices Gtxty , Gtz and Gθz . This tracking

method will be applied to all particles, and provides a pro-

posal distribution within our particle filter.

3. PARTICLE FILTER

We use a SIR particle filter [10], consisting of a prediction and

an observation model which are explained below. As men-

tioned before, a prior distribution model is known which con-

tains possible starting states and corresponding probabilities

of the object having that state in the frame.



3.1. Prediction model

The prediction model provides a proposal distribution of the

states for the next time frame. This distribution will be sam-

pled and the resulting particles will be compared to the ob-

servations during the observation phase using an importance

sampling technique in order to obtain a posterior distribution.

Our proposed method will be compared to a random walk,

constant velocity and constant acceleration model shown in

Equations (14)(15)(16), where n is a zero-mean Gaussian

stochastic component, vt and at represent velocity and ac-

celeration at time t respectively, and st is the proposed state

of each particle.

st = st−1 + n (14)

st = st−1 + vt−1 + n (15)

st = st−1 + vt−1 +
at−1

2
+ n (16)

By incorporating the latest observations when creating a pro-

posal distribution, we can provide a superior accuracy over

these widely used models. An integrated CCA tracking phase

proposes new states st as shown in Equation (17) for each

state group. To the best of our knowledge, this integration has

never been performed.

st = st−1 +Gat + n (17)

3.2. Observation model

Our observation phase, which measures the likelihoods of

these estimated states, depends on color information detected

in each frame. Pixel values pix contain hue and saturation,

while brightness has been ignored to provide more robustness

during illumination changes. As proposed in [11], hue pix-

els which have very low or very high corresponding bright-

ness values are also ignored as these values tend to become

unstable at low brightness or take on flesh hue at high bright-

ness. A maximum likelihood probability distribution image

as shown in Figure 4 is generated from the current frame by

assuming P (obj) = 0.5 and estimating P (obj|pix) (18) from

two histograms created during initialization: An object color

histogram P (pix|obj) from the hand region at initialization

and a background color histogram P (pix|¬obj), where obj
represents the estimate of containing the hand.

P (obj|pix) =
P (pix|obj)

P (pix|obj) + P (pix|¬obj) (18)

This generated image is then used for measuring the prob-

abilities of estimated states. The probability P (obj|s) of each

particle at state s is shown in Equation (19), where only pix-

els within the hand mask of the corresponding image patch

region are relevant.

P (obj|s) = E[P (obj|pixmask)] (19)

(a) Video frame (b) PD image

Fig. 4. Example of probability distribution image.

However, when a smaller scaling state than the actual size

is estimated such that the hand mask is positioned within

the object, P (obj|s) could provide similar probabilities and

the scaling state could be wrongly estimated. To overcome

this problem, we introduce a scale correctness probability

P (corrtz ) with corrtz being the estimate of scale correctness

as shown in Equation (20).

P (corrtz ) =
E[P (obj|pixmask)]

E[P (obj|pixmask)] + E[P (obj|pix¬mask)]
(20)

By including the probability of background pixel values out-

side the hand mask, P (corrtz ) will be maximized when no

skin pixels are found outside the hand mask. The particle

weights are finally found by multiplying its corresponding

probability P (obj|s) with its scale correctness P (corrtz ).
The posterior state is found as a weighted average of all par-

ticles.

3.3. Partitioned sampling

Because the CCA tracking phase will be integrated into the

prediction model of our particle filter, a partitioned sampling

method [12] is an ideal approach as the states of our CCA

based tracker are already separated into groups. During par-

titioned sampling, 2D translations (tx,ty) are first predicted

and updated by the observation model. Once this position is

known, the rotation parameter (θz) is found based on the up-

dated position and thus a new image patch vector from the

same frame. Finally, the scaling factor (tz) is found using the

same principle.

4. RESULTS

4.1. Comparison

To our knowledge, no suitable hand tracking dataset exists.

Therefore, we created six different video sequences of 20 sec-

onds. These unbiased video sequences were acquired in dark,

normal and bright illuminated locations, while performing

normal and fast hand movements. Every 250 milliseconds,

ground truth was manually selected and linearly interpolated

between data points. A mean error measurement of 2D trans-

lations, scaling and rotation states during an all-state tracker



is shown in Figure 5, while the number of particles vary be-

tween 1 and 200. We have optimized the zero-mean Gaussian

stochastic component n to achieve the best results for each

prediction model.
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Fig. 5. Error measurement for all tracking states compared to

ground truth.

Standard deviations of these values are shown in Table 1.

As a very small dataset has been used to evaluate our method,

these values are rather high. In the future, a more extensive

dataset should provide a more accurate result.

Number of particles 1 5 10 40 70 100 150 200

2D translation (pixels) 30.56 18.45 5.12 4.51 4.31 4.30 4.19 4.13

Scaling (percent) 0.14 0.14 0.14 0.11 0.11 0.11 0.10 0.09

Rotation (degrees) 23.99 8.83 6.37 4.78 3.81 3.74 3.82 3.65

Table 1. Standard deviation values for CCA based prediction

It is obvious that by using more particles, accuracy will

increase for all mentioned methods. Moreover, we notice the

CCA based prediction model provides a more accurate track-

ing across all states. During 2D translation tracking, the im-

portance lies with CCA’s steep error measurement decrease

when just a few particles are provided. Although we need

to ignore the first data points due to high standard devia-

tions, the processing time can still be lowered by using a CCA

based prediction method instead of the common approaches,

assuming a certain maximum error measurement is wanted.

The ideal error measurement (0) for any state will never be

reached, as these prediction methods have a one-frame delay

and video sequences with fast movement have been included.

For scale tracking, rather high overall error measurements

are found. These are caused by both the simplicity of our

observation model and the fact that the scaling state is the

last state to be updated within the partitioned sampling ap-

proach. When any of the former updated states are inaccu-

rate, scaling robustness will decrease. A CCA approach how-

ever, is trained to recover from any inaccurate position, and

thus clearly outperforms the other methods as can be seen in

Figure 5. During rotation tracking we again see a steeper in-

crease in accuracy by our CCA approach because of this rea-

son. While the common methods also provide a reasonably

good result using a small amount of particles, they approach

the ideal error measurement much slower than our method.

Finally, a few challenging frames are illustrated in Figure

6, where all methods are compared while using 70 particles.

Fig. 6. Webcam tracking examples. (top to bottom; random

walk, constant velocity, constant acceleration, CCA based)

4.2. Processing time

All results of our C++ implementation were obtained on

an Intel Core i7-2620M CPU using a frame resolution of

320×240. OpenCV 2.0 and Boost 1.4 libraries were included

for image processing. The training phase of our CCA based

tracker takes 4.68 seconds for training 2D translations (tx, ty),

and 1.84 seconds each for training rotation (θz) and scaling

states (tz). Processing speed during tracking depends on both

number of particles and which states are tracked. However, as

we’ve used a Logitech Webcam C300, the actual frame rate

will be no more than the webcam’s rate of 30fps. As can be



seen in Figure 7, the achieved frame rate drops exponentially

when the number of particles increase. Keep in mind that our

implementation is a non-optimized prototype of the proposed

method. Only a constant velocity model is shown as random
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Fig. 7. CCA and constant velocity frame rate comparison.

walk or constant acceleration are very similar in processing

speed. By introducing a CCA based prediction model, higher

delays are observed compared to these common approaches.

Although this problem exists, the CCA based technique pro-

vides a higher accuracy and thus fewer particles are needed to

provide the same tracking robustness.

5. CONCLUSION

The proposed prediction method provides a superior accuracy

over other widely used techniques. Although a steeper lin-

ear increase in processing time exists when raising the num-

ber of particles, a CCA based tracking solution is still able to

provide a more robust prediction than other commonly used

models with an equal frame rate. The proposed method can be

used to improve current state-of-the-art particle filters which

apply these prediction models, provided a training phase can

be included.

6. FUTURE WORK

A first limitation of the proposed method is the use of a lim-

ited number of states (translations and z-rotation). Provided

the right training and image patch adjustments are performed,

it becomes possible to track more degrees of freedom. For

example, J. Zepeda et al. [6] proposed a CCA based tracker

capable of following semi-3D movement.

Currently, normally distributed models are provided

which represent the positions that are trained. Obviously,

these models do not include prior knowledge of object’s char-

acteristic movements. A more accurate approach, for hand

tracking for example, would be to firstly observe common

hand movements and adjust the model to provide more train-

ing positions along these movements. Another future im-

provement could provide different sets of trained positions

for each state group. For example, 2D translations could be

trained using a more dense and a more sparsely generated nor-

mally distributed model, resulting in two motion models for

slow and fast movements respectively.
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