
Machine Learning with Applications 3 (2021) 100013

A
R
a

b

c

A

K
D
L
R

1

t
i
a
f
o
M

p
p
i
t
t
f
V
c
w
s
o
b
s

(

h
R
A
2
(

Contents lists available at ScienceDirect

Machine Learning with Applications

journal homepage: www.elsevier.com/locate/mlwa

deep gated recurrent neural network for petroleum production forecasting
aghad Al-Shabandar a,∗, Ali Jaddoa b, Panos Liatsis c, Abir Jaafar Hussain a

Applied Computing Research Group, School of Computing and Mathematical Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
Computing and Mathematical Sciences, University of Greenwich, London, SE10 9LS, UK
Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

R T I C L E I N F O

eywords:
eep gated recurrent unit networks
ong short-term memory networks
ecurrent Neural Networks

A B S T R A C T

Forecasting of oil production plays a vital role in petroleum engineering and contributes to supporting
engineers in the management of petroleum reservoirs. However, reliable production forecasting is difficult to
achieve, particularly in view of the increase in digital oil big data. Although a significant amount of work has
been reported in the literature in relation to the use of machine learning in the oil and gas domain, traditional
forecasting approaches have limited potential in terms of representing the complex features of time series
data. More specifically, in a high-dimensional nonlinear multivariate time series dataset, a shallow machine
is incapable of inferring the dependencies between past and future values. In this context, a novel forecasting
model for petroleum production is proposed in this work. The model is a deep-gated recurrent neural network
consisting of multiple hidden layers, where each layer has a number of nodes. The proposed model has a low-
complexity architecture and the capacity to track long-interval time-series datasets. To evaluate the robustness
of our model, the proposed technique was benchmarked with various standard approaches. The extensive
empirical results demonstrate that the proposed model outperforms existing approaches.
. Introduction

Forecasting of oil production has become an increasingly important
ask in the oil and gas industry and can assist petroleum engineers
n the analysis of the characteristics of crude oil wells. However,
ccurate prediction is hard to achieve and considerable amounts of
inance and technology are required in order to assess the performance
f a reservoir (Hammerton, Osborne, Armstrong, & Daelemans, 2002;
oreno, 2011).

In the past, several approaches have been utilised to forecast oil
roduction, which can be broadly divided into statistical and soft com-
uting methods. One of the most popular traditional statistical models
s Decline Curve Analysis (DCA). The key limitation of this approach is
hat it considers only interpretations of the subject data, in such way
hat the decision-maker cannot gain deep insights into the factors in-
luencing the oil production rate and reservoir performance (Fetkovich,
ienot, Bradley, & Kiesow, 1987). The most common traditional appli-
ation is Autoregressive Integrated Moving Average (ARIMA) model,
hich has been successfully applied to diverse petroleum-related tasks

uch as forecasting oil prices, estimation of crude oil reserves and
il production. Despite the considerable potential of ARIMA, draw-
acks related to capturing temporal sequence data represent significant
hortcomings of this model (George, Gwilym, & Gregory, 2015).
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In the last two decades, soft computing methods have attracted
the attention of researchers, and the use of artificial intelligence has
become more prominent in the oil and gas industry. Several machine
learning algorithms have been extensively applied such as Fuzzy Logic
(FL), Genetic Algorithms (GA), Support Vector Machines (SVM) and
intelligent optimisation (Braswell, 2013; Mohaghegh, 2005). A neural
network is one of the most popular machine learning models and is
capable of handling nonlinear datasets (Zhang, Patuwo, & Hu, 1998).
Although this approach has shown good prediction outcomes, it has
several disadvantages in terms of solving time-series tasks. Since the
information transfer in this model is only in the forward direction, it
cannot track historical data (Moreno, 2011), and hence is incapable of
inferring the dependency between past and future events.

Recurrent Neural Networks (RNNs) have been widely applied to
perform forecasting activities in various areas of petroleum produc-
tion. Still, they are inadequate to cope with long-interval time-series
data (Hochreiter, Bengio, & Frasconi, 2011; Moreno, 2011). In order
to overcome this limitation, Long Short-Term Memory (LSTM) was
proposed as an extension of RNN. Empirical studies have demonstrated
that LSTM can handle dynamic petroleum temporal data efficiently
(Hochreiter et al., 2011). However, since massive amounts of data can
be generated from upstream and downstream petroleum operations,
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this type of shallow machine learning may be insufficient to repre-
sent complex temporal structures, particularly for large, heterogeneous
datasets (Najafabadi et al., 2015).

Deep learning is a promising solution that can be applied to solving
problems in the oil and gas field. The ability to learn various levels
of data representation that match the hierarchical elements of the
relational architecture is one of the distinctive features of deep learn-
ing. This approach can automatically learn the temporal dependence
of heterogeneous data, and can also extract patterns from long input
sequences without explicit, upfront human effort (Goodfellow, Bengio,
& Courville, 2016). Although deep learning is a sophisticated approach
for long-interval time series that can dramatically reduce the human
involvement needed to extract features, it has limited potential due to
its high costs and complex architecture (Huang, Song, Hong, & Xie,
2014).

In this paper, a Deep Gated Recurrent Unit (GRU) model is proposed
for petroleum forecasting that can support learning using complex
temporal datasets with low-complexity structures. The model involves
a stack of several GRU layers, each of which contains several neural
networks. In our framework, the hierarchical feature representation
of time series data can be described in a more sophisticated way by
selecting only a few parameters.

The research provides major novel contributions for oil gas industry.
To the best of our knowledge, none of the current work has applied
GRU model to the oil and gas domain. Compared with state of the art,
all existing production models rely on RNNs and LSTM, which have
high memory requirements (Sagheer & Kotb, 2019). Our framework
can capture the long-term dependencies of time series data without the
need for large amounts of memory.

The remainder of this paper is organised as follows. Section 2
will give detailed information about prior works. Section 3 shows the
overview of big data followed by detail explanation of recurrent neural
network. In Section 4 the real application including data description,
exploratory data analysis, Data Pre-Processing are described. The de-
tailed explanation of proposed Stacked Gated Recurrent Unit Network,
experiment setup and experiment results are provided. Simulation re-
sults are shown in Section 5 while conclusion and future works are
shown in Section 6.

2. Literature review

A number of researchers have successfully applied neural networks
in the oil industry, such as in reservoir history-matching forecasts for
natural gas production, pattern recognition in well test analyses and
crude oil price forecasting (Hammerton et al., 2002).

The authors of Ferreira da Silva, Portella, Emerick, and Favilla
Ebecken (2007) used a neural network to learn a time series data; it
was employed to perform fluid production forecasts for two onshore
fields (Bonsucesso and Carmopolis). Since the production data were
collected from very small oilfields, a synthetic reservoir was used to
capture long-term historical production data. The results demonstrated
that the neural network performed better in both the long and short
terms than DCA. Although the neural network was successfully applied
as a time series, it suffers from several limitations including the inability
to handle discontinuities and high-order nonlinearities in the dataset.

A feed-forward neural network inspired by the Imperialist Compet-
itive Algorithm (ICA) was proposed by Berneti and Shahbazian (2011)
to predict oil flow rates in oil fields in the northern Persian Gulf. ICA is
capable of optimising the initial weights of a neural network by com-
bining the local searching ability of BP with the global searching ability
of ICA. The results showed that ICA-Artificial Neural Network (ANN)
achieved Mean Squared Error (MSE) of 0.0123, while the traditional
ANN obtained a value of 0.04702. The main disadvantage of the ANN
and ICA-ANN networks is that the topology of the networks needs to
be determined manually, meaning that optimisation of the structure of

the neural network may take a long time (Berneti & Shahbazian, 2011).

2

The wireline formation-testing tool was widely used to capture oil
production data. The tool can be defined as an electric logging cable
that is used to measure the formation pressures at a particular location
in the timestamp. This measurement can be useful to determine the
variations of pressure across different formations; The tool can help the
drillers to determine if there is enough amount of hydrocarbons which
can guide them moving to next phase of completing well production
(Masoudi, Arbab, & Rezaei, 2014).

Researchers have found that feeding production data from a wire-
line formation-testing tool into a neural network can give rise to large
errors, and various analysis methods have therefore been used. For
instance, the researchers in Aizenberg, Sheremetov, Villa-vargas, and
Martinez-mu noz (2016) employed wavelet analysis to extract infor-
mation from a Modular Dynamics Testing (MDT) application and then
fed it to a neural network. The results revealed that combining wavelet
analysis with neural network could significantly refine the performance
of a predictive model.

A Higher-Order Neural Network (HONN) is a promising technique
for forecasting oil production (Frausto-Solís, Chi-Chim, & Sheremetov,
2015). The most distinctive feature of a HONN is its ability to map
nonlinearities with few features, and it has been shown that a HONN
has significant advantages over traditional methods, such as faster
training with lower computational cost (Frausto-Solís et al., 2015).

The authors of Song, Saraf, and Gupta (2013) applied a HONN
to forecast the oil production of a petroleum reservoir, and oil, gas
and water data were used to verify the performance of the network.
The results showed that HONNs could be efficiently applied in oil
production forecasting, achieving a value of 13.86 for Mean Absolute
Percentage Error (MAPE). Although the HONN model shows potential
in terms of delivering reliable oil production forecasts, it can only be
applied to short time intervals (i.e., six to 18 months). The use of a
more advanced ANN is presented in Aizenberg et al. (2016), where a
multilayer neural network with multi-valued neurons (MLMVN) was
employed to forecast oil production. The most critical feature of the
MLMVN was that training did not require the derivative of the activa-
tion function, making the learning process quicker and simpler than the
ANN.

The ensemble method of Gradient Boosting Machines (GBM) was
used in Bikmukhametov and Jäschke (2019) for estimation of the flow
rate of an oil production system under various conditions. The findings
revealed that GBM gave an accurate flow rate prediction and could be
used as a virtual flow metre. The computations involved in this virtual
flow metre were relatively low compared with an actual multiphase
flow metre. Recently, the authors of Ma and Liu (2018) proposed a
hybrid model called the Nonlinear Extension of Arps (NEA) decline
model, which integrated the kernel method with the Arps decline
model. The kernel trick was used to improve the functionality of the
Arps linear model into a nonlinear multivariate framework. Data were
collected from real oil fields in China and India; the findings showed
that NEA model is a robust model capable of discovering the nonlinear
relationships between features and oil production.

With the growing success of AI in oil and gas industry, machine
learning was utilised to monitor oil production rate, the author in Khan,
Alnuaim, Tariq, and Abdulraheem (2019) used Artificial Neural Fuzzy
Inference systems (ANFIS) alongside with neural network to predict the
oil rate on gas lift wells. The result shows that the artificial neural
network model achieves the highest accuracy flow rate with a value
of 99% compared with other non-linear regression models.

With fast of development of technology, machine learning was
applied to solve the problem related to offshore oil field predation facil-
ities; the researchers in Chen, Gang, Junfei, Zheng, and Jinyuan (2019)
proposed the IA-SVM model to examine the factors that impact the
corrosion of submarine oil and gas pipelines. The model is combined
Support Vector Machine (SWM) with by Immune Algorithm (IA). The
predicated MAR and RMSE of IA-SVM model are shown relatively small

with the values of 1.45, 0.015, respectively.
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3. Recurrent neural networks and big data

In this section, the concept of big data for oil data prediction will
be presented as well as various recurrent neural network architectures.

3.1. Big data

With rapid advances in technology, massive amounts of data can
be generated from upstream and downstream oil and gas operations.
Big data analytics has become an essential tool for many oil and
gas applications (Crockett & Kurrey, 2014; Mohammadpoor & Torabi,
2019). In drilling operations, big data has the potential to increase
drilling safety and minimise drilling time. In addition, the analysis of
big data has been shown to significantly improve oilfield production
while enhancing safety (Crockett & Kurrey, 2014; Feblowitz, 2013).

In 2018, the authors of Ockree, Brown, Frantz, Deasy, and John
(2018) utilised big data to build a predictive production model. Data
generated from the machine-learning model were combined with eco-
nomic analysis to provide insights and guidance for field development.
The results demonstrated that the integration of big data analytics into
the oil and gas industry could increase revenue and provide added
value.

Although the use of big data has been shown to significantly im-
prove several aspects of the oil and gas industry, the handling and
processing of these data are primary concerns (Crockett & Kurrey, 2014;
Sivarajah, Kamal, Irani, & Weerakkody, 2017). The most important
technical challenge in big data applications is the cost of data storage.
Emerging trends in new technologies such as cloud computing and
the Internet of Things (IoT) have been successfully applied to address
computational cost concerns (Anderson, 2017).

However, utilising big data in the oil and gas domain showed that
the volume of data is challenging problem since huge amounts of
information is often generated from exploration, drilling and produc-
tion operations (Azzedin & Ghaleb, 2019; Feblowitz, 2013). There are
various shallow machine learning methods that have been reported in
the literature in solving problems in the oil and gas field. However,
a well-known limitation of these approaches is that they are unable
to infer nonlinear relationships between future and past values with
respect to long intervals in high-dimensional data (Frausto-Solís et al.,
2015; Song et al., 2013).

Furthermore, the potential for extracting information from big data
is relatively narrow. Since shallow machine learning is insufficient to
help engineers extracting information from reservoir model. Petroleum
engineers should spend more time in understanding the characterisa-
tion of the reservoir (Frausto-Solís et al., 2015). To overcome this issue,
researchers have adopted more advanced machine learning methods to
reduce the need for human intervention. For example, in Korjani, Popa,
Grijalva, Cassidy, and Ershaghi (2016), the authors built a deep neural
network to predict the petrophysical characteristics of reservoirs. The
findings reveal that deep learning is a promising solution that could be
used to identify reservoir characterisation.

Investigation of the status of pump units in oil fields is a complex
task, and shallow machine learning has been shown to be inadequate
in inferring the condition of such equipment. The authors of Korovin
(2017) applied a Deep Recurrent Neural Network (RNN) in conjunc-
tion with a Convolutional Neural Network (CNN) in the prediction of
equipment status for oil and gas production. They suggest the use of
additional noise to increase the size of the RNN; however, this noise
would affect the decision boundaries. The author did not include results
from deep machine learning (Korovin, 2017).

According to the existing literature, a variety of shallow machine
learning methods have been used by researchers to estimate the price
of crude oil, although these models cannot accurately identify the entire
range of factors that impact crude oil markets (Yu, Dai, & Tang, 2016;
Zhao, Zeng, Wang, & Zhang, 2019). As such authors in An, Mikhaylov,
and Moiseev (2019) employed linear regression to forecast oil price.
3

The authors find various factors could influence oil price including
the US Federal Reserve rate US dollar index, conflicts in the Middle
East and terrorist attacks. The finding reveals that predicated oil price
was close to the real oil price. However, the shallow machine learning
model fails to estimate the sharp fall in prices caused by changes
in the market condition of oil futures. Deep learning is a promising
method for forecasting oil prices, especially using big data. A deep
belief neural network, in conjunction with LSTM, was used to forecast
crude oil price in Yu et al. (2016). To capture the nonlinear dynamics
of crude oil price movement, a hybrid model was constructed that
combined deep learning models with the Adaptive Risk Analysis and
Management model (ARAM). The findings demonstrated that deep
learning improved the performance of the predictive model for the
crude oil price. Deep learning also has the potential to detect all of
the factors that influence crude oil prices (Yu et al., 2016).

There are various tools that can be used to capture digital oil field
data in real-time, and sensors have been widely applied in the oil and
gas industry for the purpose of capturing huge amounts of real-time
data (Mohammadpoor & Torabi, 2019). In a recent study, industrial
IoT and sensors were utilised to collect hourly data from a real, active
field over 11 days (Singh & Pateriya, 2019). ARIMA was combined with
deep learning to forecast future oil production over a short period. The
findings revealed that incorporating deep learning into ARIMA rapidly
enhanced the predictive performance of the model. The authors also
found that a deep learning model could detect well production going
upwards and downwards in a more precise way (Singh & Pateriya,
2019).

A deep LSTM model called ‘‘DLSTM’’ was proposed in Sagheer and
Kotb (2019) for oilfield production problems, and a genetic algorithm
was utilised to select the optimal parameters. The results revealed that
the proposed model performed better than ARIMA, particularly for
complex, long-sequence time series data. The results also demonstrated
that DLSTM could effectively handle nonlinear relationships in time se-
ries data. The authors evaluated DLSTM only with a univariate dataset
(Sagheer & Kotb, 2019).

3.2. Recurrent Neural Network

Recurrent Neural Network (RNN) is an extension of an artificial
neural network that is capable of handling temporal patterns and has
an internal memory to process arbitrary temporal sequences. This type
of network has a feedback loop that can store information about past
behaviour (Connor, Martin, Atlas, & Ieee, 1994; Giles & Lawrence,
2001). RNN turns input sequence data in vectors and processes the
current observation in the context of the internal (hidden) state of the
network to generate the output.

RNN could be inadequate in processing long-term sequential data as
it suffers from the vanishing gradient problem. With a large time-series
dataset, network errors are replicated from the output layer into the
input layer in the training phase (Karim, Majumdar, Darabi, & Chen,
2018; Tian & Pan, 2015). This propagated error can cause the weight
decay of the gradient descent to become smaller and to stall in the
lower layers over time. When the vanishing gradient problem occurs
in a dataset, it can prevent further training of RNN (Hochreiter, 1998).

A Short-Term Long Memory (LSTM) is a type of RNN that can repre-
sent long-term dependencies and is capable of resolving the vanishing
gradient problem. It is composed of two units, a standard and a special
unit. The special unit can store information in memory for a long time
by using multiplicative unit gates. For each step, constant error set
in a special unit, the unit gates control a constant error flow. Hence,
LSTM can modify the parameters of weight decay over time (Weninger,
Bergmann, & Schuller, 2015).

LSTM network consists of three gates (i.e., a forget gate, an input
gate and an output gate) in addition to the cell state. The input at the
current time step is combined with information about the hidden state
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in the previous time step, and is passed through an activation function
to the input gate, as follows (Weninger et al., 2015):

𝑓𝑡=o(𝑋𝑡𝑊
𝑓 + 𝑆𝑡−1𝑈

𝑓 + 𝑏𝑓 ) (1)

where 𝑓𝑡 is forget gate. 𝑋𝑡 is the input at time step t and 𝑆𝑡−1 represents
hidden state at the previous time step t − 1. 𝑊 𝑓 is the weight of the
input layer and 𝑈𝑓 is recurrent weight of the hidden state. The 𝑏𝑓 is
the bias of the input layer. The input gate decides which information
will be stored in the cell state. The input gate has two tasks: in the first
task, the input gate layer decides which value is updated, while in the
second task, tanh layer regulates the network by creating a vector of
all new candidate values. The equations for the two tasks are as follows
(Salehinejad, Sankar, Barfett, Colak, & Valaee, 2017; Weninger et al.,
2015):

𝑖𝑡=o(𝑋𝑡𝑊
𝑖 + 𝑆𝑡−1𝑈

𝑖 + 𝑏𝑖) (2)

𝐶̃𝑡 = tanh(𝑋𝑡𝑊
𝑐 + 𝑆𝑡−1𝑈

𝑐 + 𝑏𝑐 ) (3)

𝐶𝑡 = 𝐶𝑡−1 ∗ 𝑓𝑡 + 𝑖𝑡 ∗ 𝐶̃𝑡 (4)

The output gate decides which hidden states are used for prediction
via a sigmoid activation function. The new modified cell state is passed
to the tanh function and multiplied to produce the output, as follows
(Salehinejad et al., 2017):

𝑂𝑡=o(𝑋𝑡𝑊
𝑜 + 𝑆𝑡−1𝑈

𝑜 + 𝑏𝑜) (5)

𝑆𝑡=𝑂𝑡 ∗ tanh(𝐶𝑡) (6)

The weights can be represented by two matrixes, {W, U}. The matrix
W = {𝑊 𝑖,𝑊 𝑐 ,𝑊 𝑜} represents the input weights associated with the
input layer, hidden layer and output layer, respectively, while U =
{𝑈 𝑖, 𝑈 𝑐 , 𝑈 𝑜} denotes the weights of the previous hidden state (i.e., re-
current weights) in the input layer, hidden layer and output layer. The
collection of bias vectors can be given as a matrix B = {𝑏𝑖, 𝑏𝑐 , 𝑏𝑜}, with
the indices corresponding to the same layers as described previously
(Salehinejad et al., 2017; Weninger et al., 2015).

The Gated Recurrent Unit (GRU) network is a new generation of
RNN that was introduced in 2014 by Cho et al. (2014). The GRU is simi-
lar to LSTM but has a less complex structure, and can control the flow of
information without the need to use a separate memory cell. GRUs have
been successfully applied in speech recognition tasks, such as speech
enhancement, speech activity detection and text recommendation (Cho
et al., 2014).

A GRU comprises two gates, i.e., the update and the reset gates,
to track the state of sequences. The update gate is responsible for
controlling how much past information is maintained and how much
new information is added.

The reset gate, on the other hand, controls how much the past state
contributes to the current state. A distinctive feature of the GRU is its
ability to capture dependencies of long time series without requiring
internal memory cells, in contrast to LSTM. This assists in solving the
vanishing gradient problem efficiently (Cho et al., 2014).

The update gate operates in a similar way to the forget gate and the
input gate in LSTM. The new input is multiplied by its weight, while
the hidden state at the previous time step is multiplied by the recurrent
weight. The contributions of both candidates are added together, and
the sigmoid function is used to map the resulting values between zero
and one:

𝑍𝑡=o(𝑋𝑡𝑊
𝑧 + ℎ𝑡−1𝑈

𝑧 + 𝑏𝑧) (7)

where 𝑍𝑡 is represented the update gate, the 𝑋𝑡 the input vector at
time step t while ℎ𝑡−1 is the previous output from previous units. The
𝑊 𝑧 is the weight of the input layer, and 𝑈𝑧 is the recurrent weight.
The 𝑏𝑧 is the bias of the input layer. The reset gate decides how much
past information should be forgotten. Its equation is similar to that of
the update gate. The new input unit and hidden state are multiplied by

𝑟 𝑟
their corresponding weights {𝑊 ,𝑈 }, and the result is summed and

4

passed through a sigmoid function. The output of the reset gate is as
follows:

𝑅𝑡=o(𝑋𝑡𝑊
𝑟 + 𝑆𝑡−1𝑈

𝑟 + 𝑏𝑟) (8)

The new memory contact is used reset gate to store the information of
the previous state. The input gate multiplied by its weight, element-
wise multiplication Hadamard (⨀) should be applied in the rest gate
(𝑅𝑡) and previous out (ℎ𝑡−1). This will allow the network to select
only relevant past information. Current memory contact is calculated
as follow.

ℎ̃𝑡 = tanh(𝑋𝑡𝑊 + 𝑈 (𝑅𝑡
⨀

ℎ𝑡−1)) (9)

ℎ𝑡= = 𝑍𝑡
⨀

ℎ𝑡−1 + (1 −𝑍𝑡)
⨀

o(ℎ̃𝑡) + 𝑏ℎ (10)

The update gate decides what information should be collected from
the current memory content and previous steps. The new hidden state
should be store at final memory as output for current time step and
pass via sigmoid (o) activation function.

4. Real data application

4.1. Data description

The US Distribution and Production of Oil and Gas Wells dataset is
available from the US Energy Information Administration (EIA) website
(Eia, 2018). Drillinginfo, a leading Software as s Service (SaaS) and data
analytics company for energy exploration decision support, collected
annual production data from various US state agencies between 1919
and 2009 (U.S. Energy Information Administration, 2019). Some states
did not have any productive wells, and thus, the records have missing
values for the relevant feature set entries. Two sets of features are
considered in the dataset, categorical attributes and numerical features.
The numerical features are extracted based on the two factors of the
state for which the data was collected and the rate class. Overall, nine
input features are captured in the database (Eia, 2018).

The ‘‘rate class’’ variable describes the class of crude oil price based
on the customer group; there were 22 rate classes of oil provided in the
database. The ‘‘num_oil_wells’’ variable is defined as the number of oil
wells in each state, while the ‘‘oil_wells_dayson’’ variable is the number
of unique days that wells remained open to complete the process of
producing oil. The ‘‘’conden_prod_BBL’’ feature represents a mixture of
light liquid hydrocarbons and condensate measured in barrels.

An estimation of the annual gas production is also reported in the
data. The raw gas fields include {‘‘num_gas_wells’’, ‘‘NAgas_prod_MCF’’,
‘‘gas_prod_MCF’’ and ‘‘gas_wells_dayson’’}. The ‘‘num_gas_wells’’ vari-
able represents the number of gas wells, while the ‘‘gas_wells_dayson’’
variable represents the number of days that a gas well was open
to accomplish the gas production task. The ‘‘NAgas_prod_MCF’’ and
‘‘ADgas_prod_MCF’’ variables define the quantity of natural gas, mea-
sured in thousand cubic feet (MCF) (Eia, 2018; U.S. Energy Information
Administration, 2019).

The ‘‘oil_prod_BBL’’ output variable represents the production data
from the first month to the last year of production, across each state
and rate class. The volume of oil production is measured in barrels. In
the USA, a barrel is equivalent to 42 gallons (U.S. Energy Information
Administration, 2019).

4.2. Exploratory data analysis

Exploratory Data Analysis (EDA) is applied in this study in order
to gain insight into the rate of oil production from wells over time.
Oil production data were collected from 31 states in the US and were
aggregated based on the state and year. The primary step in our time
series analysis is to examine the stationarity of the data and to achieve
this; we conduct an Augmented Dickey–Fuller test (ADF).

ADF is a statistical hypothesis test that is used to evaluate the

stationarity of a time series dataset (Lee & Chang, 2008). The results
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Fig. 1. Number of oil-producing wells in the USA over time.

show that the 𝑝-value is (0.01) greater than 0.05, which allows us to
accept the null hypothesis. Thus, these data are strongly classified as a
stationary series.

The time series plot was used to visualise the difference in US oil
production across various wells over time. As it can be shown from
Fig. 1, there are random fluctuations in the data over time, particularly
in the period between 1920 and 1930; however, a constant variation
in the oil production rate is shown for the last eight years. Since
the random fluctuations in the data are approximately constant over
a period of 45 years, the additive model can describe the US oil
production data.

The residual plot in Fig. 2 can be used to evaluate whether or not the
linear model fits the data. The Generalised linear model (GLM) model
is utilised to examine the linearity of the time series data. The residual
obtained from a forecast of oil production shows that the linear model
does not fit the data well, and as a consequence, a more advanced
forecasting method should be considered. The histogram shows that the
distribution of the data does not follow the normal distribution and
seems to be skewed to the left of the curve. We normalised the data
with aim to obtain a more accurate result with respect to correction
between features across time.

The relationship between the observations from the current time
series with observations from the previous time step is examined in
this study using the Autocorrelation Function (ACF), in conjunction
with the Partial Autocorrelation Function (PACF). As it can be seen
from Fig. 2, the ACF plot shows that the autocorrelation is significant
for a lag interval of 1–10. Since autocorrelation corresponds to the
confidence interval, the significance of autocorrelation is determined
by two factors, namely the length of time series and standard deviations
of the confidence interval. The observed correlation showed normally
distributed, hence 95% confidence level was observed.

The highest correlation is found for lag 1, and we can see that there
is little correlation for lags 12–18. A weak negative correlation can be
seen between lags of 18 and 40. The PACF plot shows the first, second
and seventh lag values are significant, whereas the PACF for other lags
is not significant. A negative correlation is found for lags of 10–20 and
30–40.

4.3. Data pre-processing

The data pre-processing phase is divided into two steps, i.e., noise
reduction and data transformation. Data cleaning was employed to
handle the noise in the data.

As previously mentioned, US Distribution and Production of Oil and
Gas Wells dataset is annual data covering the period from 1919 to 2009
with a total of 27,290 observation. On inspection, around 17% of the
oil wells in some US states were unproductive during the period, and
thus, 6290 records were excluded from the dataset. The data was split
into three sets, forming the training, validation and testing sets. The
training and validation sets were normalised by transforming the input
data and normalised with a zero mean and standard deviation of one.
5

Fig. 2. Diagnostic plots.

Since oil production in the US is measured in barrels (bbl), oil
production values were large and heterogeneous. It can be problematic
to feed a neural network with large values, and the proposed model
may therefore suffer from high generalisation errors and poor perfor-
mance (Erhan, Szegedy, Toshev, & Anguelov, 2014). To overcome the
issue, the output variables for oil production were scaled based on the
calculated maximum value for oil production in the training dataset.
The output values for the training, validation and test sets were divided
by this maximum value. Using this approach, a smoother estimation of
oil production could be generated (Erhan et al., 2014).

4.4. Stacked gated recurrent unit network framework

A deep GRU was proposed in this study with the aim of improving
the performance of the predictive model for petroleum production,
particularly over long time intervals. The proposed model is capable
of handling the temporal dependences of complex time-series data at
a deep level. It consists of stacks of several layers, where each layer
solves part of the task and passes the results to the next layer. Since
each layer combines the learned representations of the previous layer
and feeds them to a higher layer, better representations of the data can
be achieved in the model.

Fig. 3 shows the architecture of the Deep Gated Recurrent Unit
Network (DGRU). The DGRR consists of n blocks, where each block
has one GRU layer in addition to a dropout layer. The dropout layer is
used as a regularisation method to reduce overfitting by the GRU stack.
To provide a more powerful recurrent neural network, all intermediate
layers are customised.

As can be shown from Fig. 3, the GRU layers are stacked on top
of one another across several blocks. The input data is fed in with
the previous hidden state to the first GRU block. The dropout layer
randomly drops the output unit of the GRU layer based on the dropout
rate, which is set to 0.5. The output values of the GRU layer below the
dropout rate are removed, while the remaining values from the GRU
layer in the first block are passed forward to the next GRU block. The
previous hidden state is combined with the current state and fed to the
next block until all blocks are fully stacked. The output from the stack
GRU layer is transferred to the feed-forward neural network via a dense
layer to produce the final output.

The main advantage of the stack GRU is its structural simplicity; for
instance, entire layers can learn a complex representation of long inter-
val time series data jointly. In this scenario, when adjusting the single

features of the model, all feature dependencies can be automatically
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Fig. 3. DGRU recurrent network architecture.

updated without requiring human intervention. Another benefit of this
model is that it can run at different time scales by breaking layers into
intermediate blocks, where each block is able to capture information
over the entire period.

4.5. Model construction and validation

The dataset contains 21,000 observations of US oil Production data
over a period of 90 years. The original dataset is divided into three
subsets, i.e. the training (40%), validation (20%) and testing sets (40%).
This method can be used to evaluate the performance of the trained
model as well as to assess the stacked deep GRU model using unseen
data.

A 3D tensor is used to store the oil production data. As shown in
Fig. 4, the tensor has three axes, with dimensions (sample, time step,
features). ‘Sample’ refers to the sample size of the training set and
validation set, which contains 13,000 observations. The training data
are divided into small sample batches of different sizes and then fed
into the model. Since the aim of this study is to forecast the annual oil
production for each US state, we set the time step to one. This study
uses various types of neural networks, including a multi-RNN, single
and multi-GRUs, an Artificial Neural Networks (ANN), multi-LSTM and
the proposed DGRU, with different values of hyperparameter.

4.6. Forecasting algorithms for time series data inspired by stacked deep
learning

Artificial neural network with various topologies and RNN showed
sufficient capacity to predict oil production only for short term fore-
casting intervals. These machine learning models have difficulties on
longer interval and high nonlinearity properties of time series data
(Cho et al., 2014). To overcome this drawback, the LSTM is used
to forecast petroleum production forecasting. Despite the fact that it
achieves more accurate forecasting rate, its performance to handle high
dimensional time series data is not satisfactory (Karim et al., 2018).
To this end, an algorithm for Oil and Gas Production is proposed
in this work. The algorithm can be used in a time series regression
6

Fig. 4. 3D tensor for US oil and gas production time series dataset.

etting practically for long-term dependencies tasks. The DGRU consists
f stacking multiple GRU layers of nonlinear operation with several
ropout layers. It showed potential of solving any time series task
ith low computational cost. Nevertheless, the deep GRU capable of

raining high dimension dataset faster than LSTM. Thus, an algorithm
an be applied in high dimensional dataset effectively. The detailed of
proposed algorithm is described as follows.

In our algorithm, we assume dataset D consists of a sequence of
amples {𝑠1, 𝑠2, … 𝑠n,}, each sample denotes a series of data points

listed in time order ⟨𝑋𝑖,𝑇𝑖⟩ where 𝑥𝑖∈ X, X is the set of attributes
{𝑋1, 𝑋2, … , 𝑋𝑚,} at different time t and 𝑡𝑖∈T is a unique time interval.
The D has been split into smaller subsets {tr, vl, ts}. The train (tr)
and Val (vl) are employed for the learning process, while the ts (test)
is used to evaluate the performance of the model. The three sets are
selected sequentially. The users can dynamically determine the number
of instances in a sample (S) and allocate this to each subsets tr, vl, ts
in database D.

In the first stage, noisy data is cleaned with the aim of better oil
production in future. For each subset, the fluctuation from noisy data
is minimised by normalised input to (𝜇, 𝜎) (0, 1). Three new subsets are
derived for database D = { Tr1, Vl1, Ts1}. Each new subset represents
the transformation set the means of data to 0 and standard deviation
to 1 for subsets tr, vl, ts, respectively. The output of oil production are
large values, learning neural networks with large weights could cause
large error gradients values. A model with large error can result in
the instability in the learning process and high generalisation error. To
solve the problem, the target output variable is normalised by applied
the max normalisation (range transformation method). As can be seen
in tAlgorithm 1, the target variable for each subset tr, vl, ts is divided
by the maximum oil production value, we defined as (Tr_mx) variable,
the new subsets of scaled output are generated for database D = {Tr_o,
VL_o Ts_o}.

The second stage of the proposed algorithm is to train the regression
models; four regression neural networks are employed to forecast oil
and gas production in addition to our proposed DGRU model. We
define the variable (𝜋) as a training counter. Each model (𝑟𝑐𝑒𝑟) train-
ing the scaled data (Tr1) that are obtained from the previous stage.
The learning procedure for each (𝑟𝑐𝑒𝑟) is iterated 100 times until the
required threshold is achieved. Replicate the training process over time
could help (𝑟𝑐𝑒)to minimise the error at every time and achieved more
accurate predicted values.

In the third stage, the model makes the prediction. The trained
model is used to generate the predicted output (𝑌 on unseen data and
compared with scaled output values (Ts_o) of the test dataset. In the last
stage, regression matrix was generated to evaluate the performance of
the oil production models these including loss, Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Relative Square Error (RSE),
and R-squared (𝑅2). Each matrix is obtained by computing the differ-
ence between (𝑌𝑖) that corresponding to output values of the scaled set

̂
subset (Ts_o) with the predicted output (𝑌𝑖).
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The last stage, the regression performance matrix report is gener-
ated. The performance set is defined as P = {Loss, MAE, MSE, RMSE,
R2} calculated as shown in Eqs. (11)–(15), respectively.

Loss =
𝑛
∑

𝑖=1

(

𝑌𝑖 − 𝑌𝑖
)2

(11)

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

(

𝑌𝑖 − 𝑌𝑖
)2

|

|

|

|

(12)

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑌𝑖 − 𝑌𝑖
)2

(13)

RSE =

∑n
i=1

(

Ŷi − Yi

)2

∑n
i=1

(

Yi − Yi

)2
(14)

R2 = 1 − RSE (15)
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5. Simulation results

The simulation results for the oil production models are presented
in this section. The analysis was run ten steps ahead for the multi-RNN,
single GRU, multi-GRU, ANN, multi-LSTM and the proposed DGRU. The
average values for each model were computed to acquire the final fore-
casting result. Hyperparameters were used to obtain promising network
architectures. Two approaches were used to configure these, namely
optimised hyperparameters and model-specific hyperparameters. The
results of hyperparameter tuning for each model are shown in Table 1.

Since batch size plays an important role in preventing the learning
process from getting stuck at local minima, the training and validation
sets were divided into a set of small batches, which were passed to the
neural networks. As can be seen from Table 1, the dataset is split into
various batch sizes (20, 32, 64, and 128).

The overall number of epochs for the network architectures was
generally set to large values, with the aim of reducing the training error
and improving the performance of the models. The learning rate was
also tuned by considering a variety of learning rate values. The number
of hidden units and the number of layers were experimentally tuned.

Fig. 5 presents the MAE metrics for the training and validation sets.
As can be seen from Fig. 5, the values for the validation and training
sets are constant over all epochs for the multi-RNN model. The model
over fitted the data after the first epoch, and therefore does not perform
well on the US oil production data.

With regards to the single GRU model, the MAE decreases linearly
over time, reaching nearly 0.001 for the validation set, while the value
for the training set decreases after 100 epochs and then stalls. The MAE
is slightly decreased for the validation sets, reaching a minimum after
200 epochs, while the value for the training set continues to decrease
after reaching 0.001. Again, the model is overfitting the data. Although
both the LSTM and DGRU models are explicit, with three dropout
layers, the LSTM is overfitting after 5 epochs. The number of epochs
was reduced to 5 to avoid overfitting, but the results show that the
neural network does not converge for a small number of epochs.

The MAE shows improvement in the DGRU model. Overfitting is
mitigated in this model by adding three dropout layers, and the MAE
drops linearly, achieving its lowest values of 0.0027 and 0.0024 for
the validation and training sets, respectively, at epoch 100. Hence, the
DGRU model achieves the best results.

The results are presented in Tables 2–6. The findings show that
the loss metric showed slightly better performance for the training
and validations datasets than the test sets, for all recurrent neural
network models. However, the DGRU model achieved the best loss
value, reaching 0.00009 for the test dataset.

Although multi-GRU/ANN model achieved the best values for the
RSME, it did not generalise well on the test data, as there was a large
difference in the RSME error between the training and test data. The
best model with regard to RSME metric was again the proposed DGRU.
The RMSE was increased by 1% in the DGRU model, an average value
of 0.0078 was achieved.

The R squared metric is used to evaluate the goodness of fit predic-
tive model into the regression line. This is called the coefficient of deter-
mination. The best 𝑅2 was obtained by the multi-GRU/ANN and DGRU
methods, which gave values of 0.71923 and 0.70020, respectively.

The relationship between the original production data and the
predicted data for US oil production using 10 steps ahead prediction
is shown in Fig. 6.

Large amount of data to train neural networks in replicating the
analysis of simulations for ten times which could make the simulations
process slower. Our purposes DGRU capable of learning long term
dependencies fast. It can act significant improvements in prohibitively
of the slowing learning process.

DGRU model can train fast emulators for high dimensional data
while offering significant enhancement in respect to accuracy compared

with other deep recurrent neural network techniques. In order to
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Fig. 5. Training and validation MAE metric.

valuate the feasibility of proposed models, the algorithms learning
un time was considered. We trained the machine learning algorithms
aking into account two values of hyperparameter epochs (100, 500).

Fig. 7 shows the simulations run time measured in seconds for each
earning algorithm. The faster model was DGRU that takes 6, 17 s
or epochs (100, 500), respectively. The Multi-LSTM model requires
longer time to train a neural network for both sets of epochs (100,

00) compared with the other algorithms. A number of reasons could
8

Table 1
Experimental setup parameters.

Model Method Tuning parameters

Multi-RNN

Optimised
hyperparameters

Epochs (500)
Batch size (128)
Learning _rate (0.01)

Specific
hyperparameters

No. of hidden layers [3]
No. of units in hidden layers [32,32,32]
No. of units in input layer [64]

Single GRU

Optimised
hyperparameters

Epochs (500)
Batch size (128)
Learning _rate (0.001)

Specific
hyperparameters

No. of hidden layers [1]
No. of units in hidden layer [64]
No. of units in input layer [64]

Multi-G RU/ANN

Optimised
hyperparameters

Epochs (500)
Batch size (64)
Learning _rate (0.0 1)

Specific
hyperparameters

No. of hidden GRU layers [2]
No. of units in GRU layer [64,32]
No. of hidden ANN layers [1]
No. of units in ANN layer [32]
No. of units in GRU input layer [60]

Multi-LSTM

Optimised
hyperparameters

Epochs (100)
Batch size (20)
Learning _rate (0.001)

Specific
hyperparameters

No. of hidden LSTM layers [2]
No. of units LSTM layer [32,8]
No of dropout layers [3]
Dropout rate [0.5,0.2,0.5]
No. of units in LSTM input layer [64]

DGRU

Optimised
hyperparameters

Epochs (100)
Batch size (32)
Learning _rate(0.0001)

Specific
hyperparameters

No. of hidden GRU layers [2]
No. of units in GRU layer [32,20]
No. of dropout layers [3]
Dropout rate [0.5,0.2,0.5]
No. of units in GRU input layer [64]

Table 2
Multi-RNN results for 10 steps prediction.

Subset loss RMSE MAE RSE R2

Train 0.00060 0.02458 0.009143 1.00016 0.00005
Val 0.00041 0.02028 0.009111 1.00022 0.00002
Test 0.00015 0.01292 0.00699 1.22908 0.05523

Table 3
Single GRU results for 10 steps prediction.

Subset loss RMSE MAE RSE R2

Train 0.010 0.00441 0.00181 0.03220 0.96878
Val 0.012 0.00829 0.00511 0.16727 0.83272
Test 0.00012 0.01098 0.00454 0.88785 0.55078

Table 4
Multi-GRU/ANN results for 10 steps prediction.

Subset loss RMSE MAE RSE R2

Train 0.000001 0.00120 0.00037 0.00239 0.99780
Val 0.000050 0.00709 0.00210 0.12227 0.88451
Test 0.000060 0.00780 0.00407 0.44747 0.71923

affect the speed of the Multi-LSTM. The most significant one is that

three gates are used in Multi-LSTM to decide which information in a

memory cell should be carried forward. Thus, network converged are

relatively slow, particularly when capturing the dependences of long-

interval. The optimal epoch’s values that give the highest accuracy only

provided in the final result as the list in Table 1.
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Fig. 6. Actual oil production value vs predicted values.
Fig. 7. Computational training time.
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Table 5
Multi LSTM results for 10 steps prediction.

Subset loss RMSE MAE RSE R2

Train 0.00009 0.00959 0.00216 0.13299 0.89719
Val 0.00014 0.01219 0.00449 0.35074 0.74595
Test 0.00007 0.00869 0.00332 0.55643 0.51005

Table 6
Stacked DGRU results for 10 steps prediction.

Subset loss RMSE MAE RSE R2

Train 0.00011 0.01088 0.00262 0.15481 0.55031
Val 0.00095 0.03088 0.00872 2.24835 0.03088
Test 0.00006 0.00951 0.00313 0.66611 0.70020
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5.1. Discussion

In this work, we aim to evaluate the robustness of the stacked DGRU
model against various alternative time series models. The findings
demonstrate that the proposed DGRU is a promising model that can
be used to solve time series problems, and specifically for long-term
forecasting tasks, as it can train long-interval time-series datasets faster
than other standard methods.

Our simulation results indicated that regression metric performs
poor in test and validation set for single GRU model. This is expected
since the structure of the network is quite simple; it has a single hidden
layer that consists of (64 neurons). The researchers demonstrate that
increasing the number of hidden layers could significantly improve
the performance of the network (Ebraheem, Thirumuruganathan, Joty,
Ouzzani, & Tang, 2017). Our data is complex and require stacks of
hidden layers in order to create more features representation of input;
the number of hidden neurons could be another factor that leads to
poor performance. The inferring nonlinearity relationship between the
oil production, and features could be obtained by increase the number
of hidden neurons.

The MAE and RSE in Multi-GRU/ANN model show lower perfor-
mance for testing; again, it could be relevant to the structure of the
network. Although the model is stacked of three hidden layers, these
are two GRU layers and single ANN layer. It is incapable of handling
change in the underlying time trend for our data. The hidden neurons
in GRU layer hold the information from previous time step and feed to
ANN layer as input; the hidden nodes in ANN layer transmit the flow
of information in forward and pass it to the output layer. Transmitting
information in one direction could reduce the efficiency of the network
in discovering the entire autocorrelation particularly that are based on
time.

With respect to Multi-LSTM model, the MAE yields low performance
for the test dataset. It is representing the absolute value of residual
often computed by finding the difference between values of model pre-
diction error with the test dataset. Since the MAE considers the absolute
value of residual to evaluate error, it contributes partially to the total
error. Thus, it is not indicated under-performance or over-performance
of the model. Hence, other metrics considered to measure the accuracy
of the model. Our empirical results illustrate that the test set gives
better performance compared with the trained test. For instance, the
model obtains higher RMSE in the test than train and validation set
achieving values of 0.00869. The RMSE metric measures the difference
between the predicted values and the actual observations. The lowest
RSME value demonstrates the better performance of the predictive
model.

The DGRU model is based on a stacked deep learning mode of the
GRU recurrent neural network. One of the important advantages of
using GRU in the oil and gas industry is its capacity to handle the
vanishing gradient problem without the need to use a memory unit,
meaning that the computational cost is lower than LSTM. Another ad-
vantage of GRU is that its structure is less complex than LSTM, since the
input and forget gates of LSTM are combined into a single update gate.
This gate has mechanisms for deciding how much information should
be used to make a prediction. For instance, we have approximately
13,000 instances. If the observation is not relevant to the target, the
network will disregard these instances.

Nevertheless, stacking more recurrent layers in the proposed model
may be a way to improve the representation of the model, although
the computational costs for this could be high. Using GRU layers in a
stacked deep learning model gives a significant reduction in the cost of
the model.

The results illustrate that the multi-RNN is a simplistic method for
forecasting US oil production rates; more specifically, this model is
unable to learn the long-term dependencies that cause the vanishing
gradient issue, thus preventing the algorithm from learning. Single GRU
model is not suitable for this dataset, as the model is overfitting the
10
data from the very beginning. In addition, there was no significant
improvement in the MAE for the training and validation sets.

The multi-GRU/ANN system gives the best RSME result. However,
this model has limited capacity to capture the states between the inputs
as a consequence, such densely connected network would not be able
to infer the effectiveness of prior productive oil well in the context of
the current well.

LSTM has a complex structure compared to the GRU and the entire
sequence of the data should be stored in memory. Moreover, adding the
dropout layers does not prevent the overfitting issue, and alternative
strategies should be investigated to deal with this.

6. Conclusion

In this study, a novel deep recurrent neural network was con-
structed. The proposed model can assist petroleum engineers in mon-
itoring the characteristics of productive oil wells. The model is based
on the deep structure of a GRU recurrent neural network. We consider
an online dataset of observations of the distribution and production
of oil and gas wells in the US, which was collected by a company
called ‘‘Drillinginfo’’. The dataset includes oil and gas production data
for 90 years across various US states. The numerical and categorical
features were both employed in order to forecast USA oil production.

The model is a deep GRU recurrent neural network, an extension
of a standard recurrent neural network. The potential for storing infor-
mation over the long term without a memory unit is one key element
of our proposed model. Empirical testing shows that our DGRU can
achieve feasible results for a time series forecasting task. The findings
also show that the DGRU achieves high computational performance
in terms of training time, since each individual recurrent layer of the
DGRU model consists only of two gates, namely the reset gate and
update gate, making the configuration of our model is much easier than
LSTM and RNN. The proposed model shows higher performance than
other standard models, and as a consequence, our DGRU model can be
applied to the long-term dependencies of a complex time series dataset.

Future directions could involve the use of intelligent AI system in
the cloud. Cloud solution has a significant impact on reducing the price
of oil and gas operations to its minimum cost. More structure and
unstructured dataset will be used to aid petroleum engineer gain deep
insight into reservoir characterising, and drilling operations. The Deep
Generative Models could be implemented which is capable of extracting
high-level representations form high dimension unstructured data.
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