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1.  INTRODUCTION 

As global biodiversity continues to decline (But -
chart et al. 2010), cost-effective and scalable ecosys-
tem monitoring techniques are of increasing im -
portance (Cardinale et al. 2012). Passive acoustic 
monitoring (PAM) is a non-invasive and highly scala-
ble monitoring method which has been used to exam-
ine the health and biodiversity of marine and terres-

trial ecosystems by extracting significant biological 
patterns from acoustic recordings over days to sev -
eral months (Buxton et al. 2018, Gibb et al. 2019, 
Mooney et al. 2020). Animals produce and use sound 
for a wide variety of behaviors, including intentional 
acoustic signals for mate attraction, echolocation, 
group cohesion, and territorial defense as well as un-
intentional sounds from movement and feeding 
(Brad bury & Vehrencamp 1998). By detecting and 
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ABSTRACT: Coral reefs comprise some of the most biodiverse habitats on the planet. These eco-
systems face a range of stressors, making quantifying community assemblages and potential 
changes vital to effective management. To understand short- and long-term changes in biodiver-
sity and detect early warning signals of decline, new methods for quantifying biodiversity at scale 
are necessary. Acoustic monitoring techniques have proven useful in observing species activities 
and biodiversity on coral reefs through aggregate approaches (i.e. energy as a proxy). However, 
few studies have ground-truthed these acoustic analyses with human-based observations. In this 
study, we sought to expand these passive acoustic methods by investigating biological sounds and 
fish call rates on a healthy reef, providing a unique set of human-confirmed, labeled acoustic 
observations. We analyzed acoustic data from Tektite Reef, St. John, US Virgin Islands, over a 
2 mo period. A subset of acoustic files was manually inspected to identify recurring biotic sounds 
and quantify reef activity throughout the day. We found a high variety of acoustic signals in this 
soundscape. General patterns of call rates across time conformed to expectations, with dusk and 
dawn showing important and significantly elevated peaks in soniferous fish activity. The data 
reflected high variability in call rates across days and lunar phases. Call rates did not correspond 
to sound pressure levels, suggesting that certain call types may drive crepuscular trends in sound 
levels while lower-level critical calls, likely key for estimating biodiversity and behavior, may be 
missed by gross sound level analyses.  
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moni toring changes in biological sounds of interest, it 
is possible to gain insight into the presence and activ-
ity of species and perhaps detect ecologically impor-
tant behaviors such as foraging or spawning events 
(Myrberg 1986, Mann & Lobel 1995, Nordeide & 
Kjellsby 1999, Lobel 2002, Jones et al. 2004). 

Coral reefs comprise some of the most biodiverse 
habitats on the planet (Odum & Odum 1955, Connell 
1978, Birkeland 1997). PAM on coral reefs has been 
implemented in multiple studies (e.g. Kennedy et al. 
2010, Kaplan et al. 2015, Staaterman et al. 2017, Di-
moff et al. 2021) but is just beginning to gain traction 
as a reef-habitat monitoring and management tool. 
Yet PAM on reefs is rapidly expanding due to its po-
tential in tracking environmental changes happening 
in these critical habitats. Many reefs are threatened 
by a range of local and global stressors, from over-
fishing (Jackson et al. 2001, Pandolfi et al. 2003) and 
pollution (McCulloch et al. 2003) to climate change 
(Gardner et al. 2003, Hughes et al. 2003). Reef eco-
systems not only foster abundant biodiversity in our 
oceans but also provide countless ecosystem services, 
including fisheries (Smith 1978), coastal protection 
(van Zanten et al. 2014), recreational activities (Bran-
der et al. 2007), and cultural importance (Johannes 
2002). It is evident that changes in reef complexity 
and biodiversity have significant im pacts on these 
ecosystem services (Pratchett et al. 2014). 

New methods for quantifying biodiversity at scale 
are therefore necessary to detect short- and long-
term changes in reef complexity and health as global 
and local threats increase (Beijbom et al. 2012, 
Mooney et al. 2020, Kennedy et al. 2021). The most 
common method of reef population and community 
surveys is diver-based underwater visual censuses 
(Brock 1954). These observations can be extremely 
time-consuming, cost-prohibitive in remote loca-
tions, can introduce observer bias, and may alter fish 
behavior, likely confounding biodiversity metrics 
(Brock 1982, Sale & Sharp 1983, Thompson & Map-
stone 1997, Edgar et al. 2004, Harvey et al. 2004). To 
reduce these biases, there has been increasing inter-
est in non-invasive methods that monitor species 
abundance and biodiversity. Reefs lend themselves 
particularly well to PAM because of the abundance 
of intentional and unintentional biotic sounds from 
soniferous fish and invertebrates (Rice et al. 2022), 
and so by listening for reef sounds associated with 
soniferous fish and invertebrates, researchers can 
monitor reefs passively. Sound is an important com-
ponent of many reef fish behaviors such as mating, 
feeding, and communication (Myrberg 1981, 1986, 
Mann & Lobel 1997, Tricas & Boyle 2021). Reef 

soundscapes also contain many ancillary sound cues 
which cause changes in fish and invertebrate activity 
(Radford et al. 2008, Lillis & Mooney 2018). 

An increasing number of studies leverage these 
sounds and use a higher-level aggregate approach 
and proxies (i.e. energy, diel patterns, various in -
dices) to estimate community assemblages, complex-
ity, and reef fish diversity due to difficulty in as -
signing call type to species (Kennedy et al. 2010, 
Kaplan et al. 2015, Bertucci et al. 2016, Lin et al. 2017, 
Staaterman et al. 2017). However, these methods can 
be biased by certain factors, such as the choruses of 
acoustically dominant species of fish and inverte-
brates (Mooney et al. 2020), and often fail to verify the 
actual diversity of call types and their respective call 
rates. Consequently, bulk analyses can potentially in-
duce inconsistencies when they are used as proxies 
for biodiversity and biotic activities on a reef. 

Here, we sought to expand acoustic methods and 
data sets by investigating patterns and changes in 
fish call rates throughout the day using a manual sur-
vey method (e.g. Kaplan et al. 2014, Tricas & Boyle 
2014, Silva et al. 2016) to identify call presence and 
discrimination. We examined and analyzed recurring 
biotic sounds to determine fish vocalization trends 
and variability at Tektite Reef in St. John, US Virgin 
Islands (USVI). We selected Tektite Reef based on its 
relatively high health condition compared to nearby 
reefs (Kaplan et al. 2015) and its long history of eco-
logical and bioacoustic assessments (Edmunds 2013, 
Kaplan & Mooney 2015, Kaplan et al. 2015, Lillis & 
Mooney 2018, Lillis et al. 2018), which provide an im -
portant regional baseline and sufficient data to ob -
serve overall daily patterns in fish call rates. We then 
compared trends with existing bulk analytical meth-
ods applied to our data. 

2.  MATERIALS AND METHODS 

Data were collected using a single-channel Sound-
trap 300ST recorder (Ocean Instruments). The re -
corder was placed at Tektite Reef (18° 18’ 26.8” N, 
64° 43’ 14.7” W; Fig. 1), 0.5 m above the benthos, 
attached to a rebar stake. From prior acoustic moni-
toring studies, we knew Tektite was acoustically rich 
relative to surrounding reefs and that this richness 
corresponded with observed high fish diversity 
(Kaplan et al. 2015). The SoundTrap was deployed 
from 19 March to 12 July 2017 and set to record on a 
duty cycle with 3 s of self-calibration and 60 s of re -
cording every 10 min. For data analysis, 8 d were 
sampled by 2 independent, trained analysts in April 
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and May 2017 during the full (11 April, 12 May), 
third-quarter (19 April, 18 May), new (26 April, 25 
May), and first-quarter (2 May, 1 June) moons. Be -
cause such manual analysis was extremely time-
intensive, the goal here was not to characterize all 
fish sounds found on Tektite Reef but to investigate 
prominent call types and quantify call rates during 
early summer, an acoustically active season (Kaplan 
et al. 2015), as a first look into call patterns and fine-
scale acoustic diversity. This analysis would then 
provide a key comparison to batch analyses, for ex -
ample using bandpass-filtered sound pressure levels 
(SPLs) as a proxy for fish activity (Staaterman et 
al. 2014, Bertucci et al. 2015, Kaplan et al. 2015). 
 Furthermore, our analyses include fine-scale labels 
which will help validate subsequent automated 
acoustic event detection and classification efforts. 

To label individual acoustic events, we used an 
interactive graphical user interface created in MAT-
LAB R2020a (MathWorks) to visualize and analyze 
1 min sound files every 30 s for each recording day. 
Recordings were first down-sampled from their orig-
inal 48 kHz sampling rate to 4000 Hz, allowing for 
analysis of sounds in the frequency band from 0−
2000 Hz containing nearly all fish vocalizations (Tri-
cas & Boyle 2014, Kaplan et al. 2015). Spectrograms 
(128 point, 32 ms Hamming window, 75% overlap, 
1024 point Fast Fourier Transform size) were visual-
ized in 10 s time frames to better observe calls. Indi-
vidual calls were manually labeled with time−
frequency bounding boxes within those 10 s spectro-
grams (see Fig. 2A). Time and frequency limits and 
corresponding labels were saved to a text file associ-
ated with each audio file. Because these reefs experi-
ence intermittent small boat traffic (Dinh et al. 2018), 
we labeled and removed periods with audible boat 

noise that could mask detection of fish calls, similar 
to Kaplan et al. (2015). A final check of each file was 
made after initial auditing to parse out dense vocal-
ization sequences. 

Call rate for each file was calculated as the number 
of calls per minute (of all call types) of audio after ex -
cluding periods with vessel noise (e.g. Kaplan et al. 
2015). Average call rate per minute was determined 
throughout the 8 d of data for each 1 h interval. To 
observe patterns in dawn and dusk chorusing peaks, 
call rates were aggregated and averaged among 
night, dawn, day, and dusk (defined as 20:01−04:34, 
04:35−05:53, 05:54−18:42, and 18:43−20:00 h, respec-
tively) following data on www.timeanddate.com 
(Table 1). 

As a comparison to call rate estimates, we quanti-
fied the received SPL within the fish band, a 50−
1200 Hz low-frequency band that includes most fish 
acoustic activity, as a proxy for large-scale biotic 
activity, following previous studies (Kaplan et al. 
2018, Au & Banks 1998, Tricas & Boyle 2014). Files 
containing vessel noise were removed from the ana -
lysis. We filtered each file with a 50−1200 Hz 4-pole 
Butterworth bandpass filter, then calculated the root-
mean-square (RMS) SPL for each 1 s period, trans-
formed it to decibels, and corrected for the acoustic 
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Fig. 1. (A) St. John, US 
Virgin Islands National 
Park, with Tektite Reef 
noted by the red star; (B) 
single-channel Sound-
trap 300 STD recorder 
(Ocean Instruments) at 
Tektite reef. The hy-
drophone (and attached 
temperature and light 
logger) is at the top of 
the rebar; supporting  

battery pack is below

Time period                Start time (h)                End time (h) 
 
Night                                 20:01                             4:34 
Dawn                                  4:35                              5:53 
Day                                     5:54                             18:42 
Dusk                                  18:43                            20:00

Table 1. Corresponding times of analysis periods
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sensitivity of the instrument using calibration levels 
from the manufacturer. Finally, we calculated the 
arithmetic mean RMS SPL for each file as a direct 
comparison to the manual call count estimates. 

A linear mixed-effects model was used to observe 
how time of day and lunar phase affected call rates, 
using the ‘lme4’ toolbox (Bates et al. 2015) in R 
v.4.1.2 (www.r-project.org/). We modeled time of 
day and lunar phase as fixed effects to examine 
their importance to call rate and mean sound level. 
To account for variation between individual days, 
we ad ded day as a random effect on the intercept. 
We generated 4 nested models: a null model with 
only day as a random effect, 2 extending models 
that were the same as previous but sequentially ad -
ded time of day and lunar phase, and finally a full 
model that included the interaction between time of 
day and lunar phase. A stepwise likelihood ratio 
test was performed from most to least complicated 
model using the ‘anova’ function from the ‘car’ 
package in R (Fox & Weisberg 2019) to evaluate the 
importance of each fixed effect and determine 
which model was best fitted to the data. A pairwise 
comparison using the ‘lsmean’ toolbox (Lenth 2016) 
in R was then used to determine whether average 
call rates at night, dawn, day, and dusk were signif-
icantly different from each other. 

To understand the impact of individual calls on total 
energy content of the soundscape, we filtered all 
manually labeled fish sounds with a 50−1200 Hz 4-
pole bandpass filter. We then defined the call duration 
as the period containing 95% of the total acoustic en-
ergy (following Madsen et al. 2006) and calculated 
the received level (RL) as the RMS SPL over the 95% 
energy duration. Finally, we estimated the sound ex-
posure level (SEL) for each call by multiplying the av-
erage intensity by the total duration (in decibels, by 
adding 10 × log10[d] to the RMS SPL in dB). 

3.  RESULTS 

We addressed fish call rates on a coral reef across 
8 d of recordings spread over 2 mo. Like many coral 
reefs, Tektite Reef provides habitat to a community 
of fish and invertebrates across trophic levels (Kap -
lan et al. 2015, Mooney et al. 2017); consequently, a 
diversity of call types were noted across these days 
and months. Given the previous efforts to address 
sound energy on reefs, this particular effort sought 
to address the temporal patterns of these reef fish 
calls with respect to overall sound levels. Call clas-
sification was not addressed here specifically but is 

a focus of ongoing work. To provide some context, 
Fig. 2 shows a series of example spectrograms with 
4 call types that were seen most often. The low-fre-
quency soundscape was primarily dominated by a 
variety of pulsed calls (Fig. 2B−D), though occa-
sional tonal calls were also present, and at least one 
tonal call type (Fig. 2E) was seen intermittently 
throughout the 8 d. 

Hourly rates of individual biological calls showed 
general peaks around dawn (05:30 h) and dusk 
(19:30 h) (Fig. 3). However, there appears to be a 
wide variety in call rate throughout each day. The 
highest call rate was seen at 19:30 h on 19 April 
(Fig. 3C), with 149.5 calls min−1. The lowest call rate 
was 8.5 calls min−1 at 15:30 h on 2 May (Fig. 3E). 

The linear mixed-effects model showed that time 
of day had a significant effect on call rate and that the 
effect of time of day depended on lunar phase 
(Table 2, Fig. 4A). However, phase alone did not 
have an impact on call rate. Akaike’s information cri-
terion (AIC) suggests the full model is best (AIC = 
3145.2), while Bayesian information criterion (BIC) 
suggests Model 1 is the best (BIC = 3170.4). This dis-
crepancy indicates that the effect of the interaction 
between time of day and lunar phase is tentative. 

Mean nighttime call rates (65.3 ± 5.17 calls min−1) 
and daytime call rates (59.8 ± 5.08 calls min−1) were 
lower than the mean call rate at dawn (81.3 ± 7.84 
calls min−1) and dusk (79.3 ± 7.11 calls min−1). Using 
pairwise comparisons, the dawn and dusk periods 
showed significantly higher call rates compared to 
day (t331 = 3.269, p = 0.0065 and t331 = −3.418, p = 
0.0039, respectively). Dusk and dawn were only bor-
derline significant from dawn (t331 = 2.410, p = 
0.0771) and dusk (t331 = 2.423, p = 0.0748). No other 
pairwise comparisons were significant. 

Received SPL values (dBrms re 1 μPa) between 50 
and 1200 Hz showed similar trends, with general 
peaks at dawn and dusk (Fig. 5). There was variation 
in energy during each of the 8 d; however, the high-
est variability was seen during the day (~05:54−
18:42 h), with large peaks such as that at 09:30 h on 
10 May (Fig. 5B) and 12:30 h on 26 April (Fig. 5D). 
The average received SPL depended only on time of 
day and not on lunar phase (Table 3). 

Nighttime RLs (93.14 ± 0.25 dB re 1 μPa) were 
lower than dawn (98.49 ± 0.65 dB re 1 μPa), day 
(97.58 ± 0.21 dB re 1 μPa), and dusk (98.03 ± 
0.55 dB re 1 μPa) (Fig. 4B). Using pairwise compar-
isons, night showed significantly lower RLs from 
dawn (t380 = 7.782, p = 0.001), day (t379 =15.044, p = 
0.001), and dusk (t379 = 8.278, p = 0.001). All other 
comparisons were not significant. 
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While call rates and SPLs appeared to follow a gen-
erally similar diel trend, fish calls were generally short 
(median 95% energy duration: 0.13 s; Fig. 6A) and 
low amplitude (median RL: 98.5 dB re 1 μPa; Fig. 6B), 

resulting in very little energy contributed to the over-
all soundscape (Fig. 6C). As a consequence, we did 
not find a significant correlation between re ceived 
SPLs and call rate (Fig. 6D). 
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Fig. 2. (A) Example spectrogram with bounding boxes around fish sounds and 4 commonly seen call types: (B) double pulse 
between ~0.2−1 kHz, (C) multipulsed between ~0.2−1 kHz, (D) rapid pulse between ~0.1−0.5 kHz, and (E) low-frequency  

burst pulse call between ~0−0.5 kHz
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Model                                                                                                                            df         AIC          BIC           χ2             p 
 
Full model:     CallRate ~ TimeOfDay × Phase + TimeOfDay + Phase + (1|Day)    318     3145.2     3213.9     25.349    0.0026* 
Model 2:         CallRate ~ TimeOfDay + Phase + (1|Day)                                          327     3152.5     3186.9     0.9373    0.8164   
Model 1:         CallRate ~ TimeOfDay + (1|Day)                                                        330     3147.5     3170.4     20.238    0.0002* 
Null model:    CallRate ~ (1|Day)                                                                                333     3161.7     3173.1

Table 2. Linear mixed-effects model and likelihood-ratio test for call rates. Four linear mixed-effects models were imple-
mented to examine drivers of fish and invertebrate call rate on the reef. Time of day (categorical: night, dawn, day, dusk) and 
lunar phase (categorical: new, 1st, full, 3rd) were modeled as fixed effects along with their interaction (all in bold). Stochastic 
differences between days were modeled by including day as a random effect on the intercept (in italics). Models were tested 
hierarchically in order of decreasing model complexity, with χ2 and p-values for each model representing a likelihood-ratio 
test against the model one level below with a single fixed effect removed (with * and bolded values when p < 0.05). Results 
show that time of day significantly improved the model, and Akaike’s information criterion (AIC) score and likelihood-ratio  

test further suggest that the effect of time of day depends on lunar phase. BIC: Bayesian information criterion

Fig. 3. Temporal variation in hourly acoustic call rates: (A) hourly call rate throughout the day shown across 8 full (24 h) days. 
Hourly call rate for individual days during (B) full moon on 11 April (red) and 10 May (blue); (C) third-quarter moon on 19 April 
(red) and 08 May (blue); (D) new moon on 26 April (red) and 25 May (blue); and (E) first-quarter moon on 2 May (red) and 
1 June (blue). All call rates were calculated as number of calls in periods without vessel noise divided by the total duration 
without vessel noise. Gaps: periods where vessel noise masked biotic sounds in both recording files for that hour. Note that  

call rates are not measured continuously but at 30 min intervals

Fig. 4. Relationship between time of day (night, dawn, day, and dusk) and lunar phase (new, first, full, and third moons) on (A) call 
rate and (B) received levels. Grey line: mean of all lunar values at that time of day. Note that hierarchical model selection showed 
that, in contrast to call rate, received level was best modeled without accounting for lunar phase but is shown here for comparison
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Fig. 6. (A) Duration of individually labeled fish calls (95% energy criteria) shown as a normalized probability density function 
(Norm PDF); (B) root-mean-square received level (RL) in 50−1200 Hz fish bands for individual fish calls (blue) and median 1 s 
RL for individual files. (C) Sound exposure level (SEL) for individual fish calls (blue) and 60 s source files (red) showing the rel-
atively low energy content of fish calls compared to the  energy content of source files. (D) Relationship between call rate for 
each file (calls min−1) and median RL for that file. Gray dashed line: linear best fit model (note that correlation is not significant)

Model                                                                                                                          df        ΔAIC      ΔBIC          χ2               p 
 
Full:               RL ~ TimeOfDay × Phase + TimeOfDay + Phase + (1|Day)             366     1866.1    1937.2     8.9948      0.4378 
Model 2:        RL ~ TimeOfDay + Phase + (1|Day)                                                   375     1857.1    1892.6     4.0427      0.2569 
Model 1:        RL ~ TimeOfDay + (1|Day)                                                                 378     1855.1    1878.8     196.97    <0.0001* 
Null:              RL ~ (1|Day)                                                                                         381     2046.1    2057.9

Table 3. Linear mixed-effects models implemented to examine drivers of received sound levels (RL) on the reef. See Table 2 
for further details. Results show that time of day significantly improved the model (* and bolded p-values for p < 0.05)

Fig. 5. Temporal variation in hourly sound pressure level (SPL): (A) hourly received SPL in the 50−1200 Hz frequency band 
throughout the day shown across 8 d. Hourly received levels for individual days during (B) full moon on 11 April (red) and 10 May 
(blue), (C) third-quarter moon on 19 April (red) and 18 May (blue), (D) new moon on 26 April (red) and 25 May (blue), and (E) 
first-quarter moon on 2 May (red) and 1 June (blue). Note that per-file sound pressure level was measured at 30 min intervals for  

the same files analyzed in Fig. 3
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4.  DISCUSSION 

New cost-effective ways to determine coral reef 
health and biodiversity are needed to understand 
changes in reef health due to many current stressors. 
Marine soundscapes have been of increasing interest 
because they facilitate scalable longer-term observa-
tions, are cost-effective, and can support near real-
time detection of reef animal activity. However, to 
our knowledge, most acoustic methods for observing 
reef soundscapes take a higher-level aggregate ap -
proach with limited, albeit time-intensive, assess-
ments of the in situ acoustic activity of reef fish and 
invertebrates. The goal of this study was to deter-
mine how call rates within a coral reef soundscape 
vary throughout the day using a detailed manual 
method that is often applied to the signals and calls 
of other vocalizing taxa but rarely applied to fish call 
rates and characterizations. This work highlights the 
temporal patterns of these call rates while comparing 
them to the overall acoustic sound levels on the reefs 
(Fig. 6). 

Using PAM data from St. John (USVI) and manual 
analysis methods, we observed daily call rates at Tek-
tite, a well-studied reef (Edmunds 2002, 2010). Call 
rates varied widely, ranging from 10 to 150 calls 
min−1. We found an increase in call rates around dusk 
and dawn, similar to those seen in previous studies on 
this reef (Kaplan et al. 2015) and elsewhere (Staater -
man et al. 2014, Kaplan et al. 2018). These methods 
tend to quantify overall SPLs and thus could be domi-
nated by repeated, high-intensity calls from certain 
fish or invertebrate choruses (Radford et al. 2008, Par-
sons et al. 2016, Kahl et al. 2021, Bolgan et al. 2022) 
and miss more subtle lower-amplitude calls. Interest-
ingly, we did not see a clear association be tween call 
SPL and call rate, despite generally similar diel trends 
(Fig. 6). Most calls were short, low-amplitude (and 
low signal-to-noise ratio) calls and thus did not con-
tribute much acoustic energy to the larger sound-
scape (Fig. 6C). Given a median SEL of 90.3 dB re 
1 μPa2·s and a median SEL of 113.4 dB re 1 μPa2·s per 
60 s file, it would take an average of 204 calls to in-
crease the total acoustic energy by 3 dB. There could 
be many reasons that many reef fish calls are rela-
tively low amplitude, but in part, this may be an eco-
logically important strategy; to communicate suffi-
ciently with your neighbor conspecifics but not 
necessarily acoustically advertise one’s position on a 
predator-rich reef. 

We also noted an approximate halving of call rates 
during the day (compared to the crepuscular time 
periods), suggesting a lower level of activity within 

the fish community during those periods. Further, 
these lower daytime call rates underscore the need 
for caution when applying brief ‘snapshot’ record-
ings, especially if they are made during the daytime 
(Kennedy et al. 2010), as they may not fully capture 
the acoustic diversity of the reef. Presumably, the fish 
community did not change substantially during the 
8 d recording period, but these data show the call 
rates did change significantly. 

Our current SPL data (Fig. 5) show an increase dur-
ing the day similar to previous studies (Kaplan et al. 
2015), which suggests an increase in biological activ-
ity. However, we suspect that these differences may 
be a result of bulk analyses picking up some compo-
nent of the background soundscape. This may be 
simply wind-driven wave sounds from warmer day-
time temperatures or an abundance of a few harder-
to-discriminate call types (such as choruses and sig-
nals near background), which would elevate overall 
sound levels but be hard to discern and label in our 
manual analyses. Our analysis methods are not 
driven by the energy of calls, but each individual call 
is weighed equally. By taking a more individualized 
approach, we eliminate background noise sources, 
such as wind and vessels, that may dominate the 
soundscape and largely influence energy analyses. 
Of course, dominant, repetitive individual calls could 
in fluence this method, but at least anecdotally (Fig. 2), 
this was not the case. Further research on call-type 
characterization would help address this uncertainty. 

We also observed variability in call rate throughout 
each individual day. There are evident peaks in the 
mornings of 11 and 19 April. Upon further investiga-
tion, these peaks appear to be dominated by a single 
call type, which appears as a triple pulse with a fre-
quency range between 300 and 1200 Hz. During this 
chorusing, rapid pulsing occurs for about 10 min at a 
time with up to 40 individual calls within that period. 
While it is unclear what animal is causing these 
sounds and for what reason, it is possible that it may 
be one individual or species. Determining which spe-
cies is making sounds has been a long-standing 
question and need in bioacoustics (Fish & Mowbray 
1970). New methods such as rebreather or passive 
acoustic arrays and camera systems are now being 
applied to address such questions (Tricas & Boyle 
2014, Mouy et al. 2018). In many cases, we are still 
discerning how fish call characteristics are influ-
enced by environmental conditions. Compared to 
mammals, fish call repertoires are somewhat fixed, 
but it appears that key events such as changes in 
temperature, upwelling, or habitat loss may influ-
ence call rates and signal parameters (Connaughton 
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et al. 2002, Mann & Grothues 2009, Papes & Ladich 
2011, Mooney et al. 2016, Lamont et al. 2022). More 
work is needed here to better apply our bioacoustic 
assessment analysis tools. 

Finally, this study underscores that diel patterns 
are a major driver of call rates, more so than lunar 
trends observed in the USVI and Hawaiian coral 
reefs (Kaplan et al. 2015, 2018). Given that bulk ana -
lysis methods often compare reef health or biodiver-
sity based on sound levels, a possible next step could 
be to apply these call rate observations to additional 
reefs and compare noted call rates and diversity 
across a range of reef conditions. However, one limi-
tation is the time-intensive nature of such manual 
ana lyses (hence the application of diversity and 
sound-level metrics) (Mooney et al. 2020). Machine 
learning is also an approach recently applied to coral 
reef sounds which has been used to identify reef fish 
choruses and bioacoustic patterns (Lin et al. 2017, 
Lin & Tsao 2020). Manually labeled data sets provide 
an important ground-truth resource with which to 
validate automated machine-learning methods and 
ultimately allow for scaling up individual-level PAM. 
Quantifying the call rates of fish, the parameters of 
those calls, and how such sound patterns may be 
driven by environmental or human-induced (i.e. 
noise) changes is a rapidly emerging field (Munger 
et al. 2022). However, the optimal method of detect-
ing potential changes has yet to be determined. The 
data here help lay the groundwork for applying 
emerging methods using traditional detectors or 
machine learning. SPLs on their own may not be the 
best metric, but actual call rates can certainly help 
support those methods as well as elucidate  behaviors. 

Open-source collections of fish sounds are still in 
their infancy but are rapidly developing (i.e. recently 
launched www.fishsounds.net; Looby et al. 2022). 
Manual identification and labeling of calls, such as 
this work, or manual labeling of calls and subsequent 
unsupervised identification of call types (Parra-
Hernández et al. 2020, Sainburg et al. 2020) are crit-
ical for populating these data collections with a 
wealth of individual fish and invertebrate sounds. 

While this was a quantitative analysis of call rates, 
a subsequent analysis is underway to examine call 
types, differentiation, and potential niche with over 
100 call types defined (authors’ unpubl. data). Dis-
cerning call types in coral reefs is challenging 
because of the high number of calls and the ability of 
individual species to make a variety of call types 
depending on behavior (Kasumyan 2008). Previous 
studies have attempted to determine call types in 
aquarium settings but have shown that it is impossi-

ble to recreate specific behaviors and sounds in cap-
tivity (e.g. Hawkins & Amorim 2000, Širović & Demer 
2009). Therefore, peer-reviewed efforts to discern 
call categorization are needed. These can eventually 
be used for training automated algorithms to simulta-
neously detect and parse out the rich fauna found in 
coral reefs, similar to how current deep neural nets 
are now capable of classifying hundreds of bird 
sounds with high accuracy (Kahl et al. 2021). Such an 
individual-level approach to the analysis of coral reef 
soundscapes may be promising for tracking local 
abundance of keystone species, invasive species, or 
sentinel species that respond early to ecosystem 
changes (Tricas & Boyle 2021) and thus have the 
potential to transform coral reef ecosystem  monitoring. 
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