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Abstract

Despite recent advances in brain monitoring techniques, the electroencephalogram 
(EEG) is still widely used in the diagnosis and monitoring of epilepsy. To increase 
its effectiveness, long-term monitoring of patients was proposed but the large volume 
of recorded EEG signals produced, made their traditional interpretation by human 

experts difficult and automatic EEG analysis was proposed as an alternative.

This Thesis is concerned, primarily, with the on-line detection of epileptic transients 
(spikes) in the interictal EEG signals of patients. A review of previous methods, 
revealed that the limited success of automatic analysis systems was linked to the 
vagueness of neurophysiological definitions and the subjectiveness of human interpre-

tation, which is based on experience.
To address these issues, it was realized that a common point of reference is required for 
the integration of medical and signal processing expertise, which could be provided by 

a model of the signal. Early attempts to develop such a model are described. These 
led to the development of spike detectors based on the derivatives of the EEG.

Later, by describing medical definitions with signal processing terminology, a com-
prehensive model of the signal was constructed. This was based on its decomposition 
into background activity, spikes, transients and noise and describing each one of them 
in terms of simple, random signals and quasi-linear systems.
This suggested a method of analysis based on inverse modelling for the decomposition 

of the EEG. The model for transients was estimated off-line. An on-line system, 

consisting of adaptive prediction error systems, constrained all-pole adaptive systems 

and a basic signal detection procedure was implemented. Several alternative adaptive 

realizations were investigated.
The spike detection procedure was generalized for the detection of other transients. 
Finally this procedure was replaced by a Multi-Layer Perceptron neural network, 
whose inherent ability to learn by example is important, as it provides the means 

to incorporate medical experience without requiring its explicit quantification. The 
system is flexible and its extension to detect any number of transients is demonstrated. 
The method may be applied to other signals and improved by new developments in 

signal processing.
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Introduction

The brain consists of a vast network of highly interconnected functional elements. It is the 
centre of the nervous system, which spans the whole of the body controlling its actions. As 
a consequence, deviations from normal brain behaviour often disrupt other functions of the 

body, leading to complex conditions with variable symptoms.

One of the early methods of brain monitoring was the Electroencephalogram (EEG), a 

record of the evolution of the electrical activity of the brain taken by an inexpensive, non- 
invasive procedure. It has been known for almost a century and several characteristic EEG 
patterns have been identified and correlated with specific brain conditions. Unlike modern 
brain imaging methods which show the structure of the brain, the EEG is a record of its 
operation and is hence more suitable for investigating abnormalities in its function. Despite 

great advances in medicine and diagnostic techniques some of these conditions are among 
the least well understood and most difficult to treat.

One such disorder is epilepsy. Although known since ancient times, some of its aspects 

are still uncertain. In a number of cases, it is a symptom of another condition, like a brain 

tumour, and seizures are discontinued once the real cause is diagnosed and cured. In many 
other patients, seizures are the only manifestation of a transient abnormal brain behaviour. 

Constitutional (idiopathic) epilepsy is possibly the result of a variety of interacting and 
ambiguous factors and the effectiveness of its treatment may not always be satisfactory.

Perhaps the main obstacle in the investigation of idiopathic epilepsy is the transient 

nature of the brain disruption, which appears to be spontaneous and last for short periods 
of time, in some cases only for seconds. In a large number of sufferers, there is no residual 
evidence of an attack and even diagnosis is difficult. Medical experts agree, however, that 
an early diagnosis, especially in childhood, is important because if treated at an early stage, 

epilepsy may be easier to control or even eliminate. Several anticonvulsant drugs have been 
developed that can reduce the number of seizures, but most of them have serious side effects 
and the required dosage must be adjusted on an individual basis.

It is therefore important to have an effective technique to assist both in the initial diag-
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nosis and in the subsequent monitoring, especially during drug therapy. It has been discov-
ered that epileptic seizures are generally accompanied by abnormal changes in the electrical 

potentials of the brain, which become evident in the EEG. Their identification is a good 

indication of whether a person suffers from epilepsy or not. Some of these patterns appear 
spontaneously between seizures and may be used to monitor the effectiveness of medication.

The usefulness of clinical EEG in epilepsy is sometimes questioned. It has been argued 
that a traditional recording, which often lasts for less than half an hour, is too brief for 
the effective screening of patients. Although it is possible to provoke abnormal patterns, 

the results are not always conclusive and further recordings are sometimes necessary for 

confirmation. One cannot exclude the possibility that seizures may be provoked by factors 

not found in the EEG laboratory, but present in the patient’s normal working environment. 

It is suspected, for example, that minor epileptic attacks in children may be associated with 

boredom, which is unlikely to occur during a routine recording.

The proposition to monitor patients over longer periods of time, even round the clock, 

in some more ‘normal’ environment, using telemetry, found limited use, as it revealed other 
problems. Traditionally, the EEG is analyzed by an experienced specialist who inspects its 
recording on paper and produces a report of his/her findings. Long-term recordings produce 

a large volume of data, which require long hours of inspection to be assessed. This is a costly 
procedure, demanding the constant attention of the expert over long periods of time. As a 
consequence fewer patients may be screened in a given time interval and the monotonous 
task is likely to cause fatigue, deeming the expert less reliable as his/her concentration is 

gradually reduced. With the increase of the work load in many hospitals, resulting in the use 
of inexperienced personnel to carry out some of the analysis tasks, using an expert analyst’s 

time in such a way is highly undesirable. Another problem is the presence of artifacts. These 
are interfering signals that are picked-up by the recording equipment and make interpretation 
difficult, sometimes impossible. Artifacts are sometimes present in clinical EEGs, but it is 
anticipated that their numbers would increase as a result of a patient’s movements and usual 

activities during ambulatory recording.

To overcome these problems it was suggested that some aspects of EEG analysis should 
be automated. Initial automatic analysis systems were based on analogue techniques, but 
the development of computer technology permitted more elaborate methods to be applied. 
Automatic EEG analysis became popular during the 1970’s and 1980’s, when computers 

became affordable bringing together expertise from the medical, the computing and the 

signal processing fields.

It was soon realized that a solution to the problem was far from trivial. Medical experts,
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who have exercised for many years the analysis of the EEG by visual inspection, could not 
describe their task in detail, since experience, not accurate definitions, was the basis of their 

success. On the other hand, signal processing experts are accustomed to accurate descrip-
tions that can be quantified, even if those are disconnected from the underlying causes and 
generating processes. Without accurate and explicit information, though, a successful auto-
matic system could not be constructed. One could even question the reliability of traditional 

analysis practices, which is based on acquired, subjective criteria, affected by fatigue and 

depending so heavily on the unquatifiable factor ‘experience’ . Despite these, traditional hu-
man EEG interpretation is still considered the most successful procedure available, although 
there is no independent assessment method to quantify any means of analysis.

It may appear that automatic EEG analysis is a utopian dream. Indeed, it has not 

been possible to construct a system to replicate the human expert’s task. Throughout 
the years, those involved in automatic EEG analysis have considered several methods (see 

Chapter 4), but none of them prevailed. Some were simple, lacking theoretical basis and 

worked to an extent. Others were well-founded on principles, but in practice they did not 
work satisfactorily. In many cases there was a trade-off between simplicity and accuracy, 
which was dictated by the capabilities of the hardware at the time they were developed. 

Good approaches were often overshadowed by crude, practical systems, which offered the 
advantage of an increased speed of operation. The latter were usually difficult to amend and 
their modification required the introduction of additional elements deeming the system a 

complicated assortment of unrelated elements, whose only purpose was to hide imperfections 
and overcome shortcomings of an initially modest design.

As technology advanced and computers became faster and more sophisticated, the em-
phasis moved in favour of good design practices and although most of the methods suggested 
lie between the extreme theoretical and crude practical approaches, the trend is still towards 
the latter. There is also an inclination to using novel approaches, dictated by trends in tech-

nology rather than their suitability and abandoning older ones when they have just started 

bearing useful results.

Perhaps the greatest obstacle in devising a reliable algorithm is still the poor understand-
ing between medical experts and system designers. Medical and signal processing people see 
the problems and solutions from different view points. The advice of the first is often wel-

come by the second at the early stages of algorithm development, but the difference in the 
way of thinking makes medical experts unable to contribute during and after the design. 

After all, they are unable to express their expertise in a precise way. It appears that what 
is required is a common framework, in which experts from both fields are encouraged to
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contribute and exchange ideas to achieve the ambitious targets of such a project.

The original objective of this work was the establishment of a reliable method for the 
automatic analysis of the interictal EEG of persons who are suspected of suffering from 
epileptic attacks, suitable for implementation as a portable device for long-term monitoring 

in real-time. But it was soon realized that there was little point in concentrating on the 
real-time aspect of any method. With the power of microcomputers continuously increasing, 
and their size and cost decreasing constantly, real-time operation is a volatile and unreliable 
guideline. Besides, the issues raised in the preceding paragraphs are more critical and ought 

to be resolved first.

Authors appear to agree that a common language must be defined, by quantifying the 

terms traditionally used to describe the EEG with accurate, definitions. But this has to 
be done gradually, with the contribution of medical experts so that the final definitions are 

accurate, but not unnecessarily strict.

Irrespective of the specific objectives, a general framework is necessary to bring together 
the worlds of medicine and signal processing without compromising the strengths of either. 
It is important to have the ability to integrate medical expertise at all stages of the design 

and be able to convey to them some impression of the system and to receive and interpret 
their comments. Only through this constructive interaction would a system developed make 
the most of their hard-learned experience.

While reading electroencephalography and neurophysiology, trying to understand and 
appreciate conventional EEG analysis, a number of bewildering issues came to light: There 
are standard definitions for EEG phenomena, but they are inaccurate and should be used 
only as guidelines; experience is difficult to attain, but it is important; EEG analysis is 

a rather subjective procedure. Attempting to understand what really took place during 
analysis, the process was interpreted as a recurring sequence of reading the EEG, looking 
for patterns conforming to the definitions and identifying those by their names and other 

attributes. After a while there was no need to look at the definitions and identification came 

almost spontaneously. Learning had taken place and an intuitive representation replaced the 

verbal definition. In other words, a conceptual model of what constitutes an EEG had been 

formed in the brain. The purpose of the initial textbook definitions was to form a framework 
on which subsequent analysis could be based. Experience may be regarded as the refinement 
of the model. As different experts have had different experiences, it is reasonable to expect 
small deviations in their response to a given record, especially when containing ambiguous 
patterns. This would explain why an experienced analyst is, in general, more accurate than 

an inexperienced one.
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Developing a model for the EEG signal on which to base an EEG analysis method is 
important. Although this is not likely to be similar to the conceptual model used by human 

analysts, it bears its basic property, the potential for refinement with the assistance of 
experienced analysts. Secondly, it may make the development of an analysis procedure more 

methodical, orderly and not dependent on specific signal characteristics, which often come 

to light during testing. It may also be used for the production of simulated EEG records, to 

test the validity of a developed algorithm, before it is applied to real EEG signals. Finally, 
a model can convey a lot of information and would reflect the assumptions made during 
the design of the analysis algorithm, so that most limitations of the method may become 
evident at an early stage. As a result, the reliability of an algorithm may be assessed even 

before it is put to the test. Afterwards, any discrepancies from the expected response may 

be evaluated and used for its improvement.

To formulate such a model it was necessary to study and appreciate the EEG from the 
neurophysiological perspective. This preliminary material is covered in Chapters 1, 2 and 3.

Chapter 1 is an introduction to the physiology of the nervous system. It was considered 
necessary to acquire some understanding of the cellular mechanisms, processes and generat-

ing structures of the electrical potentials in the brain, which form the basis of the EEG. The 
identification of some of the sources of the recorded activity and the general nature of signals 
in the brain proved useful for determining whether a modelling assumption was reasonable 
or not.

Chapter 2 is a general introduction to electroencephalography. Being a continuation of 

Chapter 1 it gives an explanation of what signals may be recorded from the scalp that consti-

tutes the EEG. This is followed by a brief description of traditional electroencephalography 

to appreciate what takes place during a routine recording as well as a description of the 

findings in a normal and an abnormal EEG, from the neurophysiological perspective. These 

proved necessary for modelling the signal.

Epilepsy, the brain disorder that provided the motivation for this work, is presented in 
Chapter 3. Its causes, symptoms and especially its relation to the EEG are emphasized. It 
will be appreciated that epilepsy is a rather varied condition and that it must be identified 

reliably and subsequent medical treatment must be udertaken carefully.

Following the neurophysiological background, a review of automatic EEG analysis is 
presented in Chapter 4. Although a wide range of methods is covered, the emphasis is on 
the detection of epileptic transients and on good or relevant approaches.

After this introductory material, the modelling approach to EEG analysis is presented 

in detail. It was decided to maintain enough detail for the work to be reproduced on the
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basis of the descriptions given here. It has been the sad experience of the author that lack 
of detail often did not permit an in-depth study of some of the techniques proposed by other 

workers.

Based on the descriptions of Chapters 1, 2 and 3, methods for modelling the EEG signal 
were considered. Finding a suitable representation for the signal was not an easy task. 
Several signal processing tools were employed in turn. It was found that not all models 

could form the basis of an effective analysis procedure. To demonstrate, however the point 

made earlier that a model is useful in determining the shortcomings of a method, some of 
the early attempts for modelling have been included in Chapter 5. The experience gained 
from these unsuccessful models was valuable in the development of working systems later.

Some of the early working models (Chapter 6) were not particularly detailed, as they 
were formulated with specific epileptic patterns in mind. Two such methods are presented, 
demonstrating that by studying the signal and defining even a simple model, it is possible to 

construct successful analysis procedures. Both were based on the gradients of the EEG signal 
to detect epileptic transients. The first shows how a system was developed by considering 
the model, rather than individual EEG signals. The second followed the same guidelines but 
was more reliable, as it was more detailed and used information extracted entirely from the 
model.

A major advance in the modelling approach is presented in Chapter 7. Here, a complete 

model for the EEG signal was proposed. The EEG was analyzed for modelling purposes in a 
number of constituent signals, which were given neurophysiological significance and names. 
These were quantified in signal processing terms, but the definitions were maintained on a 
general level, free from details. The first half of this Chapter gives a rigorous description of 

the signal model, which was built entirely on the definitions of the first three chapters and 

is therefore independent of any test signal. The second half is a demonstration of how the 

model could be employed to develop a modular analysis system, still on a general level and 

implementation-independent.

Further refinement, additional assumptions and constraints on the general model were 
then imposed, leading to a specific implementation of the analysis system (Chapter 8). This 

has been tested with both artificial and real EEG records and proved satisfactory. To demon-
strate the modularity and versatility of the approach, some alternative implementations of 
certain elements of the system were considered in Chapter 9. Not all of those worked well, 

but the general conclusion was that replacing one element of the system by another equiva-
lent was possible without altering neither the other elements nor the concepts on which the 

system was based.



7

It is then shown that the system may be extended to detect other signals as well as 

epileptic spikes. The inclusion of those by the initial model made this task relatively simple, 

proving that the approach is general enough to encompass many aspects of computerized 
EEG analysis, not only related to epilepsy (Chapter 10). Finally, an artificial neural net-
work was introduced, replacing some elements of the analysis procedure. This is capable of 

changing its behaviour with the guidance of medical expertise, but it raised other issues. A 
thorough investigation of proposals on how to optimize the performance of the network are 

discussed extensively in Chapter 11. It will be demonstrated that such a device need not 

necessarily be treated as a ‘black box’ .
Secondary material, like theoretical aspects and details have been included in a number 

of Appendices. It was decided not to include computer programs, as these were lengthy and 

would add little to the understanding of the approach, while increasing the size of an already 

long report. Although there is enough detail in this Thesis to reproduce them, the system 
implementation and other auxiliary programs, are available on a computer disk.

As stated in the conclusions of this thesis a general approach has been proposed, that 
may be useful both in future system development, but also as a point of reference for signal 
processing and medical experts alike. Perhaps the most important contribution of this work 
is the proposition not only of a working system, but of a general and flexible framework that 
may be utilized for the development of better techniques in the future. The system realized 
may be understood, used and perfected by medical experts, gathering their experience. 

Apart from accomplishing its primary function, the suggested realization produces a number 

of secondary results that may be useful in further analysis. The general approach may be 

extended to other signals, not necessarily of biological origin.





Chapter 1

The nervous system

1.1 Introduction

The nervous system is described here briefly, with emphasis on the structure and function of 
neurons, its basic cellular elements and anatomical regions of the brain that are linked to the 

EEG, like the cerebral cortex, the thalamus and the reticular formation. A brief word on the 

protection of the nervous system concludes this Chapter, which contains founding material to 
understand the nature, significance and problems associated with the electroencephalogram 
and to appreciate some of the aspects and the foundation of the methods presented later in 

Chapters 5 to 11.
This Chapter is also an introduction for readers without previous knowledge in the sub-

ject. It is by no means complete, but more details may be found in an internal report[132], 

which follows the same organization as the present Chapter.

1.2 Cellular composition of the nervous system

Despite its complexity, the tissue of the nervous system consists of a remarkably small number 
of cell types. From these only one, the neuron, is actively involved in its function, whereas 

the others have a supporting role[118, p. 334].

1.2.1 Structure and morphology of neurons
%

Neurons are highly specialized cells, unable to reproduce but with a long time span and high 

metabolic rate[118, pp. 336-337].
Although they differ from one another (see Figure 1.1), they have two identifiable parts; 

the cell body, also known as perikaryon or soma, and the processes (dendrites and axons),

9
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pyramidal Purkinje

Figure 1.1: An assortment of neurons and their basic elements

which are cytoplasmic ‘branches’ , sprouting from the cell body. Dendrites receive information 
from other neurons or body tissue. The unique axon of the neuron is attached to the cell 

body by the axon hillock. It is its transmitting end and, being considerably longer than the 

dendrites, it may stimulate many other neurons or muscle fibres[63, pp. 21-23].

Neurons may be classified according to their morphology and purpose[118, pp. 338-341]. 

Unipolar neurons have one dendrite linked to the axon, bipolar have a distinct dendrite 
whereas multipolar, the commonest type of neurons, have many dendrites. Afferent neurons 
conduct information from the sensory organs to the central nervous system whereas effer-

ent neurons activate muscle fibres and association neurons, which consist the vast majority 
process information provided by other neurons. Association neurons are subdivided into var-
ious categories, depending on their shape and purpose (pyramidal, stellate, granule, basket, 

Purkinje etc., see Figure 1.1).

1.2.2 Supporting cells

There are six categories of supporting cells sometimes called neuroglia[ 118, pp. 334-336]. 

Some form an electrically insulating myelin sheath by coiling around the processes of the 
neurons in the central nervous system ( oligodendrocytes) and the bodies and processes of 

neurons in the peripheral nervous system (satellite and Schwann cells, respectively). In the 
axons the myelin sheath has gaps, the nodes of Ranvier, from where axon collaterals sprout. 
Other neuroglia, astrocytes, hold neurons close to blood capillaries, mediating the exchange 

of substances and controlling their chemical environment, whereas microglia protect and 

clean the nervous system from invading substances. Finally, ependymal cells are involved in 
the production and circulation of the cerebrospinal fluid.
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1.3 Neurons and electrical potentials

The communication of information in the nervous system is effected in electrical form[118, 

pp. 347-365]. Ironically this is true for many modern man-made communication systems, 
although the mechanisms involved in the production of neural signals are rather different 
and are briefly outlined here. A more complete explanation may be found in [132].

1.3.1 Cellular structures and mechanisms

The cytoplasm of neurons and the extracellular fluid that surrounds them have similar compo-

sition, consisting mainly of a water solution where several organic and inorganic substances, 

many in ionic form, float. The plasma membrane contains many types of protein molecules 

each one facilitating the exchange of a particular type of molecules between the cytoplasm 
and the extracellular fluid. Owing to the selective permeability of these proteins, the con-
centrations of the various elements in the cytoplasm differ from those in the extracellular 

fluid[l 18, pp. 62-74].

1.3.2 Neurons at rest, resting potential

All electrical phenomena in the nervous system are caused by ions, which are the only elec-
trically charged elements in this environment. Sodium (Na+), chlorine (C l~) and potassium 
( K +) ions are in abundance in both the cytoplasm and the extracellular fluid. In the extra-

cellular fluid the concentration of Na+ and Cl~ is high and that of K + low. The opposite 

happens in the cytoplasm, where the concentration of K + is high.

Chloride ions are freely permeable, across the membrane, since the chlorine protein chan-

nels allow the bidirectional diffusion of Cl~. Similar mechanisms (sodium and potassium ion 
channels) permit the inflow and outflow of Na+ and K +, attempting to bring their concen-

trations and the electrical condition across the membrane to an equilibrium^ 18, pp. 62-74]. 
When this occurs, the potential difference between the cytoplasm and the extracellular fluid 

is approximately —70 mV[118, pp. 62—74][63, pp. 12—17][103, p. 3]. The high concentration 
of K + inside the cell encourages these ions to leave the cytoplasm, but the negative electrical 
potential reduces their outflow. The inflow of Na+ is encouraged by both their low concen-
tration and the negative electrical gradient, but is slow, because of the low permeability of 

the plasma membrane to these ions.

The electrical polarization across the membrane to the aforementioned voltage[118, pp. 

62-74] is maintained by an active mechanism, the sodium-potassium ion pump, a special
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Figure 1.2: Types of synapses

protein channel, working against the concentration gradients, pumping K + in and Na+ out 

of the cytoplasm[63, pp 12-17].
Some protein molecule ion channels, called gated channels, do not operate continuously. 

They are activated by electrical stimuli (voltage-gated channels) or to specific chemicals 

called neurotransmitters (chemically gated channels)[63, pp. 52-63]. Gated channels are 
involved in the production of neural signals, which is explained in the next two sections.

1.3.3 Stimuli, synapses and synaptic potentials

Neurons receive and process electrical stimuli that normally originate at the axons of other 
neurons (see later section 1.3.4) with the exception of sensory inputs, which generate in 

sensory organs and are an integral part of sensory neurons[118, pp. 344—347][63, pp. 64-69].

Stimulation of a neuron is effected through small ‘swellings’ on the membrane of its body 
and the dendrites (section 1.2.1), where axons of other neurons are attached to form electrical 

and chemical synapses.
Electrical synapses (Figure 1.2(a)) are direct connections of the cytoplasm of two neurons 

via voltage-gated channels. An electrical stimulus in the first neuron opens the channels 

transferring ions between the cytoplasms of the attached neurons, and hence the stimulus to 

the second.
Chemical synapses (Figure 1.2(b)) are by far the commonest. No physical contact be-

tween the neurons exists. An action potential in the transmitting neuron triggers the release 

of special chemicals, neurotransmitters. These bind on receptor molecules on the chemically- 
gated channels in a recess on the membrane of the receiving neuron, causing them to open. 

Ions flow between the extracellular fluid and the cytoplasm, causing a local change, of the 

resting potential, called a postsynaptic potential. The neurotransmitter is decomposed by
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special enzymes in a few milliseconds, closing the channel, and the ion concentrations and 

resting potential are eventually restored by the action of the passive ion gates and the 

sodium-potassium pump[63, pp. 52-63].

The postsynaptic potential caused by a synapse always has the same direction. If it is 
less negative than the resting potential it is called excitatory postsynaptic potential (EPSP), 

because it encourages the generation of an action potential (section 1.3.4), whereas if it is 
more negative it discourages it and is called inhibitory (IPSP).

A neurotransmitter may cause the generation of either an EPSP or an IPSP depending 

on which type of channel (K +, Na+ or Cl~) it gets attached to. The most well-known neuro-
transmitters are acetylcholine (AC h ), usually excitatory and 7-aminobutyric acid (GABA), 
usually inhibitory. A more comprehensive list may be found in [132]. The action of neuro- 
transmitters is affected by drugs, like cocaine, LSD, heroine and amphetamines and is often 
linked with some forms of epilepsy and other disorders of the nervous system (Chapter 3).

1.3.4 Neuron responses, action potentials

The function of a neuron comprises the processing of postsynaptic potentials. The outcome 
of this is a signal, called an action potential, which is propagated along its axon to stimulate 
other neurons, activate muscle fibres, etc.

Neurons have a large number of synapses (typically over a thousand) from which they 
receive stimuli from other neurons. The resulting postsynaptic potentials, though prominent 
near the synapses, spread through the cytoplasm and reach the axon hillock with much 
reduced amplitudes, depending on their strength and their proximity.
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Their spatial and temporal integration may give rise to a potential, sufficiently large to 
cause the depolarization of the membrane around the axon hillock[118, pp. 350—356][63, pp. 

25-31], opening voltage-gated sodium channels on the side of the axon. As a result, a large 
positive transition from the negative resting potential to about +30 m V  is generated. This is 
a binary phenomenon, occurring in full amplitude or not at all. The Na+ channels eventually 
close and the resting potential and ion concentrations are restored, causing a nerve impulse 

of amplitude around 100 m V  and duration of a few ms. This is propagated (regenerated) in 

a repetitive cycle until the potential reaches the end of the axon[63, pp. 25-31]. The velocity 
of the propagation of this potential varies between 1 m/s (thin, unmyelinated axons) to 130 
m/s (thick, myelinated axons). In myelinated axons propagation occurs in ‘ leaps’ between 

the nodes of Ranvier (section 1.2.1).

The processes of generation and propagation of an action potential, called firing of a 

neuron, are demonstrated in Figure 1.3. More details may be found in an internal report[132].

1.4 Anatomy of the brain

The rather simple operation of individual neurons could not account for the complex pro-
cesses of thought or the initiation and execution of movements. Much of the complexity of 
the brain function may be attributed to the great number of neural interconnections. These 
are not random, as thought initially, but recur with surprising regularity. Disruptions in 
their formation may lead to the death of the neurons involved[118, pp. 342-343, 370]. More-
over neurons never act in isolation. Groups of neighbouring neurons often exhibit similar 
behaviour. It is the common potentials in these regions that give rise to significant extracel-

lular potentials that may be measured by placing electrodes on the surface of the scalp (see 

Chapter 2).

The main elements of the nervous system are the brain and the spinal cord, which is 
the mediator of neural signals from the sensory organs to the brain and from the brain 

to the muscles. It is also an important reflex centre, generating reflex actions without the 
intervention of the brain. A summary of its function may be found in [118, pp. 404-413] 

and in [132].

The human brain is subdivided into several regions with distinct morphological as well as 

functional features[118, pp. 376-404], the cerebral hemispheres, the diencephalon, the brain 
stem and the cerebellum (Figure 1.4). Some other structures consist of elements dispersed 
in the brain, but functionally related, like the limbic system and the reticular formation. 

There are also four hollow spaces, embedded deep in the brain, the brain ventricles, where
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Figure 1.4: The human brain 

the cerebrospinal fluid (see section 1.4.6) is produced.

Although the brain function, as a whole, is the result of their complex interactions, the 
brief description that follows, based on [118, pp. 376-404], [103, pp. 10-20] and [132], is 
biased towards the ones responsible for recognized EEG phenomena.

1.4.1 The cerebral hemispheres

The two (left and right) cerebral hemispheres are the most prominent regions of the brain, 

engulfing most of the other structures and occupying most of the space in the head. They 
are joined only at a narrow region, situated deep in the brain called corpus callosum (see 

section on white matter).

Their crinkled surface has numerous grooves, called fissures, if they are deep and sulci, 
if they are shallow (Figure 1.4). The windings formed between the sulci are called gyri and 
although individual brains differ in their details, certain landmarks are always identifiable. 
The central, parieto-occipital and lateral sulcus separate the surface of each hemisphere into 
four lobes, the frontal, parietal, occipital and temporal lobes, named by their location. The 
precentral and the postcentral gyri are also easily identified (Figure 1.4).

Anatomically the surface of the hemispheres, the cerebral cortex is distinguished by its 
grey appearance from their interior white matter where isolated grey regions, the basal nuclei 

are embedded.
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The cerebral cortex

This is the place where most of what is often perceived as brain activity takes place, in-
cluding the processes of thought, memory, understanding, perception, speech and voluntary 
movement initiation. The cerebral cortex has a thickness of 2—4 mm and consists primarily 

of neuron bodies and glial cells.

Cortical neurons are organized in six layers[103, pp. 6- 8], distinguished by the types 
of association neurons they contain (section 1.2.1). The largest (pyramidal) neurons, are 

organized in columns running perpendicular to the surface of the cortex[103, pp. 9-10]. 

Their axons project inwards to the centre of the brain, whereas their larger dendrite projects 

towards the surface of the cortex. Other dendrites are comparatively short. This organization 
of cortical neurons leads to the formation of groups that are stimulated by deeper structures 

in the brain like the thalamus (section 1.4.2). As a result, it was initially thought that 
separate cortical areas specialize in the performance of different brain functions (regional 
specialization theory). Contrarily, the aggregate field view supported the distribution of brain 
functions over the whole of the cortex. Later studies have demonstrated that although areas 

of specialization do exist (shown in Figure 1.4) these do not act in isolationfl 18, pp. 376- 
404], whereas higher mental functions, such as logic, memory, abstraction and understanding 

cannot be localized.

Sensory areas, receiving and processing responses from sensory neurons, and motor ar-

eas, issuing instructions to the muscles to move, lie respectively in the postcentral and the 
precentral gyri. Other sense organs, like the ears and the eyes have their own separate 

specialization areas (auditory and visual cortex respectively).

A cerebral hemisphere is mainly associated with the opposite part of the body. In the vast 
majority of people, there is cortical lateralization, prominent in the non-specialized areas, 

where one hemisphere dominates the other.

The white matter

White matter consists, primarily, of myelinated fibres (axons and dendrites). These are 
processes of cortical neurons as well as neurons from the deeper brain structures to which 

they are connected. „

Fibres are usually encountered in bundles, linking neurons from one localized region to 
another. They are distinguished in association fibres, connecting neurons of the same hemi-

sphere, commissural fibres connecting the two hemispheres and forming the corpus callosum 

and projection fibres, which link to areas outside the brain.
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The basal nuclei

These are groups of neurons that are located symmetrically in the interior of the cerebral 

hemispheres (Figure 1.4). There are three basal nuclei in every hemisphere, the putamen, 
globus pallidus and caudate nucleus, collectively called corpus striatum. Although their 
function is still a matter of debate, they appear to communicate with the motor cortex for 
the initiation of movements, especially stereotype ones.

1.4.2 The diencephalon

The diencephalon is located under the corpus callosum and forms the walls of one of the 

brain ventricles (the third ventricle). It consists primarily of the thalamus and two smaller 
structures, the hypothalamus and the epithalamus.

The thalamus

This consists of neuron bodies, located ipsilaterally on the walls of the third ventricle, linked 
together by a bundle of fibres, the intermediate mass.

The thalamus is located in the path of all the sensory fibres arriving from the body 
(Figure 1.4) and the the sense organs on the head (apart from the nose). Sensory inputs 
enter the thalamus and are preprocessed by at least one of its nuclei. It appears that the 
primary function of the thalamus sorting and grouping related sensory responses and routing 
them to the appropriate parts of the cerebral cortex for analysis. This is evident from the 
projecting connections between some thalamic nuclei, (specific nuc/ei)[103, pp. 18-19] and 
the narrow specialized regions of the cortex (see section 1.4.1). Other nuclei ( non-specific) 

stimulate a much wider area of the cortex. Effectively there exist thalamic connections to 
every site in the cortex[63, pp. 124-133]. Kiloh et al.[103, pp. 22-28] explain that there 
is experimental evidence that the specific and possibly the non-specific thalamic nuclei play 

the role of the pacemaker of brain activity, by controlling the level of excitability of cortical 

neurons.

The hypothalamus and the epithalamus

The hypothalamus, located under the thalamus (see Figure 1.4), is responsible for the bal-

anced function of the body. Among its nuclei are the regulators of the heart rate, blood 
pressure, body temperature, respiration, food and water intake and digestion, sleep cycles 

and wakefulness[63, pp. 165-181]. It also controls the hypophysis cerebri, whose hormones 

regulate all other glands.
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The epithalamus, situated on the top of the thalamus, contains the biological clock, 

regulating body rhythms.

1.4.3 The brain stem

Projecting from the spinal cord to the diencephalon, the brain stem is the centre of vital 
autonomic functions and the path of most somatosensory signals. It has three constituent 

parts, the midbrain, on top, the pons, in the middle, and the medulla oblongata, at the 

bottom.

The midbrain groups the cortical motor fibres, connecting some of these to the cerebellum 

and relaying the rest towards the spinal cord. The auditory and visual reflex centres are 

situated here.

The pons (bridge) consists mainly of fibres connecting the midbrain to the medulla ob-
longata and the cerebellum. One of its nuclei is the respiratory control centre.

The medulla oblongata fuses in the spinal cord and contains the bundles of motor fibres, 

the pyramids, that originated in the cerebral cortex. At the back it connects to the cere-
bellum. Important reflex nuclei of the medulla include the cardiac centre, the respiratory 

centre, and the vasomotor centre.

1.4.4 The cerebellum

The cerebellum is a large growth at the back of the brain stem, under the cerebral hemi-

spheres. It has two cerebellar hemispheres, linked by the vermis. Their ‘pleated’ surface 

consists of grey matter. Its interior consists of fibres and nuclei of neurons. Like the cere-
brum, it has fissures and sulci that separate its surface into lobes and gyri. The inputs to the 
cerebellum are sensory and motor signals. Its outputs to the motor areas of the cortex pro-

vide feedback for the proper coordination and smooth execution of voluntary movements[63, 

pp. 147-151].

1.4.5 Functional groups in the brain

Not all functions of the brain are localized. Some functionally related parts exist in the brain 
that do not have clear physical boundaries. The reticular formation and the limbic system 

are such systems[118, pp. 396-398].
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Figure 1.5: The limbic system and the reticular formation

The reticular formation

The reticular formation (Figure 1.5) consists of fibres, small nuclei and individual neurons 
located in the interior of the brain stem. Their processes have connections in all regions 

from the spinal cord to the cerebral cortex. Perhaps the most important function of reticu-
lar neurons is the implementation of the reticular activation system (RAS)[63, pp. 123-134], 

which sends impulses to the brain structures continuously, maintaining cortical and other 
structures ‘awake’. The RAS is inhibited during sleep, anaesthesia, etc. Because they are 

connected to the thalamus (section 1.4.2), they affect the operation of the pacemaker, re-
sponsible for cortical rhythms. The reticular formation is also responsible for weakening 
repetitive, expected stimuli and highlighting unexpected, unusual and strong ones that may 
cause the arousal of the cortex during sleep[103, pp. 22-28].

The limbic system

This is more dispersed than the reticlular formation[63, pp. 184-198]. Its various parts 
encircle the thalamus and the brain stem (Figure 1.5) and constitute the emotional centre, 
responding with general changes to stimuli, causing the physical manifestations of emotions. 
Several personality and emotional disorders arise from damage to elements of the limbic 

system.

1.4.6 Protection of the nervous system

The EEG is certainly linked to the electrical activity of the brain, but this is distorted by the 
layers of tissue which surround and protect it from external hazards, viruses and chemical 

substances existing in the body[118, pp. 399-402][63, pp. 208-220][132],
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From the exterior, these are the hair and skin, the leathery periosteum, that covers 

the bones of the skull, and the three meninges. The outermost dura mater is a leathery 

tissue. Between its two layers, the periosteal and the meningeal dura mater, there exist 
the dural sinuses, which convey blood to the veins of the neck. The arachnoid is a loose 

cover underneath the dura mater separated by the subarachnoid space from the innermost 
meninge, the pia mater, a fine membrane lining even the smaller sulci. The subarachnoid 

space is filled with cerebrospinal fluid, which is absorbed by the sinuses at the arachnoid 

villi.

The nervous system is suspended in the buoyant cerebrospinal fluid. This derives from 
blood plasma, to which it has similar composition but different molecule concentrations and 

is also the mediator of the hormones produced by the hypophysis cerebri.

1.5 Comments and observations

The nervous system consists of an astronomical number of neurons, estimated as several 
thousand million in the cortex alone[132], which are highly interconnected and act, to a 
great extent, independently one from another. The evident dissimilarities in the fine details 

of brains of different individuals make the study of the brain on a neuron by neuron basis 
rather pointless.

Therefore, studies are focussed either on the details of the function individual neurons or 
on the groups of neurons, that are known to exhibit similar behaviour. The first approach 

aims to understand the underlying biochemical phenomena, whereas the second aims to 
interpret localized or generalized neurophysiological observations[28]. Responses that are 
common to groups of neighbouring neurons and their effects on other groups have been 

recognized many years ago in electroencephalographic recordings.
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The electroencephalogram

2.1 Introduction

The electrical potentials generated by neurons and their large accumulations on the cerebral 

cortex (Chapter 1) give rise to extracellular potentials. These were first recorded in 1875 
and with the technological advances of our century their recording was refined and became a 
non-invasive and standardized procedure. The recording of the varying electrical potentials 
from the surface of the scalp, termed the electroencephalogram (EEG), from the Greek words 

electro=electrical enkephalos=brain and grapho=write, is common practice in many hospi-
tals. Early expectations on the significance of the EEG were abandoned when later studies 
revealed that it constitutes only a distorted shadow of the underlying brain activity[137].

Traditional EEG analysis is performed by visual inspection and the diagnostic value of 

the brief routine EEG has been questioned, as it depends on the experience of the analyst 
and can be contaminated with non-cerebral signals (artifacts).

Studies of the EEG have revealed similarities between different individuals and recurring 
variations with age and with the state of consciousness. Because there is correlation between 

abnormal EEG patterns and a variety of brain disorders the former has been used extensively 
for diagnostic purposes. Traditional EEG analysis does not usually take into account the 
generating mechanisms of the signal, but is based largely on observations from its recording 
on paper.

2.2 Origin of scalp potentials

The electrical activity inside individual neurons (section 1.3) gives rise to extracellular elec-
trical potentials. Despite their small amplitudes, these may be recorded with sensitive in-

21



2 2 Chapter 2. The electroencephalogram

Figure 2.1: Correspondence of EEG (top) and underlying neuron activity (bottom)
(R ep rin ted  from  K iloh et a l.[ l0 3 ])

struments from the surface of the cortex or even from the scalp.

2.2.1 Neural activity and extracellular potentials

From the electrical phenomena in a neuron (see section 1.3), action potentials and cytoplas-
mic currents either have brief duration or large electrical resistances, leaving excitatory and 
inhibitory postsynaptic potentials in the the largest dendrites and the soma as the most 

likely sources of significant extracellular potentials[103, p. 22-23]. This was demonstrated 
by simultaneous recordings from the surface of the cortex and underlying individual neurons 
(Figure 2.1).

The rhythmic and often synchronized nature of recordings from various points of the 
cortical surface suggested the existence of a subcortical pacemaker, later localized to the non-

specific thalamic nuc/ei[103, pp. 22-28], which project to all cortical regions (section 1.4.2). 
Andersen and Sears [103, p. 25] proposed a model of the thalamus capable of producing 
synchronous, periodic discharges in the form of excitation-inhibition cycles[133]. These cause 
large EPSPs on the long apical dendrites of the pyramidal neurons in the cortex, which, in 

turn discharge and activate neighbouring stellate neurons causing feedback IPSPs. Rhythmic 
thalamic discharges, however sustain and synchronize pyramidal neurons, causing periodic 

phenomena in the cortex, (section 2.5.1), characteristic of sleep and anaesthesia[103, p. 26].

During wakefulness rhythms are more irregular and faster due to the desynchroniza-

tion of cortical neurons, attributed to the action (RAS) of the reticular formation (section 
1.4.5), which causes EPSPs in the non-specific thalamic nuclei, counteracting their internal 
inhibitory mechanisms[103, pp. 22-29].

2.2.2 The generation of cortical potentials

According to a simple model of a pyramidal neuron[103, pp. 29-33], a PSP on its apical 
dendrite or the soma causes a potential difference, Vd s , across these points, since the other
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is still at the resting potential (sections 1.3.1 and 1.3.2). The neuron then behaves like an 

electrical dipole[ 103, p. 29] causing an electric field through the extracellular fluid.

In the cortex, most neurons are organized in columns, a structure which is more prominent 
in large pyramidal neurons (section 1.4.1). Many neighbouring neurons have similar thalamic 
connections, receiving almost simultaneous stimuli. These represent electrical dipoles with 
the same orientation producing an aggregate electric field strong enough to be be recorded 
by remote electrodes[103, pp. 7-8,21]

Despite criticism[47, p. 11], this model has been used for the interpretation of many 

EEG potentials[103, pp. 30-32], like the epileptic spike-and-wave precursor (section 2.5.2), 
which is believed to be the result of a spike, caused by thalamic EPSPs on cortical neurons, 
followed by a slow wave, the result of the IPSP on their soma by inhibitory stellate neurons 

[133].

2.2.3 Scalp potentials

The evolution of the electric field produced by cortical neurons may be recorded from the cor-
tical surface to produce an electrocorticogram (ECoG). ECoGs taken from electrodes located 
only millimetres apart are generally different and any similarities in the activity of disjoint 
regions suggest either their direct or subcortical interconnection[47, p. 11]. An ECoG is only 
taken in exceptional cases, since electrode placement requires neurosurgery.

For routine electroencephalograms (EEGs), the electrodes are placed on the surface of 
the head, a simpler and non-invasive procedure, but the presence of layers of protective 
tissue (section 1.4.6) in the path of cortical potentials, introduces significant distortion in 

the recorded signals[133][47, p. 13][103, p. 40][177, pp. 188-189].

The electrical resistance of the layers of tissue introduces a five-fold attenuation to cortical 

signals, which is variable over the scalp; their capacitance is responsible for the attenuation 

of high-frequencies, phase distortion and temporal averaging.
Spatial averaging of cortical potentials is the result of large surface of scalp electrodes and 

the diffusion of the field of neurons within a large radius around it through the intervening 

tissue.
The convoluted nature of the cortical surface (section 1.4.1) results in variations in con-

tributions since neurons on the tips of the gyri, due to their orientation, contribute more to 
the recording than those in the fissures and sulci which are obscured by scalp electrodes. 
Similarly non-uniformities in the conductivity of the tissues cause the recording of distant 

interfering cerebral potentials[47, p. 13][103, p. 40]
Finally the EEG is very susceptible to non-cerebral potentials, caused by external signals
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or the muscles the eyes and the heart (section 2.5.4), because these have comparable (in 

some cases larger) amplitudes to the attenuated cerebral potentials.

The poor localization, distortion and interference introduced deem the EEG suitable only 

for general observations[47, p. 11—12][103, p. 40].

2.3 Brief history of electroencephalography

Electroencephalography took many years to become established. In the early days, progress 

was hindered by a sceptical society and the lack of appropriate facilities and suitable instru-
mentation. Only the most important landmarks can be mentioned in this brief account. A 

more complete description may be found in a book by Brazier[27] (see also [133]).

The first report on the electrical activity of the brain was produced in 1875 by a British 
physiologist, Richard Caton. He observed alternating currents and a negative variation in 

the cortical potentials following stimulation.

Between 1887 and 1890 many workers, including Caton and Adolph Beck in Poland 
discovered the spontaneous activity of the cortex and the controversy that followed the claim 
for originality brought many workers together, drawing the attention of others to their work.
The investigation of the brain potentials was the subject of intensive research in Russia, with 
Sechenov (1882), Kaufman (1910) and others, who recorded induced epileptic seizures.

Perhaps the most important development of electroencephalography was the first book 
on the human electroencephalogram, “Über das Elektrenkephalogramm des Menschen” , by 
Hans Berger in 1929. This contained fourteen reports on his observations on the normal 
EEG and abnormalities related to pathological conditions, like epilepsy, using a cathode ray 

tube[69]. Many of his observations, speculations and terms ( electrenkephalogramm, a  and 0  

rhythms, etc.) have been very influential in clinical neurophysiology.

Subsequent publications, by Adrian and Matthews and others, followed after 1930 con-

firmed Berger’s findings. More recently many researchers, like Beaudoin and Fessard, Bremier, 

Walter, Gibbs, Lennox and Jasper have contributed to the field. The need for standardization 
led to the foundation of the International Federation o f Societies for Electroencephalography 

and Clinical Neurophysiology (IFSECN).

Historically, advances in electroencephalography were related to advances in technology[27][47, 

pp. 1-2]. The sensitive galvanometers and elaborate photographic processes used by the first 
workers were abandoned, ató inventions, like the valve amplifier and the oscilloscope in the 
1930’s, pen recorders and the differential amplifier in the 1940’s and the transistor in the 

1950’s improved the quality and the cost of EEG recordings.
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Developments in electromagnetic recording provided a compact means of storing many 
hours of EEG on a single magnetic tape using FM techniques to store many channels 

simultaneously[47, pp. 172-174]. Tapes are suitable for automatic assessment, as they 
can be played back later for off-line analysis. The transmission of EEG signals via tele-

phone lines and the use of telemetry for prolonged monitoring of ambulatory patients[47, pp. 

175—180][177, p. 196] was also used experimentally[133].

Automatic EEG analysis was the subject of research in the 1970’s and early 1980’s because 
of the wide use of computers. Targets varied, from alternative visualization of the EEG to 

full automation of the analysis. Among the methods applied were ad hoc wave measures, 

frequency and correlation analysis, parametric and statistical methods (see Chapter 4 and 

references [7], [47, pp. 231-314], [133] and [134] for details).

2.4 Technical aspects of electroencephalography

In order to appreciate some aspects of the electroencephalogram, the apparatus and the 
basic procedures followed for recording and analyzing the signal are described.

Electrodes: the interface to the scalp 

Types of electrodes

Since the early days of electroencephalography, electrodes were a major problem during a 

recording. Bad contact with the scalp is reflected as a poor, often illegible record.

The two commonest types of scalp electrodes are the pad and the cup (stick-on) elec-

trodes (Figure 2.2 (a) and (b))[47, pp. 15—16][177, pp. 8-9]. Both use saline as their 
conducting medium and have similar electrical properties, but pad electrodes are easier to 
attach, whereas cup electrodes are more stable[133].

Other electrodes like metal disk, plastic cup, platinum needle, Sphenoidal, nasopha-

ryngeal, electrocorticographic and intracerebral electrodes (Figure 2.2) are used in special 

cases[133][177, pp. 71-72][47, p. 16-17].

An electrical modql for an electrode[47, pp. 24-25] is shown in Figure 2.2. Ra is the 

resistance of the saline jelly, Rc the resistance and Cc the capacitance of the boundary of the 
metal electrode and the electrolyte, Ct the stray capacitance and Zw, the Warburg impedance, 
is a frequency-dependent resistance and capacitance. The values of these components define 

the properties of the electrode[133][47, p. 24].
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Figure 2.2: Electrodes used for recording brain potentials

Figure 2.3: Electrode placement according to the 10-20 system 

Electrode placement: the 10-20 system

Irrespective of the type of electrodes used, their placement on the scalp is quite standardized. 
The most widely-accepted standard, called the 10-20 system, was recommended by the 
IFSECN in 1958, after suggestions by Jasper, but not without criticism of its deficiencies[47, 

p. 92]. Electrodes are placed equidistantly in a mesh-like structure, covering the scalp[47, 

p. 94].
Electrode placement is based on four bony landmarks on the scalp, the nasion, the inion, 

and the preauricular points, (Figure 2.3). A systematic procedure for identifying the locations 

of the electrodes, using these join ts, was described by Cooper et al.[47, pp. 93-94] (also 

listed in [133]).
By convention, electrodes on the left side of the scalp have odd numbers, whereas those 

on the right have even numbers. The letters indicate the location, F  for frontal, C  for 
central, T  for temporal, P  for parietal, O for occipital. These are shown in Figure 2.3 which
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Figure 2.4: Block diagram of an EEG recorder

also depicts the cerebellar (Cb\ and Cm ), nasopharyngeal (Pgi and Pg2) and ear lobe (A\ and 

A2) electrodes[47, p. 94].

EEG recorders usually have a limited number of channels and, during the course of a 

recording, they are switched between electrodes.

2.4.1 The EEG recorder

A block diagram of an EEG recorder is shown in Figure 2.4. At the input there is a ‘head 
box’ , a diagram of the head with sockets at the electrode positions for the systematic, error- 

free connection of electrodes to the apparatus[177, p. 11]. A multiplexer, controls the 
connection electrodes to available channels. The rest of the recorder consists of identical 

channels, comprising amplifiers, filters and writing pens.

Each channel has a bipolar preamplifier to which two electrodes are connected. This has 
a high gain (several thousand) and input impedance (several M il) and a high common mode 
rejection ratio[47, p. 57-67]. It should also have a linear frequency response and good noise 

and distortion properties in the range 0-100 Hz[ 177, p. 15]. A driver amplifier provides 
the necessary current to operate the writing pen (Figure 2.4). The gain is calibrated and 
adjusted using internal calibration signals and gain controls[47, p. 63].

Three frequency selective filters may be introduced if necessary at the output of the 
preamplifier to suppress unwanted frequency components. The low frequency filter is a high- 
pass filter whose time-constant may be chosen from a standard set[47, p. 72]. It is used 
to remove very low frequencies that make visual inspection of the EEG difficult. The high 
frequency (low-pass) filter, is utilized for the reduction of noise and other interference at the 
high frequencies of the EEG[47, p. 72]. Finally, the notch filter may eliminate narrow-band 
signals, like 50 or 60 Hz mains interference. Cooper et al.[47, p. 73] recommend the use of 
filters with caution, because of the phase distortion they introduce in the recorded signals.

The writing pens are usually responsible for high amounts of distortion because of the
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slow response of the mechanical system they represent and the time and amplitude errors 

they introduce on the printed record[47, pp. 73-75].
Other elements of the EEG machine include the the paper drive with preset paper speeds, 

anti-blocking devices, modulators and demodulators for DC recordings, event markers, chan-
nels with lower gain and magnetic tape recorder interfaces[133][47, pp. 79—81][103, p. 36][177, 
p. 15].

2.4.2 Auxiliary equipment

It is customary not to have many pieces of equipment in the EEG laboratory, to minimize 

electrical interference. Some devices are often used as part of the EEG procedure, like the 
stroboscope, with variable flashing rate and devices producing auditory somatosensory and 
visual stimuli[177, p. 16]. An FM recorder is sometimes available too.

2.4.3 Monitoring techniques

The differential amplifiers of the recording apparatus permit the free selection of the ref-
erence to which the potential at an electrode may be measured. Different schemes, called 

derivations, have been implemented.
Bipolar derivations measure potential differences between consecutive electrodes[103, p. 

42] (Figure 2.5), reducing the amplitude of common potentials and enhancing different ones. 
Graded potentials exhibit polarity reversals at the point of their maximum[47, p. 37].

In common reference derivations the same reference point is used for all channels (Figure 
2.5). Electrically inactive reference points, like the ear lobes, the nose and the chin, are 

used[47, p. 38], although these are susceptible to some cerebral activity and interference[177, 
p. 14], The average reference and source derivations[47, pp. 40-44][103, p. 43] (Figure 2.5) 
are variants suggesting alternative means of defining the reference point.

Montages (configurations) are guidelines for connecting sets of electrodes to the recorder[47, 
p. 96][103, p. 40]. According to these, negative potential differences should produce up-
ward deflection of the recording pen. Channels should be connected sequentially in rows 
or columns, running anterioposteriorly or transversely, ordered from front to back and from 

right to left, as shown in the examples of Figure 2.6.

2.4.4 Electroencephalography as a medical diagnostic procedure

Nowadays EEG departments exist in many hospitals and are used by many doctors like 
neurologists, psychiatrists, general physicians, paediatricians, surgeons and neurosurgeons for
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diagnostic and preventive purposes. The preparation of the patient, placement of electrodes, 

calibration of the recorder and recording and annotating the EEG, marking abnormalities, 

state of consciousness, and artifacts (see sections 2.5 and 2.5.4) is the responsibility of an EEG 
technician. The EEG is then received and analysed by an expert electroencephalographer, 
who prepares a report containing a general description of the EEG, observations of significant 
EEG phenomena and abnormalities, possible clinical correlates and other comments[177, pp. 
2-3, 173-178]. Sometimes, the technicians have to produce the report without supervision, 

due to restrictions of staff[177, p. 16,191].

2.4.5 Special monitoring techniques

When a specific pathological condition is suspected, techniques for provoking EEG phenom-
ena may be employed to provide more evidence to support or reject a suspected diagnosis.

Hyperventilation (slow, deep breathing) induces slow-waves (section 2.5), characteris-
tic of some pathological conditions[47, p. 102][177, p. 25]. Photic stimulation using a 
stroboscope[47, p. 103], provokes epileptiform discharges (section 2.5.2) in photosensitive 

epilepsy and other patterns in anxiety and migraine[103, pp. 177-179]. The administration 

of specific drugs is used for the diagnosis and localization of epileptic attacks (section 3.6). 

Finally, sleep recordings (spontaneous, or drug induced) may contain phenomena related to 
epilepsy[47, p. 105][103, pp. 64-68].

2.5 Visual analysis of the EEG

Despite recent technological advances, visual inspection (‘eyeballing’ ) is still the dominant 
method for EEG interpretation. Terminology is usually in the form of guidelines, rather than 
precise definitions, since it is primarily intended for human analysts who resolve ambiguity 

using previous experience and gradually refine their implicit definitions. Hence, although a 
clinical electroencephalographer interprets the EEG with a high degree of precision, he or she 
is often unable to explain why visually similar patterns have different significance, stating 

that it is “a matter of experience” . In the brief account of EEG patterns that follows, the 

reader should note the qualitative nature of the ‘definitions’ and should treat any quantitative 

descriptions as guidelines, Texts on EEG analysis give more comprehensive descriptions[47, 
pp. 123-146, 187-227][103, pp. 52-68,201-221][177, pp. 18-32,107-118, 164-172] (see also 

[133]).
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2.5.1 Normal findings

The EEG of alert adults is characterized by alpha (a) rhythm (originally observed by Berger). 
It consists of rhythmic, quasi-periodic, almost sinusoidal oscillations of frequency between 8 
and 13 H z, occurring in both hemispheres and more prominent in the occipital regions, when 
the eyes axe closed, disappearing with the opening of the eyes or mental concentration[177, 
p. 22] (Figure 2.7). Phase differences may exist between the two hemispheres[103, p. 52]. 
The frequency of the a rhythm in most people is almost constant having a mean deviation 
of about 0.5 Hz. In some individuals there is no a rhythm even with eyes closed whereas 

in some the rhythm re-appears shortly after eye opening. Complete unresponsiveness is an 

abnormal finding[103, pp. 52-54].

Beta ((3) activity has frequency above 13 Hz and amplitude much less than that of a. 
It is observed in alert adults, especially in the frontal and central regions (Figure 2.7). It is 
not affected by eye opening and closure but may be altered by the abuse of some drugs[103, 

p. 55].

The other two frequency bands of activity in normal subjects are theta (9) and delta (8), 
having frequencies from 4 to 8 Hz, and below 4 Hz, respectively[47, p. 126] (Figure 2.7). 
6 waves are sometimes observed on the vertex and the temporal regions especially during 

drowsiness[103, p. 54]. Delta activity is generally an abnormal characteristic in adults, but 
quite normal in children (see later in this section). It is difficult to determine limits on 
amplitudes and frequencies beyond which 6 and S activity may be considered abnormal[103, 

pp. 25,55].

Finally, mu (p) rhythm, a sharp, comb-like signal with frequency between 7 and 11 Hz, 

is relatively rare in the EEG, but prominent in the ECoG of the central regions (Figure 2.7). 
The p rhythm is abolished by movements, or the intention of moving[103, p. 56][177, p. 23].
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Age dependency

Changes are observed in the EEG with ageing, especially noted in the weeks following birth. 
Studies of prematurely born babies show discontinuities in the EEG. The EEG of neonates 
consists of continuous irregular and desynchronized delta activity, gradually becoming more 
regular. Theta activity slowly appears and by the age of 12 months it dominates the EEG. 

Alpha rhythms are also observed, but these are not yet localized to the posterior regions, 
until the age of 5. With increasing age, the other rhythms disappear in favour of the alpha 
activity whose amplitude decreases from 50-100 pV, during adolescence, to 20-40 pV  in 

adult life[177, pp. 108-119].

The EEG and the level of consciousness

During drowsiness and sleep the monotonous a  rhythm of an awake adult gives way to a 

variety of of EEG patterns[177, p. 134].

Sleep is separated into various phases, or stages, beginning with drowsiness. This is 
characterized by alternating periods of a  waves and low-amplitude ragged slow-wave activity 
(section 2.5.2). Eventually, alpha activity disappears and theta activity with some beta 
components appear in sleep stage 1, which lasts for a few minutes and is followed by stage 
2. Generalized, bilaterally synchronous k-complexes[ 177, p. 137], transient 8 waves, sleep 
spindles (often associated with sharp waves) and vertex sharp transients[47, pp. 131-132] 
are observed. Sleep spindles dominate the frontal and lambdoid waves (resembling A waves) 
the occipital regions. Definitions of these patterns may be found in section 2.5.2.

Stage 3 occurs approximately 45 minutes after the onset of sleep and contains mainly 
delta activity with some of the phenomena of stage 2. In stage 4, high-amplitude, irregular 
delta activity is the main characteristic.

Stage 4 is succeeded by rapid eye movement (REM) sleep, which lasts for about 20 

minutes[177, p. 139]. The EEG is similar to that of wakefulness, the eyes move rapidly in 

clusters and dreaming occurs.

Patterns characteristic of each sleep stage are shown in Figure 2.8. During a night’s sleep, 

the cycle of the five sleep stages is repeated four to five times.

2.5.2 Transient patterns in the EEG

Most of the EEG signals described so far appear, persist and characterize whole stretches of 
the EEG (cf. alpha activity). These are often called rhythms to emphasize their repetitive 
nature[41]. The rhythm may change from time to time, but their sequence constitutes the



2.5. Visual analysis of the EEG 33

awake stage 3 \ / V / A / t .v / v

drowsy Ay/uwvv'.-yvjV/'-—'v-^A/A stage 4

stage 1 REM

stage 2 Vvvv/V/W^
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(quasi-periodic) background activity, providing the setting where other brief transient signals 

may occur. These are isolated waveforms, or complexes1, which are distinguished from the 
background activity. These are described in a glossary of terms used by clinical electroen- 
cephalographers, compiled by Chatrian et al.[41] on which the list of common transients that 
follows was based.

Ii-complex: It consists of a slow wave followed by a sequence of waves with a frequency of 

approximately 14 Hz. The amplitude is maximum at the vertex (Cz) and is variable 
but approximately 200 pV. It appears spontaneously, or in response to a sudden 
stimulus during sleep.

Lambda (X) waves: These are sharp transients, generally positive with respect to other areas, 
occurring in the occipital regions during visual exploration, in awake subjects. They 
are related to eye movements and have variable amplitude, usually below 50 p V .

Kappa (k )  waves: Bursts of alpha or theta waves, recorded from the temporal regions during 

intense mental activity. Their cerebral origin has not yet been confirmed.

Mu (p) waves: Stretches of arch or comb-shaped waveforms with frequency between 7 and 

11 H z , most prominent in the central and parietal regions, during wakefulness. They 

have an amplitude of less than 50 pV, which is severely attenuated, or blocked, by 
readiness to move, or thought to move, or actual movement or tactile stimulation. The 
blockage refers to contralateral movements.

Sleep spindle (s-wave): A succession of waves at a frequency of approximately 14 Hz promi-
nent over the frontocental regions maximum at the vertex (Cz) and amplitude up to

: a complex is a succession of more than one wave which appear consistently as a group, distinguished
from the background activity
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50 p V . It appears during some sleep stages.

Sharp wave: A transient with a pointed peak (at conventional paper speeds), of duration 
between 70 and 200 ms and very variable amplitude, which is negative with respect 

to other areas. Its should appear distinct from background activity and should not be 

confused with lambda waves. Its morphology is similar to the spike (whose description 
follows); the distinction between spikes and sharp waves is rather arbitrary and serves 
descriptive purposes only.

Slow wave: Is any single wave with duration longer than alpha waves (| s).

Sharp-and-slow-wave complex: This consists of a sharp wave followed by a slow wave.

Spike: A transient with a pointed peak (at conventional paper speeds), duration between 
20 and 70 ms and negative polarity compared to other areas and variable amplitude. 
It should be distinguished from the on-going (background) activity and should not be 

confused with spikes recorded from individual neurons using microelectrodes. Spikes 

are similar to sharp waves, described earlier.

Spike-and-slow-wave complex: A pattern consisting of a spike, followed by a slow wave. The 

term is often used to describe a rhythm of 3 per second spike-and-slow-waves which is 
described below.

3 Hz Spike-and-slow-waves: It is a paroxysm consisting of regular sequences of a spike and 

a slow wave with a period of repetition of 2.5 and 3.5 Hz. The paroxysms occur 

bilaterally and synchronously and are generalized, although their amplitude, which is 

variable, is often larger in the frontal regions where it may reach 1000 p V .

Multiple spike-and-slow-wave complex: It resembles the-spike-and-slow-wave complex, but 

the slow wave is preceded by two or more spikes. It is also called a poly spike-and-slow- 
wave-complex.

Vertex sharp transient (V-wave): A sharp potential of duration 70-200 ms maximal at the 

vertex (Cz), negative in relation to other areas. It may appear spontaneously during 
sleep or during stimulation at sleep or wakefulness. Its amplitude does not exceed 300 

pV. It is more prominent in children during sleep.

From the above transients, spikes, sharp waves, sharp-and-slow-waves, spike-and-slow-

waves and multiple spike-and-slow-waves (Figure 2.9) are characteristic patterns of some

forms of epilepsy (see Chapter 3).
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Non-spintaneous transients, like event-related potentials, which are linked to stimuli, are 

beyond the scope of this report. They are discussed extensively in some of the references[47, 
pp. 222-225][177, pp. 168-171] (see also [133]).

2.5.3 The abnormal EEG

It is sometimes difficult to qualify an EEG as abnormal, since the abnormality and the 
interpretation depend on many physiological and psychological factors, as explained in texts 

on clinical electroencephalography[47, 103, 177]. For example an EEG with slow components 

is abnormal for an adult, but perfectly normal for a child (section 2.5.1). Sleep records contain 

components that are pathological indications if observed during wakefulness (section 2.5.1). 
Changes in the sequence and content of sleep stages is sometimes considered abnormal. 

Transients, like spikes and slow waves are often related to conditions like epilepsy, which is 
implicitly linked with this thesis, and is discussed separately in the next Chapter.

2.5.4 Artifacts

According to Scott[177, p. 18], potentials of non-cerebral origin, called artifacts in EEG 
nomenclature, are one of the most impressive feature of a record, due to their large ampli-

tudes. They are a permanent headache in EEG interpretation, which is sometimes deemed 

impossible[47, p. 111]. They arise from a variety of sources, the main ones outlined here.

External, non-biological interference

Electrical induction between external electrical sources and the recording electrodes or un-
screened parts of the recorder[47, p. I l l]  causes these potentials. Mains interference ap-

pears in the form of sinusoidal oscillations of frequency 50 or 60//z[103, p. 47] (Figure
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2.10 (a)). Other sources include electrostatic charge on clothing, unscreened transformers, 

telephones[177, p. 23] and, less frequently, radio interference[47, p. 113].

Ageing equipment is likely to cause increased noise and non-linearity as well as gain 

variations. These artifacts are not easily identified, because they occur progressively[103, 

pp. 46 -47 ].

The disturbance of the electrical contact between an electrode and the scalp or the 

head box, defective internal connections and dirty switches result in changes in impedance 

and, hence, the recorded potentials (Figure 2.10). Technicians and electroencephalographers 
need to resort to ‘experience’ for their rejection because they sometimes resemble cortical 
potentials[47, p. 113]. Hence their prevention is preferable[47, p. 114][103, p. 47].

Artifacts of biological origin

Various functions of the body generate, directly or indirectly, electrical potentials that are 

picked-up by the EEG electrodes.

The potential difference between the cornea and the retina is the cause of ocular ar- 

tifacts[A7)[p. 115], which are quite common. Eye closure causes positive and eye opening 
negative electrical disturbances on the anterior electrodes (Figure 2.11 (a),(b)). Similarly, eye 

movements, blinking, drowsiness etc. cause a variety of artifacts, especially in the frontal 

electrodes[47, p. 116] (Figure £.11 (c),(d)).

Uncomfortable and anxious patients have tense muscles, which give rise to spiky poten-

tials, especially in the temporal regions[103, p. 48]. These muscle potential artifacts may run 

continuously, in bursts or rhythmically (Figure 2.11 (e),(f)). Although filtering could reduce 

their amplitudes, the residue may be indistinguishable from genuine cerebral rhythms[47,
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p. 117]. Head and body movements in children and unconscious patients also cause muscle 
artifacts [177, p. 23].

Heart activity is a source of artifacts also. These are either induced by the pulse, to 
electrodes placed close to arteries or by the direct recording of the cardiac electric field due 

to the QRS (heartbeat) complex. The first has the form of a saw-tooth waveform, whereas 

the second has the shape of QRS complexes, with the R-wave being more prominent (Figure 
2.11 (g),(h))[47, p. 118]. This artifact is normally absent in bipolar recordings[103, p. 48].

Perspiration is the cause of low-frequency waves because of the disturbance of the skin 

and electrode contact resistances^ 03, p. 49] (Figure 2.11 (i)). The high-frequency filter is 
sometimes useful in their elimination[47, p. 119].

2.6 Uses and limitations of electroencephalography

Speaking in general terms, EEG recording is a non-invasive and relatively inexpensive proce-
dure. It can be repeated frequently (if necessary) and has the ability to show both functional 
and structural abnormalities in the brain. The EEG is often an early prognostic tool for 

tumours, and hæmatomas[103, pp. 222-228] and some psychiatric conditions. It finds uses 
in the monitoring of head injury, cerebral infections, anaesthesia and coma[103, pp. 222-228] 

and in the exclusion of neurological factors as the cause of other symptoms[177, p. 169].

It is rather unfortunate that EEG observations are non-conclusive since the number
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of neurons represented is small[177, p. 189], the analysis subjective, affected by artifacts 
(section 2.5.4), the level of consciousness and other physiological factors[103, pp. 222-228] 

(section 2.5.1). This was used by some to discredit its diagnostic value[103, pp. 222- 
228][120, 178] although these problems are also encountered with other clinical tests. The 
complexity of EEG interpretation puts the reliability of its assessors in doubt. In a reliability 
study carried out by Woody[103, p. 223], low intra- and inter-reader reliability was indicated.

The recording of the magnetic, instead of the electric field was suggested by the trans-
parency of the brain and scalp to magnetic fields to avoid the problems listed in section 
2.2.3. Recording equipment, however, is bulky and shielding stray magnetic fields difficult.

Nowadays the EEG is not the only method for investigating brain disorders. Brain imag-

ing devices, are generally available in large hospitals[48, 58]. Computed Axial Tomography 
(CAT) and Magnetic Resonance Imaging (MRI) produce three-dimensional images of the 
brain and are better than the EEG in showing and localizing structural abnormalities in the 

tissue, like brain tumours.
The EEG is of great value in the diagnosis and treatment of constitutional epilepsy[19] 

(see next Chapter), for example petit mal in children[103, pp. 222—228][177, p. 193], which 

is normally a transient functional disorder occurring in the absence of structural brain ab-
normalities.



Chapter 3

Epilepsy and the EEG

3.1 Introduction

The nervous system (Chapter 1) is immensely complex and spans large areas. It is, therefore, 
unlikely that a stimulus or a malfunction will remain localized. Defects, however, are usually 
detected and confined by the brain itself and pass almost unnoticed. The fault tolerance of 
the brain is often capable of maintaining most of its functionality even when sections of it 
get damaged.

Nevertheless, damaged neurons are irreplaceable, the tissue delicate and sensitive to 
chemical imbalances, which disturb the function of the nervous system. Head injuries, 
viruses, intoxications and chemical variations in the body sometimes lead to symptoms like 
headache, delirium, paraesthesia, seizures and behavioural changes[165, pp. 3-58]. Distin-
guishing causes and effects is sometimes impossible and the name disorders has been adopted 

to collectively describe both symptoms and diseases. Their persistence may be transient or 

permanent and their severity variable. Texts on neurology[165, 193] give a comprehensive 
description of many such disorders.

One of these, epilepsy, has peculiar, often ambiguous causes. It is generally associated 

with abnormal EEG characteristics, more prominent during an epileptic attack (seizure), a 
transient phenomenon. Despite the strong relation between specific EEG abnormalities and 
epilepsy, the evidence in the latter is inconclusive, because the EEG of some people suffering 
from epilepsy is normal and vice-versa[22].

In this Chapter the causes, mechanisms, classification, clinical symptoms and treatment 
of epilepsy are briefly outlined. The emphasis is on the EEG patterns characterizing each 
type of epilepsy. More details may be found in texts on neurology [165, 193] and in an internal 
report[134].

39
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3.2 What is epilepsy?

Epilepsy is a condition that cannot be defined unambiguously. Gibbs (1937) defined epilepsy 

as “paroxysmal cerebral dysrhythmia” . Walton[193, p. 1093] described it as

. . .  a paroxysmal and transitory disturbance o f the functions o f the brain which 

develops suddenly, ceases spontaneously and exhibits a conspicuous tendency to 

recurrence. Though in its most typical forms it is characterized by the sudden 
onset o f loss o f consciousness, which may or may not be associated with tonic 

spasm and clonic contractions o f the muscles, many varieties o f epileptic attacks 
occur, their distinctive features depending upon differences in the site o f origin, 
extent of spread and nature of the disturbance o f function . . .

According to McLeod and Lance[122] it is

. . .  a recurring disturbance o f cerebral function caused by paroxysmal neuron dis-

charges, usually (but not always) accompanied by loss o f consciousness . . .

and Goldensohn et al. avoid to define it explicitly, suggesting that it is a group o f symp-

tom complexes that have many causes . . .  causing cerebral neurons to become excessively 
excited[ 165, p. 780]. Definitions have been subject to debate, branded by their critics as 
imprecise, if not meaningless[103, p. 70]. Descriptions often clash with social and legal 
implications and thus many clearly epileptic attacks have been given different names or 

considered a symptom of other disorders, when these have been diagnosed. In conclusion, 

calling epilepsy either a symptom or a disease is neither entirely true nor false. As explained 

later, there is evidence that all individuals may suffer from seizures, given the necessary 
provocation[73]. According to Brown, little is really known about epilepsy and there may 
be a relation in its mechanisms and those of other non-epileptic disorders[30].

3.3 Causes of epilepsy

Epilepsy is caused by various local factors or widespread abnormalities or both. The type 

of seizures occuring are associated with these causes and their interactions. Minor brain 
abnormalities, sometimes observed, may be the consequence as well as the cause of the 

disorder[193, p. 1100].
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3.3.1 Local factors

When the seizures mostly affect one brain region (section 3.6.2), their causes are usually 
localized also. The indications in the EEG reflect their origin and, sometimes, the causes 
responsible[193, pp. 1095—1096][122] (see also [134]). Common local factors include:

• Intracranial lesions (like tumours)

• Inflammatory and demyelinating conditions

• Brain injuries

• Congenital abnormalities (like tuberous sclerosis)
*

• Inborn errors o f metabolism and degenerations

• Vascular disorders (like cerebral haemorrhage)

• Reflex causes (stimuli)

3.3.2 General factors

When the onset of the seizures cannot be localized, factors that affect the whole of the brain 
may be responsible. According to Walton[193, pp. 1095-1096] the main general causes are 
the following:

• Exogenous substances, like drugs and poisons

• Anoxia, caused by asphyxiation etc.

• Disordered metabolism, when it affects neurons and the concentrations of ions and 

neurotransmitters[122, p. 233]

• Endocrine disorders

• Infections during childhood[122\

The role of hereditary factors in epilepsy is a controversial issue[63, pp. 783-785], but there is 
evidence that a predisposition to generalized seizures is inherited[122, p. 233]. Psychological 
factors may provoke a seizure, although they are not the primary cause of epilepsy[193, p. 

1096].
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3.3.3 Constitutional epilepsy

The exclusion of known factors leaves a considerable number of cases in which the cause 
of epilepsy cannot be identified. The name constitutional (idiopathic)  epilepsy has been 
adopted to describe these cases, which are possibly the result of a predisposition to seizures 
or the complex interaction of factors too diverse or too specific to a patient[193, p. 1097]. 

The epileptic threshold theory (section 3.4.3) is a possible explanation.

3.4 Neurophysiology of epilepsy

The study of the mechanisms of epilepsy is not easy, as neural interactions cannot be studied 
in detail and seizures are transient and sometimes violent. Nevertheless, they appear to result 

from the diffusion of transient abnormal discharges of neurons to the cortex[70, 193].

3.4.1 Neural mechanisms of epilepsy

Several intrinsic and extraneous factors control the function of a neuron (see section 1.3) 
and their deviation from normal levels may lead to extraordinary responses and the concept 

of the epileptic neuron (see also [134]).

The mechanisms that maintain the resting membrane potential (sections 1.3.1 and 1.3.2) 
may deteriorate. If the membrane potential becomes less negative than it should, the neuron 
may be excited more easily and vice versa resulting in a predisposition to abnormal discharge 

patterns.

Abnormal stimulation (section 1.3.3), assisted by disturbances of the resting potential, 

may cause an extraordinary neuron response. Neurons are generally tolerant to small timing 

discrepancies and the unexpected absence or presence of a stimulus, but many simultane-

ous abnormal or strong PSPs may cause erratic discharges. Deviations in the strength of 

postsynaptic potentials caused, for instance, by imbalances in the concentration of neuro-

transmitters (section 1.3.3), alter the firing pattern of neurons[193, p. 1095].

Small operational discrepancies of a few neurons are counteracted by self-regulating mech-
anisms. These may not suffice when the discrepancies are large or generalized and there is a 

point, the epileptic threshold, beyond which the neural function may break down. According 
to this theory, all individuals are liable to seizures, given the necessary provocation[73][193, 
p. 1095] and those suffering from epilepsy have neurons that normally operate near their 

threshold, where small provocations may cause a seizure.
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3.4.2 Effects on groups of neurons

Chemical imbalances and other factors (section 3.3) usually affect groups of neurons making 
them liable to discharge abnormally, spontaneously, or after stimulation. Consequently, 

other neurons become depolarized and discharge rhythmically in rapid succession causing an 
avalanche of discharges, encouraged by two factors. The insufficiency of the IPSPs caused 
by inhibitory stellate neurons (section 2.2) and neural ‘kindling’ (the increased probability 
of a neuron discharging following a series of periodic discharges)[122|.

3.4.3 Disturbances on the cortical scale

Cortical regions communicate with each other (section 1.4.1) and with subcortical structures 

like the thalamus and the reticular formation (sections 1.4.2, and 1.4.5). These connections 
are evident in the similarities of the corresponding electroencephalograms and their relative 
delays show whether communication is direct or mediated by subcortical structures[70][103, 
p. 8] (section 2.2).

Gastaut assumed that the brain consists of interacting groups of cortical and subcortical 
clusters of neurons[103, p. 92]. Therefore, a malfunction in either the cortical or the sub-

cortical cluster could affect the other element of the group. Partial seizures are confined to 
a few clusters and usually originate in one of them, called the epileptic focus. Generalized 
attacks affect the whole of the cortex and either originate in subcortical structures, which 
make connections to large numbers of cortical neurons (section 3.6.1), or in a cortical cluster, 
which is relayed to a subcortical structure (section 3.6.3).

3.5 Pathology—classification of epileptic seizures

Epileptic attacks have diverse symptoms, varying origins and debatable causes. It is not 

surprising that there are many ways to classify them.

3.5.1 International classification

The universally agreed classification, accepted by the International League Against Epilepsy, 
the World Federation of Neurological Societies and the IFSECN[103, p. 72] is based on the 
physical manifestation of seizures and the extent of the disturbance of consciousness. It is 

based on a suggestion by Janz (1969) amended by Sutherland et al. (1974) and is shown in 

Table 3.1.
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1. Generalized seizures (Bilaterally symmetrical without local onset)

(a) Absences (petit mal)
(b) Bilateral myoclonous
(c) Infantile spasms
(d) Clonic seizures
(e) Tonic seizures
(f) Tonic-clonic seizures
(g) Akinetic seizures

2. Partial seizures (Seizures beginning locally)

(a) Elementary symptomatology
i. Motor1

ii. Sensory1
iii. Autonomic

(b) Complex symptomatology
i. Impaired consciousness2

ii. Complex hallucinations2
iii. Affective symptoms2
iv. Automatism2

(c) Partial seizures becoming generalized tonic-clonic seizures

3. Unclassified seizures (Seizures that cannot be classified due to incompleteness of data)

1 Jacksonian Epilepsy

2Temporal Lobe Epilepsy

Table 3.1: International classification of epileptic seizures
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This classification provides no information on the the mechanisms and origins of seizures 
and is ambiguous on the classification of partial seizures that later become generalized. 
Alternative classifications that rely on neurophysiological findings rather than the symp-
tomatology of seizures do not suffer from these problems.

3.5.2 An alternative classification

Jasper and Kershman in 1949 proposed a classification of epileptic seizures based on the EEG 

and other neurophysiological findings. This was modified by Hill in 1958 and distinguishes 
seizures into four groups[103, p. 73],

1. Primary subcortical epilepsy

2. Primary cortical epilepsy

3. Secondary subcortical epilepsy

4. Epilepsy arising from numerous areas both in the cerebral cortex and subcortical struc-

tures.

These categories are related to the international classification; subcortical epileptic seizures 
are usually generalized, whereas cortical ones are of local nature. This classification was 

adopted in the next sections, because of its relation to the EEG.

3.6 Symptoms of epileptic attacks

The emphasis of the brief description of the symptomatology of epileptic attacks that follows 
is on EEG manifestations. More complete descriptions of epilepsy and other disorders of the 
nervous system may be found in Walton[193] and Kiloh et al.[103, pp. 71-104] (see also 

[134]).

3.6.1 Primary subcortical epilepsy

There is strong evidence that subcortical structures, like the thalamus and the reticular for-

mation (sections 1.4.2 and 1.4.5), are actively involved in the onset of generalized epileptic 
seizures[103, p. 73], which are associated with synchronous, widespread patterns in the EEG. 

The common characteristic of primary subcortical epilepsy is the transient loss of conscious-
ness. Symptoms depend on the type of the attack, whether major, minor or myoclonic.
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Major epilepsy (grand mal)

The extensive muscle activity during grand mal seizures limits the clarity of EEG recordings, 

which usually contain muscle artifacts[103, p. 74] (section 2.5.4). Walton [193], divides a 

seizure into the aura, the convulsion stage and the post-convulsive phase.
The aura, a warning that may precede the forthcoming seizure characterizes attacks 

that begin locally (section 3.6.3). Feelings of familiarity ( déjà vu), unreality (jamais vu), 

disembodiment and inexplicable fear are common. Visual or auditory hallucinations, vertigo, 

clonic movements or spasms may be present.
The convulsion sometimes begins with the epileptic cry followed by loss of consciousness, 

a symmetrical tonic spasm on both sides of the body, and arresting of respiration for 15 to 30 
seconds. The EEG contains fast activity, followed by generalized rhythmic high-amplitude 
waves with frequency 8-12 Hz, which decreases towards the end of the phase. The clonic 

phase that follows, is characterized by bursts of spikes, occasionally followed by slow waves, 
coinciding with sharp, interrupted muscle movements. Biting of the tongue, foaming in the 
mouth, urine incontinence and pupil dilation are possible.

In the post-convulsive phase, spikes become infrequent and slow waves appear. Their 

frequency and amplitude decreases[103, p. 75] leading to unconsciousness and then to normal 

sleep, as the EEG and the mental state returns to normal.
Attacks of major epilepsy in young children are called febrile convulsions and may lead 

to the development of an epileptic focus.

Minor epilepsy (petit mal)

Petit mal epilepsy constitutes of mild idiopathic attacks, characterized by transient impair-

ment of consciousness[103, p. 75] that begin in childhood[193, pp. 1103-1104]. These last for 

a few seconds and are characterized by a blank facial expression, rolling of eyes in the upper 

lids, momentary inhibition of activity, muscle relaxation and, sometimes, a short myoclonic 

twitching. Several attacks per day may be present[193, p. 1104]. These may continue during 

adolescence and adulthood, occasionally developing into major attacks.

The EEG during minor epileptic attacks contains sequences of spike-and-wave complexes 
(section 2.5.2) occurring simultaneously over the whole of the scalp, but more profound in 
the frontal regions[103, p. 75]. Such paroxysms repeat at an average rate of 3 per second, 

faster at the beginning and slower at the end of the seizure. Sleep EEG recordings often 
contain polyspikes, polyspikes and waves, as well as spike-and-wave discharges during REM 

sleep, becoming more irregular during stage 4 sleep[103, p. 76]. According to Gastaut and 
Fischer-Williams (1960) petit-mal may characterize individuals with a very strong inhibitory
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mechanism in their reticular formation where the attacks are believed to originate.

Other forms of epilepsy with local onset may be clinically indistinguishable from true 
petit mal.

Myoclonic attacks

Attacks of myoclonic epilepsy resemble grand mal seizures (section 3.6.1) in miniature and 

may be provoked by sudden, unexpected noises and photic stimulation. Bilaterally symmet-
rical jerking of the face and the upper limbs is the main visible symptom of this type of 
epilepsy. Loss of consciousness is extremely brief[103, p. 77]. The EEG may contain tran-
sient discharges, resembling spike-and-wave complexes (section 3.6.1) or polyspike-and-wave 
patterns (section 2.5.2). Myoclonic attacks are related to centrencephalic structures, like the 
reticular formation and the subcortical motor system.

Interseizure patterns

These are ‘ larval forms’ of epileptic discharges appearing in a clinical EEG recording of a 
large proportion of sufferers. They are significant for clinical assessment, although their 
presence or absence is sometimes inconclusive as Kiloh et al.[103, p. 79] emphasize.

A typical interseizure pattern of primary subcortical epilepsy is the symmetrical, gener-

alized, bilaterally synchronous spike-and-wave complex (epileptiform) characterizing 50% of 

grand mal and 80% of petit mal cases[103, p. 78]. In some cases, spikes appear with very 
low amplitude and the pattern resembles 5 activity.

These patterns or even epileptic attacks may be induced using hyperventilation, photic 
stimulation and the administration of drugs like Chloropromazine (see section 2.4.5).

3.6.2 Primary cortical epilepsy

When local factors (section 3.3.1) affect a group of cortical neurons, called an epileptic 
focus, they may exhibit spontaneous abnormal rhythmic discharges. These may progressively 
increase in both amplitude and frequency, affecting neurons located in the vicinity of the 
focus, causing a seizure[103, p. 85].

The local character of the abnormality is indicated in the EEG, which may contain spikes, 
sharp waves or spike-and-wave complexes and, occasionally, a, S or 9 waves, primarily in the 
area around the epileptic focus[103, p. 92]. Their frequency of occurrence decreases from 12 
to 2 per second during the end of the seizure.
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A mirror focus may appear in the other hemisphere and, although its activity is initially 

synchronized with the primary focus, due to the intervention of subcortical structures, it later 
becomes autonomous. If many independent foci exist, epileptic activity may shift between 
them. In some cases, the foci appear to move[103, pp. 89-91]. The migration of a focal 
discharge to a subcortical structure, may precipitate a generalized attack (section 3.6.3). 
Occasionally the epileptic focus is in a subcortical structure but projects only to a small 

area of the cortex.

Psychomotor attacks, a common form of primary cortical epilepsy, arise from foci in the 
temporal or the frontal lobes[103, p. 85]. Auras, when present, are characteristic of the 
location of the focus. Seizures are accompanied by confusion, clouding of consciousness, 

memory and personality disturbances, hallucinations, fear, anxiety, depression and other 

syndromes[193, p. 1105]. The EEG sometimes contains spikes and sharp waves which 

quickly diminish in amplitude and frequency, becoming synchronous discharges of frequency 
2-10 Hz, occasionally interrupted by sharp waves[134]. These are asymmetrical to one of 
the hemispheres.

Other forms of this type of epilepsy, include Jacksonian epilepsy, originating in one of 

the motor areas[193, p. 1105] and sensory epilepsy is related to foci in the sensory areas of 
the cortex[134].

Common interseizure patterns include surface-negative spikes of duration 20-60 ms hav-
ing amplitudes of 25-500 p.V. Interseizure patterns and seizures may be provoked by hyper-
ventilation, photic stimulation, sleep and drugs, such as Chloropromazine. They are used to 

detect and localize the focus and its nature.

3.6.3 Secondary subcortical epilepsy

The name is used to describe several varieties of cortical epilepsy that exhibit secondary bi-

lateral synchrony. This occurs when a focal discharge is transmitted to subcortical structures 

and then relayed back to the whole of the cortex, to cause spike-and-wave discharges. Unlike 
minor epileptic attacks (section 3.6.1) these are irregular, variable and often asymmetrical 
with amplitudes higher in the hemisphere containing the focus[103, p. 85].

Primary and secondary subcortical epilepsy are often discriminated by the injection of 

sodium amylobarbitone, which suppresses focal but not generalized abnormalities[103, p. 97] 

(see also [134]).
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3.6.4 Epilepsy arising from numerous cortical and subcortical 
areas and structures

In this type of epilepsy the EEG is abnormal even between seizures, characterized by 
widespread bilateral irregular spike-and-slow wave discharges of frequency 2-4 Hz super-
imposed on a background of diffuse slow activity. Frequently there exist multiple indepen-

dent focal sources of polyspikes, sharp waves and spike-and-wave complexes[103, p. 98]. 
Causes include diffused or scattered brain lesions, trauma at birth, various infections and 
intoxications and degenerative cerebral disorders.

Common forms include hypsarrhythmia and phenylketonuria in infants and myoclonous 

epilepsy[l03, pp. 99-100] (see also [134]). The first is characterized by high-amplitude slow 
activity, and the second by the rapid development of high-amplitude sharp or slow-wave 

epileptic foci. In myoclonous epilepsy the EEG is grossly abnormal, containing 6, 8 and ¡3 
components and multiple spikes, of subcortical origin.

3.6.5 Other epileptic and similar conditions

Status epilepticus

Prolonged or repetitive seizures without relapse of consciousness result in a continuous state 
of epilepsy that is evident in both the electroencephalogram and the clinical findings[103, 
pp. 101-102][193, p. 1108] (see also [134] for a brief description). The term convulsive status 
is often used to describe sequences of major epileptic seizures without intermediate recovery 

periods[3]. Petit mal status, psychomotor status and epilepsia partialis continua[103, pp. 

101- 102] are prolonged attacks of other types of epilepsy, lasting for hours or even days.

Epilepsy with normal EEG

If a focus is too discrete, abnormal activity may be too localized or not hyperpolarized to 
cause a significant scalp potential (see section 2.2.3). EEG abnormalities may also be absent 
if the focus is located a few millimetres below the cortical surface or in a deep subcortical 
structure, as the discharges may not reach the surface of the brain.

Other EEG-related brain disorders

Not all transient attacks are epileptic in nature. Tonic fits, caused by tumours, high in-

tracranial pressure, and damage of the brain stem[103, p. 104], syncopal attacks following
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cardiac arrest or acute cerebral anoxia and breath-holding spells caused by cerebral anoxia 

may be discriminated from epilepsy using the EEG.

3.7 Management and treatment of epilepsy

3.7.1 Medical treatment

Once the cause of the seizures has been identified, medical treatment may begin. The 

earlier the treatment begins the greater the probability of controlling the seizures effectively, 
although the possibility of an initial misdiagnosis is higher[39, 160]. Richens[160] gives 
comprehensive guidelines concerning the choice of drug, monitoring and discontinuing the 

treatment. Anticonvulsant medication is usually administered, usually in the form of a 
single drug (monotherapy). The dosage is gradually increased until a therapeutic level is 
reached[193, p. 1120][122, p. 236], as an overdose may affect the alertness and intellectual 
ability of the patient[13] [122, p. 236][193,p. 1120]. The administration of more than one type 

of anticonvulsant is normally avoided, because side effects are additive[13][193, pp. 1120— 
1121]. For partial and tonic-clonic seizures phenytoin, carbamazepine, sodium valproate, 
barbiturates and clonazepam are used. For minor epilepsy and myoclonic attacks sodium 
valproate and ethosuximide are more common. These are described in [122] [pp. 237-240] 
(see also [134]). Usual side effects include nausea, sedation, vertigo, drowsiness, irritability, 
weight gain, hepatic damage, coarsening of features and others.

In some cases where seizure control was not effective, change or increase of types of drugs 
or even their decrease may be useful[2, 73]. If anticonvulsant medication does not control 
seizures effectively, surgical intervention, like anterior temporal lobectomy, may be suggested 
for some types of focal epilepsy[122, p. 240]. Surgical treatment is becoming more rare, as 

a result of the increased effectiveness of anticonvulsants[193, p. 1118].

3.7.2 Social issues

The personal and social stigma following the diagnosis of epilepsy may be more devastating 
that the seizures themselves[172, p. 81]. This mystery of epilepsy made the sufferers subject 
to ritualistic abuse, as it was attributed to ‘possession’ [172, p. 40]. School children should 
be encouraged to continue their usual activities[122, p. 235] to acquire social skills and 
confidence needed for a normal adult life. Some types of occupation are unsuitable for 

individuals suffering from epilepsy [122, p. 82], but some gainful employment is recommended 

as a source of self esteem, satisfaction, companionship, status and independence^72, p. 94].
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Driving regulations are quite restrictive in the case of epilepsy[172, p. 52]. Marriage and 
having children is another serious consideration[122, p. 236]. Managing epilepsy is a more 

general issue than the control of seizures.

3.8 Comments

Although the investigation and treatment of symptomatic epilepsy, due to tumours, le-
sions and other brain abnormalities is now performed by brain imaging techniques [48, 58], 
traditional electroencephalography is still a valuable tool, especially in the diagnosis and 
treatment of minor (petit mal) and other forms of constitutional epilepsy.

The social stigma[172, p. 49] of people suffering from epilepsy is an important issue 
and the sooner the seizures are controlled the better. It is therefore important to diagnose 
the condition early and tailor medication quickly, two factors where the EEG may prove 

invaluable. Because seizures are the result of transient abnormal discharges of neurons, not 

the primary deterioration of the function of the brain, the intellectual ability is not impaired 

and once the seizures are controlled, no sign of the disorder remains. It is interesting to note 

that although the boundary between people suffering from epilepsy and those that do not 
is not clear at all, in contrast with other handicaps, epilepsy is still not accepted, even by 
modern societies.
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Chapter 4

Review of automatic EEG analysis

4.1 Introduction

In the early days of electroencephalography the collaboration of neurologists with engineers 
and physicists was necessary for the development of instrumentation, monitoring procedures 

and for the interpretation of results. When the EEG became a medical diagnostic procedure 
this interaction was weakened, as equipment was standardized and analysis followed those 
of other medical procedures, consisting primarily of the visual inspection of the paper EEG 
records.

With the increasing use of the EEG, its visual analysis became a tedious, monotonous 
and time-consuming task and some form of automation was sought, particularly for pro-
longed and sleep recordings (sections 2.5.1 and 3.6), event detection and the presentation of 

the information in alternative, more compact and informative ways. The relation with engi-
neering was renewed to take advantage of technological advances, like microcomputers, and 
the analysis tools offered by digital technology (signal processing, pattern recognition, expert 
systems and other). Inter-disciplinary expertise became a necessity for the more effective 

use of the available resources[5, 176].

The application of technological advances for the analysis of the EEG and other biological 

signals[32, 187] is far from trivial. The diversity of the techniques used and the absence of 
widely acceptable trends in the methodology is characteristic of the problems encountered, 
primarily due to the difference between the informal, often imprecise medical definitions and 
the strict engineering and scientific formalism[174] and also the inability to quantify medical 
experience.

In this Chapter a number of methods of automatic EEG analysis will be outlined. Some 

bear a relation to those investigated in later Chapters, whereas others were included for

53
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Figure 4.1: Schematic representation of the EEG analysis procedure

comparative purposes or as an overview of the field. Only a small proportion of the available 
literature has been considered. More details on these and other methods may be found in 

review articles published occasionally[7, 43, 47, 65, 68, 79] (see also [135]).

4.2 Objectives and methods

Figure 4.1 attempts to highlight the main stages of traditional EEG analysis (section 2.4.4). 
Preprocessing involves any type of preliminary analogue operations performed on the signal, 
mainly by the recording equipment (section 2.4.1). Artifact reduction and rejection is per-
formed by the EEG technician during the the recording (sections 2.4.4 and 2.5.4) and by the 
electroencephalographer’s skilled eye during analysis. Sometimes alternative means of signal 
representation (power spectral density, stages of sleep, spatiotemporal maps, averaging) is 
performed. These transformations are often inseparable from the analysis procedure, which 

is a complicated task performed by human expert analysts, resulting in the compilation of a 

report, summarizing the characteristics of the signal, using relatively standard terminology.

The automatic realization of one or more of these tasks normally attempts to achieve 

some of the following aims:

• Relief of human experts from the repetitive, tedious and monotonous task of routine 
assessment, so that they can concentrate on special or difficult cases more effectively

• Purification of the EEG by reduction of extraneous signals to make visual inspection 

easier/possible

• Provision of more informative representations of the available information for the ben-

efit of human analysts
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• Opening new prospects in clinical neurophysiology, by allowing long-term monitoring 

of patients, which is unsuitable for visual analysis, due to the large volume of data.

The methods employed to realize these targets are rather varied.

4.3 In the beginning it was analogue

Many years ago, when computers were a scarce luxury, techniques were mainly analogue. 

Despite their simplicity and limitations, their objectives included artifact rejection, sleep 
stage monitoring and automatic detection of EEG phenomena. A small sample of methods 
will be presented here for comparison with those that made use of microprocessor technology.

4.3.1 Artifact rejection

Automatic artifact reduction and rejection (Figure 4.1), are important, whether subsequent 
analysis is performed manually or automatically. Because of the variable morphology of 
these signals (section 2.5.4), techniques are usually developed to deal with a limited range 

of artifacts.
Barlow[8] proposed a method to remove of isolated muscle spike artifacts by observing 

that these are characterized by a high gradient. An analogue differentiator, whose output 

was full-wave rectified and smoothed indicated the amplitude of the gradient of the EEG. 
This was compared to a set value to mark the presence of an artifact, and to activate a 
sample-and-hold to remove it from the EEG signal. Distortion of EEG patterns with high 
gradient (such as spikes) was evident. Differential sample-and-hold units, were also used by 
Peper and Grimbergen[146] to remove artifacts arising from current pulses used in cortical 

stimulation.
Sudden changes in the DC potential at an electrode (section 2.5.4), cause ‘electrode pop 

artifacts’ having the form of an exponential decay, after AC coupling by the amplifiers. 
Barlow[ll] employed analogue differentiation, rectification and thresholding to detect their 

leading edge and C-R networks for their estimation and cancellation. False detections, caused 

‘ghost’ artifacts in the output signal.
The same author suggested the removal of continuous muscle artifact activity by analogue 

filtering[9]. Butterworth low-pass filters with a cut-off frequency at 12.5 or 15 Hz were built 

in a multi-channel device. The method compared favourably with a digital filter of Gotman 

et al. [78], described later. The success of the method was annihilated by the distortion, 
or even elimination of fast spikes, whose frequency spectrum overlapped with that of the 

artifacts.
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4 .3.2  Sleep stage monitoring

The interpretation of sleep recordings is based on the recognition of the various sleep stages, 

their duration and alternation (section 2.5.1). Manual sleep staging for one night’s sleep is 
difficult, because of the large volume of data produced and automatic systems were employed 
to produce a profile (parametrization) based on the sleep stages, for the human analyst to 
read, instead of the EEG (Figure 4.1).

A portable(!) system, suggested by Frost[62], discriminated between wakefulness, sleep 

stages 1, 2, 3, 4, REM and coma using light indicators and a graphic output. The EEG 

was fed to a system of comparators with adjustable references and logic elements. These 

triggered a positive and a negative pulse generator, representing the frequency and amplitude 
of the signal, which were added and integrated to producing a continuous indication that was 

high for wakefulness and low for deep sleep. Quantization produced the various sleep stages. 
REM sleep was distinguished from stage 1 using an EOG channel, thresholded and gated 
with the other indicators. There was good agreement of this system and human analysts, 
although the latter were sometimes better, but less consistent. Sleep stage scoring is popular 

in automatic analysis (see section 4.6.3).

4.3.3 Automatic detection of EEG phenomena

The automatic identification of EEG transients, especially those associated with epilepsy has 

always been of interest, especially for long-term monitoring purposes.

Walter et al. proposed a semi-automatic quantification method of sharp transients, based 
on the large gradient changes around their peak[192]. Double analogue differentiation of the 
signal followed by full-wave rectification produced an indication, enhanced by the suppression 

of small derivatives by the dead-band of the rectifier. Sharp muscle artifacts, however caused 

false detections.

A different approach was adopted by Fitch and Willison[57] for the detection of spike- 

and-slow-wave complexes 60 times faster than real-time. Spikes were detected by a band-pass 
filter in the range 12-18 Hz followed by a spike rhythm filter (2-4 Hz) and slow waves with 

a 2-4 Hz band-pass filter. The two outputs, after rectification and analogue integration were 
thresholded and ANDed to produce a single indication. A computer calculated the number 

of such events and plotted it with respect to time. Detection of individual spikes was not 
possible and false detections due to muscle artifacts and eye blinks were evident.

The same method but with slightly different pass bands was used by Besag et al.[16], 

as the basis of a pocket-sized spike-and-wave monitor. The resulting indication activated
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audible and visible indicators and was registered in solid-state memory. Results were more 
consistent than manual analysis.

Band-pass filtering was the basis of the long-term on-line monitor of De Vries, Wisman 
and Binnie[191]. Detection of individual events was possible using Schmitt triggers with 

preset threshold levels. The succession of spikes by slow waves was tested using a counter. 
Genuine epileptic events were detected using a monostable and a counter, triggered by the 

initial spike to detect sequences of three events in a period of 1.5 seconds. False detections 
were mainly due to chewing artifacts.

4.4 The impact of computer technology

Analogue methods were cheap and fast, but were limited by the analogue hardware they 

employed. The complexity of the required logic functions and the implementation of some 

fundamental mathematical operations are a nightmare in analogue design. The function 
of the prototype system cannot be reproduced exactly in replicas of the design, due to 
tolerances in analogue components. Many of these limitations were overcome by the use of 

digital techniques and particularly microcomputers, especially after the 1970’s. The ability to 
program the analysis task opened up new prospects, as difficult analogue tasks became trivial 
programming exercises. Complicated operations could be performed and replicated exactly. 
Digital signal processing offered a greater repertoire of methods than its analogue counterpart 
and new concepts, numerical and symbolic, were made available. The rapid decrease in size 
and price and increase in sophistication and speed made computers a powerful, cost-effective 

tool.

Despite the multitude of methods published, computers are no panacea and none of those 

matched the performance of the human analyst. Some of the available literature is briefly 

reviewed here, with emphasis on methodology (see also [135]).

4.5 Artifact reduction: Preprocessing or target?

Artifact rejection (Figure 4.1) could make the task of the human analyst easier and more 

effective and would prevent their false interpretation by a subsequent automatic system, 

particularly important for long-term unsupervised analysis. Effective artifact reduction could 

give value to stretches of otherwise unusable EEG. Automatic techniques have targeted, 

primarily, ocular (EOG), muscle (EMG) and cardiac (ECG) artifacts.
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4.5.1 Dealing with ocular artifacts

These are caused by potentials arising from eye movements and blinks (section 2.5.4) and 
are a serious problem due to their large amplitudes, especially in the study of event-related 

potentials. Fortgens and De Bruin[59] suggested their automatic removal off-line, using 
electrodes placed around the eyes to form four ocular potential channels. Assuming inde-
pendence, the mean squared error (MSE) of the difference between the EEG and a weighted 
sum of the measured EOG signals,

M  4

M ?  =  t l lE E G U )  -  L  A iE O G i(j)}2 (4.1)
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was minimized, leading to a system of equations, solved for the unknown weights, {A ,}. 

The difference, e(j) =  E E G (j) — Ya =i A {EO G i(j) was an approximation of the artifact-free 
cerebral activity. ECG artifacts could be removed in a similar manner by placing electrodes 
on the torso. According to the authors this method worked better than other alternatives 

at the time of publication.

Based on a similar model, Gratton et al.[80] developed a multi-channel scheme, catering 
for differences in the mechanisms of eye blinks and eye movements by using distinct weighting 
factors. Records of EEG and EOG for N  trials were used off-line, after the subtraction of 

the average event-related activity. Blinks, EB  were identified by their high gradient and 

along with other eye movements, E M  they were subtracted from the EEG of individual 
trials using linear weighting.

E EG corrected(j) =  E EG raw(j)  ~  aEM (j )  -  bEB(j)  (4.2)

The weights, a and b were estimated by MSE minimization, as in the previous method.

Ifeachor et al.[90] recognized that the elegance of these methods was offset by the large 
number of computations required for the estimation of the weight vector, 9m, by solving the 

normal equations:

R „ 0 m =  E [X l  y „ ]  (4.3)

involving the EOG and the EEG vectors, X m and Ym, respectively. The inversion of the 

autocorrelation matrix, R xx is not suitable for on-line implementation and the authors pro-

posed the method of Recursive Least Squares, RLS, to compute P =  R~j iteratively with 

every new sample:

0(m +  1) =  0(m) +  P(m  +  l)X (m  +  l )E(m  +  1)

— -> |*Vm / 7+XT(m+l)P(m)X-(Tn+l) J
(4.4)
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where E ( m + 1) =  V(m-t-l) — 6T (m )X (m + l ) .  Due to potential instabilities of this algorithm, 
the U-D factorization P(m-|-1) =  U(m +  l)D (m  +  l)U T(m + 1), where U is a triangular and 

D a diagonal matrix was employed. A later more detailed study[91] took into account serial 
correlations of the background EEG investigating three methods for estimating 9: Ordinary 

Least Squares (OLS), the iterative method (assuming the EEG is serially correlated) and 
OLS on the difference of the data (implying that the EEG is a random walk). The iterative 

and the difference methods were considered closer to reality and were favoured by this study. 
Ifeachor et al.[92] noted that small numbers of carefully selected EOG channels was preferred, 
as large numbers of them caused overcorrelation with the EEG.

In a review of methods for removing ocular artifacts, Jervis et al. [96] suggested that 
only a few of the proposed electrode arrangements gave satisfactory results and from the 

methodologies those of Least Squares were preferred. They recommended the difference or 
iterative methods for decorrelation and the RLS technique for on-line processing.

These recommendations influenced the work of Van Den Berg-Lenssen et al.[189], who 
produced a study of an ocular artifact-removing system by modelling the cerebral component, 
e(n), of the recorded EEG signal, y(n), by an autoregressive process, excited by white noise, 
x(n ) with additive artifacts:

m —1 r

y(n) = M (iM n “  i) + *(n) -  H  Mj)e(n -  j ) (4.5)
3 = 0  j = l

where u(n) are the EOG signals. The order of the models, m and r, were determined by ex-

periment to produce decorrelation without overparametrization. Experiments demonstrated 

the requirement for three or four EOG channels for effective artifact removal. Coefficients 
calculated for eye blinks were successfully applied for the removal of other eye movements 
and were effective for a short period of time after the data used for their computation.

4.5.2 The troublesome muscle artifacts

Compared to the rejection of ocular artifacts that of muscle (EMG) artifacts is a near 

impossible task, owing to the absence of a reference signal (unlike the EOG), or even a 
well-defined morphology (section 2.5.4). Muscle potentials mainly contaminate frequencies 
above 15 Hz[ 142] and often have morphological similarities to epileptic transients causing 
problems in the detection of the latter.

Gevins et al.[66] used artifact rejection in their multi-channel spectral analysis system, 
based on the power and cross-spectral density of epochs of about 1 s, evaluated using the 

FFT. The mean and variance of the PSD of artifact-free epochs was computed for the
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frequency ranges 0-1 Hz, 0-4 Hz  and 34-44 Hz, the respective regions for perspiration, 
ocular and muscle artifacts, according to the authors. These artifacts were detected (but 

not corrected), when the PSD in their frequency range was higher than the mean by an 
integral multiple of the standard deviation in the respective range of the artifact-free record. 
The accuracy of the method (65%) permitted its use under human supervision, although the 

consistency of human analysts was also low.

Gotman et al.[78] attempted to remove EMG artifacts from records containing epileptic 
seizures, using digital filtering. These authors noticed that the PSD of the artifact-free EEG 
did not have significant components above 12 to 28 Hz, whereas EMG records had their 
main components above 15 Hz. They proposed an FIR filter with a cut-off frequency at 25 
Hz  to eliminate artifacts without significant distortion of the cerebral activity. According to 
the authors, activity masked by artifacts and revealed after filtering should be interpreted 

with care, since residual muscle activity sometimes resembled cerebral potentials.

Two types of digital filters were developed and applied by Panych et al.[142] with encour-
aging results. The first, was a non-linear low-pass HR filter with a parameter varying with 
the signal gradient, lowering its cut-off frequency in the presence of signals of high gradient 

(like muscle artifacts), thus clipping them. The second was a linear FIR digital filter like 
that of Gotman et al. (see above), but with softer cut-off characteristics to preserve the the 
signature of the artifact.

A different approach was adopted by Johnson et al. [98]. The EEG was modelled as the 
linear summation of four lightly damped oscillators, a, (3, 8 and 6, driven by white Gaussian 
processes and additive Gaussian, zero mean, white observation noise. Muscle artifacts were 

modelled by three second-order systems, driven by independent impulse Poisson processes, 

to represent spikes of duration 10, 15 and 20 ms (Figure 4.2) which were equally likely. Their 
parameters and impulse responses were estimated using the PSD of real muscle spikes falling 

in the three categories.

Muscle spikes were detected using three matched filters and a maximum likelihood cri-
terion to determine which one, if any, had occurred. These were eliminated by exciting the 
corresponding system model by the output of the matched filter, subtracting its output from 

the EEG signal and applying a Kalman filter[31] [101, pp. 254-289] to eliminate noise due to 
mismatch of the simulated and the actual spike. Only normal EEG records were considered, 
but, according to the authors, the detection of abnormal transients was a trivial extension 

of the proposed system.
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Figure 4.2: The EEG signal model used by Johnson et al.

4.5.3 Cardiac potentials and other sources of interference

A wide range of signals of biological and non-biological origin interfere with the EEG. Cardiac 

potentials (ECG) are another source of artifacts (section 2.5.4). These have similar properties 
to ocular artifacts, and some authors, like Fortgens and De Bruin[59], have applied common 
methods for their removal (section 4.5.1).

Witte et al. [203] suggested the detection and elimination of the cardiac activity from the 
EEG using spectral analysis. Since the ECG is periodic, its spectrum in the contaminated 
EEG, would contain discrete equidistant lines, corresponding to harmonics of its frequency 

of repetition. The PSD of the EEG, estimated by the FFT, and differenced to reduce the 
smoother cerebral activity was tested for ECG periodicities using its discrete spectral prop-
erties. Confirmation by transforming to the time-domain and comparing with the recorded 

ECG led to the subtraction of an average ECG from the EEG signal. The correction of the 

artifact was tested by repeating the test in the PSD. Ocular artifacts were eliminated by 

testing for coherence in the low-frequency range of the EEG and the EOG using the FFT. 
If present, the EEG was corrected by subtracting the scaled EOG signal and repeating the 

coherence test for confirmation.

Although drowsiness is a cerebral phenomenon, Gevins et al.[67] treated it as an artifact, 
because it introduces bias in the establishment of wakefulness. Using the PSDs of a number 
of EEG channels (see method by the same author in section 4.5.2) the amounts of alpha (8-13 
H z ), theta (4-7 Hz)  and delta (1-3 Hz)  activity present were estimated. The ratios of every 
one with the two others were computed and compared to individual drowsiness thresholds, 
different for every channel, to determine an increase in the slow activity, characterizing 
drowsiness. Bilateral indications were accumulated and their summation over a number of 

epochs determined the state of consciousness (awake or drowsy) at the end of every epoch.
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4.6 Computerized analysis techniques

Artifact rejection a rather challenging task, did not inhibit workers to attempt the to au-
tomate the analysis procedure (Figure 4.1), as motivation was quite strong (section 4.2). 
Targets varied with the intended application and some were more general than others. These 

fall in one of these categories:

• Detection of epileptic transients

• Detection of event-related potentials

• Sleep stage analysis

• Overall EEG assessment

• Data Compression

• Integrated systems

The methods applied to realize these targets were quite varied and classification is dif-

ficult. In the review that follows the emphasis on the detection of epileptic transients is 
evident and there is a bias towards methods bearing resemblance to those employed in later 
Chapters.

4.6.1 Detection of epileptic transients

The importance of the EEG in the diagnosis and treatment of epilepsy was made apparent 

in the past two Chapters (sections 2.5, 3.6 and 3.8). Most epileptic patterns in the EEG 
are associated with spikes and possibly slow waves, whose appearance is often spontaneous. 
Methods for their automatic detection exploit some of their many properties, although most 
use some form of pre-processing (feature extraction) followed by detection (classification). 

Since preprocessing, is their most prominent part, it was used for their discrimination in this 

review.

Methods based on gradients

Epileptic transients, like spikes and sharp waves are characterized by abrupt, short-lived 
changes in the EEG, having amplitudes typically larger than the rest of the record and rapid 

onset. These give rise to large gradients (derivatives) with respect to time, a fact that may 

be used for their detection.
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Carrie[35, 36], used the EEG and its second derivative, evaluated by an analogue com-
puter for the detection of sharp transients. These were sampled and fed into a computer 
which marked spikes by comparing the second derivative of individual samples to a measure 
based on its average, computed from a number of samples and a preset relative value. This 
was confirmed if followed by a slow wave of duration between preset limits, determined from 

the original EEG samples. In a later development[37], false detections due to muscle artifacts 

were prevented by filtering out the low frequencies (0-26 Hz)  and detecting bursts of waves 
in the residue to indicate artifacts. Spikes detected during these periods were rejected.

Based on similar principles, Smith[181] modelled spikes as triangles with unequal sides 
and a base-line of duration 20-70 ms and proposed the first derivative as an indication 

of the steepness of the two sides. These were detected by their abnormally high gradient 

using a preset threshold level. The sharpness of the apex of the spike was calculated as the 

difference in the average slopes of the detected edges and not as the second derivative, which 
is affected by noise. Differentiation was performed by an impulse invariant transformation 

of the analogue pseudo-differentiator:

G(s) =
s +  b

(4.6)

The problem of muscle artifacts with their high derivatives was recognized but not solved.
Digital differentiation was the basis of spike quantification proposed by Ktonas and 

Smith[107]. A digital low-pass filter derived by an impulse-invariant transformation of an 
analogue filter reduced high-frequency noise before applying a ‘successive difference’ digital 
differentiator. Quantification utilized five slope and time parameters. Their values were con-

sistent for spikes extracted from three patients. The authors pointed out that this method of 

quantification offered a more detailed and precise spike description than the one used during 
visual inspection, which was subject to errors. At a later development of the method[108] 
the definition of the parameters was changed a little and their number increased to ten, to 
include sharpness and amplitude measures. Derivatives were estimated using digital differ-

entiators, derived from analogue transfer functions via the bilinear transform and included 
filtering. Differences in the measures between subjects and between spikes and sharp waves 

were observed.
Based on this method, Glover et al.[71] later developed a system capable of analyzing 16 

channels at speeds of 8 times that of real-time. One slave processor was allocated for every 

channel, programmed individually, but controlled by a master processor. A multi-channel 
processor was connected with a terminal for downloading commands and reporting results. 
It also correlated spike detections from individual channels to reduce artifacts and classify 

‘borderline’ cases.
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A prototype microprocessor system was designed and tested by Comley and Brignell[45]. 

It was based on the concept of the ‘roving slave processor’, a stand-alone system, connected to 

a larger computer only for downloading programs and extracting results. Differentiation was 
performed digitally, using an impulse-invariant transformation of the analogue differentiator, 
truncated to a simple difference operation. The gradient was filtered by a low-pass digital 

Butterworth filter with a cut off frequency of 50 Hz  to reduce the high level of noise. 

Consecutive EEG segments having gradients above a positive and below a negative threshold 
and the time required for the transition between them were utilized for spike detection. 

Muscle artifacts were the main source of false detections.
Instead of a differentiator, Quian et al.[157], used a difference filter in the form

d(n) =  x (n ) — x(n — k) (4.7)

emphasizing specific frequency components (multiples of 16 Hz)  which were in the range 

of the fundamental and harmonics of a spike. If the product of d(n) and its past value 

d(n — K ), remained above a threshold (20.5 times its mean deviation) for at least 15 ms 
(chosen experimentally), a spike was detected. The product operator was found to reduce, 
but not eliminate, high-frequency artifacts and noise.

Finally the real-time spike and wave detector, developed by Stelle and Comley[183, 185] 
had similarities to that of Comley and Brignell (described earlier). Stelle developed the 
detector entirely in the discrete z-domain. To eliminate the need for two level-detectors, 
due to the bipolar gradient of epileptic spikes, a Hilbert transformer was cascaded with the 

differentiator to make the output monopolar. The transfer function of the ensemble system

sin2(n /2) . .
n(n) =  A ------—  cos(7rn) (4.8)

n/2

found by the inverse Fourier transform, was truncated to form an FIR system, whose out-
put was raised to the power 3, enhancing large gradients but maintaining signal polarity. 

Subsequent slow waves were detected by a Butterworth digital low-pass filter with cut-off 

frequency at 7 Hz  and a level detector. False detections, mainly due to muscle artifacts were 

reduced by defining a window in which the occurrence of more than one spike was rejected.

The use of domain transformations

Time-to-frequency transformations cause the spread of brief phenomena, such as spikes, 

making their detection more difficult. They have been used, however, in some special cases.
Spectral analysis was used by Gotman et al.[74] for the detection of prolonged abnor-

mal slow wave activity. A representative 40 s segment was chosen interactively and then
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automatically subdivided into 5 s segments. The FFT was applied to each segment and the 
resulting PSDs were averaged for every EEG channel and displayed along with the relevant 

EEG segment. The weighted ratio of slow to fast activity

( c - a )  +  {d - t3) K 1

where the weights a, b, c and d depend on the location of the channel, was computed and 
plotted graphically, localizing excessive slow wave activity and asymmetries between the two 

hemispheres.
Darcey and Williamson[51] used relative measures derived from power spectra for the 

automatic quantification of seizures. Recordings from implanted depth electrodes, were 
manually divided in the pre-ictal and ictal phases which were separately processed by the 

FFT. The mean, M(i, f a,fb) and standard deviation, S ( i , fa,fb), of the PSD of the pre-ictal 
record were evaluated for the frequency range f a =  8 Hz  to fb =  30 Hz  (8-30 Hz)  for 
every channel, i. During a seizure, the integral of the PSD in the same frequency range, 

B I P ( i , j , f a,fb), was computed for each epoch j  and was used to calculate two relative 
measures,

\B I P(i, j ,  fa, fb) M (i, f a, fb)\
B I P Z ( i , j , f a,fb) =  

B I P R { i , j , f a,fb) =

S{i,fa,fb)
B I P ( i , j , f a,fb)

(4.10)

(4.11)
M ( i , f aJb)

which had large values during a seizure and were used to locate the onset of focal attacks. 
The relative measures proved superior to BIP(-)  in the localization of the epileptic focus.

Saltzberg[168] employed the FFT to reveal the presence of subcortical spikes in the EEG. 

In the analysis provided, it was demonstrated that the presence of non-periodic subcortical 
spikes in the EEG would cause ripple frequencies in its PSD, corresponding to the reciprocals 
of the time intervals between them. According to the author, the presence of these spikes 
was sometimes more evident in the PSD than in the time domain.

To utilise both time and frequency information for the more accurate detection of the 

spike-and-wave complex, Stelle and Comley[184] used the Wigner-Ville distribution, a trans-

formation converting a time function, x ( t ), into a time-frequency distribution:

W. x{t +  ^ t ) • x m(t -  )e JU,Tdr 
OO Z Z

(4.12)

where x*(t) denotes the conjugate of x(t). For practical evaluation, a discrete form, incor-
porating a window, w(n) was employed:

N - l
Wx(m, k) =  ^2 w(n)x(m +  n) • w*(n)x*(m — n)e

n=0
— jirnk/N (4.13)
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After smoothing by a two-dimensional Gaussian filter, the distribution for spike-and-wave 
complexes appeared to have a characteristic ‘T ’ shape, which was visible even in the presence 

of artifacts.
Four regions in the distribution were identified, the spike, A s, the slow wave, A w, the 

high frequencies of the spike, Ah/ and an area of inspection, A,. Variations in Ah/ were 
enhanced by differentiation and the ratio, K 1, of the standard deviation and mean of the 
region was computed. The maximum, K 2, of the A,  and A w regions was then determined. 

The area A, is almost clear for spike-and-wave complexes and the normalized function

y(m, k)
A,(m, k) 

K2
■ K l - k (4.14)

was a measure of muscle artifacts, which have significant components in A,. These were 

detected by counting the points in this region whose values were higher than a preset level, 
achieving the rejection of artifacts and the detection of contaminated spikes[185](pp. 191— 

192).

Parametric techniques

Formal modelling the EEG signal is not a trivial task, due to its changing and unpredictable 

nature. Nonetheless, under certain assumptions and allowing for discrepancies, stochastic 
modelling proved a powerful analysis tool.

Lopes Da Silva et al.[179], one of the pioneers in the application of this approach in the 
detection of epileptic transients, modelled cortical signals as the output of an autoregressive 
filter, H(z),  excited by white Gaussian noise, e(n), with additive spikes (Figure 4.3). For 
analysis the inverse of system, A(z) =  H~l (z) was applied to the EEG signal and the output 

contained the generating sequence, e(n). The (15) coefficients of A (z ) were estimated, by 
the method of least squares based on the autocorrelation function of a window of the EEG 
signal and its output was squared, averaged, and tested for spikes as outliers in the assumed 
X2 probability distribution function (Figure 4.3). The number of detections in a number of 

channels was used for the localization of an underlying epileptic focus and agreed with other 
clinical findings. This method did not discriminate between spikes and other transients, but 

demonstrated the presence of spikes with characteristics outside the internationally agreed 

limits.
Autoregressive modelling was also the basis of the work of Bodenstein and Praetorius[25, 

153], who proposed that the EEG should be regarded as a sequence of quasi-stationary seg-

ments, each characterized by its length and a (constant) power spectral estimate. Under addi-
tional constraints for real-time operation and data reduction, linear prediction was employed
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Figure 4.3: The autoregressive model of Da Silva et al.

for spectral parameter estimation. Their algorithm began with the computation of the auto-
correlation function of a window of the signal to construct the auto-correlation matrix and 
solve the normal equations for the optimal autoregressive filter coefficients, {a, : i =  1 . . .  p} 
(see section 8.1.1). The inverse system was applied to subsequent samples and the estimated 

auto-correlation sequence, of the output error function, r(n; k), was the basis of the spectral 
error measure:

S E M {n ) (4.15)

whose value was compared to a preset upper limit to determine the end of a segment and 
the beginning of the next. This procedure was repeated for every new segment. To prevent 
the premature termination of segments due to the large transient SEM,  caused by spikes 

and other sharp phenomena, the average squared error for consecutive samples was used as a 

measure of spikeness. If above a given threshold, the corresponding error values were clipped 
to reduce the SEM.  Segmentation led to data reduction, since each segment was described 

by its length, the power of the error and the prediction coefficients. From these the time 

behaviour and PSD of the signal could be reconstructed. The authors proposed the possible 

description of the EEG as a Markov process.

Clustering of similar EEG patterns was investigated by Birkemeier et al.[17]. Double dif-

ferentiation, estimated by fitting a parabola on consecutive segments of the EEG improved 
clustering of normal activity and abnormal transients. Better clustering was achieved by 
linear prediction of five samples in the future since it decorrelated the background activ-
ity and made transients more prominent. The prediction coefficients were estimated using 
window-based correlation estimates and direct matrix inversion. Further improvements in 
the discrimination between normal and abnormal patterns were possible by cascading linear 

prediction and double differentiation.
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Figure 4.4: The non-linear filter suggested by Arakawa et al.

The merits of autoregressive filtering for the segmentation of the EEG signal were ex-
ploited by Penczek et al.[144], who considered both stochastic and quasi-periodic repetitive 

abnormalities during a seizure. In order to follow rapid changes in the signal, a (multi-
channel) Kalman filter predictor with sparsely updated parameters was employed (see [140, 
pp. 173-188], [31] for a description of the Kalman filter). The resulting matrix of prediction 
coefficients indicated intra- and inter-channel relations. A linguistic (syntactic) approach 
was adopted to classify segments. Similar matrices were grouped to form 11 labelled classes 

and the signal was treated as a string of labels. Sub-strings were found to recur during 
seizures. The authors highlighted the similarity of this approach to visual analysis which is 

based on general characteristics, rather than individual detections.

Arakawa et al.[4] proposed a non-linear system for separating stationary and non-stationary 

EEG activity. The system consisted of a prediction filter and a non-linear function, F(-) 

(Figure 4.4). The stationary part of the signal, y(n) was predicted by an autoregressive 

filter, implemented as an LMS adaptive filter (described in Chapter 7 and in many texts 

and articles[14, 15, 140, 200, 201, 202]). The error of the prediction, e(n) =  x(n) — y(n), 
was applied to the non-linear system, F[e(n)], which was linear for |e(n)| < e, constant 
at e for £ <  |e(n)| <  k e  and zero for |e(n)| > K£, which were assumed to be caused by 
non-stationarities. The stationary output, y(n) =  y(n) +  it(n), was thus separated from the 

non-stationary, z(n ) =  e(n) — u(n). The parameters £ and k s  were estimated adaptively, 

based on fixed relative probabilistic measures and experimentation and on the running vari-

ance estimate V (n )2 =  ( 1 — a)V(n  — l ) - f  ae(n)2. This system did not distinguish between 

spikes and other non-stationarities.
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Inverse and matched filtering

Inverse and matched filtering are normally used to detect patterns of brief duration and 
well-defined shape, typically buried in noise. Unfortunately, variations between individual 
transients and the correlation of the background activity limited their success, as explained 
by Comley and Brignell[45] who had used matched filters for spike-and-wave detection.

Weinberg and Cooper[196, 197] pointed out that matched filters are based on energy 

properties and hence the output of a spike-and-wave filter would be more dependent on 

higher-energy slow waves, although the presence of a spike is equally important and good 

overall matching is deemed impossible. The authors suggested separate matched filters 

{x m}, for every sub-pattern, m whose outputs, rm =  ■, were combined to form
the recognition index, defined as their product if all are positive and zero otherwise. This 
measure is amplitude-insensitive and could reveal the presence of the pattern by thresholding.

Inverse and matched filtering were combined for spike detection by Pfurtscheller and 
Fischer[148] after recognizing that failure of matched filtering was caused by the high auto-
correlation of the EEG. This was removed by inverse autoregressive modelling, (see Lopes Da 

Silva et al. in previous section). A number of different spike ‘ templates’ were processed by 
the inverse filter to produce matched filters in the output domain. Spikes were detected by 
thresholding the outputs of these filters, applied to the output of the inverse filter. The effec-
tiveness of the combined technique was significantly improved, compared to direct matched 

filtering.

Wave parameter analysis

Many of the developed methods were based on heuristic and intuitive criteria, using param-
eters measured from individual waves. These required only moderate computing power for 

their implementation.
A real-time system based on quantification of single waves was developed by Leader et 

al. [109]. ‘Relative’ maxima and minima were detected as zero crossings of the derivative of 
the EEG (estimated by a difference operator) preceded and followed by four samples of the 
same polarity. ‘Absolute’ maxima were those whose amplitude from the nearest absolute 
minimum was above a threshold. Absolute minima were defined in a similar manner. These 
were used to define a peak-to-peak amplitude and a period measure for every half wave, 
which were averaged over a time interval and used to classify the EEG segment in one of 13 
normal and abnormal classes using a nearest neighbour algorithm.

Carrie[34] analyzed transient EEG abnormalities using the peak, duration and amplitudes 

from the baseline at specific fractions of the duration of the negative half-waves of the signal.
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For every new wave, each measure was divided by the corresponding running mean and 

compared to a preset threshold to detect abnormal levels.

Hill and Townsend[86] used the same technique to select features from individual waves. 
The peak angle of a half-wave, considered an important feature and was evaluated by fitting 
straight line segments on both sides of the peak. Peak angles, normalized by an ampli-
tude measure, were found to follow different distributions for ‘spikes’ and for ‘waves’ and 
their discrimination threshold was estimated. The mean frequency of spike occurrence was 
subsequently evaluated as a useful diagnostic parameter.

Following a review of methods, Gotman and Gloor[75] concluded that a working real-time 
system had to be a compromise between a formal method and a simple, heuristic one. The 

time differences and amplitudes between local maxima and minima were measured. Succes-

sive extrema formed basic segments, which were re-grouped using amplitude and duration 
criteria, to eliminate short intermediate segments, caused by noise. Waves were then defined 
as sets of two consecutive segments. The average amplitude of all segments in a 5 s interval 
before a segment was used for the normalization of its amplitude. The sharpness of its peak 
(measured from the estimated second derivative) and two duration measures were evalu-
ated. Epileptic spikes were detected as pairs of consecutive segments satisfying predefined 

amplitude, duration and sharpness criteria. Inter-channel correlation of detections revealed 

their time relation and improved the reliability of the system. A graphic and an interactive 

user interface were incorporated during a subsequent development by Gotman et al.[76]. 
This system was modified later to include a derivative-based wave asymmetry measure[77], 

defined as the slope of the line joining the apex to the point of middle-duration of a half 

wave.

Segmentation using regrouping of elementary segments was utilised by Koffler and 

Gotman[105] to detect bursts of epileptiform activity during long-term monitoring. A half-
wave was detected as a spike if its relative amplitude compared to the background activity 
exceeded a threshold. The threshold was lowered if a slow wave was subsequently detected. 

Spike bursts were identified by counting the number of spikes in a given period for each 
channel and between channels. Their amplitudes, durations and mean frequency were used 

to discriminate genuine spikes from muscle artifacts.

Pola and Romagnoli[149] employed differencing between consecutive samples to eliminate 

slow waves. The difference of the differences, introduced as a corrective factor, was claimed 
to reduce sampling rate fluctuations. A typical spike was used as a model to derive spike 

margins, which were compared to the differenced waveform.

Relative measures were used by De Oliviera et al. [139]. The peak amplitudes of the
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signal, and its derivatives (computed by analogue differentiators) were normalized by the 
corresponding variances and combined with various duration measures to a single feature 

vector. The boundary between normal and spike vectors was determined by maximizing the 
sum of specificity and sensitivity (the inverse of false and missed detections).

Davey et al. [54] combined elements of the previous methods. The extrema of the wave-
form were detected by a difference operator using the previous and the next sample. Three 
parameters (duration, amplitude and peak sharpness), were extracted from the set of ten 
suggested by Ktonas et al. Sharpness was computed according to Hill and Townsend and 
the definition of background activity was borrowed from Gotman and Gloor. These features 

were applied to a rule-based system, developed with the assistance of a human analyst. 

Classification of the record could distinguish focal and generalized activity.

Other methods

Finally, there are methods that could not be classified under any of the previous headings, 

either because they used too specialized or too varied techniques.

Ehrenberg and Penry[56], for instance, detected spike-and-wave discharges using the du-

ration between baseline crossings of the signal to estimate wave periods. These were accu-
mulated over an epoch and compared to a running mean to determine three-epoch periods 
where a threshold was exceeded.

A microcomputer system constructed by Principe and Smith[155] could detect petit mal 

paroxysms and its variants by separating slow components from the fundamental of the spike 
using band-pass filtering. Spikes and waves were detected separately using the duration and 
peak amplitude of half waves. These were compared to preset limits and a seizure was 
marked as a succession of three slow waves containing at least one spike.

Panych et al.[141] constructed a seizure detection unit based on digital band-pass filtering, 
and thresholding of the estimated RMS value of its output. The system was a basic one, but 

its many false detections were acceptable, since its purpose was the unsupervised control of 

a mechanism for video, audio and EEG recording of seizures.

Grochulski et al. [81] followed the syntactic approach for real-time analysis of the epilep-
tic EEG. Peak-to-valley amplitudes and durations were used as parameters. All possible 
conditions were assigned labels in a mutually exclusive and exhaustive manner based on the 

similarity of their parameter values. The EEG was then described as a string conforming 
to a regular grammar implemented as a finite-state automaton with nine terminal condi-
tions recognizing sub-strings representing significant EEG phenomena. Later, Penczek and 

Grochulski[145] simplified the initial automaton via state reduction methods. A machine,
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constructed using the theory of Markov chains defined states and transition probabilities 
between them, was applied to a multi-channel system to model interactions between brain 
structures after direct stimulation. Eleven states and their transition probabilities were esti-
mated by clustering spectral parameters, extracted from an autoregressive filter constructed 

via the FFT.

Finally, Glover et al.[72] recommended the use of a knowledge-based system to incorpo-
rate spatiotemporal context information for the prevention of false detections in long-term 

seizure monitoring. Various time and amplitude features were extracted from the EEG, ECG 

and EOG channels and fed into a rule-based system to detect and group possible epileptic 
transients. This was followed by multi-channel analysis with rules to correlate the various 
findings in the EEG, EOG and ECG channels to confirm detections and remove false events, 
due to artifacts.

4.6.2 Detection of event-related potentials

Event Related potentials (ERPs) are minute fluctuations in the EEG signal that correlate 

with external stimuli, often presented to the subject many times. Traditional averaging of 
many responses to reveal the ERP is not always satisfactory and experimental techniques for 
its extraction from the much larger ongoing activity have always been valued. The methods 
summarized here relate to the the work presented in later Chapters.

To decrease the time variability in the responses that could invalidate averaging, Vidal [190] 
suggested the estimation of a Wiener filter based on the pre-stimulus to reduce the on-going 

EEG signal, followed by an F-test to estimate a suitable weight vector to enhance clustering 
and a Bayes posterior probability rule for classification.

Wiener filtering was the core of the work of Cerutti et al. [38]. The filter was developed 

in the frequency domain and assumed that the signal (ERP) and noise (ongoing EEG) were 

uncorrelated.

* * .(« )  +  $ „n M
(4.16)

The power spectral densities of the signal, $„(u>), and the noise, $ nn(u;), were estimated 

from the pre- and the post-stimulus waveforms, respectively. The filter was applied to the 

post-stimulus in the frequency domain and the signal was revealed by transforming back to 
the time domain. This method decreased the necessary number of experiments, compared 

to averaging, by a factor of 10.

A different approach was adopted by Fridman et al. [61 ], who used the amplitude and 
phase of the average FFT-based spectra of individual responses to synchronize them. Fil-
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tering and differentiation in the frequency domain were applied to enhance the signal before 
the inverse FFT was applied.

The classification of ERPs using the FFT was attempted by Moser and Aunon[125]. 

Separability of the transformed pre- and post-stimulus data and their synchronization was 
assisted by a cosine transformation of amplitude and phase. Their most significant features 
were then used to construct FIR bandpass filters which were applied to the EEG signal and 
their outputs were used as features for the classification based on a Log-likelihood ratio.

Spectral analysis was the basis of a technique suggested by Jervis et al.[97], who assumed 
an EEG model, consisting of the superposition of the spectra of the ongoing activity and the 

ERP. Statistic measures for specific spectral components were extracted and used for the 

classification of patients suffering from Huntington’s disease and normal subjects.

4.6.3 Monitoring stages of sleep

Overnight monitoring of the EEG during sleep has always been a challenging classification 
problem. A lengthy EEG record is to be segmented and annotated into states of consciousness 

(section 2.5.1). Work in this domain dated back to the early days of computers. Cox et al.[49] 
produced a review of early methods in 1972. This included amplitude and frequency analysis 
and the simpler, but equivalent, period analysis, based on zero crossings and variances of the 

signal and its derivatives. The sophistication of more recent developments was inherently 
linked to technological advances.

A real-time system was implemented by Lim and Winters[110] for the analysis of the 
EEG of cats. The peaks and zero crossings of the signal were used, since they signify 
amplitudes and frequencies. Artifacts were identified by their atypically large amplitudes. 
Waves were classified into 8, 6, a, <r, 7 and (3 and their relative ratios determined the state 

of consciousness and the classification in one of seven primary states, whose limits were 

determined experimentally, to resemble the performance of the human analyst.

Principe et al. [154] transformed Chebyshev analogue filters to discrete-time using the 
impulse invariant transformation and zero placement at z =  ±1 to construct five band pass 
filters, q  (7-17 H z ), (3 (13-35 Hz), a (11-29 Hz), 6 (1-10 Hz)  and (0.5-3 Hz). These 
separated the various frequencies in the input EEG signal for subsequent qualification in 

sleep stages. Different filter realizations and low-pass to band-pass transformations were 
compared for narrow- and broad-band filters, but no explicit method for EEG quantification 
was proposed.

The automatic sleep staging method of Haustein et al.[84] used one EEG, one EMG 

channel and FIR filters to subdivide the EEG in the frequency bands, 8, 6, a  and (3. The
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mean peak amplitude in each filter output were estimated from the amplitudes between 

consecutive local maxima and minima and combined in a vector. The EMG was similarly 

separated into amplitude measures to quantify continuous, low-amplitude and discontinuous 
high-amplitude muscle vector activity. Using the inner product of the mean amplitude vector 
with weight vectors, three orthogonal vector functions were formed. Sleep quantification was 
a vector pointing from the average for an awake person to that of deep sleep (stage 4) and 
was quantized to indicate discrete sleep stages. The other two were a calibration and an 
artifact detection vector. The authors reported good correspondence with human scoring, 
but supported the view that separation of sleep into stages was arbitrary and the continuous 

parameter was preferable.

Sleep stage analysis was one application of a programmable medical instrument, de-

veloped by Papp et al.[143] as an integrated, real-time, multi-tasking software system. A 
signal processing library and a command language, supported both general-purpose and 
knowledge-based system programming as well as user interface design. Sleep staging was 
based on monitoring amplitude trends in every EEG channel, computing power spectra and 

evaluating the activity in the conventional EEG frequency bands, used by a rule-based in-
ference engine to detect sleep stages. This system was a general one, not bound to a specific 
method or signal.

One of the more recent developments in sleep stage analysis was the approach of Roberts 

and Tarassenko[161, 162]. The EEG sequence, was parametrized using a linear prediction 
Kalman-Bucy filter:

x (f) =  y  0« *(< “  0  +  c(0  (4.17)
t=i

where 6 =  {0 ,;i =  l , . . . , p }  are the (time-varying) Kalman coefficients and x (i) and e(t) 
are the EEG and a white noise sequence, respectively. The order of the filter, p =  10 
was chosen by experiment to reduce the mean squared error without over-parametrization. 
The extracted 6 was applied to a self-organizing map, a neural network that enhanced 

clustering. It consisted of a 10 x 10 lattice of processing elements, each having an internal 

characteristic vector, m ^ . Its function consists of computing the Euclidean distance of 

an input vector ||$(t) — for all its elements, and suppressing all outputs but the one

with the minimum distance, whose output is typically set to 1. Training is unsupervised, 

presenting to the network the input vectors in random order, after initializing the to 
small random values. Each time, the distances are computed, an area, N  around the node 
with the smallest distance is determined in which the m,* are modified, according to the 

learning rule:

m j t ( t  + 1) = m,t(i) + o(i)/3(n,i)[x(i) -  m,*(f)] (4.18)
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where a(t ) is the learning rate and /3(d,t) is a function of the distance in output space 
of the element from the one with the smallest distance. These were made functions of 

‘time’, because both have to be reduced as learning progressed for successful operation of 
the map. During the course of sleep, the output of the map was found to ‘migrate’ from 
one area to another following characteristic paths and exhibiting stationary ‘states’ . Their 
correspondence with conventional sleep stages, was determined using a linear classifier on 

the outputs of the map and the likelihoods for every condition, which were computed with 

supplementary information from an EMG and an EOG channel to discriminate awake, light 

sleep and REM sleep.

4.6.4 Overall EEG assessment

Some methods were developed without any particular EEG features in mind, but applied 
certain procedures for the general quantification or analysis of the signal. The articles 
reviewed here are only a small sample of the vast literature available and are characteristic 

of the variability in the approaches.

Domain transformations

Excluding transients, the EEG signal has relatively constant statistical properties. The 
signal maintains its properties for a long period of time (a few seconds or longer). Domain 
transformations, especially the Discrete Fourier Transform (DFT), have been employed by 
different groups of workers.

Matousek and Petersen[119] employed the FFT on 60 s EEG epochs to detect immaturity 
patterns, associated with a variety of brain conditions. The power in the usual frequency 

bands of activity ( i , 6, a  and ¡3) was evaluated. Their ratios and ratios of linear combinations 
were used in a formula to estimate the age and compared to the actual age of the subject.

The average PSD of several 2 s epochs evaluated using the FFT was used by Brenner et 
al.[29] for the discrimination of demented, depressed and normal subjects. The logarithms 

of the total power density in the usual EEG activity bands and the average frequency were 
subjected to covariance analysis, which revealed differences in their distributions for the 
three groups.

Oken and Chiappa[138] evaluated the PSD by applying the FFT on 4 s windowed epochs 

to investigate the short-term variability in the EEG. The mean, variance, skewness, kurtosis, 
maximum, minimum and the ratio of the variance and the mean for the usual frequency bands 
were evaluated. Some were found to vary from epoch to epoch, whereas others remained 

fairly constant.
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For real-time analysis, Weide et al.[195] employed the orthonormal Discrete Walsh trans-
form (DW T), because it is considerably faster to compute than the FFT. Walsh ‘spectra’ 

contain marked peaks in the presence of sinusoids, at the same ‘frequency’ (called sequency). 

Compared to the Fourier, the Walsh domain is not shift invariant, there is a greater spread 
of components and an enhancement of those with high-sequency.

Parametric methods

Almost three decades ago, Wennberg and Zetterberg[198] suggested a model for the EEG 
signal consisting of a near-stationary stochastic process with additive transients (e.g. spikes). 
The autocorrelation of the stochastic component was described by the superposition of three
families of functions,

Type 0 : r0(r) =  E  (4-19)

Type I :  r /(r )  =  G e (4.20) 

Type I I : r / /(r )  =  e~2nô [Gcos(2irf0T) — Hsm(2iTfo\T\)] (4-21)

The coefficients, {a ,} and {&_,} of an ARMA system excited by white noise, e(n),

P 9

x(n) =  aix (n -  0  +  e(n) +  H  hje{n -  j )  (4.22)
«'=i i=i

were computed from samples of the auto-correlation function. Separating the system into 

first and second order processes, the parameters (E , G, H, cr and /o) were evaluated. These 

were more descriptive than the {a ,} and {&_,}, because they are interpreted as amplitudes 
and resonant and cut-off frequencies, readily providing a parametrization of the PSD.

Isaksson and the aforementioned authors[93] used parametric models to overcome the 
requirement for long EEG segments necessary to achieve adequate frequency resolution 
when applying the FFT, coming to conflict with the non-stationarity of the signal. The 

parametrization of the PSD was considered preferable to the arbitrarily chosen 6, 0, a  and /? 

ranges. An ARMA model was preferred over the simpler AR, because of its lower order. It 

was implemented as a Kalman Filter, for the recursive computation of the coefficient vector, 
0, which may be time-varying, following a method similar to equation (4.4).

One year later, Pfurtscheller and Haring[147] reported the fast computation of the PSD 

using an auto-regressive filter. The p filter coefficients, a\, • • •, ap were evaluated from the first 
Np auto-correlation values and recursively applied to them to estimate the remaining auto-
correlation values, a faster procedure than their direct computation, especially if M  >  p. 
The PSD was then evaluated using the FFT. Kleiner[104] explained that the PSD could have
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been computed by squaring the FFT of the EEG samples, a faster method, or by evaluating 
the transfer function of the filter at N  discrete points z =  e?*'lN, even faster.

Crowell et al.[50] used an autoregressive model to summarize spectral information in 
a small number of parameters. The model order, p =  6, was selected by minimizing the 

Akaike Information Criterion and its parameters, were subjected to statistical analysis which 
revealed differences between age groups and abnormalities in the maturation process.

The AR (autocorrelation) and ARMA (Yule-Walker) models were employed by Smith 
and Lager[182] to compute amplitudes and frequencies of complex exponential functions, 
relating to pairs of poles of the system. Problems were reported in selecting the optimal 
model order and the duration of signal window for coefficient evaluation. The ARMA model 

produced less biased estimates of the correct parameters than the AR model for simulated 
data, but the variance of the former was higher. On real records, the AR system proved 
more versatile, even in the presence of non-stationarities and artifacts, and was preferred as 
it was simpler. Bias decreased with increasing filter order.

Blinowska et al. [21] fitted an autoregressive model to the EEG using numerical optimiza-
tion and converted to the continuous transfer function form:

» W  =  E “  (4-23)
S  -  a ,

The Ci and a, parameters related to peaks in the signal spectrum and to the superposition of 
parallel processes. The PSD was evaluated from these parameters for the benefit of human 

analysts.

Hjorth analysis

One of the early methods of EEG quantification, Hjorth analysis, called after the person 

who suggested it, was so well-formulated, simple and mathematically sound that it caught 

the attention of many workers[47].

In 1970, Bo Hjorth[87] defined three parameters based on time-domain properties to 

summarize EEG signal behaviour:

• Activity, A , the variance (power), ctq of the signal

Mobility, M , the ratio of the standard deviations of the derivative of the signal, <ri to 

that of the signal itself:

M  =  —  (4.24)
0o

expressed the standard deviation of the power spectrum along the frequency axis
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• Complexity, C, the ratio of the activities of the derivative and the signal,

C =  ^ ! p .  (4.25)
(Ti/cro

is a measure of fine detail, deviating from unity (for sinusoidal signals) with frequency 

spread.

Although these parameters were defined in the time-domain, they are versatile, relating 

to the moments, pk, of the power spectral density since p0 =  erfi, p\ =  0, p2 =  H3 =  0, 
p4 =  o\, etc. Hjorth reported that his parameters were sensitive to changes of consciousness. 
He demonstrated that the activity, mobility and a generalized complexity could describe 

the auto-correlation function, whose diminution with increased lag justified the use of a few 

parameters for its description[88]. First and second order systems could be quantified exactly 
by the suggested descriptors (A, M  and C ).

Saltzberg and Burch[167] proposed a fast procedure for the computation of Hjorth param-
eters using the zero crossings, Nk, of the fcth derivative of the auto-correlation function R (t ) 

and the relation o =  (—1 f°r & =  0 ,2 ,4 ,. . .  because under some conditions
on which the EEG signal generally abides, pk — (ttNk-2)2-

Binnie et al.[18] augmented Hjorth descriptors by an additional parameter, the form 

factor (similar to complexity) defined by:

(4.26)

and used them in the quantification of normal and abnormal EEGs.

Techniques based on correlations

Saltzberg[169, 170] used the sample auto-correlation function, R(nAt) for the fast compu-

tation of moments, pk of the power spectral density, P (f )  related to its mean, variance, 

skewness and kurtosis:

S f f P j f W  
w So P ( M

p k  1 OO

t — T +  m n  Lk +  1 R(0)
(4.27)

where Antk =  j  So l k cos df diminish with increasing n making necessary only the first

few terms of R(nAt).

Ricci et al.[159] developed a cross-correlation routine in assembly language taking into 

consideration the fact that the neural signals to be correlated usually had a small time lag 
between them, hence it would have be unnecessary to compute correlations using the FFT.
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Other methods

The focus of the preceding sections was on trends followed in computerized EEG analy-
sis. Some interesting attempts constituted isolated or too varied methods to be uniquely 

classified.

To overcome problems from windowing data for the computation of power spectra using 

the FFT, Daskalova[52] suggested an alternative fast technique, based on the quantification of 
wave extrema, by their amplitude and time difference. Insignificant extrema were eliminated 

by employing time and amplitude criteria and the remaining were grouped to form waves, 
described by their amplitude and frequency (inverse of duration). These were sorted in 

frequency bins and smoothed to form an estimate of the PSD.

Barlow[10] compared three techniques for monitoring EEG changes with carotid clamp-

ing affecting low and high frequencies. These were analogue band-pass filtering to extract 

the ranges 0-1 Hz and 4-20 H z , followed by rectification and smoothing, inverse filtering, 
based on the EEG before clamping, to enhance changes and correlation of a window before 
clamping. The last method was reported as the most successful, whereas inverse filtering 

had the worst results.

In 1987 Katz[102] quantified states of consciousness in the EEG using the fractal di-
mension, defined by Mandelbrot[117] as the ratio of the length of a curve and the longest 
distance between any two points (its diameter). This was used as a measure of similarity 

and randomness, although it is sensitive to the units of measurement.

Jansen[95] used chaos theory for the description of EEG signals. EEG rhythms, too 

regular to be random but not exactly periodic, having bounded amplitudes were treated as 
the limit cycles out of relatively simple non-linear systems, described by state-space concepts. 
The ‘fractal dimension’ of these spaces, computed experimentally, was used to quantify 
states of consciousness. A system of non-linear differential equations, exhibiting chaos, was 
proposed for the generation of EEG rhythms.

A different objective, especially important in long-term monitoring, is the compression 

of EEG signals. McLochlin et al.[123] looked for a compression technique to preserve shape 
and time relations. The signal was segmented by consecutive fitting of one of three functions 
(hold, ramp, cosine) using the mean absolute error as a trade-off between compression and 
fidelity of reconstruction. Using the parameters of these functions (amplitude, offset, slope 

and frequency) and a two-bit code, compression rates of 3 to 5 were achieved for sleep 
recordings, sampled at 200 Hz with 12 bit accuracy. Data compression was one of the 
objectives of a 32-channel system developed by Wheeler and Valesano[199]. This was based 
on storing peaks and times of occurrences instead of the complete signal. The compression
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rates and the fidelity of reconstruction were not reported.

4.7 Comments

It is evident that there is no unique or generally acceptable method for automatic EEG 
quantification, even for specific objectives (e.g. detection of epileptic spikes). Trends in 
methodology are often associated more with developments in signal processing and other 
related fields, rather than with their suitability, a clear fact taking into account not which 
method was applied but how and in what context. All methods were successful to some 

extent, but none of them was outstanding. Those based on heuristics, are often founded 
on implicit assumptions that may not be generally valid. On the other hand, rigorous 
methods with good theoretical foundations are often more robust, but require moderate to 
high computational powers for their realization. Versatility in the presence of artifacts and 

noise may be quite low in general, since artifact rejection is a difficult problem requiring 

special attention.
The designer of an EEG analysis system, has a difficult task at hand. The signal is 

variable, poorly described and rather unpredictable. Despite the inability to quantify or 

replicate the highly acclaimed ‘experience’ of the analyst, automatic techniques have revealed 
the subjectiveness of human EEG interpretation and the presence of inconsistencies between 
experts. Could it be that the apparent poor performance of automatic analysis methods is 
the result of poor definition of the objectives and the design criteria and by comparison with 

non-ideal human analysts?



Chapter 5

Early models of the EEG signal

5.1 Introduction

A research project often begins with a vague description of its objectives, which is refined 

later. For this project the main objective was the development of a method for automatic 
analysis of the interictal EEG of persons who are suspected of suffering from epileptic attacks 
by indicating transient patterns related to this pathological condition, preferably in real-time 
(see Introduction). The available EEG records contained primarily one type of transient, 

the spike-and-slow-wave complex (section 2.5.2), which is associated with minor epileptic 
attacks (section 3.6.1). This limited the scope of analysis, but not the range of possible 

methods. A multitude of hypothetical schemes come to mind, only to be rejected on grounds 

of unsuitability, after refinement or because of previous evaluation by one or more articles in 

the vast literature on the subject. In EEG analysis the discouragement was most profound, 
since it appeared that all techniques one could think of had been considered before (see 

Chapter 4).

At this stage the only element that seemed clear was the need of some pre-processing 
or parametrization of the EEG record, as the direct classification of the ‘raw’ signal is not 

generally recommended. The possibility of applying the developed method to the detection of 

other types of epileptic events, or even to other signals containing transients was considered 
important. Hence any development was visualized in the context of its future generalization.

The need for generalization was shadowed by the prospective limitations in its success. 

As stated in the Introduction and demonstrated by numerous methods in Chapter 4, a sound 
theoretical method may not be as successful as a crude, practical one, when applied to real 
signals. In contrast, practical methods are often difficult to amend and modifications often 
result in a complicated assortment of dissimilar methods to hide the many imperfections

81
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and overcome the shortcomings of an initially not well-thought out design. This is not a 
general problem with the theoretically-based systems, whose development is often a matter of 

refinement of the theoretical basis, where the general ideas remain unchanged. The contrast 

between these two approaches was obvious from the previous Chapter (particularly from 

section 4.7).

This Chapter is dedicated to the description of some of the early attempts to give a 

mathematical description (model) of the EEG signal, with emphasis on spikes and similar 
events. Although these were not particularly successful and were eventually rejected, they 
highlight some of the problems associated with EEG signal analysis, which were taken into 
consideration for the methods presented in later Chapters.

5.2 Some notes on EEG analysis practices

In the introductory Chapters on epilepsy and the EEG, the various epileptic patterns, mainly 
spikes, slow waves and the spike-and-wave complex were described (see sections 2.5.2 and 

3.6). For the computer recognition of any pattern, it is necessary to have some quantitative 
definition that could be formulated into an algorithm. According to the definitions of section

2.5.2, a spike is a transient with a pointed peak (at conventional paper speeds), negative 
polarity and duration between 20 and 70 ms, clearly distinguished from the on-going activity. 
A slow wave was described as a single wave with frequency below that of a  activity (<  8 
Hz) and the spike-and-wave complex was defined in a pattern consisting of a spike followed 

by a slow wave. Examples of spike-and-wave complexes are shown in Figure 5.1.

Reading the definition given above the electroencephalographer has a fairly clear view 

of what it describes. The designer of an automatic detection system, on the other hand, 
is deeply concerned with the qualitative, impressionistic nature of the definitions, the lack 

of detail and the remembrance of articles stating that even when quantitative, numeri-

cal attributes have been used, they should not be treated strictly, but more as guidelines. 

He/she would probably then recall with appreciation the accurate and detailed definitions 

and statements of mathematics, physics and engineering and wonder why are neurophysio-

logical definitions not defined in a similar way.

One is inclined to answer that mathematical precision in medical definitions was not 

necessary. Until recently, medical diagnosis was strictly performed by human experts, like 
doctors and experienced medical staff. Hence the descriptions of the various phenomena 
did not need to be too specific, nor quantitative. Humans are more used to qualitative 

terminology; one tends to use characterizations rather than numbers. And perhaps one of
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Figure 5.1: Examples of the spike-and-wave complex pattern
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the greatest assets of human decision making and work is the ability to confront and overcome 
problems whose solution has not been prescribed, starting from a general description of the 

task and ‘filling-in’ the gaps in the knowledge and improving their skills with experience. 
With a certain degree of cynicism one could argue that precise methodology was originally 
created as a means of expanding human ability and removing subjectivity, ensuring that a 
statement conveys the same meaning to any individual. The imperfection of manual EEG 

interpretation was highlighted by Walter et al.[192]:

The ‘sharpness’ or ‘spikiness’ o f electrical brain activity is an aspect that is char-

acteristic o f certain clinical and electroencephalographic states, such as epileptic 

seizures. It is actually not quantitatively expressed in automatic analyses o f the 
EEG activity and one has to rely on impressionistic quantifications according to 
rating scales that are open to criticism because o f the subjective element o f the 
procedure. In a recent clinical study the need for a more objective analysis o f this 
phenomenon became particularly evident...

Human analysis is heavily dependent on experience and is highly subjective. Experience 

cannot be summarized effectively in a set of rules, which surfaces as an immediate problem 

in designing an automatic method to perform the same task. Therefore, designers have to 
follow an indirect approach; the extraction of a set of features from the signal on which 
some procedure should be applied to classify elements of the EEG signal depending on 
the application. The output of the automatic analysis may then be compared to that of 
human interpretation, with which a successful automatic system should correlate well. This 
comparison takes different forms and may be done at different stages, commonly based on 
the performance on the detection of individual events, or on the overall classification. This 

method of comparison has many pitfalls. The consistency of individual analysts, especially on 

atypical records is often disputed. Having no objective reference, it is not possible to decide 

whether in cases of disagreement it was the automatic system who had made a mistake or 
the human analyst. Some researchers blame the inconsistencies on the poor definition of the 

patterns[16, 107]:

The potentialities o f clinical and research electroencephalography cannot be real-

ized until such impressions [sharp, distinguished]  are replaced by numbers and sub-

jective descriptions are replaced by mathematically derived characterizations.[ 107]

Regarding the definition of the spike-and-wave complex, Principe and Smith[155] reported 
a disagreement of instances of the paroxysm in records with the definition, despite its gen-

erality:
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. . .  results show that the requirement o f spikes followed by slow waves was too 

restrictive for most petit mal paroxysms . . .

These authors do have faith in human decision making and attribute misinterpretations to 

the small, often improper, set of features used in automatic systems. Such a statement is 
true for any pattern recognition mechanism, as a set of improperly chosen features could 
easily ruin the performance of the best classifier.

In general, attempts at definition are either qualitative in nature or, even when 
quantitative, lacking in parameters which describe the phenomenon exactly.[108]

Observations such as these are crucial in medical diagnostic practice, as they indicate 
that human decision-making may not be trusted fully, especially when the task involves such 
a strong subjective element and imprecise criteria. On the other hand, even if an automatic 

method outperformed human analysts, there is always the possibility of it failing to perform 
correctly in a small number of cases. On such occasions the question of who should take 
the responsibility for the misdiagnosis might emerge. These are highly sensitive issues and 
despite their importance, are open to debate. Besides, should a successful automatic EEG 
analyzer ever become widespread, it would be the users, not the designers who should decide 
how it is used and to what extent it could be trusted.

It is evident that the issue should not be that of competition between humans and ma-

chines in the task of medical diagnosis. In the interest of the patients both should be used 
to complement each others imperfections. Perhaps some form of feedback, or interaction, 
between automatic systems and human electroencephalographers would improve the consis-

tency and hence the objectivity of both.

5.3 The problem of data representation and modelling

Defining a pattern accurately is crucial for its identification, detection recognition or classi-

fication. For small sets of patterns the definition may be stated explicitly as the collection of 
all their instances, but for most real-life applications, this is not practical, since the number 
of elements in the set is large, if not infinite. An approximation to this explicit definition is 
a set of examples of what might constitute the pattern, like the collection of spike-and-wave 
complexes shown in Figure 5.1. It is intuitive that any such set cannot define completely 
all possible spike-and-wave complexes, in the same way as any set of examples of a circle 

cannot define all possible circles. Besides, such definitions cannot be related and studied in 
a systematic way and the direct use of these pattern representations is generally avoided.
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A better alternative is the extraction of a set of attributes (features) that characterize 

the pattern in question for further treatment. In other words the practically encountered 
patterns are related to a theoretical model. This is similar to defining a circle as the set 

of points on a plane that are located at a specific distance r from the centre point, c. 
The modelling approach uses a mathematical representation of the pattern and quite often 
compresses the pattern in a small number of meaningful parameters, much like a circle is 
defined by r and c. In practice, instances of the pattern may deviate from the model and may 
be contaminated by noise. It is often possible, however, to approximate individual examples 
of the pattern by changing the value of the parameters, to achieve the best fit. Usually, 
there is a region of values of the parameters corresponding to these examples, which also 

represent valid instances of the pattern. Such regions are seldom isolated and the boundaries 
of the formed clusters are a good criterion for what constitutes the pattern. This may be 

assimilated to the human cognitive system, where examples of a pattern are believed to be 
stored in terms of subjective internal representations and new instances are classified using 

some form of interpolation and extrapolation from a priori information. Unfortunately, these 
representations and mechanisms are not used consciously and cannot be expressed verbally, 

which accounts for the imprecise way of definition of EEG patterns.

Within this framework, learning may be regarded as the transfer of mechanisms and 

representations from an experienced analyst to an inexperienced one through the rather 
limited channels of human communication. In the case of automatic identification, the task 
is even more difficult, as both mechanisms and representations are non-existent and there is 

no intuitive way to formulate them.

Signal modelling is an approach to form some internal pattern representation for the 
specification of the pattern of interest, in this case the spike-and-wave complex. A good 

model should

• describe consistently most, if not all, of the instances of the pattern

• preferably describe the signal in a unified manner

• have sound mathematical foundations and properties

Additionally, since it would form the basis of EEG analysis, the suggestion of a procedure 
for analysis by the model would be an additional advantage.

The models that follow in this Chapter constitute early attempts to devise a method 

for the description of the spike-and-wave pattern. Most of them did not conform to all the 

aforementioned criteria but their inclusion is believed necessary, as they have influenced the
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(a) Triangular spike model (b) Its amplitude spectrum

Figure 5.2: Triangular model for spike in the time and frequency domain

work that followed and their properties, especially their limitations, may be considered by 

those following a similar line of research.

5.4 Study of triangular waveforms

One of the first attempts to model EEG spikes was directly linked to models used in spike 
detection by numerous authors (see section 4.6.1). This underlying model was implicitly 
or explicitly used by methods based on derivatives of the EEG, like those of Comley and 
Brignell[45] and Stelle and Comley[183]. It was based on the appearance of the spikes in the 
EEG record. According to this, spikes were described as the peak formed by joining two line 

segments, one of positive and the other of negative slope, which approximate the rising and 

falling edges of the spike, respectively. The magnitudes of the slopes could be different. An 

example of a spike so described and its Fourier Transform are shown in Figure 5.2.

The apparent spread of the frequency components led to the conclusion that the Fourier 
domain, despite its broad use in signal analysis, was probably not the most appropriate for 
the representation of spikes, as the broad-band nature of isolated spikes would necessiate 
the assembly of the relevant frequency components before detection, thus causing compli-

cations in their recognition. An alternative transformation was sought having the following 

properties: •

• considerable data reduction, as groups of data values are represented with a few pa-

rameters
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• enhancement of ‘features’ that are believed to be important

• depletion of unimportant aspects of the data to prevent them from affecting classifica-

tion of the relevant patterns

Such a data representation in a domain (vector space) where the main morphological 
aspects of spikes would be represented concisely in a few parameters was sought. A transfor-
mation from the time domain to this alternative space, using a (non-sinusoidal) set of basis 

functions, {<£,■(£); i € INI} was sought. A function f ( t )  may be represented in the range of 
the transformation as a set of coefficients {a,; i € Ml}, one for each of the <t>i(t) using a least 
mean squared error fit. The general formula for this computation is

2 a*' /  (f>i{t)(t>At )dt = Í  f W A W itr'o Jh Jti
(5.1)

where t\ and 12 determine the period where the transformation applies.

A natural choice for the {</>,(<)} is a set of triangular waveforms, which was suggested by 
the definition of the spikes given earlier on (see Figure 5.2). Assuming a duration T =  t̂  — ti, 

two types of triangular functions, <I>a t {1) and 4>b t (1) might be defined:

<t>A0(t) — 1 nT  — j < t < n T  +  ?

0 nT — j < t < nT +  y

<t>AT(t) = 1 +  ± {t -  nT) nT — j < t > nT
— 1 — j¡(t — nT) nT < t

<f>BT{t) = —2 — y (f — nT)

H«'*1e < t > n T - \
— j i f - n T ) n T - i < t > n T  +  f
= 2 — js(t — nT) nr  +  i < t > n T  +  Z

The <t>AT(t) is an even function, equivalent to a cosine in

(5.2)

whereas <̂ gT(/), being an odd function is equivalent to a sine. Examples of these functions 

are shown in Figure 5.3.

The abrupt gradient changes at their peaks were initially considered an advantage over 
the smooth sinusoidal basis of the Fourier domain. Discrete versions of these functions could 

also be defined, sampling both the time and the ‘frequency’ (5;). as with the Discrete Fourier 

Transform.

Orthogonality of the basis functions

/  <k(t)4j(t)dt =  0 i ±  j  
Jt 1

(5.3)
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Figure 5.3: Examples of the proposed triangular basis functions

is a crucial property in their use. Not only does it simplify the computation of the transform, 
but it also makes their computation independent from each other:

st; / m m  
f t  q m

Non-orthogonal functions use equation 5.1, which requires matrix operations for the solution 
of the resulting system of non-trivial simultaneous equations, necessary for the estimation of 
the {a ,}. This is a serious disadvantage as it leads to numerically unsound or computationally 

intensive techniques.
In terms of theory, some useful properties only apply to orthogonal transformations. 

For example, the independence of each coefficient from another often called the finality of 

coefficients[121, p. 28], is highly desirable, because the values of the subset of the transfor-
mation, {a 0, . . . ,  ayv}, computed from the subset of the basis, {</>0( f ) , . . . ,  0yv(f)}, will remain 
unchanged under the introduction of new function, <f>N+i, as this affects only the ayv+i co-

efficient. Hence an arbitrarily close approximation of f ( t ) may be achieved in a systematic 
way by recursively introducing new functions belonging to the basis and computing the new 
coefficients.

The converse is even more useful for signal analysis, as coefficients with small values, hence 

the corresponding basis functions, may be ignored, without any changes in the remaining 
ones. This is a standard procedure in pattern recognition used for the reduction of the 
number features used as well as for the prevention of noise in these components affecting 

classification.
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Undoubtedly orthogonality is perhaps the most important property that a good set of 
basis functions must possess. When the question of orthogonality of the triangular basis was 

raised, the answer was simply negative. Although functions belonging to different groups 

(■4>AT(t) and (f>BT{t)) are orthogonal, this property does not hold for functions belonging to 
the same group. A proof is given in Appendix A. For this reason the use of the triangular 
waveforms as a basis for the analysis was abandoned.

5.5 Piecewise polynomial approximations

After the problems encountered with the model of the previous section the suitability of 

the triangular model for the description of EEG spikes was questioned. Are EEG spikes 

really composed of line segments forming a sharp peak? With the bandwidth of an EEG 
recorder limited to, say, 0-75 Hz and assuming a spike duration of 70 ms (corresponding to 
a fundamental frequency of 14.28 Hz) components of up to the fifth harmonic are recorded. 
Sharpness is a property attributed to high-frequency components. Therefore, band-limiting 

by the recording equipment, augmented by low-pass filtering before sampling, would make 
spike peaks smooth, assuming they were sharp in the first place. It would not be unreasonable 
to suggest that the ‘sharpness’ of spike phenomena is a rather subjective attribute, possibly 

related to the conventional recording paper speeds and their relation to the rest of the EEG 

record. As such, it is a ‘visual’ rather than an actual characteristic and it disappears with 
stretching of the time axis. The possibility of using smoother functions was considered as 
a better alternative. These usually have better mathematical properties and can be studied 
with more ease than those exhibiting abrupt transitions.

Polynomials (with finite order) are continuous mappings, but cannot approximate in-

finitely oscillating functions, like the EEG, since they may only have a finite number of local 

extrema (maxima and minima). Although this increases with the order of the polynomial, 
so does the computational load for fitting it to the data. The order of the approximating 

polynomial is also likely to increase even further in the presence of isolated transitions of 
large amplitude, like spikes. Besides, high-order polynomials, fitted to sets of data, tend to 

provide a better approximation in the middle of the range and often suffer from oscillations 
at the two extremes[89, p. 142], an undesirable feature as the error of approximation is 

expected to be uniformly distributed over the range.

These problems may be remedied using a piecewise approximation of the EEG signal 

with polynomials of fixed order. Each one is fitted to a small section of the signal. The 
whole signal is then represented by the concatenation of all these polynomial sections, or
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implicitly by their coefficients and the range where each one applies.

The way these segments are fitted to the data points defines the properties of the ap-

proximation. It is possible to separate the EEG record into consecutive segments of equal 
duration and fit a polynomial to each one of these using an optimization criterion, like the 
minimization of the mean squared error function. This, method, however is not always sat-
isfactory, as the resulting functional approximation will suffer from discontinuities at the 

boundary points (end-points) of each segment and the residual mean squared error may 

vary considerably from one segment to the next. A better technique is based on polynomial 

splines.

5.5.1 Traditional piecewise polynomial fit through a set of points

Traditionally spline functions find applications in interpolation. Polynomial splines consist of 
fitting polynomial sections through a discrete set of sample points to describe the unknown 
underlying function with a smooth curve passing through them. The smoothness of this 

piecewise approximation depends on the order, n, of the polynomials, which is fixed during 

the process. The nature of the approximation ensures not only the continuity of the fitted 

curve but also that of its first n — 1 derivatives, which is achieved by setting the requirement 
that adjacent polynomial segments have equal value and derivatives up to the order n — 1 
at the end-points where they meet[89][pp. 144—149][6, pp. 141-150]. This ensures a smooth 
transition from one segment to the next, maintained even if the curve is differentiated n — 2 
times. The method of fitting a polynomial spline to a set of data points is quite systematic. 
The problem is, typically, to estimate the parameters of a polynomial segment in order 
to approximate an unknown function between two known points, s, =  (x,-,j/,) and sl+i =  

(x,-+i, y,-+i), where the stated rules of continuity of derivatives apply. The collection of these 

points is divided into consecutive pairs, (so, Si ), (s i , s2) , . . . ,  (s^r-i, st v), where the end-point 
of one pair is the starting point for the next.

For nth order polynomials, there are a total of n +  1 coefficients to be computed for each, 

that is a total of (n-\-l)N. The continuity conditions at each one of the N + l  boundary points 
generate 2N  equations and those of the derivatives that apply for the N — 1 internal points 
generate another (n — 1)(N — 1) equations, that is a total of (n -f 1)A  ̂— (n — 1) equations, 
requiring another n — 1 equations to solve uniquely. These are selected by choosing the 
conditions at the end points, typically setting the high-order derivatives to zero. The system 
of equations so generated is then solved for the n - f l  coefficients.

Usually, the order of the polynomials is maintained low. First-order polynomials only 
guarantee continuity, but not smoothness, since the approximation is piecewise linear. Sec-
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ond order (quadratic) have the form a2x 2 +  aix +  a0 and are not employed because they tend 

to cause oscillations between the pairs of boundary points they are attached to, owing to 

their parabolic shape. Cubic splines are extensively used, since they are continuous and have 
continuous first and second derivatives at the end-points. Their capability to have points 
of inflection as well as maxima and minima ensures a smooth fit with minimal oscillatory 
behaviour while computational requirements are not excessive, due to their low order. In 

fact, the necessary equations may be manipulated to form a tridiagonal matrix, which is easy 
to solve[89, pp. 144—149][6, pp. 141-150]. Higher-order polynomials, are often considered 
inferior, since they may exhibit oscillations, due to their many maxima and minima and they 

require more computations^, pp. 144].

5.5.2 Piecewise polynomial approximation of infinite sequences

Spline functions of the class described cannot be applied directly for the purpose of EEG 

approximation owing to two reasons. Firstly, the boundary points, which are critical in 
the computational procedure are not known a priori; the problem here is not to interpolate 
between the few known key points, but to compress sequences of points into a few parameters. 
The second problem is the increasing number of polynomials that need to be computed as 
new data become available in the infinite evolution of the signal; it is understood that the 
change in the end conditions with the incorporation of every new end-point results in a new 
set of equations that need to be solved again. This is rather impractical, hence an alternative 
method, akin to splines, was considered. Remembering that the EEG is uniformly sampled 

at a fixed sampling rate, the problem may be reformulated by maintaining the same number 
of equations, but modifying the conditions for fitting each polynomial. Therefore what is 
sought is a criterion to select a subset of the available points to act as boundary points of 

polynomial segments and a different set of equations for computing their coefficients.

Formulation and solution of the estimation problem for one segment

The second problem will be considered first. The presence of points before and after a 

selected boundary point, y(kT ), allows the computation of estimates of the derivatives at 
these end points, using, for example, the simple approximation

y^ k T )  =  » » - " K * +  > * - ' [ ( * - 'O T  ( „ )

where y(n\kT) denotes the nth time-derivative of the sampled signal y(kT)  at the point 
kT. This can be applied recursively to compute the first, second, or higher derivatives, as 

required.
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Then, instead of the continuity of the first n — 1 derivatives, the new condition is the 

coincidence of the values of the 2=  ̂ derivatives (estimated in the suggested way) at a specific 

boundary point, with the ones computed from the two polynomial segments meeting at that 
point. This implies that only the first 2=1 derivatives will be continuous. A disadvantage 
of this is the reduced smoothness for a given order, compared to ordinary splines, and the 
inability to use even ordered polynomials, due to the existence of one equation more than 
the number of unknowns.

The first useful polynomial is the cubic one, which has a continuous first derivative at 
its boundary points. Fifth-order polynomials were also considered, since they have contin-
uous first and second derivatives. In both cases the approximation consists of a collection 
of polynomials, {pi{t) ,p2 (t) , . . .  ,p ,(t ) ,. . . } ,  each valid in their corresponding time interval 

{[ti,<2], [¿2?̂ 3]»• • •, [t,-, t,+ i],. . . } .  For a cubic spline these have the form

Pi(t) =  a3t3 +  a2t2 +  ait +  a0 for i 6 [/¡,lt+i] (5.6)

For continuity and smoothness, the end points, (y,-, y,+i), and their derivatives, (yj, y,-+1) must 
be shared between the previous and the next polynomial segment, that is p,(i,) =  p,_i(t,) =  

y„ Pi(U+1) =  Pi+i(ti+i) =  y.-+i, Pi(ti) =  p'i-liu) =  y'i and p'(t,+i) =  p'+1(t,+i) =  y-+1. These 
values together with f, and U+1 are used for the computation of the unknown coefficients, ao, 

aj, 02 and a3. To prevent the large increase in the values of t, as the signal progresses, the 
origin of the i-axis is relocated to coincide with the beginning of the segment, thus <,• =  0 
at the beginning of the ith segment. Substituting into equation (5.6) and its derivative, 

Pi(x) =  Sa3t2 +  2a3t +  fll, gives four equations

Vi =  a o

y'i =  “ I

y'i+1 =  3a3i -+1 +  2a2a:,+i +  aj

y.+i =  a3x ^+i +  a2x i+i +  +  a0 (5-7)

which may be solved uniquely for the unknown coefficients:

y. 

y\
0 y.+i -  Vi y'i+i -  y'i

rt+l b+l
y'i+i +  y'i _  ny.+i -  y,

/? z l «+i l i+i

Oo — 

ai =

a2 =

a3 (5.8)
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With similar considerations, it can be shown that the coefficients of a fifth-order poly-
nomial segment can be expressed in terms of the values (yt, y,+i) and the first and second 

derivatives (y,-, y,-+1, y,",y,"+1) at the two end points by the following set of relations:

a o =  Vi

a i 

a2

a3

a4

a$

Vi
y l
2

10y.'+i -  y. 4y'+1 +  6y'
+3
b+l

±1__
rt+i

+

-1 5 yi+1 -  y. , 7y'+1 +  8yt-
+4l«+i

+ +1__

y,"+i ~  3y,"
2t,+i

2y,-+i -  3y"
2 ?̂+i

^y.+i -  y. 0y,-+i +  y- y,"+i -  y,"
° +  0+3+5

b+1 +4
l t+l 2*?+i

(5.9)

This procedure is an alternative to the one for splines, with the difference that the 
coefficients of a segment depend only on the conditions at its end-points and hence may be 
computed as soon as its second boundary point becomes available. This, however, does not 
suggest a way to select these points, and hence define a segment, which was the other half 

of the polynomial segment fitting problem.

Selection of boundary points for a piecewise polynomial approximation

The selection of the boundary points, defining the end of a segment and the beginning of a 

new one, was overcome by assuming that every new data point is potentially the end of the 

current segment, fitting the polynomial as described and measuring the error of the approx-

imation, terminating the segment before a predefined error criterion failed. To demonstrate 
how this is achieved, one has to consider the following algorithm, applied to a continuously 
sampled signal, y(0), y(T ), y(2T ) , . . . ,  y (n T ),.. .:

1. Initially set the beginning of the current segment to one of the first available samples, 
y(nT). This should be preceded by enough samples to compute its derivative(s) (see 

next step).

2. Compute the derivative of the EEG at the beginning of the segment, y '(nT) (also 

y"(nT ) for fifth-order polynomials).

3. Set the length of the segment, k =  2, that is, use y(nT)  and y[(n +  2]T) as the boundary 

points of the segment, with y[(n +  1)T] as the only intermediate point.
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4. Compute the derivative(s), y'[(n -f k)T] (also y"[(n +  k)T] for 5th order) of the end 
point y[(n +  k)T] as in step 2.

5. Use equations (5.8) or (5.9), whichever applicable to compute the coefficients of the 

polynomial segment passing through the end-points (notice that =  kT).

6. Compute an error function, £, between the actual intermediate points, y [(n + l)T ],. . . ,  y[{n+ 

k — 1)T] and those computed from the fitted polynomial.

7. If the value of £ is less than a preset upper error bound, £max, increase the length of 
the segment, k, by 1 and repeat from step 4. Otherwise, signal the end of a segment 

by storing the coefficients computed when the segment length was k — 1 and the length 
of the segment. Set y[(n +  k — 1)T] as the beginning of the new segment and repeat 
from step 2.

It should be noted that the derivatives computed above are not exact. A first approximation 
was taken using the average of the forward and backward differences at the point of reference 
(see equation 5.5):

y[(m +  1)T] — y[(m — 1)T]
y v r i l )  =  ----------------- ^ -----------------

/// rj-i\ y[{m +  2)T] -  2y[mT] +  y[(m -  2)T]
y im T ) =  ------------------------ PFi------------------------

(5.10)

(5.11)

A similar procedure with a cubic polynomial has been used for data compression of 
ECG signals by Sandman and Sapir[171] who employed the maximum absolute error as the 
criterion for the termination of segments. For the EEG, both the maximum absolute error 
and the more traditional mean squared error were compared:

t fc_1£i =  maxt=l y((n +  i)T ) -  aj[(n +  k)T]>
j—O

k- i
6  =

'
3 2'

y[(n +  i)T] -  Y ,  ai[(n +  k)T]3
J=°

maximum absolute error (5.12) 

► mean squared error (5.13)

5.5.3 Results and discussion

Examples of polynomial section fitting to a spike-and-wave complex for both criteria are 
shown in Figure 5.4(a) and (c). The results of the fit for either criterion have been similar, 
although the comparison was not exact, because the criteria cannot be compared for the same 
value of (max- Choosing ‘equivalent’ values of this limit for £1 and £2 was based on a simple 
technique, which was not always consistent. The amplitude of the error of the approximation
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(b) 3rd order using £2 with different origin

(d) 5th order using £2

Figure 5.4: Fitting polynomial sections on a spike-and-wave complex

was assumed to follow a zero-mean Normal (Gaussian) probability distribution. The Mean 
Squared Error function (£2) is related to the variance of the error, whereas the Maximum 
Absolute Error (£1) to its modulus. With a 99% confidence, for a variance cr2 the maximum 

squared modulus is (2.575)2<r2. Hence for a selected M SE  limit, £2mai, the ‘equivalent’ M A E  

limit would be £imoi =  2.575y^2m0i- In the examples of Figure 5.4, whenever £2 was used, 
£2moi =  300 whereas whenever £1, was employed, the error bound was £imol =  45.

There was no significant difference in the number of segments obtained between criteria 
for a given polynomial order, although the selection of end-points was (as expected) different, 
since the fitness criteria are dissimilar. The level of the residual error was comparable for the 

two error criteria. For some parts of the signal, £1 yielded a lower residual error, for others 

£2 was better.

For the fifth-order polynomial, the fit on the spike was slightly better than the cubic, 

although some small oscillations were observed after the slow-wave.

The results in the presence of noise were difficult to compare, as the errors increase rapidly 

with segment size and exceed the thresholds resulting in a large number of short segments.

It would appear that through this method the problems of feature extraction and seg-
mentation of the EEG signal, which are critical in pattern recognition had been solved
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simultaneously. The coefficients of the polynomial would be the features describing the seg-
ment, defined by the procedure that computes them. If additionally these features and the 

segmentation procedure were consistent, then the representation problem, stated at the be-
ginning of this section, would have been solved. Could the segment-ends defined actually be 
the boundaries of important elements of the EEG which could not be defined intuitively? 
Unfortunately, this had not been the case. Consistency of the segmentation is still a problem 

and its consequences on data representation by polynomial coefficients are even more serious, 
as demonstrated in Figure 5.4(b). This shows the same signal, containing a spike-and-wave 

complex as in (a), (c) and (d) of the same Figure, with the origin of the first segment dis-
placed in time. Since in practice the location of the origin of a segment cannot be predefined, 

as it lies at the end of the previous segment, this describes a situation commonly arising in 
practice. The presence of the spike with its large slopes resulted in a new segment defined 
near its summit, but the polynomials that describe it are different, owing to the dislocation 
of the starting point. For the segments including the rising edge of the spike in Figure 5.4, 

with T =  1 ms the polynomials in (a) and (b) were

sa(t) =  18831996.00*3 -  370599.84*2 -  15085.00* +  119.26
(5.14)

s6(t) =  88244160.00*3 -  3586203.25*2 +  24940.00* +  94.82

respectively. The discrepancy is largely attributed to the difference in the starting point and 
the associated conditions between the segments. This indicated a serious limitation of the 

method when used for segmentation and parametrization, its sensitivity to initial conditions. 

It is not difficult to deduce that inconsistency is also present if noise is introduced in the 
data, which would affect segmentation even if the same initial point is chosen.

In an attempt to reduce this problem, the condition for termination of a segment (see 

step 7 of the procedure) was modified. Instead of using an error criterion, segments were 
defined as fragments of the signal between baseline (zero) crossings, but the results were 
disappointing as the elimination of error control in the approximation resulted in either too 

many segments, if many zero crossings were present, or a poor approximation, in cases of 

baseline drift. Noise and low-amplitude high-frequency oscillations discredited the definition 
of the boundaries of the segments causing excessive segmentation. Similarly, waves occurring 
away from the baseline were poorly approximated.

The inability of the spline process to segment the EEG signal in a meaningful way put 
their use in dispute. If an independent segmentation procedure is introduced, there is little 
point in restricting the parametrization method to cubic splines, as other methods may arise 

from that. Splines are an alternative method for representing the signal and may be used for 

its compression, for storing purposes, or for the estimation of its derivatives, as explained in
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the next Chapter (section 6.4.2).

5.6 A recursive short-time frequency-sampling method

The failure of polynomial splines to represent the signal consistently was caused mainly by 

their inability to maintain the same set of parameters for similar signal patterns, and their 
dependence on relatively few points of the signal, which were not necessarily relevant in 
subsequent analysis. It was also impossible to represent features, like spikes, by a single 

polynomial segment contrarily to initial expectations. These issues arose from the method 

of parametrization, which was performed on a sparse sample basis, rather than on a contin-

uous one, taking into consideration information contained in every individual sample. The 

piecewise approximation was therefore rejected and an alternative was sought.

5.6.1 Frequency analysis of time-varying signals

For an infinitely oscillating signal like the EEG the sinusoidal basis of Fourier was reconsid-
ered. Sinusoids have infinite duration and can model the extrema of the EEG. They are, 

however, rather ill-equipped to describe signals of brief duration (transients), such as spikes. 

To maintain some emphasis on these signals, brief segments of time must be considered and 

their spectra evaluated separately. This again is contrary to the argument, as it represents 
a piecewise operation, which was a serious limitation in the case of polynomial segments. 

Of course the effects here would be less dramatic. Since the Fourier transform of signals 
shifted in time have the same amplitude, segments containing the same signal (a spike for 
instance) are expected to have similarities in their amplitude spectra although their phase 

characteristics may differ[121, pp. 132-133].

It is therefore sufficient to make consecutive segments long enough to enclose the spike 

pattern and introduce enough overlap between consecutive segments to ensure that spikes 

not fully contained in a particular segment would be contained in the next. This overlap 

should optimally be as long as the pattern itself.
Traditionally the Fourier Transform of a finite-length discrete signal segment, is computed 

by the Fast Fourier Transform (FFT)[46] algorithm, an efficient technique, requiring y  log2 N 
complex multiplications for the evaluation of the Transform of a window of N  consecutive 

samples.
For an on-line system detecting transients buried in signals of long duration, the appli-

cation of the FFT is quite inflexible. By the nature of the algorithm, computation cannot 

begin until all the N  samples of the signal segment become available. Therefore it must
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be computed either in the inter-sample period, or computation must be interrupted every 
time a new sample arrives. The first solution would impose a severe restriction on the 

bandwidth of the sampled signal, whereas the second, despite being more flexible, would 
still be subject to limitations caused by the nature of EEG transients and the requirement 

for overlapping windows. If the frequency resolution needs to be improved, the number of 
samples in the window must be increased, either by choosing a longer segment or by raising 

the sampling rate. In either case the computational load would increase according to the 
Y log2 N  rule. Furthermore, the frequency components of the FFT always represent equal 
bandwidths and if only a few frequency components prove relevant by subsequent analysis, 
no increase in computational effectiveness would be gained, as all components are evaluated 

simultaneously.
From the theoretical point of view, if a long segment is chosen, to achieve high-frequency 

resolution, the signature of brief transients like the spike-and-slow-wave complex in the 
frequency domain would deteriorate.

Therefore an alternative, possibly equivalent, computational method was sought, which 
could perform the Fourier Transform of consecutive overlapping signal segments in a more 
gradual way, being flexible in the number of frequency components it could compute.

5.6.2 Frequency-sampling digital filters

An algorithm conforming to these specifications was formulated from a special class of fre-

quency sampling digital filters, highlighted by Lynn[114, 115]. These are based on the so- 
called comb filter, which has transfer function

z M  -  1
C(z)  =  l - z - M =  - - a -  (5.15)

and possesses M  zeros, distributed at equal angles on the unit circle in the z-plane and an 

equal number of poles at the origin. Its time and frequency response are shown in Figure 

5.5.
If a zero of the comb filter is annihilated by a coinciding pole, the complete system 

may be made to have low-pass, band-pass or high-pass characteristics. This is equivalent to 
cascading C(z)  with an all-pole first or second order system, D(z),  with a pole at z =  1, for 
low-pass, or at z =  —1, for high-pass behaviour. The most interesting case arises when D(z)  
has two complex conjugate poles at z =  cos(j jk)  ±  j  sin(^fc) for k =  1,2, • • •, y  — 1. In 
this case, G(z) =  C(z)/D(z)  has a pass-band centred around the frequency j jk .  It should 
be noted that the resulting system is FIR, since it has zeros but no poles[114]. This is easy 

to observe by considering the impulse response of G(z).  The comb filter initially excites
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(a) z plane (b) impulse response

(c) amplitude spectrum (d) phase spectrum

Figure 5.5: Properties of the comb filter

the resonator, which will oscillate at its centre frequency until the negative impulse of the 
response of the comb-filter inhibits its operation m samples later (Figure 5.6). This occurs 

because all such resonator have a frequency which is a multiple of j f  and hence have a 
cycle beginning after M  samples.

By cancelling each time a different zero (or conjugate pair) a bank of filters may be con-
structed, which may be adjacent if even-numbered zeros are cancelled, or partly overlapping 

if all zeros are used. The impulse response of these filters is equivalent to a sinusoid of 
frequency multiplied by a rectangular window of M  samples. The comb filter was also 

employed by Principe and Smith[156], although these authors introduced additional zeros, 

instead of poles to achieve a pass-band.

5.6.3 A  filter bank for implementing the DFT

The introduction of zeros in the basic resonator to modify its phase characteristics permitted 
the construction of a pair of systems having short-time sinusoidal and cosinusoidal responses 

respectively[121][55, p. 645]:

p{n) =  w{n) c o s (g  k) 
q(n) =  tn(n)sin(gfc)
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(a) z plane

(c) amplitude spectrum
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Figure 5.6: The basic element of the filter bank for continuous DFT

Filter type Transfer function

low-pass G o „ { z )  =  î ~ = t

o
'II1o

band-pass Q  t \ _  _  ^  
UkrA z ) 1-2 cos (real output) 

(imaginary output)-  (t 2 1i -2 cos(^A:)z- i +2-2
high-pass G k J z ) -  u / -x ( G * .  (z )  =  0)

Table 5.1: Transfer functions of the filter bank for continuous DFT

where w(n)  is a rectangular window of magnitude 1 and duration from n =  0 to n — M  — 1. 
The transfer functions for the filter bank (excluding the comb filter 1 — z~M) are tabulated 

in Table 5.1.

After every input sample is processed, the outputs of these filters, represent the corre-
sponding components of the DFT of the input signal, based on a window of M  past samples. 

The amplitude and phase response of the spectrum may be evaluated, as with the FFT by 
transforming the complex outputs of the filters, yk(n) =  yjtre(tz) — into polar form,
Vk{n) =  rk(n)ei0̂ n\ where rk(n) =  0/fcre(n)2 +  yfc,m(n)2 and M n) =  arctan (see

Figure 5.7).
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Figure 5.7: Diagram of the DFT filter bank with amplitude and phase outputs

Compared to the FFT algorithm the filter method presented here has advantages, when 
applied to EEG signals. First of all, the signal is treated on a sample-by-sample basis, 
equivalent to a sliding window by one sample every time. As a result, the processing is 
constant from one sample to the next and there is no need for interrupting the procedure when 
new samples arrive. This feature is naturally applicable to on-line processing. Moreover, 

since the transform is performed on every sample, patterns may be detected at the beginning 

of a window, without the need for phase normalization to compensate for its appearance 
elsewhere in the window. Then, the algorithm may use an arbitrary window size, M , whereas 

in the FFT this must be a power of 2.

Finally, the method is more efficient than the FFT for continuous sample-by-sample 
transformations, and can be made even faster since specific filters may be combined or 
eliminated if they prove unnecessary. The numerical efficiency of the algorithm is easily 

evaluated. The low-pass, high-pass and the comb filters require no multiplications. The 

band-pass filters require four real multiplications each, that is a total number of 4(-y — 1) =  

2M — 4. An equivalent FFT requires y  log2 M complex multiplications (each representing 
3 or 4 real operations, depending on the implementation), which is more expensive, even for
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low values of M.

A disadvantage of the method, compared to the FFT, lies in the concept of zero cancel-
lation by coinciding poles. Using low precision for the representation of the coefficients of 
the resonators may cause imperfections in the location of the poles, leading to a pole-zero 

function with HR, instead of FIR characteristics, thus causing error in the computation of 
the spectra. The deterioration of the method is, however, gradual and can be minimized 

with the use of double precision arithmetic.

5.6.4 A  modified filter bank

The proposed technique, however, is not without limitations. The band-pass filters have 
significant side-lobes with amplitudes at approximately 21% of the main lobe[114]. Moreover, 
the phase response of these filters is not linear, as Lynn suggested, but piecewise-linear, 
suffering discontinuities at the location of the zeros, as correctly pointed out by Kohn[106]. 

The phase discontinuities are introduced by the change in sign of the frequency response of 
the filter, representing a ‘jump’ of magnitude tt.

Squaring the corresponding transfer functions as recommended by Kohn[106], eliminated 
this source of phase distortion and reduced the side-lobes to a maximum of 4.5%[114]. This 
operation is equivalent to cascading two comb filters and two resonators of every type. The 
impulse response of the new filters is the convolution of the response of each filter in the 
original bank by itself. For band-pass filters this is equivalent to a sinusoidal signal multiplied 
by a triangular (Bartlet) window of length 2M.  This cascade, however, affected the phase 
characteristics of the elements of the filter bank, since Gkijn(z) is no longer in quadrature 
with G2kre(z). This is easily established by noting that as a consequence of squaring, the 

frequency characteristics of the new transfer functions has squared amplitude, compared to 

the original transfer function and twice the phase. Hence, since the phase of Gkre{z) at 
the ‘resonant frequency’ is zero, that of Gkrc(z) is also zero. But for Gk,m(z) this is | and 
hence for Gktm(z) it is n. In conclusion, G2kim(z) is in antiphase with Gkrc(z), instead of 
being in quadrature and their responses are not those of a sine-cosine any more. There 
are a number of ways to maintain the ‘imaginary’ part of the filter in quadrature with the 

‘real’ part, without changing other important characteristics of the filter. One suggestion 
is to modify the phase response of the two cascaded resonators, constituting the imaginary 
output transfer function, to be at instead of |, compared with the resonators for the real 
output. Using the trigonometric identity c o s (^ fc n - j)  =  cos(^kn ) cos( j)+ s in (^ fcn ) sin(|)
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and transforming to the z domain gives the following transfer function:

r  _  n -.-V  ~  [cos( P ) siD( f fe)]*
j 1 ’ l - 2 c o s l& ty z - ' +  z -

-1
(5.17)

When two of these are cascaded, the overall system will have a phase difference of — | at its 
resonant frequency and a ‘sinusoidal’ impulse response. Alternatively, one may operate on 
the cascaded structure. If the first resonator section for both the real and the imaginary parts 
is made the same, having the form of Gkre(z) (see Table 5.1) their output will be in phase. 
By introducing Gkre(z) as the second section in the real part and Gk,m(z) in the imaginary, 
their final outputs will be in quadrature, as required. Because the first sections are only 

required for the annihilation of the double zeros of the cascade of the comb filters, they may 

be made the same for both the real and imaginary branches of the system. Hence, they 

may be replaced by a single system operating on the output of the comb filter to reduce the 

complexity and computational requirements of the system. This may have the form of, say, 

Gk,m(z) or may even be an all-pole section with transfer function G*(z) =  1_2cos('lz-l?)z-1+z-'2' 
In these cases, the filter responses will not have the correct absolute phase (0 and |), but 

they will still be in quadrature. The use of Gk(z) simplifies the structure of the filter and 
may be preferable. In this form of the system, the outputs of the band-pass filters have an 
amplitude that is half of that for the low-pass and the high-pass filters. A normalizing factor 

has been introduced to bring all outputs to the same level.
Although the new filter bank required approximately twice as many operations to imple-

ment, it is still more efficient compared to the FFT, especially when windowing is applied 

to the input of the latter.

5.6.5 Results and discussion

The filter bank was applied to EEG containing instances of the epileptic precursor. An 
example of the evolution of the spectrum of an EEG segment containing a spike-and-wave 
complex, taken with the modified bank of filters described in section 5.6.4 is shown in Figure 

5.8. The sampling rate was 200 Hz. The comb filter window length was M  =  64 (Figure 
5.8(b)) and M  =  200 (Figure 5.8(c)) corresponding to a frequency resolution of 3.13 and 1 
Hz respectively. Because the amplitudes of the frequency components decrease rapidly with 
increasing frequency, in the above Figure only those below 60 Hz (0.3 times the sampling 

rate) are shown. This demonstrates one of the advantages of the method, the ability to 
control the frequency resolution independently from the number of ‘frequency samples’ .

In general, the EEG spectrum is concentrated in the low frequency range. When the 
spike occurred (around 100 samples from the origin in Figure 5.8), there was a spread of
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(a) time sequence

fen*
(b) Amplitude spectrum 
small window (M =  64)

bn«
(c) Amplitude spectrum 
large window (M  =  200)

Figure 5.8: Examples of the evolution of the spectrum of a spike-and-wave complex

energy in the higher frequency components. The spike was more localized for M  =  64, 

whereas for M  =  200 it influenced the spectrum for a large number of consecutive samples 
(bad localization). The slow-wave was not as clearly indicated for M  =  64, due to the low 

frequency resolution, but was more obvious for M  =  200.

The results from frequency analysis were not particularly encouraging. The broad-band 

spectrum of spikes was the primary concern for the application of this technique as a pre-
processing stage for subsequent detection. Because spikes cover a wide range of frequencies, 

an easy and reliable procedure for their detection was not suggested by the method. More-
over, their localization is dependent on the window size and it got worse as the window 
size increased to isolate the slow wave. These problems are not inherent to this method of 
computation of frequency spectra, but to the general concept of windowed time-to-frequency 

transformations, including the FFT. The susceptibility of the spectrum of the spike to other 
elements in the window containing it as well as morphological variations between spikes was 

considered as a potential hazard.

Despite these limitations, the efficient sample-by-sample analysis, is well-suited for the 
computation of the Wigner-Ville Distribution[26] (see equations (4.12) and (4.13)). This 
was applied for the off-line analysis of epileptic EEG signals by Stelle[184, 185] (see also 
section 4.6.1), who investigated its reliability as an analysis tool, rather than its efficient 
implementation. The latter issue was addressed by Boashash et al.[23] and Sun et al.[186],
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who proposed systems based on the repetitive application of the FFT on adjacent windows 
of the signal multiplied by a delayed version of its complex conjugate. The recursive method 

can compute repetitive DFT’s much more efficiently than the FFT, as already explained. It 
may also be used for the computation of the analytic signal associated with a real signal, 

which is usually employed to prevent aliasing in the computation of the Wigner-Ville dis-

tribution, arising from its periodicity at the Nyquist, instead of the sampling frequency[24]. 
The analytic signal may be computed using the method proposed in this section and the 
distribution may be evaluated in the frequency, instead of the time domain by a further 

application of the filter bank.

5.7 Comments and conclusions

In this Chapter three methods of EEG pre-processing were considered, a triangular basis of 
functions, piecewise polynomials and recursive frequency analysis. Although none of these 
formed the basis for subsequent analysis, some considerations and especially their limitations 
were used for the development of the techniques employed in the Chapters that follow.

The triangular basis of functions pointed out one problem of inadequacy associated with 

poor modelling. Triangular functions, which lack special properties, were considered because 

of their relation to a model of an epileptic spike that was empirical. In reality spikes are 
band-limited and hence their representation as a pointed peak is not as descriptive as initially 
expected.

Piecewise polynomial fitting proved that the EEG and epileptic spikes could be modelled 
with smooth functions, thus confirming the conclusions of the previous paragraph. Although 

their properties were better than triangular functions, these were limited by the inability to 

produce a reliable, meaningful representation suitable for analysis. The parametric method 
of approximation, however, led to an alternative to conventional differentiation, which has 

found some application in a later method (see section 6.4).

Finally, recursive frequency analysis highlighted some other difficulties linked with EEG 
signal analysis. The signal is non-stationary, consisting of a mixture of low frequency ele-
ments and broad-band signals, like spikes, causing problems when methods based on win-
dowing of the data are applied. A short window to localize and enhance transient isolated 

spikes would cause loss of resolution for others. In this case all waves with period longer 
than that for the window would not be discriminated. A long window could cause the loss 
of the transient, whose spectral elements are averaged over the length of the window. This 
suggested that the treatment of brief isolated transients and of waveforms longer periods
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should be performed using separate methods, for their effective discrimination.
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Chapter 6

Spike detection and the derivatives of 

the EEG

6.1 Introduction

From the conclusions of Chapter 5 it is clear that the early models failed to describe EEG 

spikes adequately, not only due to their inherent limitations but also because of the nature 
of the signal. Spikes vary from one to another both in amplitude, duration and shape. The 
background activity has lower amplitude than epileptic transients, but it persists for longer 
duration and hence contaminates the time sequence before and after a spike. It is evident 

that a suitable transformation to separate spikes from background activity is still required. 
Frequency analysis proved inadequate, because the localization of spikes in the time-domain 

was depleted and the dependency on the size of the window was an important limitation.

Several methods were considered, including matched filtering, a combination of short 

and long-term frequency transforms, the use of moments of the Power Spectral Density and 
Hjorth analysis (see section 4.6.4). One general limitation of all these methods is their inabil-

ity to describe (model) spikes with a consistent set of parameters which could be manipulated 
for their detection. It was realized that perhaps a very accurate spike model was probably 

not feasible, but perhaps unnecessary for the development of a successful method. Several 
simple mathematical descriptions were therefore constructed, based on general observations 

on real spikes and information from thir formal definition (section 2.5.2. Some of these 
are listed later in this Chapter. Their construction was geared towards the development of 

methods that utilized the abrupt amplitude transitions that often characterize spikes.

These characteristics were considered in the development of the first successful spike de-
tection methods, which were based on the derivatives of the signal with respect to time. The

109
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concept is not new, since a multitude of publications on related techniques exists (see section 
4.6.1). The systems described in this Chapter are different not only in their construction 

details, but in the approach for their development also. There is an explicit definition of a 

signal model, on which the method was based, thus minimizing the number of experimen-
tally deduced parameters. This approach makes a developed system more self-contained and 
independent from the test data. Its behaviour and response are therefore more predictable 

and, to some degree, easier to amend.

In this Chapter, a justification for using derivatives of the signal will be provided (section

6.2) , followed by a presentation of methods for discrete-time signal ‘differentiation’ (section

6.3) . Then two methods for spike detection, based on derivatives of the signal will be 
presented, the simpler (earlier) first. For each one of the two procedures simple formal 
models of a single wave, the basic element of signal analysis, are described briefly. This is 
followed by a description of the technique, with emphasis on the use of the model for its 
development, followed by the presentation of results and a brief discussion. The Chapter 
closes with some general comments on the methods covered and their limitations.

6.2 Why look at derivatives

Derivatives are useful for the detection of transients in the EEG and have been used exten-
sively in the past for this purpose. They are also related to signal description and modelling 
in general. It is my opinion that the reasons behind these statements are more important 

than the statements themselves in the description and detection of signals.

The connection between derivatives and transients in the EEG is easily established. What 
defines the onset of some transient activity is a rapid change in the behaviour of the signal. 

Such a variation is associated with an increase or decrease in amplitude, phase reversal and 

frequency changes. When the transient ceases, these transitions are reversed, although they 

may be less abrupt than at its onset. These phenomena are associated with changes in the 

gradient (derivative) of the signal with respect to time. While the EEG signal progresses 

‘normally’ , behavioural variations are usually gradual as they require a long time interval 
to come into effect. The transition from one sleep stage to another, for instance, is not 
instantaneous and there is a transition period between them, where one ‘gives way’ to another 

(see sections 2.5.1 and 4.6.3). On the contrary, a spike begins rapidly and terminates equally 

abruptly in a few milliseconds, causing the derivative of the EEG signal to rise at the onset 
of the spike to an abnormal level ( ‘normal’ here refers to the values it acquired in the periods 

before and after the spike). Similarly, the second derivative has been a useful measure for
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quantifying transients, such as spikes and sharp waves. Denoting the rate of change of the 
slope, it signifies the onset and offset of transients, which are related to large transitions 

of the derivative in opposite directions. In the case of a spike, for example, the second 
derivative acquires abnormally large values at its summit, where the slope changes from 
positive to negative in a short period of time. These characteristics have been exploited by 
many workers to detect spikes and sharp waves (see section 4.6.1).

The connection between the description (and modelling) of a signal and its derivatives 

is clearly stated in any text on linear signals and systems analysis[115, 121, 150, 151, 158]. 
Continuous-time signals and systems are usually described using differential equations, which 
utilize derivatives of the signal. The analysis of complicated signals is sometimes made easier 
if they are decomposed into simpler ones. This might be done by manipulating the differential 

equations that describe the signal to formulate it as the superposition of the outputs of one 
or more systems, when excited by inputs of simpler form, like steps, pulses, sinusoids and 
white noise.

For example a causal signal, y(t), may be represented as the output of a linear time- 

invariant system with transfer function H (s) =  1+^n—— , excited by, say, white noise 
with zero mean, n(t). One may write Y (s) =  H (s)N (s), where T (s) and N (s ) are the 
Laplace transforms of y(t) and n(t), respectively. In the time-domain, this translates to the 
differential equation

y (0  +  £  ail/ (,)(0  =  n(0  (6-1)
j=i

The first n derivatives of y(t), {y ^ ( t ) ; i  =  1 ,2 ,. . . , n }  may be estimated numerically from 
the signal itself and by employing a method of ‘best fit’ it is possible to compute a set of 

{a ,}, so that when applied to the appropriate derivatives will give a sequence n(t), with 
the expected properties. A discrete-time equivalent of this signal representation method has 

been the basis of a method discussed in later Chapters.

6.3 Discrete-time differentiation

The derivative of a function of a continuous variable, such as time, f ( t ) ,  is defined by the 

limit
f ( t  +  St) -  f ( t )

f ' ( t ) =  limv ' ii—0 St
(6.2)

This is of course defined at points where f ( t )  is continuous, where the limit is well-defined. 
Discrete-time functions are obtained by ‘sampling’ a continuous time function at points in 
time, by multiplying it by a sequence of equally-spaced impulse (Dirac) functions f(t)uo(t —
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nT) =  /(n T ) , which result in the definition of the discrete-time equivalent

m  =
f ( t )  t =  nT 

0 i ^  nT
(6.3)

This function is obviously discontinuous and its derivative, f d(t) is not defined at the points 
of interest, f(n T ). In discrete-time, the term differentiation does not refer to the definition 

of equation 6.2. It is rather a process that yields a discrete-time sequence of the derivative 
of the underlying continuous-time function, f '{n T ) =  f '( t )  uo(t — nT). Notice that f'(n T )  

exists in contrast with f'd(t), which does not.
The problem of evaluating f '(n T ) may be solved in many ways. Working directly from 

the definition, one may differentiate the continuous-time signal f ( t ) and sample its derivative. 
This was the approach used in some early systems[36, 192]. The need for additional analogue 
hardware to implement differentiation as well as the limited precision and other limitations 
they impose on the process made ‘differentiation’ after sampling an elegant alternative, which 

has been used extensively by designers of digital (discrete-time) systems.

6.3.1 Discrete-time approximations of differentiation

Given the data sequence arising from sampling of a signal, the question is how to compute 
sequences corresponding to the derivatives of the underlying analogue signal at the sampling 
instants. Methods vary in terms of theory and approach. Some of these will be described 
shortly, with emphasis on the ones that have been used in the work presented in sections 6.4 

and 6.5 that follow.

A pproxim ation s based on continuous-tim e pseudo-differentiators

Differentiation may be regarded as a linear operation, described by a transfer function. It 
is therefore possible to derive an equivalent discrete-time transfer function by means of a 

transformation from the continuous s-plane of the Laplace transform to the discrete ¿-plane.

The Impulse invariant transform ensures that the unit sample (pulse) response of the 
resulting transfer function is identical to the sampled impulse response of the continuous 
time system. It can be shown[151, p. 604] that the required transformation is ¿ =  e*T, 

where T  is the sampling period.
This transform was used by Smith[181] to convert an ‘analogue pseudo-differentiator’ 

with transfer function H (s) =  into a discrete-time equivalent. The impulse response of 

this function, h(t) =  u0(t) — be~bt ui(t) (where ui(t) is the unit step function) was sampled 

and ¿-transformed to produce the required discrete-time transfer function.
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Impulse-invariant transformations are usually avoided, since they may result in frequency 
aliasing, if the impulse response contains frequency components above as these are repli-

cated every y 1, due to the folding of the s domain so that strips of width map into the 
entire z-domain[151, p. 603-608]. These problems may be avoided by using a bilinear trans-

formation, which converts directly from the s-plane to the z-plane by using a substitution 

of the following form:
2 z - l  

5 ~  T z +  1
This maps stable continuous to stable discrete-time systems, the entire imaginary axis s =  ju> 
onto the unit circle |z| =  1 and has the additional property that it compresses the entire 

s-domain into the strip —j j  < s <  prior to mapping into the z-plane, thus preventing 

aliasing. This method was used by Ktonas et al.[108] to derive the discrete-time equivalent 

of an analogue pseudo-differentiator.

Sim ple d iscrete-tim e approxim ations

Analogue differentiators, however, are approximations to the actual process. There is little, 
if any, justification in using an approximation, imposed by physical limitations of analogue 
hardware. Restricting the more flexible digital system, where the discrete-time function is 
to be implemented, is pointless. The required approximation may be formulated directly in 
discrete-time, where simplicity and speed may be traded off for precision.

One of the early ‘all-discrete’ differentiators is the successive difference, which has its ori-

gins in the numerical solution of differential equations by approximating them by equivalent 

difference equations[151, p. 598-601]:

m  =

Differentiation may also be represented by multiplying the Laplace transform of a signal 

by s. Since z =  esT the required operation is

 ̂= ^Log(z) (6.6)

where the restriction —7r <  arg(z) <  ir of the domain of the mapping was introduced 

to ensure the uniqueness of the not well-behaving complex logarithm. By truncating the 

Taylor expansion of the logarithm around z =  1, Log(z) =  Log(l -f u) =  u — |u2 +  |u3 — . . .  
to its first term and replacing u =  z — 1, differentiation is approximated by the relation 
s =  j ( z  — 1), or the causal system H (z) =  ^(1 — z-1 ), which represents the first difference 

equation (6.5). This procedure was used by Comley and Brignell[45].
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The same approximation may be obtained alternatively from the equation (6.2), of defi-

nition of the derivative, if the limit is dropped and the infinitesimal step St is replaced by a 

finite-size step, say At:

m  =  —  + ~ (6.7)

Since f ( t )  is known at specific points spaced T apart, a natural choice for the step is A t =  
T. In practice, the backward difference is used, since it leads to a causal system and has 
better properties than the forward one. Hence the derivative may be approximated by 

equation (6.5). This approximation has been used for the detection of epileptic spikes by 
Ktonas and Smith[107]. Other authors suggested that the difference equation j [ f (n T )  — 
/( (n  — m )T )] gave better results, as it suppressed certain frequencies (see Quian et al.[157]). 
Alternatively, the derivative may be estimated from the difference of the previous and the 

next sample. This, however, belongs to a broader category of differentiators derived by more 

formal criteria, whose description follows.

A  system atic d iscrete-tim e procedure

Like many Finite Impulse Response (FIR) filters, digital differentiators may be designed 

using frequency specifications of the required transfer function and time-limiting windows to 
truncate the length of the filter, which is often large, or even infinite. This has become one 
of the standard procedures in signal processing. With the closely related frequency sampling 

technique, they are the dominant methods for the design of such filters[l21, p. 321-323] [151, 
p. 544-596]. Briefly, the design procedure is as follows:

1. Start from the Fourier Transform representation of the transfer function (filter), H(u)

2. Evaluate the unit sample response,

h(n) =  ¿  H(u>y^Tdu

(notice that T  is the sampling period and y- is the sampling frequency).

(6.8)

3. Truncate the resulting sequence {/i(n ); n € (—oo, -foo )} to make it practically realiz-

able, by multiplication with a time-limited window function,

wN(n) =
an for 
0 otherwise

N < f (6.9)

Window functions are usually symmetrical about the origin and have the property of 
smoothing the frequency response of the filter compared to the ideal, H (u). Their use,
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however is often recommended, if the truncation of a sequence (equivalent to multi-
plication by the Rectangular window, if an =  1 irrespective of n) causes unacceptable 

fluctuations and side-lobes in the frequency domain.

A differentiator is represented in the Laplace domain H (s) =  s and in the Fourier domain 
by H (u) =  ju>. Following the design procedure just described, the impulse response of this 
transfer function is given by

cos-an  ( - 1 ) ” .
h(n) =  ---------- ^ r~  (6.10)

This method was employed by Stelle et al. [183] to determine a differential operator, 

although for the application it was cascaded to a Hilbert transformer (| phase shifter). 

Notice that the sequence is antisymmetric and has zero value for n =  0. If a window 
of length 3 is applied to h(n), the truncated impulse response will have the form of the 
forward-backward difference operator, y(n~t~1)~y(n~1) which was the approximation proposed 

at the end of the previous paragraph. Its unit sample (impulse) response is shown in 6.1(a) 

and its frequency response (purely imaginary) in Figure 6.1 (b). More terms may be taken 
using a window with longer duration[151, p. 544-596] (Rectangular,Hamming, Hanning, 
Tukey etc.). Differentiators of length 9 and 31 truncated using the Rectangular window and 
their corresponding Fourier transformations are also shown in Figure 6.1 (a)(b).

The same differentiators but with the application of a Hanning window instead, are 
shown in Figure 6.1(c) and (d). The frequency response of these is much smoother and at 
low frequencies it approximates the ideal differentiator quite well.

In the case of the EEG, a modified differentiator was also tested. This has the property of 
‘differentiating’ up to a particular cut-off frequency, uc =  a|r, where 0 < a  <  1, above which 

it produces zero output. The impulse response corresponding to this frequency behaviour 

may be determined in the same way as before:

h(n)
a cos an n sin an n 

nT 7r n2T
(6.1 1 )

This sequence, truncated by a Hanning window of length 31, and the corresponding 
spectrum are shown in Figure 6.1(d) and (e), respectively, for a cut-off frequency of 0.6257T. 
The significance of this value will become apparent later in this Chapter.

The cut-off frequency parameter, which is available in the differentiator described last 
may be considered advantageous in the presence of muscle artifacts. These contaminate 
the high-end of the frequency spectrum of the EEG and would be enhanced by a full-band 
differentiator. By selecting the cut-off frequency carefully it might be possible to prevent 
them from producing a high-level derivative in the absence of genuine spikes.
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N =2

N=31

"t * t

-15 -10 10 IS

(a) Impulse response (rectangular window, a =  1) (b) Frequency representation (rectangular window, a =  1)

N =2
N=31

(c) Impulse response (Hanning window, a =  1) (d) Frequency representation (Hanning window, a — 1)

N =9

N=31

-is -10 -000 -400

(d) Impulse response (Hanning window, a =  0.67) (e) Frequency representation (Hanning window, a =  0.67)

Figure 6.1: Discrete-time differentiators, unit sample sequences and frequency responses (in 

all cases T -  6.25ms)



6.3. Discrete-time differentiation 117

It should be noted that the above procedure is equivalent to the implementation of 

Log(eJu/r) as a Fourier series, and permits the evaluation of Log(z) around the unit circle in 
2 with an arbitrary precision (depending on how many terms of equation (6.10) are selected). 
In fact the series can evaluate Log(z) in an annular region extending from zero to infinity, 
0 < |z| <  oo and is also called the Laurent series of this function[85, pp. 223-226], which 
is valid in the above region. This is far more general than the Taylor series (used in the 
previous section) which only applies around the point of definition, z =  1 (low frequencies).

This design procedure is systematic and was formulated in a small program. This takes 
as input parameters the sampling frequency, / s, the ratio of the cut-off to the sampling fre-

quency, a , the length of the impulse response of the differentiator after truncation, N  and 

the type of window (Rectangular or Hanning). Its output is a file containing the coefficients 
of the resulting differentiator, its length and other definitions in a form that may be directly 
incorporated as a module in a program written in the C language, making the rest of the 

system independent from the length and type of the differentiator. This permitted the eval-

uation of the behaviour of a number of differentiators with different construction parameters 
without modifications to the core program that used them.

A  m eth od  based on piecew ise polynom ial approxim ations

Finally, derivatives may be estimated using curve fitting on the EEG data points, { / (n T )} .  
The piecewise polynomial approximation algorithm, described in section 5.5 provided a 
method for obtaining derivatives at the points of interest. As explained then, the curve 
fitted using 3rd or 5th order polynomial segments, f ( t )  is smooth. Its derivative is continu-
ous and may be computed using the normal rules of differentiation for polynomials:

/(< ) =  £<■ .*"
n = 0

/ ' ( * ) « / ' ( * )  =  (6.12)
n = 1

where N  is the order of the polynomial. For fifth order polynomial segments, both the first 

and the second derivatives are continuous.

The spike detection algorithms that follow were based on one of these methods to evaluate 

the derivatives of the EEG.
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6.4 A basic spike detector using derivatives

6.4.1 Analysis

The apparent success of spike detectors based on the derivatives of the EEG (section 4.6.1) 
was rather influential at the early stages of this work. Although most of the reviewed 
methods had their basis on the first derivative of the EEG signal, the second derivative 
was also used by some workers. Each derivative contains different attributes of the spike. 
The first measures slope, hence it monitors the large changes in amplitude in a relatively 
short time period, that characterize the spike edges, compared to those of the ‘normal’ EEG 

activity, which are more gentle. The second derivative is a measure of the curvature at the 

summit of the spike, where it acquires a large negative value (indicating the rapid change of 

slope from large positive to large negative).

Although closely related, the information of the first derivative is different from that of the 
second. In fact, workers into the field of EEG modelling, like Ktonas and Smith[107], Ktonas 
et al.[108] and Glover et al.[71] had suggested that the description of spikes and other sharp 

transients ought to be based on more than one parameters, suggesting various amplitude, 

slope, sharpness and duration measures. These suggestions motivated the combination of 

the first and second derivative into a single measure of ‘spikiness’ . Instead of using the 
triangular approximation for a spike, to reflect its sharp transition from a large positive to 

a large negative slope, a smooth waveform was preferred. This is in fact more realistic, 
since band-limiting the signal to remove high-frequency interference tends to decrease the 
sharpness at the summit of spikes and other sharp transients. It was, therefore assumed 

that spikes are single sinusoidal oscillations with period considerably smaller and amplitudes 

larger than those of the rest of the signal. Spikes are superimposed on the ongoing EEG 

signal, so that their onset is gradual and causes no sharp transitions at their starting and 
ending points. For analysis purposes, a spike was approximated by a sinusoid, of frequency 
uo, equal to the fundamental frequency of a typical spike, time-limited by a cosine (Hanning) 

window of duration equal to the period of the transient, to — Without loss of generality, 
the waveform was considered centred at the origin. This function and its first two derivatives 

are given by

A
y =  — — (1 +  coswot) sin ujot 

£
(6.13)

. AiÜQ . .
y = -----—  {cosuJot +  cos 2uot) (6.14)

Acj2
y" =  ——-(s'm u>0t -f 2 sin 2u>0t)

¿j
(6.15)
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Figure 6.2: A simple spike model and its first two derivatives

which applies in the range — £ < * < £ •  All three functions are zero everywhere outside this 
range. It is easy to show that they are also continuous, since y =  0, y' =  0 and y" =  0 at 
the ends of the range t =  ± ^ .  This is clearly demonstrated in Figure 6.2. An actual spike 

was superimposed on the model. Its derivative is shown on the top, scaled by a factor of 5T 
and its second derivative, shown underneath, is scaled by a factor of 25T2. Evidently, this 
simple model does not reflect accurately real spikes, but it contains two of its fundamental 
attributes, amplitude and oscillatory behaviour.

One would then look for a way to combine the derivatives into a single indication for the 

presence or absence of a spike. The following was assumed true

P rop osition  6.1 If both the amplitude, A and the frequency u>o o f a spike are larger than 

the equivalent parameters for ”normal” waves in the EEG, these are enhanced by the first 
and second derivatives o f the EEG. The product o f these derivatives is more indicative of the 
presence o f the spike than either one on its own.

This is easily verified, by forming the product in question

A2u 3
p =  y' • y" = ------—-(sin u 0t +  sin2u;ot +  3 sin 3u>0t +  2sin4o;ot) (6.16)

8
This clearly shows that for a signal of given amplitude, p is enhanced by a factor of u>o, 

compared to u>0 and u>q for y' and y", respectively. Similarly for a signal of fixed frequency, 
ujo, the amplitude enhancement is proportional to A 2, rather than A, as in either of the 
derivatives. In other words, signals of large amplitude and frequency are enhanced more by 
p than by either y' or y" alone. This property of p to enhance spikes and suppress normal 
EEG activity is clearly visible in Figure 6.3(c), where the difference between the large burst 
of mixed frequencies in p for the duration of the spike and the rest of the signal is quite 

profound.



120 Chapter 6. Spike detection and the derivatives of the EEG

There is a small limitation in practice, the absence of a constant term in p that makes 
the detection of its amplitude tedious. A simple practical solution, borrowed from communi-
cations, proved adequate. In amplitude modulation, it is necessary to detect the amplitude 
of a slowly varying signal (the envelope), modulated by a higher frequency one (the carrier). 
The separation may simply be done by rectifying the signal, which introduces a harmonics 

of the carrier, including a constant term. It is then possible to remove these harmonics by 

filtering-out the high end of the spectrum.
In the case of p, no precise reconstruction of the envelope is necessary. Hence, instead 

of rectification, squaring of p was used. This is somehow slower than ‘rectification’ (imple-

mented as the absolute value on a computer), but it is simpler to analyze mathematically and 

provides further amplitude enhancement when a spike is present. Using basic trigonometric 

identities and after algebraic manipulation, it can be shown that

2 _  
P = (15 +  19 cos u>ot +  9 cos 2u>0t2 cos 3u>ot — 12 cos 4u>0t
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—4 cos 5uj0t — 13 cos 6u>ot — 12 cos 7o>ot — 4 cos 8u>ot) (6.17)

This function is rich in higher-order harmonics, but contains a constant term, which may 
be isolated fairly easily using a low-pass filter with a cut-off frequency below u>q to remove 

any oscillations. The details of the implementation of a spike detector based on this idea 

follow.

6.4.2 Implementation

The formulation of this method for spike detection, given in the previous section points to a 
fixed procedure to follow. This is also shown as a block diagram in Figure 6.4:

1. Differentiation of the signal, twice

2. Multiplication and squaring of the derivatives

3. Filtering of higher frequencies

4. Thresholding of the filtered signal

Differentiation is the procedure that is more flexible in its implementation. Several meth-

ods have been presented in section 6.3.1 on how to ‘differentiate’ a discrete-time signal. Step 

2 is rather straightforward to implement, whereas filtering requires some more considera-
tion. Adjusting the threshold on the filtered signal is a simple operation, but it has serious 
implications on the accuracy, or even the validity of the method, which will be pointed out 

later.
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(a) EEG signal

(b) First 
derivative

(c) Second 
derivative

(d)p

time (s)

Figure 6.3: Typical waveforms of the multiplicative spike detector

Figure 6.4: Block diagram of the basic spike detector
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D ifferentiation

A number of the methods for discrete-time ‘differentiation’ proposed in section 6.3.1, have 
parameters that allow for many implementations based on the requirements of the applica-
tion. It was decided to implement various types of differentiators for comparative purposes. 

The criteria for their selection vary between accuracy, simplicity and special properties. The 

following differentiators were tested:

• The piecewise polynomial approximation method

• The forward-backward difference method

• The method of frequency specification and windowing, using a full bandwidth (a  =  1), 
with different orders and either the Rectangular, or the Hanning window

• The same method, but with a restricted bandwidth (cr < 1).

The first method simply consists of fitting polynomial segments on the waveform and 
computing the derivatives of the fitted curve, as explained earlier in section 6.3.1.

The forward-backward difference method approximates the derivative at a time instant 
by taking the difference between the sample following and the one preceding, dividing it by 
the time interval between them:

y[(* +  i ) r ] - y [ ( n - i ) r ]
y \nT) = ------------------------ (6.18)

This may be regarded as a specific case of the method for frequency specification with a 
Hanning window of length 3.

The frequency specification method with bandwidth of application has been extensively 

covered in section 6.3.1. This category has three parameters, the length of the truncated 
sequence, N , the cut-off point, a, and the window used, either Rectangular or Hanning in 

this implementation. Differentiators of orders 3, 5, 7, 9, 15, 21, 31 and 51 were used for 

comparison. Implementations included both window types and full-bandwidth, a =  1 as 
well as for a =  0.1 for a sampling rate of 1000 samples per second or 0.625 for a sampling 
rate of 160 samples per second. These values for a  correspond to a frequency of 50 Hz, 

which is the fundamental frequency of a spike of 20 ms, being the fast-end of the spike range 
and providing the minimum bandwidth for which no spike will be suppressed.

Examples of these differentiators and their corresponding frequency responses were shown 

before in Figure 6.1.
In the actual realization, because the differentiation operators are non-causal, it was 

necessary to simulate ‘future’ samples before evaluating the gradient. Three data buffers
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were employed, to store the signal, y, its derivative, y', its second derivative, y". The 
differentiator was first applied to y, These were implemented as cyclic buffers with two 

pointers, one for the next available (future) sample and one for the sample on which the rest 
of the operations are performed. Hence the detection of spikes is indicated with samples 
delay, where M  is the length of the buffer.

Spike d etector form ulation , squaring and filtering

The function, p was simply the product of the first and the second derivative at every sample, 
p(nT) =  y '(nT ) • y"(nT) and its square, p2, to introduce a constant term a trivial operation. 

Removing the non-constant terms needed some more consideration. From equation (6.17) 

it is evident that for a spike, oscillations in p2 are caused by frequency components at the 
fundamental frequency u>o, and its harmonics. In fact, these are not discrete, but appear as 
peaks of a smoother function of frequency, owing to the windowing operation for time-limiting 
the sequence. Restricting the duration of a signal may be treated as the multiplication of 
the time sequence by a Rectangular window. Due to the duality properties of the time and

sin u  ̂frequency domains, this corresponds to convolution by the function —g-2- in the frequency
2

domain, which results in smoothing of the spectrum. Note that u>0 =  which converts the
sin 7r ***

above equation into — In discrete-time, assuming that to =  (No +  1 )T, this corresponds
2

to
sin 7r—

H (u) =  (6.19)
sm 2

which is a periodic function. Since both functions have most of their energy in the same 
frequency band, |u>| <  u>o in the range of frequencies |u;| < it is unimportant whether the 
filter is developed in discrete-time directly, or in continuous-time and then converted. The 

selection of the direct approach here is somehow arbitrary.
The interest is drawn to the low-frequency elements of the spectrum, produced when 

convolving the function of equation (6.19) with that for p2, derived from a discrete-time 
equivalent of equation (6.17). There is a large amplitude in the band 0 <  u> < u0, due to 

the constant term and another one, 0 <  uj <  2u>o, due to the first harmonic. These bands 
overlap. Hence the cut-off frequency of the low-pass filter was chosen as their mid-point, 
ujc =  which suppresses as much oscillations as possible while maintaining most of the 
useful low-frequency components needed for the detection.

Formally, spikes have durations between 20 and 70 ms, which correspond to funda-
mental frequencies, u>0 € [89.76,314.16]c/s, giving cut-off frequencies in the range uc € 
[44.88,157.08]c/s. Selecting either extreme of the range has side effects. If the low-end is 
chosen, some useful signal power may be lost when encountering spikes with higher frequen-
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cies. Selecting the upper bound may allow oscillations of significant amplitude to occur in 
the filtered output, causing multiple detections. The lower bound was chosen instead, as it 
would result in excessive smoothing of the raw detector output for some spikes, which is not 
too critical. It is possible to ‘tune’ uc for the spikes of each patient, assuming that their 
duration is reasonably constant but in practice the system functioned satisfactorily even for 
cut-off frequencies outside this range , indicating that despite these considerations, uc is not 

a very critical parameter. This, however, is not conclusive since the detector was tested on 

a relatively small set of EEG records.
Several low-order filters with a cut-off frequency uc =  44.88c/s were tested. Because 

there is significant overlap between the spectrum of the signal to detect and the one to sup-

press, the Chebyshev filter[150, p. 568-576] structure was chosen, which has fast transition 

characteristics. Ripples in the pass-band are acceptable, since no precise gain characteristics 
are required. A ripple factor of 0.5 dB was chosen, corresponding to the filter parameter 
t =  0.3493. The transfer functions for a first- and second-order filter for a sampling rate of 

1000 a“ 1:

¡h (* )
and

H ,(z)

and for the rate of 160 s 1:

H i(z)

and

H2{z )

0.06038(1 +  z - 1)
1 -  0.87925Z-1

7.39539 • 10—4(1 +  2z_1 +  z~2) 
1 -  1.93508Z-1 +  0.93804Z"2

0.28784(1 +  z—1 )
1 -  0.42432Z"1

2.45395 • 10-2 (1 +  2z_1 +  z~2) 
1 -  1.57497Z-1 +0.6731292-2

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

In both cases the bilinear transform s — ^(z+i) was use(  ̂ f°r the conversion of the transfer 
functions from continuous to discrete time, according to the well-known procedure[151, p. 
608-612]. Although the final results for the records tested were similar for either the first, or 

the second order filter, the computational complexity of the second over the first is marginal. 

Therefore this was the one incorporated in the end, since it provided a precautionary ‘per-

formance margin’ .

Thresholding

The output of the filter is smooth with a rather small amplitude, almost zero, maintained 
over the length of the EEG recording, but suffers transient increases during the occurrence
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of spikes. What is actually required is a binary indication, of the occurrence or absence of a 
spike at any instant. Since the amplitude of the filtered detector output, L(n), is high when 

a spike is encountered and low otherwise, one may assume that this function maps EEG 
samples into a one-dimensional space, so that those that belong to a spike and those that 
do not form two distinct clusters. Because L(n) is a scalar function, the two clusters may 
be separated, defining the corresponding classes ‘normal’ and ‘spike’ , by a single value, Lth, 

between them, below which a sample should belong to the ‘normal’ and above which to the 

‘spike’ class.

L(n) <  Lth =>■ class(n) =  ‘normal'
>  Lth => class (n) =  ‘spike'

Using the constant term of equation (6.17), 15̂ 8 ° ’ assunbng u>0 — 89.76, gives a value of 
Lth =  5-23 x 10UA4. From the available spikes, A «  100, hence Lth =  5.23 x 1019 for a ‘slow’ 
spike of low amplitude. This value was not satisfactory, as it resulted in a either a number 

of missed spikes or false detections, depending on the other parameters of the system. In 
practice, a different value was estimated, from experimental data. Since the clusters of spikes 
and non-spikes are not always distinct, there is a region of values of L corresponding to points 

belonging to both spike and non-spike samples. The optimal v a l u e , w a s  chosen as the 
value of Lth which minimized false detections (i.e. the probability that a normal sample is 
incorrectly marked as a spike) as well as missed detections (i.e. the probability that a genuine 
spike is classified wrongly as a normal sample). In other words, L*h should be selected to 
minimize the probability of incorrect classification (the point where the probability of making 
a mistake is equal for both classes).

In order to do this, EEG records containing a known number of pre-identified spikes 

were repeatedly processed with the suggested method, each time increasing the value of Lth 
from a low value, which caused an infinite number false, but no missed detections to a level 

where the number of detected spikes approached zero. For each level, the number of false 
and missed detections were recorded and plotted on the same set of axes. Figure 6.5 shows 

these two functions for a record sampled at 160 s-1 and processed using a differentiator with 
N  =  9 and a =  1 . It was then possible to determine the abscissa of the point of intersection 
of the two graphs, which gave the required value L̂ h. The small number of points in the 
region around L*h and the distinct peaks of the two curves are characteristic of good cluster 
separation. Therefore, by selecting any threshold level in this region the performance of the 
detector should remain largely unchanged. This procedure was automated using a variant 

of the spike detection program with multiple values of Lth and the results of spike detections 

were subsequently analyzed manually.
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(a) Total view of the functions (b) Detail, showing optimal threshold value, L*th

Figure 6.5: Missed and false detections as a function of Lth

Spike detection, however, requires the association of the binary indication after thresh-

olding, which persists over a period of time, with a single spike event, which is registered 
at a particular time instant. It was decided to register a spike occurrence at the end of the 

indication period, provided that the period itself was less than about 0.1 s, measured by 
counting the duration in samples and comparing it to the number of samples corresponding 
to the mentioned duration. This was chosen to be a little above 70 ms, which represents the 
longest spike duration, so that filtering which may prolong the response of the multiplicative 
detector did not cause genuine spikes to be missed. This acted as a safeguard against the 
false detection of some artifact bursts, which often persist for longer durations than isolated 
spikes and resembles a similar concept used by Stelle and Comley[183].

6.4.3 Results and observations

Data preparation

The developed method was applied to a number of EEG records, which were saved on an FM 

magnetic tape as a continuous time signal and then digitized using a 12-bit data acquisition 

circuit (DT3100), based on 80286 computer. This was driven by a commercial digital signal 
processing package (ILS) to sample the EEG records played back from tape. The sampled 

signals were saved in separate files, one for each recording.
Four records containing mixtures of spikes and artifacts were sampled to produce an 

equivalent number of files, which were used off-line for testing different spike detectors. For 

comparative purposes, sampling was repeated twice for every record, with sampling rates of 
1000 and 160 samples per second. Anti-aliasing filters were used in both cases (fourth-order, 
low-pass Butterworth with cut-off frequencies at 400 Hz and 70 Hz, for the 1000 and 160 

s-1 sampling rates, respectively).
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The sampled data contained a large constant offset, which is not necessarily a charac-
teristic of the signal itself, but one of the recording procedure. This was removed after 

discretization using a digital second-order high-pass Butterworth discrete-time filter with 
a cut-off frequency of 0.1 Hz, to ensure a flat response in the pass-band. Conversion to 
discrete time was achieved by the bilinear transformation as before. Although this might 
appear unnecessary, since subsequent differentiation would remove any constant (DC) term, 

in practice it helped limiting the dynamic range of the products, during the application of 
the differentiator with the signal. This is a crucial aspect, if the use of fixed-point arithmetic 

proves necessary for the portable realization of the system on a small microcomputer.

Record contents

The four records, labelled A, B, C and D contained various types of EEG signals, mainly 

spikes and muscle artifacts (see Table 6.1).
Record A had a duration of 210 s and contained a total of 52 spike-and-wave com-

plexes. Although it was fairly free from non-cerebral activity, at two points it contained 

low-amplitude high-frequency components which resembled muscle artifacts.

Records B and C, having durations of 130 and 123 seconds respectively, contained a few 
spikes each (8 and 10). Muscle potentials were more abundant in these records than in record 
A, but the contamination of the cerebral potentials was only partial.

Record D, the one with the longest duration (242 seconds) was the most severely contam-
inated with muscle and other artifacts. The general high-frequency spiky appearance, and 
the large amplitude muscle spike bursts which completely obscured the underlying cerebral 

activity were characteristic of this record. No spikes were present in this record or, to be 

precise, none could be detected.

Variants of the basic system

It must have become obvious from Section 6.4.2 that there are many possible combinations 

of parameters that define the overall multiplicative differential spike detector, most of which 

related to the construction of the differentiator. Depending on the sampling rate / , ,  the 
cut-off frequency, f c =  a ^ ,  the order, N  and the window used, numerous differentiator real-
izations are possible. The results for various combinations of these parameters are recorded 

in Table 6.1. Tests were mainly carried out for the sampling rate of 1000 s-1 , since the 
results were more variable than those for 160 s-1 . Differentiators with orders from 3 to 51 

and a bandwidth from 0 to either 50 Hz or the Nyquist frequency were tested. The windows 
used were either the Rectangular or the Hanning.
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As mentioned earlier, filtering of the squared product of the derivatives was performed 
by a second order Chebyshev filter. No differences in the results were observed with the use 

of a first order filter.

Finally, perhaps the most crucial element of a successful detector is the optimal spike 
detection threshold, L*h, estimated as explained in section 6.4.2, based on the results of 
record A, since it is the only one containing a large number of spikes. This must have 

introduced some bias towards a lower value than required to reduce false detections in, 
say, the contaminated record D, but simulates better what may happen in practice, since 
relatively artifact-free recordings at an EEG laboratory could be used for setting up the 

system, when during its operation it may be subjected to artifacts, as there is no precise 

knowledge about the nature of artifacts that might occur. It may be argued that missing 
spikes is more crucial than falsely detecting some when there are none, since it is possible to 
record segments of the EEG signal around the detected spike for verification of detections 
by an expert human analyst later, whereas there would be no means of recovering genuine 

spike occurrences if they have been missed by the system.

6.4.4 Discussion

The results of table 6.1 are a good means of comparison of the various settings of the system, 
but the small availability of EEG records make the generalization of the conclusions drawn 

difficult.
Although the differentiator based on the piecewise polynomial approximation method 

had a number of variable parameters (sampling rate, order, type and value of the approx-

imation criterion), only one example is given in Table 6.1. This had order 5 to guarantee 

the continuity of both the first and the second derivative, and hence prevent sudden ‘jumps’ 
in the value of the raw spike detector, The low sampling rate of 160 s-1 did not result in a 

good approximation of the EEG signal, hence the sampling rate of 1000 s_1 was considered 
only. Results were not found to depend on the criterion of fit, but the tested configuration 

used the MSE (£2) and the value of £max set to 300 as in section 5.5.3.

It is evident that from the presented results this type of differentiator was not satisfactory 

especially in the presence of artifacts. As there is no precise way of controlling its bandwidth, 
spiky artifacts appear to cause polynomial approximations consisting of a few samples each 

with large oscillations between their end points. These gave rise to large derivatives and 

hence excessive numbers of false alarms. Some spikes were also missed, because their small 

amplitude did not give rise to a large error in the approximation and hence were approximated 
by one or two smooth polynomial segments, which meant low derivatives and hence inability
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Record A B C D

Duration in seconds 210 130 123 242

Number of spikes present 52 8 10 0
Muscle artifacts present? some yes yes many

System parameters Detections

# Diff/tor I s fc N Win L'th V X V X V X v/ X

Name (Hz) (Hz)
1 pew. polyf 1000 £max=300 5.7 x 1022 48 4 6 31 7 80 0 —

2 D03_H100 1000 500 3 Hann. 9.2 x 1021 50 2 7 18 8 18 0 860
3 D05-R100 1000 500 5 Reet. 3.1 x 1015 48 4 6 22 7 30 0 1231
4 D05AH100 1000 50 5 Hann. 2.6 x 1015 50 2 8 12 10 15 0 636
5 D09JU00 1000 500 9 Reet. 6.3 x 1024 46 6 6 28 6 56 0 —

6 D09AH100 1000 50 9 Hann. 2.5 x 1015 50 2 8 6 10 12 0 186
7 D15-R100 1000 500 15 Reet. 1.8 x 1025 44 8 5 29 4 60 0 —

8 D15AH100 1000 50 15 Hann. 2.5 x 1015 50 2 8 2 10 7 0 154
9 D31JU00 1000 500 31 Reet. 2.9 x 1025 41 11 5 49 4 78 0 —

10 D31AR100 1000 50 31 Reet. 2.5 x 1015 50 2 8 2 10 7 0 153
11 D51AH100 1000 50 51 Hann. 2.5 x 1015 50 2 8 2 10 7 0 88
12 D03.H016 160 80 3 Hann. 1.3 x IO20 50 2 8 3 8 10 0 94
13 D09-R016 160 80 9 Reet. 2.2 x IO20 50 2 7 3 8 14 0 123
14 D09AH016 160 50 9 Hann. 1.0 x IO20 50 2 8 3 10 6 0 53
15 D31AH016 160 50 31 Hann. 1.0 x IO20 50 2 8 2 10 6 0 41

f: Fifth order piecewise polynomial approximation method (see text)

Table 6.1: Results of multiplicative differential spike detector

to discriminate. Because of its rather unpredictable behaviour with artifacts, the problems 
with low-amplitude spikes and the requirement for more computations, compared to the 
other methods presented, this technique was considered no further.

The sampling frequency appeared to be a crucial element in the success of the spike 
detector. The results for 160 s-1 were generally better than those for 1000 samples per 
second. This, however, is only an indirect observation. The actual reason is the effect 

of the anti-aliasing filter of lower cut-off frequency in the first case, which considerably 
reduced signal components, especially artifacts, at frequencies above 70 Hz. Moreover, since 
differentiation, even at full bandwidth, could not enhance frequencies above 80 H z , the effect 
of these on spike detection was much reduced (this is related to the bandwidth issue, which
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is addressed later).

There has been some evidence that the reliability of the detector increased with the 
order of the differentiator. This observation only applies to the differentiators of restricted 
bandwidth. For the full bandwidth ones, the increase in the order led to the deterioration 
of the performance, which was expected since the increasing order perfected differentiation 

close to the Nyquist frequency, as is evident from Figure 6.1. The enhancement of high- 

frequencies, where artifacts are more prominent, resulted in false spike detections. It should 
be noted that the improvements in the performance of the system with the increase in order 
of the limited bandwidth differentiators is not so much associated with the perfection of the 

differentiation in the pass-band as with the perfection o f the suppression o f frequencies in 
the stop-band. This is demonstrated by the results of the system for the low sampling rate 

of 160 s-1 , which proved accurate even for low orders.

The issues already addressed appear related to a large extent on the bandwidth of the 

differentiator. This is defined by the cut-off frequency, f c and the Nyquist frequency, . 
The improved performance of the detector when the bandwidth of the differentiator was 
restricted to 0-50 Hz is clearly marked in Table 6.1. Full-bandwidth differentiators tend to 
enhance artifacts, which affect the higher frequencies and, since the amplification at these 

frequencies is considerably larger than those in the frequency band occupied by spikes, even 
low-amplitude artifacts gain substantial enhancement after being differentiated twice! This 
is, of course, observed much more for the sampling frequency of 1000 Hz, as the bandwidth 
of the EEG is restricted to a small fraction of the spectrum, whereas the region of the 

enhancement is what artifacts are likely to affect most. This is hardly observed if the 
sampling rate is 160 s-1 , since most of the bandwidth is now occupied by the EEG and 
the only interference from artifacts occurs in frequency components within the bandwidth of 

the EEG or slightly above. Therefore, the restrictions in the bandwidth here had been less 

beneficial over those on the 1000 s-1 rate, though the rejection of artifacts, especially in the 

heavily contaminated record D is still better.

During the development of the differentiator, there has been some concern about the use 

of the appropriate window and its effects on the behaviour of the differentiator. In practice, 
it did not appear to matter which window was used and both the Rectangular and the 
Hanning windows performed well. This indicated that precise differentiation is perhaps not 
the main issue in spike detectors based on derivatives, and that crude approximations could 

still yield useful results.

One of the important questions raised while the system was tested was whether it was 
possible to find a single optimal threshold that could apply either to differentiators of the
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same order or the same sampling rate. It is evident from Table 6.1 that this had not been 
the case. Thresholds needed adjustment. It is noticeable that for / s=1000 Hz there was 

no need to adjust the threshold for differentiators of orders 9 and over, for / c=50 Hz. For 
the full bandwidth there was necessity to raise the threshold by several orders of magnitude 

to reduce the number of false detections. This was hardly necessary for the lower sampling 
rate of 160 samples per second, where the optimal threshold was only doubled. Evidently, 
its value is more related to the rejection of false detections than to the detection of genuine 
spikes.

Several points regarding this method of spike detection are worth noting.

• The use of a low-order differentiator may be preferred in practice, since it requires 

fewer operations to implement and hence is faster.

• The results for the low sampling rate were (in general) better than those for the high 
one. This means that more time is available between samples and hence the number of 
operations available for a real-time implementation on a given microcomputer system 

is significantly increased.

• Precise differentiation is not a crucial issue. Even low-order differentiators performed 
well. It seems that suppression of frequencies liable to artifacts is a more important 
matter.

• The need for manual setting of L*h is a serious limitation of this implementation, since 
in practice it depends not only on the presence or absence of artifacts but on signal 

power as well, which is not fixed, as the impedance between the electrodes and the scalp 

suffers fluctuations, especially over the period of long-term ambulatory monitoring.

• The analysis of the detector itself has limitations, as it is cumbersome to operate with 

non-linear functions and combinations of products in general. Therefore the behaviour 
of the detector cannot be fully assessed even for relatively simple inputs; for the rather 
complicated EEG signals it is impossible.

It should be noted that the detector presented has a vague resemblance to the arithmetic 
detector of Quian et al.[157] (see also section 4.6.1), although the concepts, rigour, reasoning 
analysis and the structure of the detector of these authors and are quite different.
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6.5 State-space techniques based on time derivatives

Some of the elements of the spike detector just described were not based on elements of the 
signal itself, but rather on secondary characteristics of the product of its derivatives. One 
fundamental limitation is the loss of the individual properties of the derivatives after multi-
plication. The large amplitude oscillations observed in their product are quite characteristic 
of spike phenomena as well as some artifacts, but the extraction of structural information 
from them is more cumbersome than from the spike itself. The envelope of the oscillations is 
the only signal parameter easily extracted. Although this has been used for spike detection, 

it is a crude summary measure of the information contained in both derivatives and its cor-
relation with them is only remote. It may be therefore argued that other useful information 
has been lost. Even more important than loss of information is the loss of continuity between 
the spike specification, in terms of amplitude and frequency, and the limit (threshold) of the 

detector output. Since the formal spike definition cannot be related to the threshold any 
more, the latter had to be estimated by experimental means, a practice which should be 

avoided, if possible, as it makes the method data-dependent and inflexible.

In an attempt to address these issues, it was decided to change the function that combined 

the two derivatives into one that could be related more easily to properties of individual 

derivatives and signal parameters, in general. For this purpose, the model used in section 
6.4.1 had to be modified to be more generalized and accurate and a state-space approach 
to be adopted, at least for visualization of the signals and their properties. Based on this, 
a new function was defined and was made insensitive to signal power variations. The new 
system was based on a distance and orientation measures, which relate to formal limits for 

the detection of spikes. The complete method is described in the rest of this Chapter.

6.5.1 Modelling the EEG waveform

Logically, there is no reason why the spike model of section 6.4.1, expressed by equation 

(6.13), may not be used here also, since the derivatives are still in use. This model, however 
had been a crude one and only reflected the most basic properties of a spike, amplitude 
and duration. If more features of a spike are to be taken into account it is necessary to 
modify it to include them. Equation (6.13) assumes that spikes consist of a single sinusoidal 

oscillation, smoothed at its two ends with constant frequency as well as amplitude. This is 
not the case in practice, because even if the shape of the spike is roughly ‘sinusoidal’ , the 
amplitude of the positive peak is sometimes larger than that of the negative one and there 
is a distinct reduction in the frequency of the oscillation after the negative peak is reached.
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These did not affect spike detection then, as the variations would have disappeared in the 
multiplication of the derivatives. Here, the model had to be generalized to include them:

y(t) =  A[6{t)\ sin 6(t) (6.27)

The constant frequency of the waveform has been replaced with a function of time, thus 
allowing for the increase in the period of the oscillation that is observed after the negative 

peak of the spike, as well as for the variations in the durations from the onset to the positive 

peak and that from the positive to the negative peak (although these are less apparent). 
It should be noted, though that 6(t) is a monotonically increasing non-negative function of 

time in the domain of interest t € [0,io] and that if 0'(t) =  wo, a constant, then 0(t) =  u>0t 
as in the earlier model. Summarizing the properties of this function,

0(t), 6'{t) are continuous and differentiable in [0,2 7r]
6>(0) =  0 
9(t0) =  2ir

0'{t) > 0  V i  € [ 0 , t o]

(6.28)

Similarly, the constant amplitude factor, has been replaced with a function of time, A[0(i)]. 
This also incorporates the window function, which was used to smooth the end-points of the 

oscillation. It is no longer necessary to include it as a separate entity. This time-varying 
function is capable of representing amplitude changes in the spike and indeed any single wave 
of the EEG signal. To simplify some aspects of the analysis that follows it is more convenient 
to express A(-) as a function of 6{t) rather than t. This corresponds to a distortion of the 
time axis. As with 0(f), certain restrictions apply, mainly on the values of the function and 
its derivatives at the end points, 0 and 2n, and their values outside the range of interest:

A { t ), A\ t ) are continuous and differentiable in [0,2 ?r]

A ( t ) >  0 V r € [0,2tt]

=  0 V T ^ [0, 27r]

A( 0) =  A(2n) =  0

A'(0) =  A\2tt) =  0
A"{ 0) =  A"( 2tt) =  0

(6.29)

The end-point condition ensures a smooth transition from of the model value to zero. This 
is also a property of its derivatives.

The first two derivatives of the modified model of equation (6.27) may be readily written 

down:



134 Chapter 6. Spike detection and the derivatives of the EEG

y'(t) =  0'{t){A[0(t)] cos 0(t) +  A’ [$(t)\ sin 0(<)} (6.30)

y"(t) =  [ « W { K W ) ] - 4 « ( 0 ] }  » '" « (< ) +  2 A'[mcos (?(*)}

+  0"(t)(A\e(t)\ cos 0(1) +  A'[6(i)) sin 0(1)} (6.31)

One might wonder about the pattern of the collection of points of the form p(t) =  

(y '(t),y"(t)) in R 2. Their locus will be mentioned quite often in this section and has been 
called simply d-plot (the name is possibly not very successful, but was used in a number of 
internal reports and a publication[126], so it will be adopted here also, to avoid confusion). 

This, of course, depends on the nature of the functions .<4[0(i)] and 0(t).

Since A[0(i)] is continuous, twice differentiable and bounded in the region of interest, its 
first two derivatives are also bounded. Continuity and differentiability of 9(t) also guarantees 

that the derivatives of this function exist. By the non-decreasing constraint they are also 

guaranteed to be finite in the region of interest. Moreover, since both sin 0{t) and cos 0(t) 
are bounded by the range [—1,1] then from equations (6.30) and (6.31) the locus of p(t) is 
also bounded. The derivatives are not guaranteed to have the same sign, but it is always 

possible to find a closed curve, C, such that all points p(t) lie in its interior. Such a curve 

might be the rectangle constructed by the lines y' =  a, y' =  b, y" =  c and y" =  d, where 
a, b are the minimum and the maximum values attained by the first derivative and c and d 
those attained by the second derivative. It is, of course, preferable if C is only large enough 
to enclose the locus in question. Therefore more restrictive parametric curves have been 

considered, being more specific and accurate.
One such curve may be obtained using some algebraic manipulation on the locus of the 

points in the space of the two derivatives (d-plot). Dividing y'(t) by A(t)9'(t), produces

^  =  cos 6 +  —  sin 9 (6.32)
A  u A

where the independent variable t has been dropped for simplification of the notation. Letting 

^  =  tan< î leads to the following modified relation:

cos <f)i y' 
A 9'

=  cos 0 cos <f>i +  sin (f>i sin 9 

= COS(0 — (j)\) (6.33)

Similarly, subtracting the term 9"(A  cos 0 +  A! sin 0) =  |^y', then dividing y" by

(0' )2 [A "—A) and letting ^ 'A„ =  tan <j>2 produces a similar relation for the second derivative:

cos <f>2 (y" -  ^ V )  
{A" -  A){0')2

=  sin(0 — d>2) (6.34)
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Both expressions are useful, since they are bounded in the range of their right-hand- 
sides, [—1,1]. Using the properties of the functions involved, it is possible to determine the 
lower and upper limits of these expressions. Since A (t ) >  0 and 0(t) >  0 for r  G [0,27r], 
(see properties, expressions (6.29) and (6.28)), one might use their maximum values, Amax 
and 0'max and if the maximum is a turning, rather than a boundary point (which is true 
since A  is zero at the boundaries), the maximum occurs when A' =  0 which causes 4>i to 

be zero. Hence the maximum of the first derivative is a =  Amax 0'max and its minimum 

is (symmetrically) b =  —A max 0'max. By similar arguments, expression (6.34) is maximized 
when 4>2 =  0, O' =  6max and A =  Amax. The role of A" has not been ignored in this 
argument, but, as it is much smaller than A, its influence is marginal. If any value for it is to 
be taken into account, it should be its minimum, Hence the maximum and minimum

for the expression y" -  % y  are c =  (Amax -  4 " ,n) (0'max)2 and d =  (A " tn -  Amax) (0'max)2. 
Strictly speaking, the method of obtaining these values is not the formal algebraic one 
(maxima and minima are the points of zero derivative). However, differentiation produced 

expressions that were so complicated they could not be used, especially since the functions 

have not been defined explicitly. In practice, however the error is small, since A! and A!' 
are negligibly small, compared with A , and may even be taken as zero for most of the spike 

duration, as explained later. Besides, since in real signals only the derivatives are estimated, 

it is possible to compute these limits directly, rather than by the parametrization used here 
for the development and justification of a method. The symmetry of the limits, and the 
expressions themselves are suggestive of the shape of the boundary curve. By defining the 
variables u — y\ v  — y" — |jy ' and the constants p =  a =  —b and q =  c =  —d, and by further 

assuming that 4>i =  4>2 — 4>, one may write:

u =  p cos(0 — 4>) 

v =  q sin(0 — 4>)
(6.35)

These are the parametric equations of an ellipse, centred at the origin of the u — v plane, 

cutting the axes at right angles and having axes 2p and 2q in the u and v directions, respec-
tively. By eliminating the parameter 0 — 4>, the more common form of the equation of the 

ellipse is revealed:

i  i  =  1 (6.36)
P T

The assumption 4>i =  4>2 is n°t a critical issue in the argument, since one could define the 
ellipse without using the d-plot of the model, just the boundary values computed before. 
The development of the boundary ellipse, Ce, from small modifications of the d-plot of the 
spike, which has only been described in general terms is suggestive of the proximity of the 

actual locus to that of an ellipse.
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Figure 6.6 shows the d-plots of four models and a genuine spike. The first three plots 
have constant frequency, 0'(t) =  w0 but different amplitude functions, A(t), which are zero 
everywhere outside the domain [0, r0]. A range of functions were considered inside this 

domain:

Ar(t) = Ao (6.37)

A h(t) = —^(1 — COSW0t)
¿J

(6.38)

M * )  =
,3 1

A0 { -  -  -  cos w01 + cos 2wot)
O

(6.39)

At(t) =
A  3

Ao ( -  -  -  cos w0f +  
2 4

— COS3 Wot) (6.40)

Ar(t) is a rectangular pulse of amplitude Aq and duration r0 =  This, violated the 
requirement of continuity and differentiability at t =  0 and t =  r0, which is obvious in the 

first derivative, but produced an elliptic d-plot, apart from the end-points at which it is not 

differentiable.

Ah(t) is a Hanning window scaled by a factor Ao: The factor 2 was introduced to counter-

act the diminution in the maximum amplitude of the resulting waveform in relation to 
that for the Rectangular window when the oscillation reaches its peak. Here, the ellipse is 
distorted with one extra loop introduced, corresponding to the beginning and the ending 
of the waveform where the slope and curvature of A are in anti-phase. The discontinuous 

second derivative at the end-points of the Hanning window does not cause problems here, 
since it is cancelled by the sinusoidal oscillation of the same frequency, which is zero at those 

points.

In an attempt to produce a function that fully conforms to the restrictions imposed 

on A (relations (6.29)), starting from the Hanning window, the functions A s(f) and At{i) 
were developed (see Appendix B). The first has continuous both derivatives, but is not 
symmetric with respect to The second satisfies both conditions. The d-plots of the 
corresponding models are similar to that of the Hanning window. Examples of spike models 

employing A r(t), Ah(t), Aa(f) and A t(t), all for 6(t) =  u0t are shown in Figure 6.6(d) and 

their corresponding d-plots in (a) and (b).

A t(t) led to a variation of the Tukey window[151, p. 549] which has a flat section of 

amplitude A0, in the range [ar0, (1 — a)r0], where 0 >  a  >  gradually decreasing to 

zero at the two end-points. The original Tukey window could not be used, because it has 

discontinuous derivatives at the points t =  aTo and t — (1—a)ro, where the ‘Hanning’ sections 
are attached to the ‘rectangular’ one. The remedy to this problem lied in the half-wave 
symmetry of At(t) (equation (6.40)). In its final form, the duration of the ‘tapering” sections
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at the beginning and ending of the model was made independent using two proportional 
parameters at t =  ar0 and t =  (1 -  /3)t 0, where a,/3 G [0, |], permitting asymmetry in the 

envelope:

Am(t) =  0 t <  0

=  A0 (J -  | COS +  \ COS3 **t) 0 > t >  OCTq

=  A0 ûfT0 >  t >  (1 -  /3)r0

=  A o ( | - f c o s ^ ( i - r 0) +  ^cos3 ^ ( t - r o )  (1 -  0 ) t o >  i >  r0 
=  0 t >  T0

(6.41)

This function has been used to describe the amplitude of the last model, which also had 

variable ‘frequency’ , 0'(t), following the same function as Am(t). The angle 6(t) was obtained 

by integration (see Appendix B). to model more precisely the behaviour of real spikes. 
Notice that this model and its d-plot bear more resemblance to that of a real spike (Figure 

6.6(c),(d)). Its behaviour, although it still follows a loop in all quadrants, has deviated 
from the ellipse. Sections of it can still be identified as elliptic, especially in the fourth and 
third quadrants, where the amplitude and frequency are slowly varying or constant. The 
significance of the elliptic shape of the d-plots will become apparent in the discussion that 

follows.

6.5.2 Towards a detection procedure

Having shown d-plots of models and real spikes to demonstrate graphically the suggested 
data representation, it will now be demonstrated how it may be used for their detection. 
After the onset of a spike, its amplitude may be regarded as almost constant (A =  A0) 

and assuming its frequency is constant also (O' =  u0, which appears to be true from just 
before the peak to just after the trough of the spike), then A' =  A" =  0, 6" =  0 and hence 
fa =  d>2 =  0 and the d-plot resembles an actual ellipse, =  l! Note that the
ratio of the vertical to the horizontal axis of the ellipse gives in this case the frequency of 
the oscillation, which can then be used to compute the amplitude of the signal. Hence the 

d-plot provides a way to readily estimate these parameters. Although their computation is 
possible without the d-plot, the latter provides an easy way to visualize them.

So far a boundary, C0 has been established so that the d-plots of spikes lie in the region 

enclosed by CQ. This is not particularly useful for their detection, since, as stated earlier, 
‘normal’ EEG activity is lower in both amplitude and frequency than the spike. It is obvi-
ous, that the d-plot of such activity will be well enclosed by C0. What is actually required 
is an inner boundary, C, such that spikes have their d-plots exterior to this, whereas those
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Figure 6.6: Examples of d-plots, (a)-(c) and corresponding signals (d)

corresponding to non-spike EEG lie on its interior. Due to the definition of the spike param-
eters, this is not possible since the d-plots of a spike start from the origin (remember that 

A(0) =  A'(0) =  A"(0) =  0). For real spikes, however, the end-points are superimposed with 
the waveforms before and after the spike and are not reliable indicators, hence they may be 

ignored. The model of equation (6.27) is suitable for describing any wave of the EEG and is 
not specific to spikes. Therefore, using the intuitive rule that the amplitude of a spike A 3( t ) 

is larger than that of non-spike waves, AU3(t ), and that the ‘frequency’ of these waves follows 

a similar relation, 0',(t) >  0^,(2), it is evident that this this is also true for their products 

(since their magnitudes are well above unity):

As-0't > Ans-0'na 
As ■ (0'3)2 > Ana-{0'n, f

These are essentially the major and minor axes of the d-plot, assuming that it has an elliptic 

shape (and ignoring the effects of A ", which is rather small). Assuming that the relations 

(6.42) hold even for extreme cases, when the background (non-spike) waves attain frequencies 

and amplitudes that are atypically large when spikes have abnormally low frequencies and 

amplitudes, it is possible to define a boundary ellipse, C,, which encloses all non-spike EEG

(6.42)
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activity, but none of the spikes. Again, this ignores the regions of transition between a 

typical EEG wave and a spike, when this boundary is crossed.

Summarizing the important elements of this analysis procedure,

• A spike model based on a single sinusoidal oscillation with varying amplitude and 
‘frequency’ was proposed. This is a development from a simpler model given in the 
previous section.

• The 2-dimensional space defined by the first two derivatives of the EEG signal, termed 

the d-plot, was suggested as a way to highlight certain attributes of the signal, implied 

in the model, but not clearly visible in the conventional time-domain representation 
of the signal. These are multiplicative combinations of the amplitude and frequency 
functions, which are the elements of the model suggested.

• The shape of the locus of a spike represented in a d-plot, as well as those of non-spike 
parts of the signal (background activity), were found to form ‘loops’ around the origin, 

provided that their amplitudes are slowly varying, compared to the oscillation. In the 

case of sinusoidal signals, the d-plots are ellipses centred at the origin. This is approx-
imately true for distorted sinusoidals, exhibiting small changes in their amplitude and 
frequency.

• Based on the previous observation, it was demonstrated that an upper and a lower 
boundary could be suggested for the region in the d-plot occupied by spikes, excluding 
their beginning and ending. It was suggested that elliptic boundaries could be used, 
in which case spikes have d-plots in the ring between the inner, C,, and the outer, C0, 

boundary ellipses. C, encloses the background EEG activity, whereas C0 is a safeguard 
against artifacts and other signals of large amplitudes and frequencies.

• Therefore spikes may be identified as sections of the EEG signal that lie in the region 

between the bounds described.

The material presented so far was kept on a general, level. The concern here was the 
presentation of the ideas and the rationale behind the suggested methodology. Thus, no 

attempt has been made, as yet, to address the realization of the suggested procedures. It 
is well understood that there are many practical issues that might complicate the transition 
from a conceptual to a working spike detector. These issues will be addressed in the next 
sections, as the spike detector will be put together.
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6.5.3 The Spike Detector

The relation of the derivatives of the signal to the detection of spikes, as explained in the 
previous section provided the framework for the development of a practical spike detector. 
The general method assumes that spikes have frequencies and amplitudes that are unchar-

acteristic of the ‘normal’ EEG signal and are highlighted in the space defined by its first and 

second derivatives. In that space, during the occurrence of a spike, the trajectory of the sig-
nal (the d-plot) passes through the region between two non-intersecting closed curves about 
the origin, the outer and the inner boundaries, C0 and C,-, respectively. It was also assumed 

that these boundaries have the form of concentric ellipses centred the origin. In practice, 
these boundaries are not known and must be estimated. Moreover, differentiation of the 
raw EEG signal may be implemented in a number of ways. Other elements and parameters 

of the system may also need adjustment to optimize the performance of the detector. This 

section deals with the practical solution of these problems.

In general, the operations needed for spike detection according to the ideas of the previous 

section are shown in Figure 6.7. The signal must be differentiated twice, since the procedure 
requires the first two derivatives. Then, the test for ‘ spikiness’ is carried out to determine 

whether the signal lies between the spike boundaries C, and C0. The output of this test 
persists for the duration of the spike, whereas a spike detection is a discrete-time event. The 
conversion is done in conjunction with phase information, indicating the orientation of the 
wave. The output of this operation is an event detector, marking and counting the occurring 

spikes. Parameters, like the spike boundaries, were derived from the signal, as explained 

later in this section, whereas the low-pass filter and the slow wave detectors are additional 
elements whose significance will be elaborated in section 6.5.8.

6.5.4 Differentiation-the first step

It was noted earlier (section 6.3.1) that a discrete-time differentiator my be realized in many 

forms. A selection of those was implemented for the earlier spike detector of section 6.4.2. 
The tests carried out then revealed some of the intrinsics of each type of differentiator and 
permitted the isolation of the less successful ones as well as valuable experience for the 

prospective use of each one of them. The noise immunity of the parametric differentiator, 

based on polynomial approximation of the signal, was inferior to most non-parametric imple-
mentations. Moreover, it required more computations than non-parametric techniques with 
superior performance and lacked ‘tuning’ parameters, which could tailor its performance to 
the requirements of this application. For these reasons this differentiator structure was not
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Figure 6.7: Block diagram of the spike and wave detector based on d-plots 

considered in this section.

The other differentiator structures, the forward-backward difference and the frequency- 

specified realizations belong to the non-parametric class. The main quality of the first type 
is the simplicity of the computations it requires. The suppression of high frequencies, which 

begins after its maximum value at half the Nyquist frequency and becomes zero at the 
Nyquist frequency, is another desirable feature. This is especially important if the sampling 
rate is higher than the theoretical minimum, in which case noise at high frequencies is 
not enhanced. The forward-backward difference structure was the first one tried out with 

encouraging results[126]. It was the apparent success of this detector that motivated further 

investigation of other differentiator structures.

The main drawbacks of this differentiator is the lack control of the bandwidth and the 

inanbility improve its performance to approximate the ideal operator. These are inherent in 

the frequency specified structures, which have a bandwidth-related parameter, a  and a user- 
defined length, M , to control the accuracy of the approximation to the ideal differentiator. 
The details of this structure were discussed before in section 6.3.1, where it was defined. 
In section 6.4.2, where it was applied for the first time, there appeared to be a small effect 
on the system performance with changes in the order, M , of the differentiator. The use of 
either a Rectangular or a Hanning window seem to have no effects on the performance of the 

overall detector and, in any case, little difference in its output. The bandwidth parameter,
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a, was more critical, especially for the high sampling rate of 1000 s-1 ,'where the necessity to 
suppress high frequencies was a lot more crucial than for a sampling rate of 160 s-1 . Hence, 

the differentiators used for spike detection here have been of a restricted bandwidth for the 

sampling rate of 1000 s-1 .
Three differentiators were tested for each sampling rate, having orders of 9, 15 and 31 (a 

total of six), constructed as described in section 6.3.1.
As with the earlier detector (section 6.4.2), it was necessary to simulate first-in-first-out 

(FIFO) data buffers as cyclic buffers, as th two pointers to anticipate future samples required 

by the differentiators. Synchronization of the two gradients in time is critical if the concept 

of the d-plot and subsequent processing is to have any meaning.

6.5.5 Spike boundaries and the covariance matrix

The next stage, after differential pre-processing is the definition of the inner and the outer 

spike boundaries, C, and C0. During analysis these have been approximated by non-intersecting 
ellipses, centred at the origin. The definition of these boundaries and a proposed test to de-
termine whether the d-plot of the signal lies between them or not will be described here.

These boundaries may be determined either by considering the formal limits of the spike 

amplitudes and frequencies or by on-line estimation of the ellipse parameters. Both options 
were considered.

According to the formal spike definition, its amplitude should be higher than that of 
‘normal’ activity and its duration, T, between 20 and 70 ms, which defined the period of 

the ‘sinusoidal’ model of the earlier detector. Assuming that its amplitude is Ao, it follows 
from the models defined in section 6.5.1 that the derivative will have an amplitude of A0u}0 

and the second derivative an amplitude of A0 u)q , where u>o =  y-. Using the upper limit of 
T, defined above, it is possible to compute the minimum amplitudes of the derivatives as

Pi =  \y'\i =  89.76A0
g{ = \y"\i =  8046.09A0

(6.43)

These will be the axes of the ellipse defining the inner spike bound, C, ,

Wf , (y" )2o I o
Pi

(6.44)

The upper limits were defined in a similar manner yielding pQ =  314.16Ao and qQ =  

98696.51A0.
A0, was estimated on-line, from the signal itself in an attempt to eliminate its depen-

dence on the signal power, which may vary from subject to subject and over time, as the
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resistivity of the electrodes is not always the same and changes as the contact with the scalp 
is disturbed by sweating and drying of the electrolyte solution. Because interictal spikes are 

fairly infrequent, their amplitudes cannot be used for a reliable estimation of Ao. By using 
the power in the ongoing signal, it is possible to derive such a measure, using assumptions 

about the nature of the signal, thus allowing a reasonable estimate of the peak amplitude of 
this activity, which may be used as an estimate of the smallest amplitude which a genuine 

spike may possess. These assumptions have been:

• the signal does not usually contain many significant frequencies, during any period of 

time, say up to 4

• The amplitude of the EEG is roughly inversely proportional to frequency

• The existing frequencies are harmonically related.

The first is not unreasonable, as EEG activity often has a strong sinusoidal appearance, the 

second is a general observation[47] and the third is not really critical, but makes analysis 

easier. The power of the signal containing the first four harmonics of some frequency u>o, at 
amplitudes a, |, | and  ̂ will be equal to half the sum of the squares of their amplitudes, 
whereas the peak may be at most equal to the sum of the amplitudes, if they are in phase. 
The square root of the power, the RMS value may be converted to a peak value using the 

ratio of peak-to-RMS value, / 2 3 i ’ k , 2.5 This gives the value of the minimum
y f ( » + i +*+£>

possible amplitude for a spike, being equal to the peak of the background activity, as

Amin =  2.5 yjo* (6.45)

where cr* is the power in the EEG signal. The maximum value of the spike amplitude is 
not so critical, as it is a safeguard against high-amplitude artifacts. It was set to be five 

times the value of Amin, since none of the spikes in the records available exceeded this in 
amplitude. It should be noted that the power was computed using a window of K  past EEG 

samples:

1C b(n ~ fc)l2 (6-46)n  1 k=0
With these specifications the region of occurrence of spikes is the intersection of the 

exterior of the first with the interior of the second ellipse. To test the location of an arbitrary 
point (y ',yp) with respect to an ellipse, say Ct, one simply has to compute the left-hand side 
of the equation with the coordinates of that point to obtain z; =  ^ I f  z, < 1Pi 9» p
the point lies on the interior of the ellipse, if z,p >  1 it lies on the exterior and, of course, if
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z ip =  1 the point lies on the ellipse. Hence to determine if a point lies in the spike region, 
one has to compute zt- for C, and z0 for C0. The point is in the spike region if z,- >  1 and

z0 < 1 .
Testing revealed that, although the definition of the limits just suggested was reasonable, 

the results were not very satisfactory (see section 6.5.9). This is believed to be a consequence 
of the simplicity and inaccuracy of the definition of the spike, which was particularly stressed 

by Ktonas[107, 108] and Gotman[74]. The attachment of formal duration, frequency and 
amplitude limits to EEG phenomena is a well-known problem, since these have been defined 
by their appearance in the traditional EEG recordings without taking into account their, 
often unknown, generating mechanisms. It is not easy to mark the beginning and the ending 
of spikes and their parametrization is even more ambiguous, since important elements may 

be lost. Besides, many elements of spikes may be specific to the patient from which these 

were recorded.

A practical solution to this problem is to estimate the parameters of both the inner 
and the outer boundaries of the ellipses on-line, using the derivatives of the signal, which 
define the d-plot. The concept may be regarded as a generalization of the estimation of the 
unknown amplitude of the spikes, needed for the realization of the previous method. Hence, 
instead of estimating the amplitude and using the formal frequency limits for the spikes, 
the problem has been converted into one that involved the on-going activity. The inner 
boundary, Cj, as mentioned earlier, is more important than the outer, since it is separating 
the ‘ambient’ EEG signal. Improperly low specification of C, would inevitably lead to over- 

detection. The incorrect specification of C0, however is a safeguard against artifacts, which 
may not be present and are, in any case, suppressed by the restricted bandwidth of the 

differentiators (see previous section). Hence, instead of defining C, in terms of the unknown 
spike parameters, it was defined as the upper bound of the more tangible on-going EEG 

activity. A method needed to be devised for the estimation of such a boundary and it 
was readily found in the form of the covariance matrix of the first and second derivatives. 

Combining the derivatives in vector form, y  =  (y' y")T, the covariance matrix, i>, is defined:

4> =  E[ÿ  y T] = (6.47)

where E signifies the expectation operator and the elements of the matrix are defined by the 

relations

<72
11 lim

N-+oo

1
N - l

N - 1

2  y\n)2
n=0
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'12

a2
22

lim —— -
TV-*oo yV —  1 E  ^'(n) » " ( " )

n=0

lim
TV— * oo

1
T V -  1

TV-1

E y» 2
n=0

(6.48)

a distance measure, z(y , 4>) was specified with the aid of the covariance matrix. This is 
sometimes called the Mahalanobis distance[ 12] and is similar to the conventional Euclidean 
distance, only the space is distorted so that vectors in different directions may contribute 

differently to z. The distance is defined by post- and pre-multiplication of the inverse of $  

by y  and its transpose, y T:
z2(y , $ ) =  y T y  (6.49)

When $  is equal to the identity matrix (.z(y, / ) ) ,  the weighting is the same in all directions 
and the result is the usual Euclidean distance of the point y  from the origin. In this case 
points that have the same value z =  z0 lie on a circle of radius zo, centred at the origin.

If $  is a diagonal matrix (cr\2 =  =  0), so is its inverse and the operation is equivalent

to squashing or stretching the space in one direction. Hence points that have the same value, 

zo lie on the ellipse
jL + }L =
<7?i <t | 2 °

(6.50)

In the general case when $  is non-diagonal, the locus of points with z =  z0 is still an 
ellipse, but rotated about the origin. Here <f>-1 has the form:

4>_1 =
uli u12

where
u

u

u

u12 u
(6.51)

22

11

12

22

— i.^-2
— A CT22

= “ i*?2
=  A^ll

(6.52)

and A  — a\xa\2 — [aX2]2 is the determinant of $ . The equation of this ellipse can then be 
derived from the definition of z(y,  4>) (equation (6.49)):

*2 =  «ïi (y)2 +  y'y"  +  u 222 (y"Y (6.53)

by setting z =  z0. This equation describes the most general form of the distance and can be 

implelented easily in software.
The concepts just introduced provide a way to estimate the inner spike boundary. As 

seen, the covariance matrix of the background activity with respect to the space represented 

in the d-plot is indicative of the likelihood that a given sample belongs to that activity, rather
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than to a spike or other phenomenon. In fact, it is possible to define C, as the ellipse enclosing 
the background activity with a certain level of confidence, assuming that the data follows a 

known probability distribution. The structure of the distance measure strongly suggested a 
bivariate Normal distribution with zero mean and a covariance matrix 4>. Equation (6.53) 
may be regarded as the conversion from a generalized to the standard Normal distribution 
with 4> =  / .  Then, z0 may be found from tables as the value corresponding to a specific 

confidence limit, such that the resulting C, encloses, say, 99% of the possible samples.

A better way is to estimate zq to minimize the number of false and missed spike detections 

(see also section 6.4.2 and Figure 6.5). A wide range of values for z0 produced the same re-
sults, since the available spikes had reasonably distinct d-plots from those of the background 

activity and finally, a value of z0 =  1.96 was selected lying approximately in the middle of 
the range for a specific record (A). This corresponds to a 95% confidence interval for the 

Normal distribution. There was no need to modify this for other records and it proved fairly 
robust for both sampling rates as well as for all differentiator structures.

The outer spike limit, C0, cannot be defined in this manner, as the nature and effects of 
the d-plots of artifacts is unknown and spikes are not frequent enough to extract unbiased 
covariance information form them. It was, therefore decided to use the same function as 

that for the background activity and a higher confidence interval, zj, so that spikes give a 

distance value between z0 and z\. It was also decided to make this limit stricter than a 
simple ellipse, by defining it as four values, one per quadrant of the d-plot. This allowed for 
deviations of spikes from a single ellipse (which are evident for Figure 6.6) to be taken into 
account for the rejection of high-derivative non-spike signals. Hence these values have been 
higher in the fourth and third quadrants, where derivatives tend to be higher, and lower in 

the first and second. It is difficult to define these limits optimally, but the values of 6 in the 

first, 8 in the second and 10 in both the third and the fourth quadrant, derived form a small 

number of spikes, were used with a good degree of success.

The use of piecewise elliptical boundaries required the additional computation of quad-

rant information. This does not involve computationally intensive operations, as it may be 
evaluated by considering the sign of the derivatives to determine the quadrant where a point 

lies.

6.5.6 Following possible spikes by a finite state automaton

The distance measure proposed for the definition of the region where spikes have their d-plot 

contours is the major element of the proposed spike detector, but its output is specific to 

a single sample and contains no information about the behaviour of the adjacent samples,
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NOTES: gl, q2, g3 and qA are the inputs corresponding to the four quadrants
Transitions from state 0 are associated with z1 being in the spike region 
(corresponding to input zj, being true)
Outputs are: p =a spike is in progress, s =spike detected

Figure 6.8: The state-transition diagram used in the d-plot spike detector 

which may not have similar properties. After all, a spike:

• constitutes a succession of samples with spike attributes.

• consists of a single wave, with the first half wave positive (electro-negative EEG po-
tential inverted by the amplifier in the recorder) and the second negative with respect 

to the baseline.

Both conditions must be satisfied if a d-plot segment is to qualify as a spike. In other 
words once a sample is detected as belonging to a spike, subsequent samples should be tested 

as well and if the whole progression constitutes a full oscillation returning to the region of 

non-spikes, the detection of a spike is signalled. This solves the problem of the conversion of 
the continuous-time binary indication, defined by the distance measure, into a spike detection 

event, which is registered instantaneously.

Testing the aforementioned conditions suggested the use of a finite state machine. Its 
inputs are readily available as the attributes defined in the previous section, the indication of 
whether a sample is in the spike region (defined by the distance function) and the quadrant 

where the sample belonged. The former is binary, whereas the second may take one of four 

values, 1 to 4. The important conditions, as far as spike detection is concerned, are whether 
a sample is in the spike region and if it is, in which quadrant it lies. Using these, five states 

were defined:



148 Chapter 6. Spike detection and the derivatives of the EEG

• state 0:

• state 1:

• state 2:

• state 3:

• state 4:

Non-spike (in background or artifact)

Spike in first quadrant

Spike in second quadrant

Spike in third quadrant

Spike in fourth quadrant

Spikes are associated with transitions starting from state 0 and progressing in the (clockwise) 

direction through states 1, 4, 3, 2 and back to 0. Occasionally, there was a transition from 
state 2 back to 3 and back to 2, which occurs on the maximum slope of some fast spikes, due 
to the differentiator reaching the limit of its bandwidth and being unable to follow faster 
transitions.

Two additional states, 5 and 6, were introduced to cover the eventualities that at the 
beginning and the end of a spike there may be a transition from the background region 

into the second and then the first quadrant. These were necessary to resolve the ambiguity 

whether the transition took place at the beginning or at the end of the spike.

The output of this state machine could take one of three values, indicating whether there 

was no spike, a spike in progress, or a spike detected, at the end of a successful cycle.

The state machine is, however, described better by the state-transition diagram of Figure 
6.8 than by the preceding verbal description.

6.5.7 On-line estimation of system parameters

Evidently, parameters like $  and $ -1 are not known precisely. Their computation usually 

relies on estimates taken by ignoring the limit in the defining relations (see equation (6.48)). 

The resulting sum was taken over the N  past samples including the present one.

< T u ( n ) =  7 T 7  £  y ' ( n  ~  k )2 (6-54)
7V 1 k=0

The index n on the LHS of this equation illustrates that the variance is updated on every 
sample. Alternatively, a block-update may be used to save computational time, but this is 

not necessary since a faster implementation of the given equation is possible. This is a simple 

recursive ‘moving average’ filter, a detailed explanation of which was given by Lynn[114][115, 
pp. 197-206] (see also section 5.6.2). It relies on the fact that the value of the summation at 
a given sample in time, n, is equal to the sum during the previous sample (n — 1) with the
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spike detected here

Figure 6.9: Model for slow wave

oldest sample (n — N) subtracted and the new sample (n) added. This converts the above 
expression into the following, which requires a subtraction, a division and an addition:

c\\(n) = - 1) + -  y'(n ~ ■/V)2) (6-55)

The other elements of the covariance matrix, cr\2 and o\2 may be evaluated by analogous 
relations. The price to pay in this implementation is that of extra memory to store the N 
samples of the input sequence, but the memory requirement for this application, where N  

was (arbitrarily) set to 1024, is not a serious limitation.

Other recursive methods for computing estimates of averages with limited memory re-
quirements exist. Although the resulting estimators are often biased, they may be employed 
if memory availability in a small portable system is limited. Such methods are extensively 

used when crude estimates are needed, like in the case of adaptive filters, covered in a later 
Chapter.

The elements described so fax proved adequate for detecting spikes. In the case of minor 
epilepsy, spikes are usually followed by ‘slow waves’. This additional feature was exploited 

to improve the detection capabilities of the existing detector.

6.5.8 The Slow wave detector

Slow waves often succeed spikes, even in the interictal EEG of petit mal patients. They have 
a frequency of about 3 Hz (or rather a period of 333 ms, since they are not periodic phenom-
ena). Attempts to model slow waves include the half-sinusoid by Comley and Brignell[45] 
and various exponentially-based functions by Stelle[185].

In this work, they have been considered as sections of a sinusoidal waveform of duration 

to <  j , where T  is the period of the oscillation (see Figure 6.9).
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Why use an area measure?

Traditionally, slow wave detectors are based on either low-pass, band-pass or matched fil-
tering. The first two methods do produce an output higher than the normal values for the 

EEG, but are influenced greatly by periodic phenomena in their pass-band, which produce a 
higher output than isolated, non-periodic slow waves. Matched filtering does not have these 
problems, but requires a practical threshold, which should be avoided if a robust detector is 

to be constructed.

The area under the EEG signal, evaluated with respect to a given base-line for a duration 
t0, is a non-periodic measure. It resembles more the matched filtering approach, although 
the use of the model solves some of the problems associated with thresholding and requires 
less computation. Such an area measure was derived from the definition of the model of 

Figure 6.9.

Description of the detection procedure

The slow wave was assumed to begin at the end of the spike, when the derivative of the 
signal returns to some small value. At this point, the EEG is not at the baseline, but below 
it, towards the ‘trough’ of the spike. This is the point where a spike detection is indicated 

starting the detection of the slow wave.

The idea of the detector is based on the ratio of the area under the model (heavily shaded 
area in Figure 6.9) to that of a constant signal of equal duration and an amplitude equal to 

the peak, Bo (lightly shaded area).

The area under the model is given by the following integral:

Co _ . 27r Bo T 2tt
/ B0 sm — t dt = 
Jo 1 2tt

1 -  cos — ¿o

Since the area of the constant signal is Ec =  Bq to their ratio is given by

(6.56)

r o
E sw

Ec
T ■

2n to .
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To determine whether there is a slow wave following the spike, the area in the EEG for 
a duration t0 after the detection of the spike, Ee, must be measured using the value of the 

first sample as a baseline and the maximum value of the signal in the same period, Bo, must 
be estimated. Of the ratio r =  is close to the the theoretical, ro, the occurrence of a 
slow wave is assumed, which indicates a genuine epileptic transient. The comparison of the 

two ratios was achieved by setting a maximum and a minimum limit above and below r0.
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The parameters of the model were selected to reflect the properties of a typical slow wave. 
The period T was chosen twice as long as the typical period of repetition of rhythmic spike- 

and-wave activity (667 ms). Sinusoidal oscillations at this frequency, when rectified, produce 
rhythmic slow wave activity at an approximate rate of 3 per second. The intervention of 
spikes of duration from 20 to 70 ms meant that to should be restricted in the range between 
half of T  with these extra durations subtracted, that is between (333-70)=263 ms and (333- 
20)=313 ms. In practice, somehow wider limits (230 and 370 ms) were assumed, allowing 

for the usual ‘tolerance’ in the formal definition of the slow wave.

The energy in the slow wave was computed as the summation of the value of the sampled 

EEG with respect to the defined baseline, multiplied by the sampling period. The error 
in the approximation of the integral is not large, since there are at least fifty samples (for 
the sampling rate of 160 s_ l), which make the benefits of interpolation marginal. Care was 
necessary for the determination of the peak, Bq. In order to prevent over-estimation, which 

would make the method unreliable, the EEG was passed through a second order Chebyshev 
low-pass filter with a cut-off frequency of 4 Hz. This removed high-frequency noise, sharp 
transients and artifacts for the purpose of the detection of the peak. The energy measure 
Ee was computed directly from the unfiltered EEG (see Figure 6.10).

The capability of running more than one slow detector at any time was included in the 

program, as a precautionary measure in the event of one or more (false) detections of a spike, 
followed by a genuine spike-and-wave complex. If a single slow wave detector was only able 

to run, there would have been a danger of it not completing its course by the time the real 

spike was detected, hence the genuine slow wave could be missed. The ability to run up to 
sixteen slow wave detectors simultaneously, each with its own parameters eliminated the risk 
of missed detections, should the aforementioned eventuality arise.

6.5.9 Experimental Results

The complete spike and wave detector was tested with the same four EEG records used 

in section 6.4.3. The system here has fewer variables and, despite being more complex to 

implement, was more robust and easier to test. The signals associated with its operation are 
demonstrated in Figure 6.10, which shows the behaviour of the detector in the presence of 
a spike-and-wave complex. The differentiator had a length, N  =  31, limited by a Hanning 
window. The sampling rate was 1000 s-1 . The first and second derivatives are displayed 
scaled by 0.01 and 0.0001, respectively, whereas z2 by 50 and the quadrant signals by 20. 
The detection signal contains a spike detection (small impulse) and a spike-and-slow-wave 

detection (larger impulse) as well as a low-amplitude pulse, whenever the wave enters the
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(a) EEG signal

(b) First 
derivative

(c) Second 
derivative

(d) z2

(e) state (quadrant)

(f) spike detections

Figure 6.10: Example behaviour of the d-plot spike-and-wave detector 

spike detection cycle.
4

The only element of this detector made variable during testing was the order of the 
differentiator and the sampling rate. The forward-backward difference, the simplest operator 
is equivalent to a frequency-specified structure with order 3. The others had orders 9, 15 
and 31. The same data records were produced at both the high sampling rate (1000 s-1 ) 

and the low one, (160 s_1). A summary of testing results is shown in Table 6.2.

6.5.10 Discussion, comments and observations

The results presented in Table 6.2 permit the comparison of the effectiveness of the various 

differentiators. The first observation is that the type of differentiator has only a marginal 

effect on the number of detected spikes, evident especially in record A. Artifact rejection is 
better for higher orders, when the sampling rate was 1000 s_1, whereas the improvement for 

the sampling rate of 160 s-1 was smaller. This is attributed to the improved reduction of 

high-frequency components, which are more susceptible to muscle artifacts, with increasing 
order. The problem is almost absent for the lower sampling rate after the effect of the anti-
aliasing filters prior to discretization, as already explained earlier, in the discussion of the 

results of the multiplicative differential detector.
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Record A B C. D

Duration in seconds 210 130 123 242

Number of spikes present 52 8 10 0

Muscle artifacts present? some yes yes many

System parameters Detections

# Diff/tor i s f c N Win V X V X V X V X

Name {Hz) (Hz)
1 D03-H100 1000 500 3 Hann. 47 2 7 8 8 11 0 57

2 D09AR100 1000 500 9 Rect. 46 3 6 8 7 42 0 61

3 D15AH100 1000 500 15 Hann. 46 1 8 3 9 6 0 46

4 D31AH100 1000 50 31 Hann. 46 1 8 3 10 7 0 30

5 D03.H016 160 80 3 Hann. 47 1 8 3 9 7 0 28

6 D09_H016 160 80 9 Hann. 46 1 7 2 9 6 0 24

7 D31AH016 160 50 31 Hann. 46 1 8 2 10 6 0 24

Table 6.2: Results of the d-plot spike-and-wave detector

The results presented are for the complete system, including the slow wave detector. 
The use of the latter caused a number of genuine spikes to be missed, because the trailing 
slow waves were not large enough to cause a detection. Increasing the slow wave detection 
margins by 50% improved the detection of spikes (with only 1 or 2 spikes missed in each of 
the records A, B and C), but worsened the rejection of artifacts (almost doubling the number 
of false detections in record D). Even with this modification, the d-plot detector was better 

than the initial detector, whose results are listed in Table 6.1.

The advantages of the d-plot over the earlier multiplicative spike detector are immediately 

apparent from a simple comparison of the two. Firstly, the a priori estimation of a detection 
threshold which was an essential requirement for the operation of the earlier detector, is 
no longer necessary. The threshold is now fixed, justified by certain probability criteria 
and assumptions. The results confirmed that these assumptions (normal distribution of 
background activity and localization in the d-plot) were not far from reality. Using the 
covariance matrix to normalize the raw spike detection measure increased the robustness of 
the system in the presence of variations in the signal strength, thus reducing the effect of 
these on the successful detection of spikes. This was not possible in the earlier detector, 
which was susceptible to power variations in the signal.

Another improvement, evident from the results in the presence of artifacts is the dramatic
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reduction of false detections. This is particularly highlighted in the results for record D and 

was attributed to the following reasons:

• More information is utilized in the new detector, as the d-plot treats the derivatives 
separately, whereas the earlier detector combined them into a single product, with the 

inevitable loss of useful details.

• The finite state automaton monitored the behaviour of the signal and thus limited false 

detections by rejecting signals that do not follow a general ‘spike cycle’ . This was not 
a feature of the earlier detector, where multiplication and filtering destroyed the fine 
structure of the derivatives.

• The detection of a slow wave, possibly following detected spikes, acted as a confirmation 
to the correctness of the detection of an epileptic event. ‘Spikes’ not followed by slow 
waves, such as muscle artifacts were rejected at this stage.

It should be noted that some rudimentary artifact rejection was already included in the ear-
lier detector, when the interval between detected spikes gave an indication to their nature 

(genuine spikes are either isolated or separated by at least a third of a second). In the new 
spike detector, artifact rejection is more sophisticated and is performed at three levels. At 
differentiator level, with the suppression of high-frequency components, likely to be contam-

inated by artifacts. The restriction of bandwidth was incorporates in the structure of the 

differentiator and/or the selection of the sampling rate. The other two levels have already 
been highlighted. At the spike detection level, the use of the finite-state automaton and at 
system level with the incorporation of the slow wave detector.

6.6 Concluding remarks

A number of general observations on the use of derivatives for the detection of spikes will 

conclude this section.
Results indicated that accurate differentiation was not critical in the success of either of 

the spike detectors. The crude differentiator with an order of 3 compared favourably with the 
more accurate higher order ones, especially at high sampling rates. Bandwidth appeared to 

be more critical. If left unconstrained and the sampling rate is high (1000 s_1) the operation 
enhanced spiky artifacts at the top end of the spectrum more than it did spikes. To prevent 
this, workers that have applied techniques based on derivatives found necessary to perform 

low-pass filtering either before[37, 107, 181] or after[45, 108] differentiation to remove ‘noise’
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and high-frequency spikes due to artifacts. The application of such a filter is likely to distort 
the output of the differentiator and the end result is not the derivative, but the output of the 

differentiator in cascade with a low-pass filter. This operation raised the question whether 
differentiation as a process, was an essential element of the detector.

The use of band-pass filtering[141, 155] and matched filtering[196, 197] for the detection of 
spikes and other transients provided an alternative explanation. Spikes are wide-band signals 
having most of their spectral energy in the vicinity of their fundamental frequency. Band-

pass and matched filtering attempt either the reduction of frequency components outside the 

region where spikes are more prominent, using the remaining energy as a spike indication, 
or compute this indication by enhancing the frequencies corresponding to spikes (matched 
filer). Indirectly, methods based on derivatives may be explained in terms of band-pass 
filtering, since differentiation is a special form of high-pass filtering. When this is coupled 
with a noise-reducing low-pass filter, the end result is a band-pass operation. Similarly, the 
behaviour of a band-pass filter in the frequencies below its pass-band may be regarded as 

a crude differentiator, since it enhances high frequencies and suppresses those close to zero 

(although not necessarily in a linear manner). In other words, spike detectors based on 

entirely different principles may be quite similar in the end. This is possible, since some 
spike properties are used explicitly during the development of a method, whereas design 
often relies on the additional implicit use of other. Detectors based on derivatives, band-
pass filtering and matched filtering indicate exactly this similarity. The former use the large 

derivatives on the edges and the sharpness of the peak of the spike as the criteria for spike 
detection. The second uses frequency properties, such as the spectral energy, to define a 
‘pass band’ for spike, which is incorporated as a filter for their detection. A similar filter 

is constructed in the latter case, but this reflects the spectral properties of an ‘average’ 

spike model. All methods work to some extent, but other properties are often used but not 

stated explicitly. In the first class of detectors, to prevent ‘noise’ from differentiation of high 

frequency components, low-pass filtering is performed on the signals. Thus the combined 
operation of differentiation and filtering is effectively a band-pass operation. In the second 
case, the band-pass operation resembles differentiation of the low-frequencies, whereas in the 
latter, the contribution of the more detailed spectral shape of the matched filter compared 
to the band-pass is often small and the results similar.

This duality of explanation is characteristic of the argument. It is not the precision of 
differentiation as an operation that is critical, but the isolation of most of the energy of 
spikes and the suppression of other signals spectrally different from them!

This observation put spike detection in a different perspective. In the Chapters that follow
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spike detection is 
way of extracting

viewed in general terms of signal modelling, rather than as 
one subset of its characteristics or another.

a particular



Chapter 7

The use of a detailed model

7.1 Introduction

The spike detectors of the previous Chapter have not been unsuccessful. Their conception 
was, however, based on neurological descriptions, which are biased by the appearance of 

spikes on a conventional paper EEG recording. Spike properties, such as ‘sharpness’ ‘pointed 
peaks’ and ‘abruptness’ are relative, often subjective, and could be distorted by changes in 
the time-scale or the sampling rate. The problems of using such explicit properties to describe 
the pattern were made apparent in section 4.6.1 and were highlighted in section 4.7. Because 
these properties may be expressed in many ways and working spike detectors often use other 
implicit ones, it is not unlikely to find that the same underlying property was employed to 
develop different spike detectors. An example of this duality in interpretation was given in 

section 6.6. A spike may be regarded as a signal with high derivatives, compared to normal 
EEG, when derivatives are the basis for spike detection. On the other hand, it viewed 

as a signal occupying a certain frequency band, when band-pass filtering is used. These 
apparently different interpretations are consequences of the spectral properties of spikes, 
which occupy the high-end of the EEG spectrum.

In an attempt to prevent the use of such secondary properties during detection, the 
question “what constitutes a spike?” was answered in a general way, using somehow abstract 
tools, like signal modelling and system analysis. This approach has numerous benefits:

• The detection of spikes could be hierarchical, starting with some general method and 
refining it by developing its elements later. This approach is flexible in the sense that 
one element may be improved later without affecting the others, since the basis of them 

all is free from design details

• Because of the formal methodology, the EEG signal could be described effectively and

1 5 7
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generally, without the need for specific tools that may determine the analysis method.

• There is the possibility to apply the methodology developed for the detection of spikes 

to the identification of other transients, since spike-dependent elements should not 

have been encountered in the general development of the detector, but only in the 

realization later.

• Useful properties of other techniques may be unified under a common abstract method-
ology.

The main argument against these techniques might be their computational complexity, 

often resulting in their inability to operate in real-time, deeming them unsuitable for on-line 
operation. This problem, however, is marginal. Once a satisfactory method is developed, the 
computer code may be optimized and, if necessary, a faster microcomputer or a digital signal 
processor may be utilized. Failure to achieve real-time operation despite these suggestions 

does not discredit the developed method, since there is a tendency for hardware to get faster 
and better numerical methods are always under development.

In this Chapter the EEG will be broken down into a number of signal components. Each 

one will then be modelled in a rather general way and thus an overall model of the EEG 
signal will be constructed. The elements of this model will then be refined and a linear 

model will be presented, using linear signal and system theory, which will form the basis for 
a method for the identification of the spike component. Such an analysis method will be 
proposed in the second half of this Chapter. The material presented here was intentionally 
left on a rather general level, although refinement always results in some specialization. An 

implementation is proposed in later Chapters.

7.2 Components of the EEG signal

7.2.1 Where neurophysiology and signed theory meet

Since the early days of electroencephalography, neurophysiologists identified a number of 
patterns and conditions that may be encountered in an EEG. These were labelled with 

descriptive names based on their appearance on a conventional EEG recording. Since these 
were primarily for communicating ideas between experts, especially in the form of clinical 

reports, emphasis was paid to the standardization of the nomenclature (section 2.5), rather 
than to the attachment of precise definitions to the terms used. After all, the descriptive 

nature of the names and the experience of the people that use them was often adequate for 

diagnostic purposes.
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These practices are, however, incompatible with the explicit detailed definitions necessary 
for the analysis of the signal by automatic means. It does not take long to.realize the extent 

of the gap in what is offered by neurology and what is required for signal analysis (see 

Chapter 4). The definitions of the former are general, often subjective, based on descriptive 
qualitative properties, rather than accurate, objective measurements and lack detail and 
rigour. Conversely, the second requires definitions that are specific, objective, in the sense 

that they ought to be observer-independent, quantitative, based on accurate measurements 
and detailed, having the form of either functional or statistical origin and in any case governed 
by the strictness of mathematics (Chapters 4 and 5).

One might wonder how could a system be designed using the formalism of signal process-
ing with a sound theoretical basis whilst maintaining a close relation to existing neurological 
definitions. Achieving this, could act as a bridge for neurophysiologists to gain some under-
standing on how the automatic EEG analyzer functions and possibly assist in the evaluation 
and the improvement of its constituent parts, expected to be more beneficial compared to it 
being treated as a ‘black box’ with the neurophysiologists simply assessing its performance.

Putting medical definitions in a signal analysis context proved easier than originally 
anticipated. Despite their imprecision, terms like background activity, transients, spikes, etc. 

resembled signal processing concepts, permitting their modelling by statistical and system 

analysis elements, as will be demonstrated in the next section. Although it is possible 
that the formal definitions do not fully comply with their neurophysiological counterparts, 
improvements in the former are possible with the use of more elaborate, or different tools, 

whereas the consistency and precision of the latter, which was disputed by some[16, 76], may 
be improved through this interaction.

Being able to produce such definitions which solved, to some extent, the communication 
problem between the world of signal processing and that of neurophysiology, permitted the 

representation of the system as a block diagram, hiding the functional details from the 
neurologists, but annotated with terms familiar to them. Similarly, its function could be 
described, generally, without using signal analysis terms. This could serve as a platform of 

interaction of neurologists with signal analysts and for the evaluation of the performance not 
only of the system as a whole, but also of its main elements.

The list of terms related to EEG description is quite extensive (see [41] and section 2.5); 
since epileptic spike detection is the main target of the work presented here, only the relevant 
ones were considered, namely the background activity, spikes, other transients, artifacts and 
noise. An attempt is made in the rest of this section to highlight those elements of the 
definition of each term that characterize and distinguish it from others, as these were used
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for their modelling in the next section.

7.2.2 The ongoing component— background activity

According to its definition by IFSECN[41] background activity is

any EEG activity (sequence of waves) representing the setting in which a given 
normal or abnormal pattern appears and from which such pattern is distinguished.

The term is used to describe the component of the signal that is always present as a 
consequence of the underlying neuron activity, in the absence of any specific stimulus. It 
is an indication of the complex mental processes that persist even during unconsciousness. 

This ongoing signal component is by no means fixed in its bahaviour neither over the surface 

of the scalp nor over time. Although it may be regarded as quasi-periodic, having the 
form of repeated oscillations which are sometimes almost sinusoidal, it exhibits changes in 
both its frequency and amplitude. Frequencies tend to increase during maturation with 
consequent decrease in amplitude of the background activity (section 2.5.1). The opposite 
effect is observed with the level of consciousness, with frequencies decreasing as sleep gets 
progressively deeper (section 2.5.1). Changes in its appearance are also noticeable in certain 
brain disorders, like schizophrenia as well as after the administration of drugs.

Although this activity was subdivided into four frequency bands delta, theta, alpha and 

beta (section 2.5.1), there is no clear separation between them in the EEG, which has a 

rather smooth frequency spectrum. Hence a continuous frequency method for its description 

was considered more beneficial than the discrete classification into frequency bands.

It should be stressed here that the background EEG activity suffers frequency and am-

plitude variations that may persist for relatively short periods as well. Such changes are, 

for example, observed with eye closure and opening (which gives rise to increased amplitude 
activity in the a  frequency range) and with intense mental activity (with the appearance 
of higher frequencies and subsequent reduction in amplitudes). Despite their transient na-
ture, these variations are generally distinguished from most transients, since they persist for 

relatively longer periods of time and their onset and offset are more gradual.

Transients, described next, have characteristic shapes and often appear spontaneously 

and cease quickly, although context is sometimes necessary for the distinction of background 

and transient activity.
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7.2.3 Spikes: the transients of interest

A spike, a term used to describe a class of patterns that are characteristically associated 
with epilepsy, is defined formally[41] as:

• a spontaneous, transient signal whose amplitude is (usually) clearly distinguished from 
background activity

• with a pointed peak at conventional EEG paper speeds

• having a duration from 20 to under 70 ms

• with its main component negative relative to other areas

• and variable amplitude from one occurrence to another.

Commentary on this definition, however, stresses the fact that although spikes ought to 
be distinguished from sharp waves, which have similar properties but longer durations (up 
to 200 ms), the discrimination between the two is rather arbitrary and serves descriptive 
purposes only.

Generally spikes are not observed in normal subjects, whereas they are characteristic of 
many types of epilepsy (see Chapter 3). Sometimes they are associated with other compo-
nents, typically a slow wave, which has sinusoidal appearance and duration longer than | 
s. the resulting patterns are known as spike-and-wave complexes. During a seizure these 
patterns may occur in a rhythmic succession. The focus of this work is primarily on isolated 
instances of these patterns, which occur between seizures. These are fairly rare in occur-

rence and the reduction of their numbers in a given period of time is used as an indication 
of improvement of the condition of a sufferer, during a course of treatment. These interictal 

patterns appear spontaneously with no warning and may be induced by various stimulation 
techniques (section 2.4.3).

One important attribute of spikes, as well as other transient patterns, is their super-
position on the background activity. It is quite possible, of course, that the subcortical 

mechanisms and origins of both transients and the ongoing signal elements of the EEG are 

related but this is not prominent in the EEG and the two components may be regarded as 
generally independent for signal analysis and neurophysiological purposes alike.

7.2.4 Other transients

Spikes are not the only transients present in the EEG. In fact any isolated wave or com-

plex that is clearly distinguished from the background activity may be viewed as a transient
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(section 2.5.2). Although isolated slow waves are often indicative of some pathological condi-

tion, other transients may result from normal brain operations. Among these are the lambda 
waves, related to visual exploration and the kappa rhythm, which characterizes intense men-
tal activity. One may regard responses to stimuli ( evoked potentials) which have specific 
shapes, but are often quite small to detect directly in the EEG as transients.

Transients, like spikes, were considered to be waveforms that appear spontaneously, being 
distinguished from the background activity and disappearing at the completion of their usual 

‘ cycle’ leaving no distinct trace of their occurrence.
Unlike the background activity, which may exhibit drastic changes depending on the 

age of the subject, level of consciousness etc., transients have definite forms, though their 
morphology is not always easy to quantify with mathematical tools, due to their imprecise 

definition and variability. As a consequence, the methods used for their description ought 
to be flexible enough to allow for their variability, but it must have constraints imposed on 
their parameters to reflect the similarity from one instance of a specific transient to another. 
In the case of the background activity unrestricted models were considered preferable, to 
reflect the more loose definition of this component of the signal.

7.2.5 Noise and other artifacts

Apart from the genuine EEG components, which result from the underlying neuron activity, 
there are other components picked up by the electrodes on the scalp which have their origins 

outside the brain. These are called artifacts and their sources and description were covered 
in section 2.5.4. These signals are often orders of magnitude larger than the brain rhythms 
and are the result of either external electrical sources, equipment and electrode faults or 

biological electrical sources.

External electrical interference is caused primarily by the mains frequency being picked- 

up by the electrodes. The amplitude of this artifact is variable and depends on the proximity 

of its source to the subject and equipment. In a portable monitoring device this is expected to 

be problematic, since the subject is allowed to walk freely in a possibly electrically unscreened 

environment, unlike the EEG laboratory. The narrow-band nature of this signal (sinusoidal 

at either 50 or 60 Hz) enables its removal when present by the use of notch filtering or 
other means. Its characteristic frequency and regularity make this artifact easy to identify. 
A more variable external artifact is caused by the build-up of electrostatic charges on the 
subject and is more difficult to eliminate (section 2.5.4).

Equipment fault artifacts are characteristic of the EEG recorder. The hardware of the 
portable monitor are simpler than those of a conventional EEG device, with most mechanical
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parts removed. Hence defective pen and switch artifacts are simply absent although the 
deterioration of the amplifier characteristics with ageing cannot be avoided. Some self-

testing and calibration could be incorporated as a hardware-software sub-system, but this is 

beyond the scope of this work.

Electrode artifacts are expected to cause more problems with a long-term portable moni-
tor than they would in the EEG laboratory, since it may be unsupervised, possibly operating 

for long periods of time, factors that increase the probability of faults developing. When the 
electrolytic jelly at the electrode contact gets dry, its electrical resistance increases and the 
signal diminishes in amplitude. Similar effects are caused by sweat in the area of an elec-

trode. Electrode movements with respect to the scalp cause changes in the DC. potential 
and AC coupling prior to amplification results in exponential decays of large amplitude.

Finally artifacts arise from biological sources of electrical potentials within the patient’s 

body. Ocular artifacts, caused by eye movements and blinking are transients including a 

range of characteristic shapes some of which occasionally mimic cerebral activity (section 
2.5.4), like delta waves, sharp waves, etc. They are more prominent if the recording electrodes 
are close to the eyes. A similar artifact is caused by the pick-up of the cardiac potentials 
(ECG artifacts). These can generally be prevented by avoiding the placement of electrodes 
near arteries.

Perhaps the more difficult artifacts to prevent are those caused by muscle potentials. 
They are particularly frequent in anxious patients and in long-term monitoring plenty are 
expected when the patient carries on with his/her daily functions, such as speaking and 

eating. Being a constant headache to spike detectors because of their resemblance to spikes, 
these potentials contaminate the higher-end of the EEG spectrum and impair even its visual 
interpretation. There are no simple ways for their elimination, as they consist of fairly 

irregular stretches of ‘spiky’ potentials of large amplitude.

Finally, noise from various sources affects the EEG signal. Some is directly induced by 
the equipment, other by contacts of the electrodes with the scalp some even during the 

propagation of the waves through the tissue of the head. After sampling, quantization noise 
is also introduced into the signal samples, its level dependent on the accuracy (number of 
bits) of the analogue-to-digital converter used. Noise may also be introduced by the various 

numerical operations during the process of the signal (e.g. digital filtering), due to numerical 

rounding-off, especially after multiplications and divisions. Its effect on the overall levels of 
noise was not critical in this study, since no apparent change occurred whether simple or 
double precision operations were carried out. In a practical realization on a small portable 
microcomputer, however, where fixed-point arithmetic could be employed this source of noise
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may be considerably higher and need to be taken into account.

Having identified the main components of the signal it is possible to construct a general 

model for it, which could assist in the development of a method for its interpretation.

7.3 Linear modelling of EEG signal components

Models of the EEG signal have been used before in this report. In Chapter 5 and especially 

in Chapter 6 a number of models were proposed. Despite being used for the development of 
spike detectors, their purpose there was primarily the gathering of relevant intuitive proper-
ties, such as ‘sharp transition’ and ‘pointed peak’ with mathematical operations, such as the 

derivatives of the signal with respect to time. Those models were not , however, explicitly 

utilized as part of the analysis. They served as a simplified and concise description of the 
signal and for the formulation of arguments for and against a proposed procedure for analysis 
of the EEG. The association of the signal models described in this section with the analysis 
procedure that follows is much closer. In fact the proposed models are an integral part of 
the analysis.

The decomposition of the EEG signal suggested in the previous section, highlights the 
absence of homogeneity in its components. The on-going activity, spikes, other transients 
and noise certainly differ from one another, both in their structure and composition as well as 

in their duration of occurrence. Modelling each component separately before putting them 

together to formulate an overall EEG model was intuitive for constructing the composite 
signal, but for its decomposition, which was the principle of its analysis as well. Despite 
the differences between these components of the signal, it was possible to use similar tools 

(at least in principle) for their analysis. The question was how to parametrize signals that 
have changing spectral properties with time, the background activity, and others that have 
relatively fixed sub-patterns, occurring at unknown instances, like spikes and other transients. 
The further decomposition of each one of these components, y(nT) into a signal of simpler 

structure, x(nT),  and a system, H, was the basis of their description. According to this 
method, an estimate of the required signal, y(nT)  may be constructed by passing x(nT)  

through the system H, as shown in Figure 7.1.

For this idea to have any practical use, there must exist a method for determining x(nT)  

as well as H unambiguously. The purpose of this decomposition is to ‘trap’ a number of 
properties of y(nT)  into the system H and thus leave only the ones, like time of occurrence 
in the case of transients, which are important for their detection. The composition and 
structure of x(nT)  is characteristic of the nature of y{nT). In the case of transients it
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x(nT ) H *~y(nT)

Figure 7.1: Principle of signal modelling

must be indicative of the instances of occurrence of the pattern in question. In the case of 

background activity, it could characterize changes in the behaviour of the signal, like increase 

in amplitudes and in frequency content. In this case it should have a general supportive 
role, to maintain the system H active, if the structure of the latter is such that its output 
diminishes in the absence of input. This would ensure that some on-going element is always 
present, like in the real signal, and to allow amplitude variations to be decoupled from H , 
thus simplifying its structure. It will become apparent later on in this section that the power 
spectral density of x(nT ) for both on-going and transient components have similarities.

At this stage, there is no need to impose any restrictions on the structure of H, which 
may be non-linear as well as time-variant. Assumptions of linearity and time-invariance, 
however, permit the use of a rather broad set of tools for analysis and treatment, since 
superposition, convolution and Fourier analysis may then be employed. These are quite 
important because there is a well-founded notion of an inverse model whose existence is 

central in the development of the signal identification procedure that follows in section 7.4. 

A simple example of this modelling approach follows. Let y(nT) be a sampled sinusoid, 
Ao sin uo(n — n0)T, for n >  no- This may be produced by impulse excitation of a discrete-

time resonator. That is, H(z)  =  1_2Co"^j zz- i +z-2 and x{nT) =  A0 u0[(n — n0)T]. In this 
example, H expresses the (sinusoidal) behaviour of the signal, y(nT), (in the form of the 

frequency, u>o), whereas x(nT)  is indicative of its amplitude, Ao, and the moment the signal 
acquires its properties, n =  n0.

After this introduction, the principle outlined here will be used to derive models in the 
form of pairs (H,x )  for the background activity, spikes and other transients and noise com-
ponents. The models for H were presumed to be linear and time-invariant (LTI), although 
the second assumption will be relaxed later on. It should be stressed that the restriction to 
LTI systems is a practical one and could be eliminated when suitable non-linear techniques 

become available.
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7.3.1 Model of the background activity

From the brief description of the appearance of the background activity (section 7.2.2), it 
is evident that this signal component changes with time, sometimes being almost periodic, 
even sinusoidal and sometimes more irregular, almost random. These changes are usually 
gradual, sometimes abrupt, but their effects persist for some time and are generally long- 

lasting, becoming apparent during visual inspection of the EEG record. This, however is 
an oversimplification of the processes, since small changes and variations in the properties 

of the signal could be missed by visual examination. Moreover, attempting to identify and 
label (classify) sections of the signal as belonging to different states assumes that the signal 

consists of distinct segments, whereas the transition from one to the next may be gradual. 
All these cause serious complications in the modelling procedure, which has to demonstrate, 
according to the aforementioned technique, how this signal may be produced when a system 

is excited by another signal with simpler properties.
This is not possible from a general standpoint, since the main characteristic of the back-

ground activity is variability. It is easy to prove that the statistical properties of the signal 
vary with time. The mean of the signal is zero (a.c. coupling of the EEG has been assumed to 
remove large low-frequency potentials often caused by the electrodes as described in section 

2.4) and has no statistical significance. A useful statistical measure is the autocorrelation 

function (sequence) of the signal, b(nT):
+oo

rbb(n, k) =  b(n +  i)b(k +  f)p[6(n), b(k)] (7.1)
t =  —OO

where the (constant) sampling period T has been dropped for simplification of notation. 
Because the mean is zero, this is also equal to the auto-covariance of 6(n)[152, p. 10]. The 
above expression does not put any restrictions on the nature of the signal, as it changes with 
time to reflect the changes in the properties of b(n). The probability distribution function 
p[b(n),b(k)] of the discrete (random) variable 6(n), could be considered uniform, in which 
case it becomes a universal scaling factor (like in ergodic processes) [152, p. 12].

The auto-correlation sequence of the background activity is not independent of time. It 
is possible, however, to investigate its behaviour by making certain assumptions, for found-

ing and studying a model, to provide an initial interpretation of the analysis method. As 
will be shown in the realization of the method, some of these may be relaxed, increas-
ing its versatility and generality. Finding a tool to model the signal is hindered by the 
non-stationarity and continuous variability of b(n), which does not have even constant sta-
tistical properties. Despite their variability, these properties tend to suffer large changes 
relatively infrequently, compared to the signal, say every few seconds, whereas in the period
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of time between these changes, variations tend to be small and gradual. Assuming they are 

negligible, one may consider the background activity as a cascade of segments of signals, 

B =  { . . . ,  b0(n), 6i(n), 62(n ),. . . }  each one of which has different, but fixed, statistical prop-
erties. These segments do not necessarily have the same ‘length’ (duration). A convenient 
way to view this process is by considering that the elementary signals in B  extend beyond 
their scope, but they are restricted to a finite duration by the use of a window,

wN(n) = (7.2)
1 0 < k < N

0 otherwise

where N,  the duration of the window is equal to the length of the segment in question. Evi-

dently, the background activity signal may then be constructed from the set B  =  |ò,(n); i € 
7uj using a corresponding set of windows, { w ^ i  €  Z } .

6(n) =  . . .  -|- 6_i(n)u;/v_1[n +  ALi] +  b0(n)wNo(n)

=  bi(n) wNj  (n -  No) +  62(n) wN2[n -  (Nx +  N2)] + . . .  (7.3)

where N{ signifies the length of the ¿th segment. In order to be precise, the windows may be 
made to extend for a small number of samples, M, in both directions, so that there is some 
overlap between the segments, thus resembling the real signal more closely. These ‘tails’ 
of the window should have unity value where they join the central part of the window and 

diminish to zero in a smooth way to guarantee continuity in the transition from one segment 
to the next. There is no need to discuss this in detail as it does not comprise a significant 

element of the methodology outlined here, but windows were discussed extensively in section 
6.5.1 (see also Appendix B).

Having represented b(n) in this manner, it is possible to refer to the properties of each 
segment for the construction of the required model. Each of the 6,(n) has zero mean, since 
by definition b(n) has no constant component. The autocorrelation sequence for the period 
of the segment is

+oo

rbibi(n,k) =  ^2 bi(n +  i)wNi(n)bi(k +  i)wNi(n)p[bi(n),bi(k)]
t =  — OO

Ni
=  J2 bi(n +  i)bi(k +  i) (7.4)

«=o
since p[6,(n), bi(k)] is independent of n and k. This implies that the autocorrelation function 
is only dependent on the time difference between the samples and hence simplifies to the 

following expression:

=  TT £  bi(n)bi(n -  k)
•'’ « 71=0

= rM,(n -  k) =  rhh{k -  n)

n.bi(n,k) (7.5)

(7.6)
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which holds for real, stationary signals[152, p. 7]. Asa consequence of the Wiener-Khintchine 
Theorem[151, p. 260], a power spectral density, exists for the segment which de-

scribes its second-order statistics (auto-correlation). Moreover Sbibiiu>) may be factored in 
the form:

Sb.b.( w) =  Hi(u)H:(u) =  Hi(u)Hi{-u)  (7.7)

where H* denotes the conjugate of Hi. Remembering that the Fourier Transform of a linear 
invariant (LTI) system, is found by evaluating its transfer function, i/,(z ), around the unit 

circle z =  eJwT, one may write:

(7.8)

In this manner, the statistical properties of the signal 6,(n) have been summarized in a 
transfer function, 77,-(z), that is a linear system. It remains to determine the structure of 
this transfer function and the input necessary to produce a signal with the same properties 
as those of 6,(n).

The transfer functions of a great number of linear systems are expressed as rational 
fractions of two polynomials,

Hi{z)
B(z)
A(z)

2-/m=0
l “ En=
l  _tv- m  
b o  z

:1 « n  Z ~ n

n iL .t*  -  « . )
n î L i ^ - p » )

(7.9)

(7.10)

The power spectral density of this function depends on the values of the coefficients of 

the numerator and the denominator. It may be factored, as shown in equation 7.10 and, 
depending on the location of its finite number poles, {p „;n  =  1,. . .,AT}, its stability may 
be controlled (|pn| <  lVn). In fact, the location of its poles and zeros, {zm; m =  1 , . . . ,  M } ,  
determine the shape of the power spectral density of a stable system. Poles are associated 

with peaks in the PSD. The sharpness and amplitude of these peaks increases when the poles 
approach the unit circle in z (the limit for stability). Zeros are associated with valleys in the 

PSD. These become deeper, when the zeros are near the unit circle in z. Using the converse 

argument, given a predefined PSD, 5fci6,(w), having a finite number of peaks and valleys (a 

condition that is true for many signals, including the EEG), it is possible to construct a 
rational transfer function Hi(z), by placing poles and zeros at appropriate locations in the 
complex plane, such that the power spectral density associated with it (equation (7.8)) is 

arbitrarily close to S i^ w ).
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In fact, for the work presented later the transfer function was simplified by assuming there 
are no zeros (B (z ) =  bo), that is an autoregressive (AR) structure. With this model, spectral 
peaks may still be modelled accurately. Valleys are constructed naturally, between the peaks, 

but if deep valleys are present, extra poles are needed. For an accurate approximation a 
model whose denominator has higher order, N, than the pole-zero structure is generally 
required. A simple explanation of this effect utilizes the factored representation of the model 

(Equation 7.10)), rewritten in the form:

H,(z) =
1

A(z)/B(z)  

=  K z n ~m (7.11)
niLiis-PnmiL.ii

Rewriting — in the form . _ z 1 _t and expanding using the MacLaurin series =
Z  Z f j i  i  Z j t i  7* A w

Y2™=o wP j the zero term results in the convergent infinite series

„-1

1 — zmz' rr =  * - £ zp z~p (7.12)
«'=0

provided that \zm\ <  1. The higher-order terms of this series diminish rapidly and it may be 
truncated without great loss in the approximation, resulting in a polynomial of order Pm. 
As such, it may be written as a product of Pm factors. Expanding all terms in a similar 
way would generate additional factors, which have the position of poles in the resulting 
system. The number of additional poles required to obtain a satisfactory representation is 

considerably smaller than might be expected from this method of explanation, since many 
coefficients of the resulting polynomial of the denominator of H, (z) that correspond to high 
powers of z~l are expected to be small and may be neglected, thus maintaining the order 
of the model still low. It should be noted here that it is the frequencies present in the 
EEG that are usually important (spectral peaks) and not the ones that are missing (spectral 
valleys). Hence the correct approximation of spectral valleys is not so critical anyway. The 
use of the all-pole model offers significant analytic and computational properties which is 

the reason for which its was preferred. These aspects will be emphasized later during the 

system implementation.
In conclusion, it is possible to construct a transfer function,

boHi(z) = (7.13)

that has the same PSD as that of the ith segment of the background activity, 6,(n). Since 
the PSD and the auto-correlation function contain the same information, the second-order 
statistics for the segment are indirectly related to Hi(z). Therefore a signal, 6,(n) having the
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same statistical properties as 6,(n) may be produced by exciting Hi(z) with an appropriate 

input, Ui(n). This should have an auto-correlation,

rUiUi{k) =
1 A; =  0 
0 otherwise

(7.14)

Hence its PSD is equal to 1 at all frequencies and does not ‘ interfere’ with the PSD of H(z), 
to which it is multiplied. Sequences that have this characteristic include the unit sample, 
uo(n) and the white ‘noise’ sequence of power 1. The first generates the impulse response of 

Hi(z) in its output, whereas the second produces a random, correlated sequence. In general, 

the second type of input is more applicable to the EEG, since it produces a signal that 

is somehow irregular, whereas strong periodic components may be produced by a transfer 
function with a PSD that has sharp peaks at the corresponding frequencies.

Since Ui(n) is a random sequence of unit power and this is true for all segments, z, it 
is unnecessary to consider them as inputs to individual segments. It is more practical to 
refer to a single input, u(n), which simplifies the modelling procedure, as only the Hi(z)'s 
need to be changed at the end of every segment (in fact, there are transition periods during 
which the parameters of Hi(z) gradually change to those of //¿+i(z)). Having an input 
that is segment-independent meant that segmentation is not visible in the overall model. 
It is hidden as the operation of changing the transfer function inside H at the end of each 
segment and maintaining it for the appropriate duration. The signal model of b(n) can then 
be regarded as the output of the time-variant system H , when excited by a random white 

sequence {u(n) }  of unit power (variance).

This scheme generates a signal which has the general properties of b(n). Given H, it 
is possible to construct signals with the same auto-correlation as b(n). These may have a 
similar ‘feel’ , but would not, in general, have a close sample-by-sample correspondence.

7.3.2 Spike process modelling

Interictal epileptic spikes are different from the background activity, as they occur at ir-
regular intervals in the interictal EEG and have a characteristic general shape. Despite 
these morphological differences, they, too, can be described using an input-system pair of 

functions.
One property of spikes is their discrete occurrence. Being transients they appear at a 

moment in time, persisting only for a short period. Another is their rarity. Interictal spikes 
are infrequent, so that there is typically a long duration between one spike and the next. 
Spikes, have a specific form and although there are variations from one to another, these
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are less dramatic than those during the background activity. For the moment these will be 
ignored, apart from an amplitude factor. In this sense, a spike, So, occurring at an instant 

n =  0 consists of a (finite) sequence of samples, {so(n) =  A g{n)\n =  0 ,1 , . . . ,  ./V}. This has 
been converted with the aid of the normalized sequence, g(n), which has the same shape but 
unity maximum amplitude and a scaling factor, A.

The definition of the spike may be extended to an infinite sequence, by assuming that 
g(n) has zero value for n < 0 and for n >  N. In the same way, spikes that occur at sample 
values K q , K\, K ? , . . .  with respective amplitudes Ao, A\, A t , . . .  may be described in a similar 
way, by shifting g(n) in time. It is then possible to refer to the ‘spike signal’ as the collection 

of all spikes:

s(n) =  sKo(n) +  sKl{n) +  5A'2(n) +  •••
OO

=  £ ^ , ( n ) (7.15)
1=0
OO

=  Y j A i g ( n -  Ki) (7.16)
t= 0

This is a continuous signal, although it is zero for the extensive periods between spikes.

Having formulated the signal, the problem is how to establish a pair of a system and 
another signal to model its behaviour. Like in the case of the background activity, the system 
was considered first, as the properties of the input signal are controlled by its behaviour.

The assumption that spikes have the same shape, with no variations, suggested a system 

that could produce this constant signal shape. Assuming that all shape information should 

be included in the system, one could consider a linear system, again, with a transfer function, 
G(z), whose impulse response is the normalized spike sequence, {^(n)}. It would then be 
possible to generate s(n) by exciting this system with impulses, scaled according to the 

amplitude of every individual spike, Ao, Ai, A 2 , .. ■ and shifted in ‘time’ by an appropriate 
sample number, K0, K\, K 2,   The input signal to this system would then have the form:

OO

d(n) =  Y , A i 8 { n - K i) (7.17)
i—O

In this manner, all spikes generated have the same shape, apart from an arbitrary scaling 

factor. In practice, the shape is also variable from one spike to the next. It is, of course 
possible to introduce a set of transfer functions, {Go(z), G\(z),. . .}, one per spike, but the 

changes are not as great as those present in the background activity and hence they have 
been disregarded at this stage. This issue will be addressed later in section 8.4.4, as in 
the implementation of the analysis procedure, small variations and deviations from the LTI
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model will be allowed. At this stage it is more critical to determine the structure and 

parameters of both G(z)  and {¿(n)} .

The input signal is a series of impulses, with unknown amplitudes as well as times of 

occurrence. Both these parameters were treated as independent random variables, A and K , 
respectively following different probability distributions. The amplitude, A, was assumed 
to be distributed normally around a specific mean amplitude, p a , with a variance (A ~

N(p a , o 'a ))- There is no particular reason why A should not follow a different distribution, 
but this assumption has not been contradicted by any of the findings during the testing 

of the method. The estimated amplitudes for the available spikes appeared to vary almost 

symmetrically around a mean value.

The probability distribution function for the times of occurrence of spikes, K,  was based 

on the fact that they occur infrequently. It is well-known to statisticians that the num-
ber of rare events, fc, occurring per unit time, follows a Poisson probability distribution, 
P(k)  =  Po (^a k ) — Moreover, the time between occurrences of such rare random

phenomena, A K,  follows an Exponential distribution with a parameter, which repre-
sents the expected (mean) time between the previously and the currently occurring spike, 

A K .  Hence A K  ~  Exp(/iAA') =  /o+°° dAK.

The purpose of these statistical distributions is not the accurate representation of the 
spike generating process, but the parametrization of their main properties. Inaccuracies in 
their specification can be tolerated, as these distributions do not form part of the analysis 
procedure, and have not been used in its development. Their specification is related to the 

generation of artificial data, which were used for testing the developed system prior to its 

application to real EEG signals. Specific values for p a -, &a  an<̂  /*AA' have been used for EEG 
simulation but these belong to the testing procedures (section 8.6.1).

Having established that the impulse response of the system G(z) which is linear and time 

invariant, is a spike, its structure needed to be defined. As with the model of the previous 
section, a rational fraction of two polynomials was considered:

G(z) B ( z )

A(z)

ZX=ot’».z-m
1 -  Zn=l Z~

(7.18)

In many practical situations special cases of this structure suffice. There are two such cases, 
the ‘autoregressive’ (AR), structure, which has poles, but no zeros (m =  0, i.e. B(z)  =  
b0) and the ‘moving average’ (MA) structure, which has no poles (n =  0), and hence the 

denominator polynomial is effectively A(z)  =  1. Both structures, as well as the general case



7.3. Linear modelling of EEG signal components 173

with poles and zeros (ARMA), were considered before deciding which one would be more 

suitable to use.

The MA model lacking any poles would require a large order to approximate sharp spec-
tral peaks. Spikes, however, have reasonably smooth spectra, due to their transient nature 
and hence the concentration of their energy in a short time interval. They can approximate 
spectral valleys quite well, as mentioned in the previous section and their stability is guaran-
teed, since their transfer function has no singularities. The parameters of G(z ) in this case 
are also easily estimated. If the impulse response of this system is the (normalized) spike 

sequence, {</(«); n =  0 ,1 ,2 , . . . ,  P} ,  and zero for n < 0 and for n > N, then G(z) =  B (z ) is 
simply the ¿-transform of g(n). Hence the order of the polynomial B(z)  is M  =  P  and its 

coefficients are:

bm =  p ( m ) V m  =  0,1,2, . . . , P  (7.19)

The all-zero model, despite its simplicity both in structure and determination of its coef-
ficients, has a number of drawbacks when used as part of the proposed analysis method, 
which uses both the direct and the inverse of the spike models as will be explained later. 

This inverse, G~l (z ) =  is an all-pole structure. It is apparent that all the zeros of G(z), 
would now appear as poles and the stability of the direct model, which is guaranteed by 
the absence of singularities, may not be a property of its inverse. Of course, it is possible 

to determine the zeros that are responsible and attempt to correct them, by replacing them 

with their reciprocals, to maintain the amplitude characteristics of C7(u;)[151, pp. 434-436]. 
Such an attempt would distort the time representation of the signal, since there will be 
phase changes and hence changes in the relative delays of the time-domain components. As 
a result, the shape of the signal would be distorted and would not represent a spike any 

more. Another drawback arises from the significance of the controlling spectral parameters, 
in this case the zeros of G(z). It has been pointed out earlier that peaks of the PSD of 
EEG components are more significant in the analysis. Essentially, the signal is described by 
what is more profound in the PSD, rather than what is missing, which is indicated by the 

zeros of the ¿-transform of the signal. This is not a disadvantage if spike modelling is the 

only objective, as the accuracy of the model is the key issue. It does become one, though, 
if the model is to represent the spike and possibly other transients in parametric form for 
further treatment. A disadvantage of a more practical nature is related to small variations 

in the spike model that may occur in real spikes and will be compensated by allowing small 
perturbations on the model parameters. If a spectral peak of the signal is displaced, the 
location of many zeros may need to change accordingly, causing significant changes in the 

system coefficients. In this respect, there are alternative structures with better properties.
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With these prospective uses of the model in mind, the alternative (AR) model was con-
sidered. This has only poles and hence an infinite impulse response and does not conform 

with the initial definition of the spike as a sequence of finite duration. Nonetheless, this is not 
a fact because small spike components following its presumed ending may be masked by the 
much larger amplitudes of the background activity in which they are embedded. Assuming 
that a spike is a signal of high-amplitude immediately after its onset, which decays rapidly 
afterwards quickly becoming insignificant, the autoregressive (AR) approximation does not 
seem unreasonable. This structure has properties that are useful for the theoretical analysis 

as well as the practical implementation.
The relation of the poles to the power spectral density has already been highlighted 

in the previous section. Spikes exhibit one positive and one negative peak of significant 

amplitude. The duration of each peak may differ from that of the other and there may be 
some asymmetries in the signal, but the existence of this oscillation is characterized by a 
power spectral density that has one large peak and possibly others of lesser amplitude. The 

existence of this peak was indicated in the presentation of the frequency spectra of several 
spike-and-wave complexes by means of the discrete Fourier Transform (DFT) by Stelle[185, 
pp. 92-95]. In that study, most of the diagrams had two visible peaks, one at a very 
low frequency possibly around 3 Hz, corresponding to the slow wave, and one at a higher 
frequency, around 20 Hz, which corresponded to a period of 50 ms and is characteristic of 
the spike. One example of the amplitude spectrum of a spike (with the slow wave suppressed) 
is shown here in Figure 7.2. This was taken with the FFT algorithm of a window of 1024 

samples with the spike in the centre, padded with zeros. The frequency resolution for the 
sampling rate used (1000 s-1 ) was therefore just under 1 Hz.

This peak is not sharp, indicating the ‘transience’ of the spike. It may be compared to 
a model with one particular ‘resonant frequency’ , but a large ‘damping factor’ causing the 
observed smoothness of the PSD. This represents the behaviour of the following discrete-

time, second-order system:
. r0 sin u)0 T z~x

z) — -------------------------------------------
1 — 2r0 cos u>0 T z~x +  r0 z~2

where u>o is the resonant frequency, ro =  e-aT and a is the damping factor. The existence 
of a zero at the origin is not a significant diversion from the all-pole model, as it merely 
corresponds to an input delay. This model, despite its simplicity proved useful in the autore-

gressive approximation of spikes. The illustration of this relatively simple AR model here 

highlights some of its advantages over the previously mentioned MA structure.
The AR structure, however, has only poles and as such it is potentially unstable. But its 

impulse response will be made similar to the shape of a spike. All spikes have amplitudes that
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Figure 7.2: The amplitude spectrum of a spike

become insignificant very quickly (transient nature of the signal). This is the behaviour of a 
stable system by definition. Hence a working model is guaranteed to be stable, provided that 
any perturbations on its parameters, should these be modified later, do not force any poles on 
or outside the unit circle in the z-domain. The stability of the inverse model is guaranteed, 

since it only has zeros (which lie inside the unit circle in z, resulting in a minimum-phase 
system).

The use of fewer parameters than the MA model is characteristic of the AR structure, 
when signals with relatively smooth PSDs, like spikes, are considered. Because it models 

spectral peaks directly, it requires approximately as many complex conjugate pole pairs as 
there are peaks. The validity of this statement is by no means absolute, but it gives an 

indication of the order of the filter. As a consequence, the number of parameters (essentially 
the order of the system) does not increase with the sampling rate, since the number of 

spectral peaks remains the same, whereas in the case of the MA structure, it depends on 
the length of the time sequence representing the spike, which will evidently increase. The 
values of the coefficients will, of course, change but if the poles of the system are known, 
their locations under the new sampling rate may be easily computed. In the example given 
by equation (7.20), the poles are at e(-°+ju'):r and e(-°-.7w)T and if the new sampling period 

is T' =  AT, 0 <  A < 1, the only requirement is to raise the poles to the power A. This 
simple model is also characteristic of the versatility of the model. A response of several 

samples in duration was effected with only three non-trivial coefficients (the order of the
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model was N  =  2). Because of the last two properties, significant changes in the amplitude 
and frequency response of the system may be achieved with small modifications to the values 

of the coefficients.
A last advantage of the AR model is the existence of stable optimization techniques 

for estimating the coefficients of the filter. Perhaps it should be noted that the initial 
structure, the ARMA model is far more general as it permits spectral peaks to be estimated 

independently. To put this property into perspective, one may assume a set of second-order 
(2-pole) AR models, Gi(z) =  one for every peak in the PSD of the signal.

The overall PSD is the accumulation of all the Gi(z), which results in an ARMA model:

cw = Ee<W = E' ____ lit n ^ ,  Aj(z) (7.21)
a (z ) n , M z )

This should be born in mind if the objective is to produce a model whose parameters may be 
directly related to physical properties of the signal, such as resonant frequencies. In general 
ARMA models require fewer parameters to achieve an adequate approximation of a given 

PSD than their AR or MA counterparts, but their estimation requires the solution of non-

linear equations for which several sub-optimal methods have been devised[152, pp. 262-269]. 
In any case, ARMA models may be regarded as an improvement on AR structures. The 
latter (AR) is a good compromise, as it combines most properties of the ARMA model and 
relatively simple optimization methods, hence it was preferred in this study, with ARMA 
modelling left as a possible future prospect.

7.3.3 Modelling other transients

The detection of transients other than spikes was not an objective of this study. Because the 

modelling approach had to consider as many elements of the EEG as possible, their inclusion 

could not be ignored. Besides, as explained later (Chapters 10 and 11) the detection of a 
number of other transients is possible with simple modifications and additions to the basic 

spike detection system.
Detailed modelling is not necessary here. It is sufficient to state that the arguments that 

apply to spike modelling are also valid for any other transient. Hence, every transient, type, 

i, was described by a linear time-invariant system, F,(z), excited by a (Poisson-distributed) 
sequence of impulses with variable (Normally distributed) amplitude, c,(n). This implied 

that the occurrence of each transient is not related to the occurrence of any other (statistical 
independence), which is not an unreasonable assumption to make in general.

Needless to say that the structure of the F,(z) may be regarded as minimum-phase, stable 
ARMA, so that their inverses are also stable. This is a general rule which is critical if the
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expansion of the system to detect any of these transients is to function properly.
If there are N j  transient types, an equal number of transfer functions will be required, 

each having its own input. Although the existence of transients other than spikes had to be 
taken into consideration, there is no need to treat those individually. Hence they have been 
combined in a single signal, by superposition of the outputs of each transfer function, F,(z). 
In the z-domain this operation is illustrated simply as a sum of products:

N't  N t

T(z) = £  T,(z) =  £  Fi =  F T(z)C (z) (7.22)
t=l :=1

where Ci(z) =  2 {c ,(n )}  and Ti(z) is the z-transform of the model of the ith transient, U(n). 
The composite signal t{n) is the sum of all transients (in the above expression it appears 
as T(z)). In order to refer to the transients collectively, the transfer functions have been 
grouped in a column vector, F(z) and so were the input impulse sequences, C (z) =  Z {c (n ) } .  

t(n) will be referred to as the transient signal component.

This combination of elements using vector notation hides the individual transients, but it 
does not restrict future generalization to detect some of them. Individual transients may be 
‘pulled out’ from the batch and treated individually, by processes similar to the one applied 
to spikes.

Finally, it is worth noting that not all transients considered in this way, are of cerebral 
origin. Certain artifacts are transient in nature and fit better in this category but these will 
be covered in the section that follows.

7.3.4 Artifacts and noise

Artifacts, the interfering signals of non-cerebral origin represent a category of signals whose 

properties and origins are quite varied. Because some of these are indistinguishable from 
other EEG component groups that have already been described, it was considered more 
beneficial to include these artifacts in the existing signal models rather than generate new 
ones. In this manner, unnecessary complications of the analysis that follows have been 
avoided without ignoring the presence of these signal components in the recorded EEG.

Interfering signals may be grouped into those whose onset is fast and their shape is 
reasonably constant and into those with gradual onset and longer durations. The first 

resemble transients, whereas the second bear more the characteristics of the background 
EEG activity, both of which have been described in the preceding sections.

Typical examples of the first kind of artifact are electrode movement artifacts, which 
appear as abrupt baseline changes, registered as exponential decay curves after AC coupling 
which takes place as part of the recording procedure. Ocular artifacts, like eye movements
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and blinks, also belong to this category, as their shape is characteristic. They sometimes 
resemble genuine EEG transients, but their location and often their regularity can be used for 

their identification. Some ECG artifacts also have regular shape but their rate of repetition 

may be fairly constant.

Finally, muscle artifacts may be categorized as transients also, if they are isolated. These 
sometimes appear in the form of spikes, but their shape is not very regular and they often 
come in groups. These bursts are usually quite long in duration and their irregularity makes 
them resemble noise of excessively large amplitude. Their PSD is not flat, but covers most 

of the EEG frequency range and has large components at frequencies at the high-end of 
the spectrum, where spikes have most of their energy. For this reason their rejection is 
rather difficult. For signal modelling purposes, EMG artifacts may be considered similar to 
the background activity, in the sense that their properties are similar to those of a signal 

produced by white noise excitation of a transfer function (see section 7.3.1). Whether this 
transfer function is included along with the transients, with a different excitation function, or 
whether integrated along with the background activity to form a transfer function of higher 
order is not a critical issue. In practice both models are necessary to represent short and 

long time stretches of EMG interference.

Mains interference is a much easier signal to identify and classify. It has sinusoidal shape 
at either 50 or 60 Hz  frequency. Although it is often present for long intervals, and may 
thus be modelled as part of the background activity, it may be more conveniently detected 
separately before the signals are processed and removed by either a notch filter, or better by 

optimum filtering, as described by Widrow et al. [201].

Having considered these sources of artifact, one should not forget the existence of random 
‘noise’ in the recorded signal. Sources of noise vary, but the instrumentation and electrodes 

are responsible for Gaussian noise, with zero mean and an unknown variance (power), cr2. 
In this study, this component was considered much smaller than the background activity. 

Uniform White noise is introduced because of the quantization of the signal by the analogue- 

to-digital converter. This follows a uniform distribution in the range [—2-6-1,2 -6-1] with 
variance o 2 =  2—26̂  [151, pp. 749-750], where b is the number of bits in the ADC (assuming 
that it performs rounding of values) and q is the quantization step in Volts. For a 12-bit 
ADC, like the one used here, this is of the order of 5 x 10-9q2. Even when the gain is such 

that a signal of 1 mV  corresponds to the full dynamic range of the ADC ( ? «  5 x 10-7 V), this 
represents a signal of the order of 34 pV, which is insignificant compared to the background 
activity of several p V . Reducing the precision to 8 bits would yield an error that is 100 times 
larger, still insignificant compared to the background activity. Finally, rounding-off noise is
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Figure 7.3: The EEG synthesis model

a consequence of the numerical operations performed on the signal during processing. This 

is small here, because double precision arithmetic was used overall, making these errors quite 
negligible, compared to other sources of interference.

Therefore, noise is mainly caused by electrodes and instrumentation, and was modelled 
as an independent source of uncorrelated, white, Gaussian sequence v(n) ~  N(0,cr%).

7.3.5 The overall EEG synthesis model

Having considered the components of the recorded EEG signal, one should be reminded that 

these exist in isolation only in theory and cannot be measured separately in practice. Only 
the final composite EEG signal is recorded and the process may be regarded as a system 
with both its inputs and parameters inaccessible. The single quantity that can be measured 
is the output, e(n), and for all analysis purposes, the system parameters may be inferred by 
using this signal only!

The process of composition is shown in Figure 7.3. Notice that H  represents the back-
ground activity generator process and that it is a system with a piecewise linear behaviour 

in time. G(z) represents the impulse response of a spike, whereas F(z) is the collection of 
transfer functions of transients.

In general, the composite EEG signal, e(n), consists of four signal components:

e(n) =  6(n) +  s(n) +  t (n) +  v(n) (7.23)

where b(n) is the background activity, s(n) and t{n) the sequences of spikes and the transient 
signal component respectively and v(n) is the noise model. Artifacts have not been modelled 
separately, as they share properties with b(n) and t(n).
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i(n) d(n) c{n) v(n)

Figure 7.4: Synthesis-analysis model

7.4 Signal analysis and inverse modelling

The modelling procedure was described in great detail, because it forms the basis of EEG 
analysis, which is an ambiguous process. Many of the problems related to analysis have 
been eliminated by carefully describing the various signal components. In this section the 
inversion of the synthesis procedure, will be attempted, thus breaking down the EEG signal 
into the elementary signals suggested by the model. This will be achieved by applying the 
inverse of the systems that generate each component as illustrated in Figure 7.4.

The procedure and explanation given here are valid ¿/these systems are known, an as-
sumption that is not true, in practice, where only the composite signal, e(n) is available. The 
sceptical reader should be assured that some methods for their estimation will be suggested, 

after their purpose is justified in this section.

Many of the signal processing operations in this section are considerably easier to interpret 

in the ^-domain, rather than the ‘time’ domain. Hence the z-transform of the composite 
signal, e(n) will be used quite extensively:

E(z) =  Z {e {n ) }  =  B(z)  +  S(z) +  T(z) +  V(z)

=  H[U(z)] +  G(z)D(z)  +  F t (z )C (z ) +  V(z)  (7.24)

The significance of the various elements of this expression has already been elaborated in 
the preceding sections and is illustrated in Figure 7.3.
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7.4.1 Separation of the background activity

The process of generating the background activity (section 7.3.1) assumed the excitation 
of a system H by a white uncorrelated sequence, u(n). Furthermore, the system H was 
constructed from a set of linear time invariant systems, which were described by transfer 
functions, {Hi(z)\i £ Z } . Each one of these is valid for a time-window, but transition 
from one to the next is smooth, as described earlier and there may be a small overlap 
between adjacent windows, where the transition from one to the next segment takes place. 
The behaviour of the system when these transition segments occur will be examined in 
a practical way later, as it depends on the implementation. With the exclusion of these 

relatively short periods, there is only one transfer function, say //¿(z), that contributes to 

the output sequence, b(n), at a specific instant in time, hence H[U(z)\ = Hi(z)U(z).
It is therefore possible to study the signals associated with the application of the inverse 

system, H~1(z) (see Figure 7.4). Evidently, since FT,(z) is an all-pole (AR) system, the 

inverse system has zeros at the same locations. The absence of poles ensures that H~l{z) 
is stable. It is also minimum-phase, because all its zeros lie inside the unit circle in z. The 
ability to invert a stable all-pole transfer function without worrying about the stability of 

its inverse was one of the factors that made the AR preferable to the more general ARMA 

structure during the modelling procedure (section 7.3.1).
The components of the signal r(n), the output of H,~1(z) when applied on the recorded 

(composite) EEG signal, e(n), are easily identified in the z-domain:

R(z) =  H~\z)E(z)
=H ~ ' ( z )H M U (z )  +  H f 1(z )G (z ) D (  + f f - ' ( z ) F r (z)C(z)  +  H~'(z )V(z)

=  U (z )A  A,(z)D(z) +  M j  (z )C (z) +  H~' (z)V(z)  (7.25)

where A ,(z) =  H~1(z)G(z)  

and M i(z) =  / f " 1(z)F(z)

E(z) and R(z) are the z-transforms of e(n) (equation (7.24)) and r(n), respectively.
As expected, the output of this inverse system contains the generating sequence u(n) of 

fe(n), the ongoing activity. The other elements of this signal are:

• A sequence due to the spike signal, consisting of distorted spikes. Because their occur-
rence is rather infrequent, it is very likely that the distortion will be different from one 
spike to the next, since 7F,(z) would change to another transfer function by the time 
the next spike is encountered. Alternatively, distortion may be viewed with respect to 
the input to the spike generating filter, d(n), as a new system with transfer function 
Ai(z). This is the cascade of G{z) and the H~1(z).
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• A sequence which is related to the transient signal component. As with the spikes, 
this signal is distorted and looking at the process from the input sequence(s), c(n), the 

operation corresponds to a quasi-linear system, which has the form of a vector M ,(z), 

the cascade of f / t_1(z) with t(z).

• A distorted version of the noise sequence, u(n), due to the application of the inverse 

system, H~x(z).

These components have certain properties that are worth noting, as they play a role in 

the detection procedure.
u(n) has lower power than b(n). This is a direct consequence of the generating procedure, 

where tx(n) was initially assumed to have unit variance whereas the output, b(n) of the system 
is typically much larger. Later on (section 8.1), it will be shown that because of the method 

used for the estimation of ff,_1(z), this property is guaranteed. Because u(n) is a white 
sequence, H~l(z) is sometimes called a whitening filter and its purpose is to decorrelate 

b(n).
Regarding the distortion of the spikes, it is possible to quantify its effects in a general 

way by considering some properties of the overall transfer function, A,(z). This has poles 
from G(z) and zeros from H~l (z). The latter tends to attenuate its input, as noted in the 
previous paragraph. Moreover, since Hi(z) reflects the PSD properties of the background 

activity, which occupies primarily the lower end of the spectrum, the whitening filter is 
expected to have most of its zeros close to the positive half of the real axis in z and would 
attenuate these frequencies much more than the higher ones. However the poles govern the 
time extent of the signal which is expected to be brief. Thus, the distorted spikes would bear 
some resemblance to actual spikes but with their lower frequencies considerably reduced in 

amplitude. The exact details of the distortion cannot be anticipated, because f/,(z ) (and its 
inverse) may change from one spike occurrence to the next.

A similar argument holds true for the transient signal components, which are also cor-
rupted by the application of the inverse filter. Here, the overall transfer function(s) are 

described by the vector M ,(z). The poles of these are the same as those of F (z), but 
extra zeros are introduced from H~1(z). As with spikes, these zeros tend to reduce the 
low-frequencies of the transients, but their duration is not affected very much.

One other property shared by spikes and other transients is their large amplitudes com-

pared to the background activity. This is a consequence of the amplitude of the excitation 
functions, but is more related to their nature. For the generation of spikes and transients 
impulse sequences were used, whereas for the background activity a white sequence was 
necessary. An impulse and white noise have flat amplitude spectra, but they differ on their
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phase which is zero in the first case, but random in the second. Hence after the applica-
tion of a transfer function, the result in the first case has the phase characteristics of the 

transfer function, which are generally smooth, whereas in the second case they contain a 
strong random element. In conclusion, with impulse excitation, many adjacent frequencies 
have similar phases, giving rise to large instantaneous amplitudes, whereas with a white 
sequence, amplitudes are spread over time, due to the random phases of adjacent frequency 
components.

Finally, noise is not uncorrelated any more, because of the effects of H~l(z). Its power 
is generally decreased with respect to what it was prior to the application of this system for 
the reasons given in the previous paragraphs. Low-frequency components may also exhibit 

attenuation due to the zeros of the applied transfer function.

In brief, the application of H~l (z) on the recorded EEG signal, e(n) tends to reduce 
the power of the background activity and destroy its structure to a white noise sequence. 

Noise components are also reduced in power and spikes and transients are registered with 
relatively large amplitudes, but distorted. For this reason, a number of workers, like Da 
Silva et al.[179], Birkemeieret al.[17] and Bodenstein, Prastorius et al.[25, 153] found inverse 
filtering useful in the detection of spikes. Their reasoning and models have some relation 
to the material presented here, but their methods and systems focused on the background 

activity. Other components of the signal were excluded from the modelling procedure.

7.4.2 The inverse spike model

Relying on the output of the inverse of the background activity generating system, r(n), 
for the detection of spikes proved inadequate. As explained in the previous section, spikes 
give rise to large-amplitude signals with brief durations, but so do non-spike transients. In 
some cases, their amplitudes are often one or more orders of magnitude larger than those 
for spikes. Hence the presence of a visible transient in r(n) is an indication of the presence 
of either a transient or an epileptic spike, although the discrimination between them is 

not possible by inspecting r(n). If H had a fixed transfer function, it would have been 
possible to identify spikes in r(n), as the distortion would have been similar from one spike 
to the next (which would then correspond to the impulse response of a system with transfer 
function H~1(z)G(z)). With a changing transfer function, only the transient nature and 

large amplitude of the signal are invariant.

Because spikes were also modelled as an input-system structure (section 7.3.2), it is 
possible to observe the behaviour of the inverse of this system on the recorded signal e(n). 
The spike generating system, G(z) is linear and has stable poles and no zeros. Its inverse,
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G~1(z ) has only zeros and hence it is also stable. Since these coincide with the poles of G(z), 
they lie inside the unit circle and hence G_1(z) is a minimum-phase system as well. By its 

definition, G-1 (z) is such that when applied on the spike sequence, s(n) the output would be 

the spike-generating sequence of randomly occurring scaled impulses. The consequences of 
its application on the recorded composite EEG signal, e(n), are easily observed if, as before, 
the z-transform of signals and systems is employed using the synthesis equation (7.24):

Y(z)  =  G-\z)E{z)

=  G~1(z)Hi(z)U(z) +  G~1(z)G(z)D(z) +  G' 1 (z)F T (z)C (z) +  G~\z)V{z)  

=  Bi(z)U(z) +  D(z) (7.26)

+  N t ( z ) C ( z ) +  G~1(z)V(z) (7.27)

where ¿?,(z) =  G~1(z)Hi(z)

and N (z) =  G_1(z)F(z)

Here, Y(z)  represents the z-transform of the output y(n) of the inverse spike filter. The 

output of the system contains the spike generating sequence, d(n) and components due to 

the on-going activity, other transients and noise.
Background activity, b(n) is now distorted. The effect of the inverse filter is equivalent to 

the application of the input white noise sequence, u(n), to a system with a transfer function 
Bi(z) =  G~1(z)Hi(z). This is a correlated signal whose auto-correlation function, and hence 
its PSD are described by the poles and zeros of B,(z) for every segment i. Because the 
background activity of the EEG, 6(n) is concentrated at the low-end of the spectrum, the 
critical poles of H{{z) (which are the poles of B ,(z)) will be at small angles to the positive 

real axis in the z-domain. The zeros of B(z) are due to G~1(z), located at a larger angle and 
hence tend to suppress frequencies at the higher end of the EEG ‘bandwidth’ (section 7.4.1). 
As a consequence, this signal will have, in general low frequencies, because of the action of 
the zeros at high frequencies and the absence of components with significant amplitudes at 

frequencies beyond that.
The effects of the spike filter on other transients, f(n), cannot be assessed specifically. 

Transients (section 7.3.3) are generated by sequences of impulses c(n), occurring at random 
intervals with amplitude and sometimes polarity changes from one to the next. The transfer 

functions that generate them, collectively written in vector form as F (z), are all modified by 
cascading with the inverse filter and the new transfer functions, N (z), are effectively applied 
to c(n). These will still appear as transients in j/(n), but their shapes will exhibit a distortion 
that may be predicted, if both G(z) and F(z) are known. Although their amplitudes may (in
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theory) increase by the application of G(z), they cannot resemble an impulse, otherwise their 
time sequence would have been similar to that of a spike. In general, for most transients, 

which have most of their energy in frequencies below the peak of the spike model, the 
amplitudes are expected to be reduced and, in any case, phase distortion introduced by 
G~1(z ) would change the relative time-delays of the various frequency components.

The application of G~1(z ) on the uncorrelated noise, u(n), would cause its correlation. 
The frequencies around its zero(s) will be suppressed, but higher frequencies may be en-

hanced. In general, this is not as critical as it may appear, because of the more significant 

amplitude of the spike impulse sequence.

Effectively, the output of the inverse system of the spike model contains the spike gener-
ating impulse sequence, but the background activity signal may still have significant power. 

Other transients are distorted, but not necessarily suppressed. In other words, although the 
spike generating sequence is present in the output of G_1(z), it may be difficult to detect 

reliably, because of the interference of other signals, mainly the background activity.

7.4.3 Inverse modelling as a means of spike detection

In section 7.4.1 it was shown that the output of the inverse background activity modelling 

system, r(n), contained noise u(n) and up(n) and some components of brief duration, which 
appear spontaneously. These may be caused by spikes, sp(n) or other transients tp(n). 
Hence,

r ( n )  =  t i(n ) +  sp(n) +  fp(n) +  up(n) (7.28)

where, from equation (7.25), sp(n) =  Z~l {A{(z)D{z )} , tp(n) =  Z ~ 1{'M.J(z)C(z)} and 
vp(n) =  Z~1{H ~1(z)V(z)} .  From these, the ones of greatest interest are sp(n). Unfor-
tunately, it may not be possible to isolate them from the other transients, tp(n), because 
the applied system, H~1(z) may change from time to time in an unpredictable manner, as 
already explained. It is, however, possible, with some reasonable assumptions to detect both 
sp(z ) and tp(n) together. This is an indication that a transient phenomenon was present in 
the signal. The assumption that was made here is that the amplitudes of these components 
are larger than the RMS value (the standard deviation for signals with zero mean) of the 
random components, u(n) and vp(n). This does not come into conflict with neurophysiolog-
ical definitions, which stress that spikes (for example) should be clearly distinguished from 
the background activity[4l]. From this statement and the method by which H~1(z ) will be 
estimated (see section 8.4.3) one may arrive at the following proposition.
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Proposition 7.1 If spikes (or other transients) can be distinguished from the background 
activity, they can be distinguished more clearly after processing the signal with the inverse 

filter, H~1(z).

This is a direct consequence of the noise-like appearance of u(n) and vp(n), which have no 
structure and hence may be more easily suppressed by filtering than the variable-frequency 

background activity with large low-frequency components. As a consequence of Proposition
7.1, transients may be detected with relative ease in r(n), although their shape may not help 

in ascertaining their origin.
The inverse spike system, on the other hand, is related to a different set of components. 

Its output, y(n), given by equation (7.27), contained an impulse sequence due to the spikes, 
some other spontaneous signals, fg(n), when other transients are present, and some sequences 
of correlated noise v q ( u )  and 6g(n), which are always present, even in the absence of spikes:

y(n) =  bQ(n) +  d(n) +  tQ(n) +  vQ(n) (7.29)

where 6g(n) =  Z ~l {B{(z)U( z ) } , fg(n) =  Z -1 {N T(z )C (z)} and v q (t i) =  Z~x{G~l (z)V(z)} . 
Attempts to detect spikes using y(n) did not produce reliable results, because, unlike r(n), 
the on-going components here, £>g(n) and ug(n), do not necessarily have small RMS value 
compared to d(n), neither are they uncorrelated. However, it may be possible to utilize this 

output as an indication of the occurrence of a spike, despite its unreliability.

Proposition 7.2 In the presence of a spike conforming to the defined model, G(z), the 

amplitude of the generating impulse may be estimated from the output of the inverse model 
with an expected error equal to the RMS value of the signal.

This assumes that the background activity and spikes are uncorrelated. Hence, a transient 
at any instant is subjected to an uncertainty caused by the variance (power), ctq, of the 
interfering signal, consisting of 6q (h ) +  v q (u ), as other transients are rare, having a small 

bearing on the signal variance. Their scarcity is not an important requirement, as their 

presence may be detected and their contribution on the computation of variances eliminated. 
Variance is reflected as an uncertainty in the amplitude of the spikes contributing its square 
root in either direction of the value of d(n). Now, assuming that a spike occurred at an 
instant N  and was detected by some independent technique, it may be described in terms 

of the excitation function d(n) =  A^5(n — N)  (see equation (7.17)), contained in y(n). A n  
cannot be determined precisely, but assuming that 6q (u ) +  v q (h ) is Normally distributed, a 
range [a, 6] may be determined so that with a certain level of confidence, p, the actual value 

of An  will be included in [a, 6]. If of, was known, p would have been a small probability value
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on the tails of the Normal distribution, N(i4;v,c>o). Because it is unknown and its estimate, 
<f02 has to be used, the t probability distribution for the mean is the one to use. The two 

corresponding values from the distributed variable, t =  ± t 0 may be used to determine [a, 6], 
since yW rAN follows a t distribution. Hence

y(N) -  t0(To <  An  < y{N)  +  t0d0 (7.30)

The assumption of normal distribution is not critical. In fact any other probability density 

function may be employed, provided that its characteristics can be measured.

In conclusion, as a consequence of Propositions 7.1 and 7.2, r(n) contains a reliable 
indication of transients, but is unable to establish which of them are spikes, whereas y(n ) 
contains an indication specific to spikes and capable of estimating their amplitude, but not 
reliable enough to be used for their detection. The combination of the two was used to 

form a hypothesis that an observed transient was a spike. This was tested by estimating the 
spike and subtracting it from the signal and repeating the test. The absence of a transient 
increased the certainty that the initially observed phenomenon was indeed a spike.

7.4.4 Structure and behaviour of the analysis model

It is evident from the comments at the end of the previous section that the proposed working 
system requires some additional elements for its implementation, which were not initially 
included in the theoretical model suggested by Figure 7.4. A block diagram which includes 
these amendments is shown in Figure 7.5.

The inverse of the system model for the generation of the background activity, H~x(z) 

appears twice in the complete system. Also, the spike generating filter, G(z ) appears in 
direct realization as well as in inverse, G~x(z). These elements are essentially self-contained 
having one input and one output. Their purpose, structure and operation has already been 

described in the preceding sections and is entirely related to traditional signal processing 

concepts.

The other four units are the constituents of the detection and decision entity (Figure 7.4), 
which relates more to pattern recognition than to signal analysis. Its function was based on 
the observations and comments of the preceding section. These units are the two transient 

detectors, the spike initiator and the the spike detector. Unlike the other elements of the 
system, their function could not be illustrated in isolation, because they combine inputs from 
other units. In fact they form the links between the other elements of the system and are as 
critical in its overall behaviour as any other unit, possibly even more.
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indications EEG activity spikes

Figure 7.5: Block diagram of EEG analysis system

There are many formal and informal methods for pattern identification, ranging from 
simple thresholding of signals to elaborate pattern recognition schemes. In the absence of a 
single universal description of their structure a subjective realization was attempted. This 

relied on the implementation of the other elements and will be described in the Chapters 
that follow, but it does not inhibit the description of the behaviour of the overall system at 

this stage. It is essential that when describing the implementation details in later sections, 

the reasoning behind the use of each structure is known in advance.

Functional description of the overall system

Before looking into the implementation details of each element of the system illustrated in 
Figure 7.5, the operation of the system as a whole under different input conditions will be 
considered. Three input scenarios are of interest, depending on the components present in

e(n):

• A spike has occurred

• Spikes and other transients are absent

• A non-spike transient is present.
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In the first case, e(n) =  b(n) +  s(n) +  u(n), since the transient component, i(n), is zero. 

This signal is applied to H~l (z) and G~l (z). The outputs of these systems, are r(n) and 

y(n), respectively. From the explanation given in section 7.4.1, r(n), will contain the random 
sequences u(n) and vp(n) and a transient component, due to the spike, sp(n). Similarly, 
from the arguments stated in section 7.4.2, y(n) has components &Q(n), d(n) and v q (t i), 
corresponding to the input components 2>(n), s(n) and v(n). The function of the transient 

detector is to produce a discrete output, zt(n), indicating the occurrence (zt(n) =true) or 
the absence (zt(n) =false) of a transient. This is maintained true for the duration of the 
transient .sp(n). Spikes cannot be reliably detected based on the presence of an impulse-like 

signal, d(n), in y(n) and hence the spike initiator uses zt(n) as a cue. Evidently, spikes 

detected in y{n) but not associated with a transient detection in r(n) cannot be genuine 

and are hence discarded. In the presence of a spike, though, the spike initiator computes an 
estimate of the spike generating impulse d{n) from y(n), as explained in section 7.4.3.

This by itself is confirmation that a spike occurred, but the process was taken a stage 
further. By exciting the system of the spike model, G(z), by the estimated impulse, d(n), an 
estimate for the spike sequence, s(n), that supposedly occurred, is generated. This is sub-

tracted from the original EEG signal, e(n) and the residue signal, e'(n) is then re-processed 
through H~1(z) and a duplicate of the transient detector. If a spike was correctly identified, 

generated and subtracted, then e'(n) should be transient-free during the period of occurrence 
of the spike in e(n) and the second transient detector should not indicate the presence of the 

transient. By combining the outputs of the first and second transient detectors, the spike 
detector is able to identify this event and correctly indicate spike occurrences as a binary 
event zs{n).

The effect of other transients

If a non-spike transient is present, e(n) =  b(n) -f t(n) +  u(n), then r(n) will contain a 
transient indication, tp(n) instead of sp(n). The output of G~x(z), y(n), will also have a 

transient present, tQ(n). For most transients, the spike initiator would have a zero output, 
because y(n) will not resemble an impulse. It is possible, though, that in the multitude 
of possible transients some may produce sequences in y(n) that may be impulse-like. The 
spike initiator would treat those as spikes and hence produce a non-zero output. This 
demonstrates the requirement for the additional elements G(z) and H~x(z). Even if G(z) is 
excited by a non-genuine spike sequence, its output will still be a spike estimate. Hence after 
its subtraction from e(n), the transient is not eliminated, because e'(n) will now contain the 
spike estimate, — s(n) as well as the initial transient, t(n), which are different sequences and
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do not eliminate each other. As a result, r'(n) would still contain a transient, which will be 
picked-up by the second transient detector. The spike detector will then be presented with 

two signals, zt(n) and z\{n) suggesting that even after a spike was subtracted, the transient 
is still present. Therefore, either the transient was not a spike, or a transient and a spike 
occurred simultaneously, a very unlikely event. Hence no spike is indicated in za(n).

In the complete absence of transients, e(n) is a combination of the background activity, 
6(n), and noise, v(n). Hence, r(n) will have no transients to be detected by the first transient 

detector. As a result, there will be no spike initiation and hence no spike generated at the 

output of G(z). In this case, e'(n) is identical to e(n) and the second detector will indicate 
no transients either. Consequently, the spike detector will not show the presence of a spike, 
as expected.

Double inverse modelling as an integrity test

The importance of the duplicate transfer function H~l (z) and the spike generating filter 
G(z ) should not be undermined. These are crucial in the behaviour of the detector, espe-
cially in the uncontrolled environment of ambulatory monitoring, where many unprecedented 
phenomena may be encountered. In terms of system analysis, these elements are a form of 
feedback, used so that the system may test its own output and adjust its behaviour accord-

ingly.
This may be clarified by describing the operation of the system in terms of probabilities. 

Let the first (or the second) transient detector have a probability pi of making a false transient 
detection and the spike initiator have a probability p2 of falsely detecting a spike, when there 
was not one present. The probability of a spike being falsely detected, based on the output 
of the spike initiator only, is pip2. But if the generation and subtraction of a spike and the 
repetition of the transient detection process takes place, the probability of a false detection 
is p\p2, which is considerably smaller than pip2, since both pi and p2 are positive and much 

smaller than unity. The probability of a spike being missed depends on the probability 

of the transient detector missing a transient, p3, which is not affected by the feedback of 
the ‘spike-free’ signal. This is expected to be fairly low, anyway. Assuming independence, 
the probability of making an error (either a false or missed detection) is the sum of the 
probability of missing a spike and the probability of falsely detecting one which is pip2 +  p3, 

without feedback and p\p2 +  P3 with feedback of e'(n). Evidently, the improvement in the 
performance of the spike detector after the addition of ‘feedback’ is significant, especially if 
pi is small, a fact that is generally true for a good transient detector.

A procedure based on processing e(n) by H~*(z) and then detecting spikes in its output
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using a bank of matched filters for various types of spikes was suggested by Pfurtscheller 
and Fischer [148]. This is an example of a system without feedback of the detected events 

for testing the integrity of the detected phenomena.

7.5 Concluding remarks

A procedure for the detection of spikes based on signal modelling concepts was presented. 

This was based on the separation of the signal of interest (the EEG) into a small set of 
components (background activity, spikes, etc.) having different properties. Each one of 

those was further modelled as the output of a system, driven by an input signal with simpler 
properties. This decomposition was utilized for the separation of the constituents of the 
signal, based on the systems described and their inverses. Specific elements (spikes) may be 
detected from the signals produced during this decomposition. Therefore, signal modelling 

here is an integral part of the analysis method.

The advantage of this approach over the earlier differential spike detector (see section 
6.5) lies in its generality. In the analysis presented, the detailed properties of the signal to 
be analyzed were not taken into account. It was simply considered as a mixture of elements 
with long duration and others with brief duration but characteristic shapes (transients). As 

such it is free from heuristics based assumptions about properties of a specific transient, 

but rather describes a procedure to follow for their modelling and detection. The only 
requirement is that these transients have consistent shapes known a priori. Their detection, 
when embedded in a continuous signal which may have possibly unknown characteristics, is 
then possible.

The proposed analysis technique has other properties that cannot be undermined. First 

of all, it is still independent from the internal structure of the systems used for modelling. 
Although quasi-linearity was hinted, this restriction may easily be lifted once suitable more 
general (non-linear, for instance) modelling techniques become available.

The separation of the input signal into components that may be studied independently is 
a useful by-product of this approach. In terms of EEG analysis, both the estimated spikes, 
s(n) and the (hypothetically) spike-free signal, e'(n) are available separately (see Figure 7.5). 
The ability to study their properties independently may yield useful neurological findings. 
Moreover, these signals are available in parametric representation, which may be easier to 
study, or may be useful for the compression of the signal during on-line analysis. These issues 
will be emphasized in the Chapters that follow, as they are linked to the implementation.

One of the key issues in the modelling approach was the possibility of generalization. This
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may be viewed in the context of the EEG signal or in the more general theme of composite 
signals.

As far as EEG analysis is concerned, with the introduction of new systems and the 
modification of the detection elements, the proposed system may be be generalized to detect 

other transients, apart from spikes. The extension of the proposed system is the subject of 
Chapters 10 and 11.

In its general form, the method may be applied to other signals, of biological origin or 
other, consisting of a structured (correlated) sequence with superimposed transient compo-
nents.

It should be noted that in this Chapter the systems describing the signal components 

of the input signal were presumed known in advance. In real life they are largely unknown 
and must be estimated, if the method proposed may be applied. Several methods for system 
estimation both on-line and off-line exist, (see for example [151, 152]). A class of methods, 
particularly suitable for on-line processing adapted for the purposes of this work will be 

discussed in the next two Chapters.



Chapter 8

Model parameter estimation

The signal analysis method proposed in the previous Chapter can only function if the systems 
associated with the signal models for spikes, G(z) as well as the background activity, H, are 

known a priori. This condition is not satisfied, since it was stressed in section 7.4 that the 

modelling procedure is not based on physical processes and that the only element available 

in reality is the composite recorded EEG signal, e(n). This Chapter serves two purposes, to 
bridge the gap between analysis and implementation and to propose such an implementation. 
The first comprises of the demonstration that the estimation of the required systems is 
feasible. The second is essentially a realization of such an estimation procedure, subject to 
additional constraints mainly for on-line implementation.

The methods derive from the general optimum least-squares method of system design, 

introduced to engineering in 1949 by Norbert Wiener and is named after him. It will be shown 
that Wiener filtering may be employed to estimate H  from e(n). With further considerations, 
G (z) may also be regarded as a Wiener filter and thus computed using similar techniques. 
The principle of system estimation is described first. Algorithms for its realization are 

presented later.

8.1 Optimal Wiener filtering

Wiener filtering addresses the problem of linear signal estimation. This deals with the ap-
proximation (estimation) of one discrete-time sequence using a weighted linear combination 

of elements of another. Four elements are required for the formulation of the solution:

• A sequence of samples, x(n), termed the input sequence

• A second sequence, y(n), called the desired response

193
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Figure 8.1: Principle of Wiener filtering

• A set of coefficients, to,, known as weights

• A goodness of fit criterion, £, the cost function

The input sequence x(n ) is often, but not always, a temporal sequence, created by dis-

cretization of a continuous time function, x(t) and hence may have infinite length. EEG 
signals belong to this category, but it is possible to have a sequence that is spatially related, 
or a finite-length sequence of discrete variables of (possibly) heterogeneous sources (e.g. x(0) 
may represent pressure, x (l)  distance etc.). Mixtures of different input types is also possible, 
but these are beyond the scope of this work.

The weights, are applied on x(n) to form a linear combination of elements of this 
sequence (see Figure 8.1),

M
y(n) = Y , W i x ( n - i )  (8 .1 )

t=0
This description implies that the set of {in,} is finite and consists of M  +  1 elements, since 
for every n, y(n) is a function of only M  +  1 elements of x(n). Such an operation may be 
regarded as an FIR, causal filter. According to Wiener theory i may extend indefinitely 

(M  =  oo), resulting in HR behaviour[152, pp. 240-248], or take negative values also, a 
non-causal realization[152, pp. 249]. With these generalizations, the estimation may take 
into account all values of {x (n )}, extending infinitely into its ‘past’ and ‘future’ . Wiener 
filtering is better expressed using vector notation as this is simpler and more illustrative. 

Hence the input,
x(n) =  ( . . . ,  x(n +  1), x(n), x(n -  1 ),.. .)T (8.2)

is a vector of possibly infinite length, consisting of the elements of the input sequence, {x (n )}, 

‘ centred’ at the nth element. The weight vector,

(8.3)
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is formed by all the weights in the unconstrained (HR, non-causal) filter. The operation of 
the filter (equation 8.1) may then be expressed as the inner product of x(n) and w:

y(n) =  w  • x(n) =  w r x(n) — x (n )Tw (8.4)

Having described the operation of the filter, the role of the desired response and the cost 
function will now be outlined. These are the core of Wiener filtering, as the objective is to 

find a suitable weight vector, w*, so that the output sequence of the filter, (y (n )} (equation 

8.4) is ‘as close as possible’ to the desired response sequence (y (n )} (Figure 8.1). That is 
for a given x(n), the output y(n) of the filter with weights w* must be the ‘best estimate’ of 
the desired response y(n ) and this must be true for all n without changing the weights. The 
purpose of the cost function, £, is to quantify the goodness of the estimation. It is typically 
a function of the error o f the estimation, e[n) — y(n) — y(n), as depicted in Figure 8.1. The 
cost function usually employed is the mean squared error function (MSE), defined as the 
expected value of the squared error for all n:

(  =  e2 =  £ [e(n )2] =  E {[!i(n ) -  w Tx(n ))2]} (8.5)

The choice of e2, is associated with many desirable properties of estimation, some of which 
are listed at the end of this section, and is well-supported by linear algebra, leading to great 
simplification and increased versatility of the analysis. Using the linearity of the Expectation 
operator the above expression may be transformed to the following[202, pp. 19-21] (see 
Appendix C):

f  = ryy(0) -  2 w T T X y -I- W T R X X -W (8.6)

where, by definition, ryy(0) =  E[y(n)2], riy =  £ l[y(n)x(n)] is the cross-correlation vector 
between x(n ) and y(n) and Rxx =  £ [x (n )x (n )T] is the auto-correlation matrix of x(n).

The optimum weight vector in this sense is the one corresponding to the minimum value 
of £, which occurs when the gradient of £ with respect to w,

dt d£ d{
d w -i' dwQ ’ dwi 

vanishes. Applying the gradient operator on expression 8.6,

= VJr„(0)] -  2Vu,[wTrEV] + +V„[wTfl„w) 

=  —2rIS +

(8.7)

(8.8)

and setting =  0 yields the optimal value of the weight vector, since, from the last 
expression, Rxxvr* =  rxy or

w  =  f l j r (8 .9)
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which is the well-known Wiener-Hopf equation[202][pp. 22][152, p. 241],[14, p. 297][140, p. 
166] for evaluating the optimal weight vector from the auto-correlation matrix of the input 

vector and the cross-correlation vector between the input vector and the desired response.
Wiener filtering, as a method for estimating one signal from another, possesses several 

desirable properties, analysed in texts on optimal signal processing[202, pp. 26-43][152, p. 
239-248]. The most important of these are listed below (their derivation may be found in 

Appendix C):

• The mean squared error, being a function of w has the shape of a hyperparaboloid, 
which is concave upwards and, hence, has only one minimum at w =  w*.

• The value of the MSE at this point is given by

tm m  =  r y y (0 ) -  rJ yW * (8 .1 0 )

• Weight vectors corresponding to the same value of £ lie on concentric (hyper)ellipses 
centred at w*.

• By defining v =  w — w*, it is easy to show that the MSE and its gradient are given 

by the following expressions[202, pp. 23-25]:

£ =  £min +  VTRxxV (8.11)

V w£ =  2 Rxxv

• Perhaps the most important property of the filter, arising from the use of the MSE 
criterion for optimization is the decorrelation o f the error and the input when the 

optimal weight vector, w* is used:

E[e{n)x(n)] =  0 (8.12)

In other words, the error vector is orthogonal to the input vector. This has a geometric 
interpretation. Since the MSE function is proportional to the modulus of the error 
vector, ||e(n)||, it is minimized when e(n) =  [ ... ,e(n — l ) ,e (n ) , .. .]T, is perpendicular 

to the (hyper)plane spanned by x(n).

• Consequently, the output of the filter y(n) and e(n) are also orthogonal.

Wiener filtering is a powerful modelling tool, made more appealing because of the ex-
istence of fast and computationally effective implementations, like adaptive filtering, intro-

duced in section 8.4.
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Figure 8.2: A one-step linear predictor

8.1.1 Optimal linear prediction

The relevance of Wiener filtering to EEG signal modelling and analysis may not be immedi-

ately apparent. One special case, linear prediction, is particularly useful for signal modelling 

and deconvolution[151, pp. 452—457][152, pp. 231—251][140, pp. 265-301].

In linear prediction a value, x(n +  N — 1), in a sequence (x (n )} is to be estimated 

(predicted) from the (known) past samples of the same sequence, x(n — 1) =  ( . . . ,x (n  — 

2), x(n -  1))T.

If this is to be performed by linear weighting, an optimum weight vector, w*, that 
minimizes a cost function, £, of the prediction error, e(n), is sought. Evidently, if £ is the 
MSE function, linear prediction becomes a special case of Wiener filtering, where the desired 
response is y(n) =  x(n +  N  — 1) and the output of the filter, y(n) =  x{n +  AT — 1), is 
an estimate of this. This is a constrained Wiener filter, and is causal since the weights for 
‘future’ samples are set to zero (w =  ( . . . ,  0,0, W\, IU2, .. .)T). Special attention is drawn to 
the case when the next sample in the sequence is to be predicted for reasons that will be 

explained.

One-step forward prediction

In one step forward prediction, N =  1, and hence y(n) =  x(n). A diagram of this system is 
shown in Figure 8.2. The output and error signal for this structure are given by the following 
relations:

OO

x(n) — Y .  wix (n — 0  (8.13)
»=1

e(n) =  x(n) — x(n)
OO

=  x(n) — Wjx(n — i)
t=i

(8.14)
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By comparison with the Wiener-Hopf solution (equation (8.9)), the optimal prediction weight 

vector, w =  (tui, tu2, • • -)T may evaluated as follows:

w  = tr„ (8.15)

where the cross-correlation vector between the input and desired signals is now the au-
tocorrelation vector of the input starting at zero lag, rxx =  [rxx(0), rxx(l) , rxx(2 ),.. .]T. The 
auto-correlation matrix is slightly different from the definition given in the previous section, 

since the first row and column have been eliminated as the input vector at time n is x(n — 1) 
instead of x(n). Hence the matrix used here is Rxx =  £ [x (n  — l)x (n  — 1)]T. Because of the 

way the elements of the autocorrelation sequence of the input are combined in the above 
equation, substantial simplifications in the computation of w* are possible, but these are 

considered later in the implementation.
The expressions for x(n ) and e(n), given above, represent causal systems with infinite 

impulse response in the general case. Equation 8.14 gives the error of the prediction and is 

of particular interest in signal modelling. It should be noted that P/(z) may be computed 
by using information extracted solely from the input sequence, namely its autocorrelation 
function, rxx(k). By re-labelling the weights, equation 8.14 may be rewritten as:

OO

e(n) =  ^2 hix(n — i ) (8.16)
t= 0

where h0 =  1 and h, =  —W{,i >  0. Using the z-transform Pf(z)  may be readily written:

W  =  | t 4  =  f > .  ( 8 .1 7 )
\2) i=0

This system has the property that when the sequence x(n)  is applied at its input, a white 

uncorrelated sequence is produced at its output. Conversely, if the white noise sequence e(n) 
is passed through the inverse of this system, P j l (z) the output is the sequence x(n), since

X (z ) E(z)

PA*)

E(z) (8.18)

This signal representation is similar to the modelling process described earlier in section
7.3.1. Now, however, it is related to Wiener filtering, which readily provides a method for 

the computation of P /(z ) and e(n).
Because of its effects in the frequency and the time domain, the transfer function P/(z) 

is descriptively called a prediction-error, whitening, or analysis filter{ 140, p. 64]. The white 

output sequence, £(n), is called the innovations process\ 152, p. 210][140, p. 174] for the 

sequence x(n).
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The prediction-error filter and the innovations process share the properties of Wiener 
filtering, which acquire a new meaning because the desired response is the input signal 

itself. Detailed discussions on those may be found in texts on linear prediction[l52, pp. 
208-251][140, pp. 195-301].

The orthogonality principle of the input and the error sequences described by equation 
8.12 in the previous section demonstrates that the innovations e(n) and the input x(n) 

sequence are uncorrelated. Hence the system P/[z) may be regarded as a parametric form of 
summarizing the ‘predictable’ attributes in x(n), whereas e(n) represents the ” unpredictable” 
element, or new information that is present in every new sample of this sequence[140, p. 174]. 
The representation of a stationary stochastic process x(n)  in terms of a system P/(z) and 
the innovations process e(n) is known as the Wold representation[ 152, p. 210].

A consequence of the criterion used for the optimization is the reduction in power between 
the input and the output of the system Pj{z). By substituting y(n ) by x(n)  and delaying 
the input sequence by one sample in time, the minimum MSE given by equation 8.10, may 
be rewritten as

{min =  rxx(0) -  r^w * (8.19)

where rxx is the autocorrelation sequence of x(n)  for n <  0. The corresponding autocorre-
lation matrix Rxx is such that by the Wiener-Hopf equation Rxxvf* =  rxx. Substituting rxx 
in the last equation gives

{min = fxx(0) -  (Rxx'W*)TWm =  7~xx(0) -  W*TflxxW* (8.20)

where by symmetry Rxx — Rxx. Since this matrix is positive semi-definite, then for any 

vector w, w.ftxxw > 0. Hence rxx(0) — {m̂n >  0. By definition, {mtn =  a\ represents 
the power (variance) of the innovations sequence and rxx(0) =  al the power in the input 
sequence. It is therefore evident that

a 1,  <  < r (8. 21)

and therefore the innovations sequence has less power than the input sequence. Equality is 
possible if the input is a white sequence (or an impulse sequence), when Rxx =  / .  When the 

signal sequence is deterministic (fully predictable), the power of the innovations sequence 
becomes zero.

Linear prediction based on a finite number of past samples

Finally, it should not be forgotten that the only constraint imposed on the linear predictor 
is that of causality. The weight vector, w extends infinitely taking into account the whole of
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the past samples of the input sequence, x(n) for the prediction. This has obvious difficulties 
in its realization, as x(n ) is only known for a finite number of past samples and an infinite- 
length weight sequence represents a non-computable problem. In practice, the length of the 
weight vector (and hence the dimension of Rxx and rxx) is restricted to some finite value, 
M. This may result in a predictor with inferior performance than the one described above. 
In many practical applications, including the EEG (see section 8.4.3), the magnitude of the 

weights decreases rapidly for large lags and eventually becomes insignificant. Hence it is 
generally possible to truncate the weight vector to a length M  that is adequately large so 
that the contribution of the weights not included in w, {it;,-; i >  M }  have a negligible effect 
on the performance of the predictor. Such a system has a finite impulse response and its 

inverse is an all-pole (AR) structure:

P 7\* ) =
E(z)

1 X ( z ) l - £ " i  Wiz-i
(8.22)

It is clear that if x(n) is produced when an autoregressive system of order L, Q (z ) =
—= ir ----- — is excited by a sequence with white PSD, r(n), then an optimal linear predictor

of order M  >  L, P j (z ) =  1 — W{Z~' will be identical to the inverse of the generating

system:

W i  =
—a,i 1 < i < L  

0 L < i <  M
(8.23)

If the system Q(z ) has zeros, as well as poles, the FIR linear predictor described will 
still yield an approximation to the inverse system, but this will never be exact, although 
it will get better with increasing M. There have been attempts to formulate an ARMA 
linear predictor which could approximate transfer functions with infinite impulse response 

more economically (smaller number of parameters). Unfortunately, the presence of feedback 

results in a set of non-linear equations[152, pp. 212-213]. There is no guarantee for a unique 

solution in this case, because the performance surface £(w) is neither quadratic nor unimodal 
for some weights. Besides, there are problems of stability of the resulting predictor[202, pp. 

135-137]. These are general problems arising from the use of rational fractions as Wiener 

filters and are not specific to the prediction problem.

The error sequence out of the linear prediction error filter Pj{z ), e(n). will be the same 
as the input sequence, of P j l (z) and will have an autocorrelation function that consists of 
an impulse at the origin with amplitude equal to the power of the sequence, cr̂ , e.g. white 
noise or an impulse. The PSD of the input sequence, Pxx(u>), may be readily evaluated from 

the inverse of the predictor P/(z) and crj:
a2

P ll{u ) =  Pf (z )P j (z - ' )^z=e3u,T
(8.24)
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which is a secondary, but possibly useful, by-product of this method. Linear prediction, in 
general, is covered by a comprehensive review paper by Makhoul[116], who mentions its use 

for the computation of the spectrum of the EEG. This paper, however concentrated on the 
concept, properties and possible applications of linear prediction systems, rather than its on- 

or off-line, recursive or non-recursive implementation.

8.2 The On-going activity as a Wiener predictor

From the concepts unfolded in the previous section, the relation of linear prediction to the 

EEG signal, especially the synthesis and analysis model established in previous Chapter, is 
obvious.

The synthesis model described in section 7.3.1 is essentially an autoregressive system, H, 
excited by a white sequence, u(n). The system H is time variant, as its coefficients change at 
random time instants, but for the period between two changes they are constant, resulting 
in a form of short-term transfer function, H{(z). This was used as part of the analysis 

model in section 7.4.1, to develop an inverse, which is central in the present system

(sections 7.4.3 and 7.4.4). The structure of this inverse is precisely that of a linear one-step 

prediction error system, a fact that is easily established by comparing the structure of Ht(z) 
(equation 7.13) with the inverse of the prediction-error structure, P j x(z) (equation 8.22). If 
both systems have the same order, M  =  N, then there is a direct correspondence between 
their coefficients, a,- =  Wi,Vi =  1 Hence it is possible to evaluate H ^ ( z )  using
linear prediction, provided that b(n) is known. In this case, the innovations sequence out of 
the predictor would be the generating white sequence, u(n), which agrees with the analysis 
procedure of section 7.4.1. In practice, 6(n) cannot be separated from the other components 
of the EEG signal, but the whole signal e(n) may be used for the estimation of this transfer 

function. Of course e(n) contains spikes, other transients and noise, but spikes and other 
transients are fairly rare events and have significant amplitudes only for brief durations of 
time, being generally uncorrelated with the background activity, these components would 
contribute little to the auto-correlation function of e(n), which is largely similar to that of 
b(n) (see section 8.4.3). In the implemented system the detected spikes and transients were 

excluded from the computation of the parameters of H~1(z) thus eliminating their effects 

altogether.

The presence of the noise component, v(n), would affect the values of the predictor 
coefficients, because it is an integral part of the estimated signal. Being a random sequence 
it contributes to the autocorrelation function of b(n) only for zero lag. If v(n) is small, it may
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be argued that the autocorrelation sequence of the recorded EEG signal is almost identical 
to that of the background activity, ree(n) «  rbb(n). This permits the computation of the 

inverse transfer function for the generation of the background activity, /7,-1 (z), using the 

recorded EEG signal, e(n), and the theory of optimal prediction-error filtering.

Two questions on this issue still remain: What should be the order, N, of the linear 

predictor (the order of f/,(z ) is not known) and how to make the linear predictor estimate 

the transfer functions H~l(z) for consecutive values of i, since transitions between one and 
the next occur at unpredictable instants (section 7.3.1). Solutions to these problems will be 

provided during the implementation in section 8.4.3.

8.3 Finding the Parameters of the Spike Model

The spike signal, s(n), has completely different properties from the background activity. 
Nevertheless, it is possible to apply Wiener theory to find a decomposition into an input 
sequence of scaled impulses, d(n), and an AR process with transfer function, G(z) (section 

7.3.2).

Because spikes are rare and their energy is concentrated in short time spans, their overall 

contribution to the power of the EEG signal is quite small. Thus, they must be identified 

and isolated from the rest of the signal, to ensure that mean squared error optimization 
will concentrate on the spikes, not on the background activity or other transients. For this 
purpose, the initial differential spike detector described in a previous Chapter (section 6.5) 
was employed. This identified most of the spikes in a number of data records. The spike 
detection signal (a binary function of ‘time’ ) was displayed along with the EEG signal and 
amendments were made to remove the few false detections and introduce a detection when 
a spike was missed. A window of length K  was then formed around the points of detection 

to extract the segments of the signal containing spikes.

This semi-automatic procedure, supplemented with an appropriate user interface could 
also be used by an expert clinician to mark spikes in new records, acting as a supervisor 
correcting the response of the system and providing a means for its adjustment without the 

need to understand the underlying signal processing concepts.

The EEG signal with the spikes marked does not by itself suggest any particular method 
for the evaluation of the required transfer function. Two approaches are possible, based on 

the definition of G(z) as an AR system whose impulse response is a spike.

According to the first scheme, an input sequence of spikes may be generated, one per 
spike. This is an estimate of the generating sequence, <f(n), which is subsequently applied
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s(n) d(n)
(desired) (desired)

(a) Direct modelling (b) Inverse modelling

Figure 8.3: Alternative schemes for the estimation of the spike model

to the system to be estimated, G(z ) and its output is subtracted from the genuine spike, 

presumed generated from the unknown G(z) with excitation by the impulse sequence d(n)
A

with possibly added noise. The parameters of G(z) are then optimized according to the 
Wiener-Hopf equation 8.9, assuming that the desired response is a genuine spike, s(n) and 
the input signal is the sequence of impulses, d(n) (or rather its estimate d(n))\

s '  =  R(8.25)

This method, illustrated in Figure 8.3(a) but is subject to two limitations. Firstly, the esti-

mated sequence d(n) cannot be exact, since neither the times of occurrence nor the ampli-
tudes of the impulses are known and their estimation is subject to errors that affect both the 
consistency of the estimation and the behaviour of the derived filter. Then, the system esti-
mate, g*, being an all-zero model, would represent nothing but an average ‘matched filter’ in 
reverse, an implementation lending itself to little flexibility and poor signal parametrization. 
The methodology was developed with the prospect of future expansion to the description of 

other transients, some of which may have simple shapes but long durations, where this filter 
might represent an optimal solution in terms of Wiener theory, but a rather poor one in terms 

of number of coefficients to store and number of mathematical computations required for 
their application on the signal. Besides, the system is not guaranteed to be minimum-phase 
and its inverse, which is also part of the system (section 7.4.4) could be unstable.

The alternative, depicted in Figure 8.3(b), represents an attempt to estimate the inverse 
of the spike generating process, G~1(z). According to this scheme, the segments containing 
the extracted spikes are the input to a linear prediction error filter. In the absence of 
noise, the output of the filter should be an impulse, provided that the order of the filter is
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adequately high, at least the same as the order of the spike generating autoregressive system 
described in section 7.3.2. In practice there is ‘noise’ consisting of the other components 

of the signal, b(n), t(n) and v(n). The transient signal component, tin) may be neglected 
since the (few) spikes which are corrupted by it may be rejected from the modelling process. 
The other components are uncorrelated with the spike signal s(n). Being signals of lower 
amplitudes than that of the spike in the considered signal segments, their effect on the 

sample auto-correlation sequence for each segment is small and the effect on the ensemble 
auto-correlation sequence over all extracted signal segments is expected to diminish as their 
number increases. Therefore, the sample signal auto-correlation is an approximation of the 

spike auto-correlation, rS3(n) «  ree(n). The coefficients g* =  (<h gi . . .  <7l )t  of the inverse 

system, G~l {z ) =  1 — Ylf=i9iz~' (sections 7.3.2 and 7.4.2) are given by the (Wiener-Hopf) 
equation:

g* =  k -J t«  (8.26)

which is basically the solution to the optimum linear prediction problem (equation (8.15)). 

This expression is similar to the one already given for the background activity in the previous 

section. It can therefore describe precisely an autoregressive spike model of order M  <  L, 
in the absence of noise. When noise is present or the model is ARMA or MA, a reason-
able approximation may still be achieved, but the output signal may contain excess error 

components due to poor modelling.
Provided that the order of the predictor is adequate and that the noise level in the input 

is low, a clearly distinguished impulse should be detected in the error sequence, e(n) out of 
G-1 (z) when a signal segment containing a spike is input. This may be used to verify the 
correctness of the model and serves as an integrity test on the selection of the order of the 

predictor.
A systematic way for finding the inverse filter, G~l {z) is based on a form of constrained 

Wiener filtering that conforms to the optimal solution presented as equation (8.9), but uses 

a finite-length weight vector g =  {go < 7 i  • • • 9 l ) T  as in section 8.1.1. An additional constraint 
is the limited length of the input and output sequences. Under these conditions, the required 
optimal vector g* should be such that the output, d{n) of the system is an impulse. Because 

of the shape of its output, g* is often called a spiking filter, a misleading term in the context 
of this report, where the term ‘spike’ has a different significance. A good analysis of spiking 
filters which are primarily used in deconvolution is given by Orfanidis[140, pp. 286-301]. 
The equation that gives the optimal spiking filter for an epileptic spike pattern is:

g ; =  RJr.J. (8.27)

where redk is the cross-correlation between the signal containing the epileptic spike and the
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desired response, <4(n) =  Uo(n — k) (an impulse delayed by k samples). The introduction of 
the index k permits the consideration of several spiking filters, for various delay factors. If the 

input sequence of N  samples, is written as a vector e(n) =  [0T e(n) e(n + 1 ) e(n +  2) . . .  e(n +  

N) 0T)T, where 0 is an (infinitely long) zero vector, one may introduce a delay k and write 
e(n — k). By defining the input matrix E =  [e(n) e(n — 1) e(n — 2) . . .  e(n — L)]T, the output 
when e(n) is applied to g* is simply the vector e* =  Eg*k. Similarly, the desired response 

matrix is effectively the identity matrix since D =  (d0(n) d i(n ) d2(n) . . .  dx,(n))T =  I. Using 
this notation, one may write the optimal spiking filters for delays k =  0 ,1 , . . . ,  L in matrix 
form

G* =  R~jRed =  R-J E t  

where

Red — (fedo êdi ••• ^edi)

=  E t  D =  E t

Noting that the outputs of these filters, G*, are given by the columns of matrix D =  E G* =  

E R~? ET, the best spiking filter g* =  g£ is the one for which the fcth element on the diagonal 
of D has the largest amplitude over all other elements[140, p. 289].

8.3.1 Towards a practical solution

In this section it has been illustrated that it is possible (at least in theory) to estimate 
the transfer function(s) for the generating process of the background activity, / / , ( z )  using 

optimum linear prediction. Similarly, two schemes have been suggested for the estimation of 
the generating system for epileptic spikes, G(z), which are also based on Wiener theory and 

linear prediction. One limitation of the Wiener-Hopf solution (equation (8.9)) its the use 
auto- and cross-correlation functions which are sums of products of signals that theoretically 
extend infinitely into the past and future. In any implementation, these must be replaced by 
sample correlations computed over a finite time interval. If the signals are stationary, any 

short-time correlation will be an estimate of the theoretical correlation, but in the presence 

of non-statonarities there will be inconsistencies.

Short-time correlations may be suitable for the computation of the spike transfer func-
tions, since only short segments of the signal are employed. In the case of the background 
activity, the signal changes with time and its non-stationarity apparently invalidates the use 
of sample correlations. Recalling, however, that the model of this signal has been described 
by a set of transfer functions being in effect at different times, it makes sense to use correla-
tions that are valid locally to estimate each one of these. Sample correlation functions may be

(8.28)
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estimated in a number of ways, depending on how the expectation operator is implemented. 
These include from summation over a window of samples and recursive estimations.

The explicit computation of the auto- an cross-correlation functions is not a necessity, 

however Wiener filters may be computed by numerical optimization, using gradient search 
of the performance surface, £(w) or otherwise. Some of these methods estimate the optimal 
vector recursively. These are sometimes suitable for on-line processing and are often better, 

quicker and more elegant than their block-by-block sample correlation counterparts. A class 

of recursive methods of system estimation, descriptively called adaptive filters are the subject 
of the next section.

8.4 Practical computation of model parameters by 
adaptive techniques

Wiener theory depends on correlation functions and although it is possible to estimate these 
from a (time) window of the signals considered, better approaches exist for finding the 
optimal weight vector. Because samples of the EEG signal are continuously generated, it is 
more sensible to use new samples to improve the estimates of the correlation functions which 
appear in the Wiener-Hopf equation (8.9). This suggests an iterative method for updating 

Rxx and r^ , as it would be pointless to recalculate them anew with the arrival of every 
sample. Indeed, recursive methods for their computation do exist (see Bellanger[14, pp. 
55-94], for example). It is also possible to estimate R~l directly, enabling the computation 

of w* without matrix inversion (see section 9.1).

More radical methods do not use the analytical solution of the Wiener-Hopf equation 
(8.9), but are based on its significance. Noticing that it gives the weight vector w* for which 
£(w) reaches its minimum value, the optimal solution may be reached through a method 
that estimates this point. Gradient search techniques are popular in numerical optimization, 

because they are simple and avoid matrix arithmetic. Their underlying theory is summarized 

next.

8.4.1 Recursive solution of the Wiener-Hopf equations by gradi-

ent descent

The recursive estimation of the optimal weight vector utilizes properties of the MSE surface, 
£(w), a scalar function of the weight vector (see Appendix C). The algorithms described 
here exploit the quadratic nature of £, which possesses a single minimum at (w*,£mtn).
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Points of equal £ have the shape of hyperellipses centred around the above point, whereas 
cross-sections of the error surface along the radii of these ellipses have parabolic shape. By 

translating the minimum point to the origin and rotating the coordinate system so that 
the axes of the ellipses are aligned with the coordinate axes (see Appendix C), £ may be 

expressed in the new vector variable u =  QT(w ~  w *) t° the following:

£(u) -  £m,n = UTAu  (8.29)

where Q is the modal matrix and A is the (diagonal) eigenvalue matrix.

Steepest descent is a numerical method for the estimation of the minimum of a function 

like £(w), by progressively moving the estmated minimum point guided by the direction of 
the gradient (vector), V£(w). Intuitively, starting from an initial guess, w(0), of the point 
of minimum £, a better guess would result from the introduction of a correction Aw(0) =  

—/¿V£(w(0)), where p is the size of the step or learning rate and V £(w (0)) is the gradient at 
that point. The negative sign indicates that the step should be taken in a direction opposite 
to that of the gradient vector. The process is applied iteratively, according to the following 
updating recursion[200, 201, 202]:

w (k) =  w(k  -  1) -I- Aw(fc -  1) =  w (k -  1) -  pV  £(w (k — 1)) (8.30)

and as the number of iterations, k , increases, w(A:) gradually approaches the true minimum 
w*.

For a quadratic function like £, where a single minimum exists, the stability of the 
method (convergence to this point) depends almost entirely on the size of p. To investigate 

convergence, the gradient vector is replaced by by equation (8.8), V  £[w(fc)] =  2Rxx"w(k) — 
2rxy, after the substitution of rxy =  Rxxw* from equation (8.9) followed by the subtraction 
of w* from both sides:

w (k) =  w(fc — 1) — 2p Rxx[w(k — 1) — w*]

w(fc) — w* =  v/(k — 1) — w* — 2p Rxx[w(k — 1) — w*] (8.31)

Working in reverse, compared to equation (8.29) and replacing (w — w*) by the equivalent 
Qu[202, pp. 57-60] converts the above relation to the following:

Qu(k) =  Qu(k -  1) -  2p RxxQu(k -  1) (8.32)

which may be rotated to the principal (eigen) coordinate system u by multiplying the whole
relation on the left by Q~1 =  QT and substituting Rxx =  QAQT (see Appendix C), as with

equation (8.29):
u (k) — (I — 2p A)u(fc — 1) (8.33)
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M. The first is caused by the approximation of the gradient by taking finite differences, 6, on 
the weight vector while adjusting the weight vector itself. It is encountered when adaptation 

is performed on-line and corresponds to an excess MSE of size 7 =  Aa„£2. Perturbation is 

the ratio of this to the theoretical minimum MSE, fmtn:

(8.37)

where \av is the average of the eigenvalues of the input auto-correlation matrix. The misad- 
justment is caused by the presence of ‘noise’ in the gradient estimates, due to the approx-
imation of £ by a finite sum, rather than the ‘true’ expectation. For the steepest descent 

method, this is responsible for an excess MSE, which is approximately A£ ~  ^ +18j / m'p(~)atM 

where L +  l is the number of weights, P  the perturbation (defined in the previous paragraph) 

and (T-)a„ is the average of the reciprocals of the time constants, rn, corresponding to the 
L -f  1 modes of the performance surface. The misadjustment is simply A  if normalized by

fm tn  •

M  = (L +  1) , 1 ,
16ÌVP ( rn)av

K
P

(8.38)

The overall penalty in excess MSE, given by the sum of the perturbation and the misadjust-

ment, Miot — M  +  P =  ^  +  P, cannot be decreased without bound for the steepest descent 
method, but is optimized when P  =  In the algorithm presented next, this restriction

will be removed.

8.4.2 The Widrow-Hoff LMS algorithm

One special case of the steepest descent method is of particular interest in signal processing, 

as it leads to significant computational simplifications, since it eliminates the need for on-line 

computation of gradients.

The MSE function estimate, given by the finite sum:

f  (w) =  E[e(n)2] «  -̂ r Y ,  £(n)2 (8-39)
iV «=o

becomes more accurate with increasing N, but reasonable estimates may be obtained for 
small values. Widrow and Hoff[200, 201][202, pp. 99-144] used the special case, when 

N  =  1, giving
£(w) =  e(n)2 =  [y(n) -  w Tx(n )]2 (8.40)

which is equivalent to ignoring the expectation operator. This simple estimate has a larger 
variance than the ones for N =  2 ,3 ,. . . ,  but the gradient takes a simple form, making its



210 Chapter 8. Model parameter estimation

numerical estimation unnecessary, since

V ((w )  =  —2 e(n)x(n) (8-41)

This is an explicit gradient estimate and defines the Least-Mean-Squares (LMS) algorithm 

for updating the weight vector:

w (k) =  w (k — 1) — /¿V £(w(fc — 1)) (8.42)

=  w(fc — 1) +  2pe(k)x(k  — 1) (8.43)

Although this recursive relation is a special form of steepest-descent, some of its properties 
are special and worth noting. One of the attributes that has not changed is the range of 

convergence for p. Taking the expected value of the above expression,

£[w(/c)] =  £[w(fc — 1)] +  2pE[e(n)x(k -  1)]

=  E[w(k  — 1)] +  2 pE[y(n)x(k  — 1)] — 2pE[x(k — l)x(A: — l )Tw (k — 1)]

=  £[w(fc -  1)] +  2prxy -  2pRxxE[w(k -  1)]

Substituting Rxxw* =  rxy and subtracting w* from both sides of this relation gives

E [w (k ) ] -w *  =  £[w(A; -  1)] — w* +  2pRxxvf* -  2pRxxE[w(k -  1)]
=> £[w(fc)] -  w* =  (I -  2pRxx){E[w(k -  1)] -  w*} (8.44)
=> fl[w(A:)-w*] =  ( / -  2pRxx)E[vr(k -  1) -  w*]

Applying the rotation implied by the eigenvector matrix and converting the recursive relation 
into a geometric series, as in the previous section, yields equation (8.34), as for the steepest- 
descent[202, pp. 101-103]. The LMS algorithm is stable when 0 < p <  (see equation 
(8.36)). Computing the largest eigenvalue of the correlation matrix is a costly operation[14, 
pp. 81-83] and it is avoided in practice, by noting that, when all eigenvalues are non-negative 

(Rxx is positive (semi)definite), the following holds true:
L

<=0
tr[A] =  trfft**]

L

r x x  a
i=0

(8.45)

where tr[i?IX] is the trace of the matrix (the sum of its diagonal elements). In the case of the 

(temporal) EEG signal, each element on the leading diagonal of Rxx is equal to the variance 
(power) of x(n), rXXti — crlx, hence the range for the step parameter, p, is practically set to

1

^mar —

0 <  p  <
(L +  1 ) ° l x

(8.46)
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which is more strict than the theoretical relationship, but is much easier to compute.
The LMS algorithm converges in the direction of the gradient vector, although the es-

timation of the gradient is now ‘noisy’ . As with the steepest descent, the learning curve 
has L +  1 time constants, one for each eigenvector, given approximately by rn «  for 
n =  1 ,2 , . . . ,  (L + 1). Evidently, the smallest eigenvalue determines the speed of convergence, 

as before.

Unlike the steepest descent, though, the Widrow-Hoff algorithm does not suffer from the 
effects of perturbation, because the gradient is not approximated numerically[202, p. 109]. 
Hence misadjustment is caused entirely by ‘noise’ in the estimate of the weight vector, caused 
by the poor approximation of equation (8.40). It can be shown[202, pp. 109-110] that the 
noise in the the weight vector, after convergence, is given by q(n — 1) =  V  £(w (k — 1)) =  

—2e(n )x (n — 1). The covariance matrix of q(n) is then $ 99 =  4£minRxx which translates into 
4£m«nA in the principal-axis coordinate system. It may be demonstrated[202, p. 78] that the 
covariance of the weight vector in this coordinate system is given by

K u  =  E[u(n)u(n)T] =  ^ ( A - p A 2) - 'Q T* qqQ

=  /-t£m.n(A -  ^A2)_1A

~  /^£mtn(A) A

=  p^mtn I

where pA2 was neglected since its elements are considerably less than unity. The excess MSE 
may then be expressed as A£ =  £ [u (n )r Au(n)] =  A,\E[u,(n)2], where E[u,(n)2] =

p£min are the diagonal elements of $ 99. Hence A£ =  /x£m:n A,- =  /i£m«ntr[-Rxx]- Dividing 
by £min gives the misadjustment:

Mtot =  M  =  ptv [Rxx\ =  ± ± ± { - ) av (8.47)
4 rn

In general, the LMS algorithm has a lower misadjustment and shorter time constants than 

the general steepest descent, due to weight updating on every sample as it arrives and 
the avoidance of gradient estimation. The misadjustment may be reduced as desired by 
decreasing p, but at the expense of speed of adaptation (i.e. longer time constants).

8.4.3 Estimation of the background activity model

The development of the LMS algorithm was based on the implicit assumption that the input 

and desired signals are stationary, ergodic processes, so that their theoretical (statistical) 
auto- and cross-correlation functions are independent of time and hence equal to the average



212 Chapter 8. Model parameter estimation

_______
— *0

i/
e(n

I / “  N

I S

’ 4 3

7. .  ;

e(n

¿5K jB
r _ .............* 0 E P T

7,3 ” ■ kti
--- ►QO------------

U-JH ----- r— ---------6
y M

f i
b*-------------4

i *
b*-------------ik -i---

Figure 8.4: The inverse of the background activity as an LMS filter

of sample estimates. The background activity signal, 6(n), the main component of the EEG 

does not have the same uniform properties over time, as already explained in section 7.2.2. 
A synthesis model was based on the (reasonable) assumption that changes in the properties 

of the signal which are responsible for its non-stationarity occur infrequently. These were 
modelled as transfer functions which change at random instants, thus creating a piecewise 

linear system (section 7.3.1). The analysis procedure of section 7.4.1 assumed the existence 
of a method for the estimation of these transfer functions. Here, it will be shown that the 

LMS algorithm, despite the initial assumption of stationarity is, indeed, such a procedure.

The synthesis model consisted of a set of transfer functions, (H i(z )}, excited by a common 
random sequence, u{n). One of the outputs from each of these systems is then selected by 

means of consecutive windows, each having a different duration { JV,} for every segment i. The 
background activity 6(n) is the concatenation of these segments. The only signal available 
is the recorded EEG, e(n), which may contain transients and noise, but according to the 
analysis procedure, transients may be detected and in most cases have a brief duration, 

so their impact on the auto-correlation of b(n) is small. The noise, on the other hand is 
uncorrelated Gaussian and has only an effect on the leading diagonal of Ree. Hence, as 

explained in the analysis procedure, r ^ n )  ~  ree(n), for low noise levels.

The analysis method (sections 7.4.1 and 7.4.4) requires the use of the inverse of the 

transfer functions, { H~1(z ) } , implied by the synthesis model. Assuming that the f/,-(z) are 
AR, their inverses are MA linear prediction error filters (section 8.2). A transversal LMS 

adaptive prediction error system implementing H~l (z) is shown in Figure 8.4.

Of course, there are a number of obstacles in applying adaptive filtering to this sig-

nal. These are related to the behaviour of the algorithm during the first segment (initial 
convergence), during transitions between transfer functions as well as sources of weight mis- 
adjustment specific to the non-stationary nature of the signal. These issues are examined 

next.
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Behaviour of the LMS algorithm during the first segment

Although the model suggested in section 7.3.1 extends infinitely into the past, data collection 

will have to begin at an instant, before which the signal history will be ignored. It is assumed 
that the first segment of b(n), described by H\(z), with input u(n) and length N-i is in 

progress. The behaviour of the adaptive algorithm was studied using a synthetic signal, that 

conforms to the EEG model (section 7.3.5). With no a priori knowledge of its value, the 
initial weight vector was set to the origin of the weight space w(0) =  0, corresponding to 
the system H\{z) =  1, which is trivially minimum-phase.

The sample-by-sample updating procedure of the weight vector according to the LMS 
algorithm, gradually changes the weight vector bringing it closer to the optimal, the in-
verse of the AR system Hi(z), accomplishing the decorrelation of the input sequence 6(n), 

a fundamental element of the analysis procedure (section 7.4). The implementation is com-
putationally efficient, requiring approximately 2L operations (L is the order of the system), 
but takes a number of samples to converge, during which the system is sub-optimal and 
neither complete decorrelation is achieved nor minimal MSE. For the first segment the time 

taken for the weight vector to converge is considered. This is related to the dominant time 
constant of the adaptive process, Tmax «  . j  , as explained in section 8.4.2. Assuming that 
the steady-state of adaptation is reached after the lapse of four time constants[202, p. 92], 
There is an overhead of approximately MT =  ^  . samples before analysis may function in 
the manner described. When p is set to its theoretical maximum (equation (8.36)), the ratio 
of the largest to the smallest eigenvalue gives the number of samples required for the conver-
gence. Using the more stringent practical limit of equation (8.46), A/T is likely to increase, 

but always bound by (L +  1)^"“  which is proportional to the order of the prediction error 
filter. For an eigenvalue spread of 100 and a filter order of 15, this would correspond to an 

overhead of 1500 samples, which may translate into a period of 10 seconds, if a low sampling 

rate of 150 s -1 is assumed. This is a long period, but its practical implications are not as 
serious as they may initially seem. Even in the extreme case just suggested, the initial setting 
time is insignificant compared to the time of operation of the filter, which would be several 

hours for on-line long-term monitoring. It should be noted, however, that if the length of 
the segment is shorter than MT, the algorithm will not have time to converge to the optimal 
weight vector and the error level may be significantly higher than the theoretical optimal

(m in •

A more realistic situation is depicted in the waveforms of Figure 8.5, where the con-
vergence is clearly shown in both the estimate of the mean squared error and the squared 
modulus of the weight vector. These results were produced using the synthetic data described
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(a) Input simulated EEG signal

(b) i(n)

(c) Predictor output

(d) Error of prediction

(e) Actual ||w||
(d) Estimated ||w||

(e) ||Aw||

Figure 8.5: Convergence of the LMS Prediction Error Filter for b(n) 

later in section 8.6.1.

Transition between segments

The time constant(s) of the adaptive process may not be critical in the initial convergence for 
the reasons explained in the previous section, but they are expected to affect the performance 
of the algorithm during the transition between consecutive segments. This is related to the 

ability of the algorithm to track changes in the weight vector, which cannot be generally 
quantified, because they depend on the signal behaviour, especially on the difference between 

the optimal weights for consecutive signal segments. Let segments i — 1 and i have lengths 

Mi-i and M, and transfer functions and //,(z ), respectively. Assuming that the LMS

algorithm had converged to the optimal weight vector w*_j, the behaviour of the algorithm 
will be examined during and after the transition from to H,(z), which will be initially

assumed instantaneous. Weight adaptation in this case is similar to that already described 
for the first segment, but with different initial conditions. w (0) was assumed to be zero then, 
whereas now it is the vector w*_j corresponding to the estimated inverse transfer function 

for the previous segment, H~2i(z) =  1 — ULu w(i-\)kz~k- The convergence of the algorithm 
will depend on the properties of the auto-correlation matrix, of the current segment RXXi, 
especially its eigenvalue spread, . Perhaps a more critical factor is the difference between

•Amin:

0.5 1 1 £ 2.5 3 3.5

time (in seconds)



8.4. Practical computation of model parameters by adaptive techniques 215

RXXl and Rxx,_1, of the previous segment, which is associated with a change in the optimal 
weight vector, Aw* =  w* — w*_j. A small change in Rxx is associated with a small Aw*, 

which represents the deviation from optimal at the beginning of the ith segment and hence 
the number of iterations until convergence.

The investigation of the behaviour of the algorithm, without making further assumptions 
about Aw*, is not generally possible. Widrow et al.[201] investigated the the artificial but 
tractable situation where the weights are produced by stationary, ergodic random processes. 
For the suggested EEG model, weight generation is different, but Widrow’s analysis may be 
used as a guideline, especially concerning small changes in the weights occurring during a 
segment.

In the case of a fixed weight vector (section 8.4.2), misadjustment is caused effectively 
by gradient noise and is approximately equal to =  ptr[RXXi], which applies here also. 

When the optimal weight vector changes with time, the algorithm is expected to follow these 
changes and maintain the current optimal weight vector. LMS weight estimation being a 

first-order difference equation (equation (8.43)), has the dynamic response of a low-pass 
filter. This introduces smoothing and lag (due to phase shifts) to quickly varying weights 
causing tracking errors, resulting in additional misadjustment[201]. This is related to the 
learning rate /x, which controls the dynamics of the LMS recursive equation. A small value 

for p means slow convergence, thus more smoothing and hence worse tracking. This source of 
weight misadjustment for the specific case studied by Widrow was found to be approximately 
equal to

M l  =  ffww
L 1 £ t ,a , =  I

p

(L+l)a\2
w w

46.
(8.48)

2  i f  m in  ¿ _ o

where cr^  is the variance of the weight vector (assumed to consist of weights that are inde-
pendent identically distributed passed through random ergodic, first-order processes[201]). 
The total misadjustment in this case is given by:

^*1 to t Mn  +  M l  =  /xtr[/2] +  -
P 4 fn

2 "
w w (8.49)

The convergence rate appears in a linear and a reciprocal term, suggesting the existence of 
a value for p for which the misadjustment is minimal. This is given by:

\(L + l)crlw 
m 46m 'n tr  [ Rxx\ 2crx

(8.50)

where alx =  is the variance of the input signal and a]e =  6n,„, the variance of the
noise after convergence. This relation is only useful in theory, since erjf is not known and it 

depends on the weight-generation process. Using the practical limit given in equation (8.46),
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of the LMS Prédiction Error Filter for b(n)

it is evident that the optimal value for p, as expressed by the above relation, can be reached 

if <  (T+i)7^ 111’ which may be quite small indeed. In practice, however, this did not 
have a significant bearing in the proposed system, possibly because changes in the weight 

vectors are infrequent.

The time constant of the adaptation is critical in the case of the piecewise approximation, 
since Tmax =  -p — dominates the speed of transition from one weight vector to the next. The 
behaviour of the algorithm was tested with artificial data (section 8.6.1) and the moduli of 
w* and Aw* are displayed along with an estimate of the MSE and the modulus of the actual 

weight vector (Figure 8.6(a)). The lag between the actual and estimated weight vectors is 
evident near the points of transition between segments.

In practice, transitions are not as abrupt as indicated by the above model, but come 

gradually, hence the transition between adjacent segments is smoother and the effects of 

lag less profound (Figure 8.6(b)). The gradual transitions were introduced by explicitly 

smoothing the weight vector using an arbitrary time constant or by making the windows of 
application of adjacent transfer functions tapered and overlapping, as suggested in section
7.3.1. The first method was adopted for the generation of the data presented here, as it 
provides a one to one correspondence between the coefficients of the generating and the 

estimating procedures during these transitions.
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Determining the order of the predictor and the learning rate

The theoretical analysis and the results with simulated EEG signals supported use of the 
LMS for the estimation of the background activity inverse system but nothing has been said 
about the selection of its critical parameters, the order of the adaptive system, L, and the 

learning rate, p. These are the only constants that need to be supplied to the algorithm 

externally and the implications of their incorrect choice, especially p, could have devastating 
effects on the behaviour of the adaptive system, which should be prevented, especially if it is 

intended to operate unsupervised for long periods as in monitoring of ambulatory patients.

Ideally, L should be set equal to the order, Li of the generating AR process, Hi(z), whose 
inverse is sought. In practice, however, Li may vary from segment to segment. Although 

it could be set to the maximum, L =  max, Z ,̂ this maximum is not easy to estimate 

in practice, since the assumption that the process is all-pole, or even a linear is somehow 
arbitrary (section 7.3). If L is smaller than the order of the system to be predicted, a 
poor approximation may result. The MSE will be higher than the theoretically achievable 
minimum and the decorrelation of b(n) in u(n) will be incomplete. If it is higher, the weights 

for L > Li will be small, changing randomly and their corresponding spectral parameters 
will be insignificant. In general, over-estimation of L does not have serious effects on the 
performance of the algorithm, although convergence may be slowed down and the tracking 
capability of the filter may be reduced. A computational penalty is also possible, as the 
number of operations required is proportional to the filter order. Several criteria for the 
selection of the optimal L have been suggested, the more frequently used ones being the 
Final Prediction Error (FPE) and the Akaike Information Criterion (AIC)[99, 194], but 
these information theoretic functions require representative samples of EEG signals if they 

are to yield reasonable estimates.

Often a more ‘practical’ approach is more effective. Signals are processed by adaptive 
systems of progressively larger order and the MSE, £ is recorded for the whole length of the 
signal for each value of L[161, 201]. This function, £(L) is expected to have large values for 
small L, but rapidly decreasing and when L reaches the value of the order of the generating 
AR process, it stops decreasing and levels off. In the non-stationary case, for large L , £ 
may increase for a fixed learning rate, as the misadjustment due to gradient noise becomes 

significant [201]. For real EEG signals the all-pole assumption is only approximate as the 

presence of even a single zero would make the order of the equivalent AR filter infinite. 
Hence £(L) will be decreasing for all L. Such a graph was constructed for the existing EEG 

signals and for orders greater than 1 (Figure 8.7). For small L, the decrease in £ is rather 
dramatic, but there is a marked reduction in the rate of decrease, once some critical value
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Figure 8.7: Selecting the optimal predictor order

L0 is exceeded. After that point, the MSE decreases very slowly, hence the selection of a 
larger number of weights would only produce marginal improvements in the level of the error. 
Besides, a large order, for a given learning rate is likely to slow down the convergence (and 

tracking properties) of the algorithm, as it introduces additional time constants and possibly 
eigenvalues of small magnitude (see last two subsections).

This critical value, with the addition of a few more weights as a safety margin, was found 

to be around 14. This is not much different from 10, the value estimated by Roberts and 
Tarassenko[161, 162] for a system for EEG quantification during sleep. The discrepancy is 
not significant, taking into account the use of different signal sets and their nature. In their 
work these authors used sleep EEGs, whereas here records were taken during wakefulness 

and contained abnormal (epileptic) patterns.

The experimentally evaluated optimal order of the predictor was verified from observa-

tions on the available EEG records and information provided by EEG analysis texts (and 
covered in the earlier Chapter 2.5). Sections of the EEG signal consist of successions of quasi- 

periodic waves, which have in many cases sinusoidal appearance, although harmonics are of-
ten present. For ‘sinusoidal’ signals, like alpha, beta, delta and theta waves, a single pair of 

complex conjugate poles may suffice for their description. The inverse system will have these 
as zeros and a second-order transfer function, P(i)(z) =  H^(z)  =  1 — 2r, cos u>tT z~x + r ?  z~ 2 

where w, is the frequency of the oscillations and r, is related to the rate of decay (see also 
equation (7.20)). If harmonics, or other frequency components, are present, like in the case of 
mu rhythm and lambda waves, these would correspond to similar systems and the composite 

signal is the output of a generating system whose transfer function is the superposition of
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these two-pole sections,

1
X^K  1 
^ « = 1  P(i)(z)

u U  p m

n f=iJ¥, P{i){z )

£ ? * f 2 hi z - '

This system has poles as well as zeros. The denominator polynomial may be written in 

factored form n ^ -2 (l — Pi2” 1) and each of the single pole terms t xg-i expanded as an 
infinite geometric series, l+ p i  z~x +p ] z~2 +  ■ • - +  Pi z~k + . . . ,  since the poles p,- are all inside 
the unit circle. There will be 2K  — 2 such series and their product is a polynomial of infinite 

order Ya =q 2 h  z~\ Because each of the coefficients 6, consists of a sum-of-products of the p, , 
their magnitudes get progressively smaller and soon become insignificant, especially if there 
are poles close to the origin. If all poles had the same magnitude, r, b, would contain terms 
of magnitude r*. For r =  0.9, only the coefficients for i <  22 have magnitudes greater than
0.1 and for r =  0.8,0.7,0.5,0.3 the upper limit for i progressively decreases to 11,6,4,2. For 

the EEG, a maximum of four resonant frequencies at any time (K  =  4) were assumed, with 
the poles of P (z ) having magnitudes in the above range. Using the intermediate value i «  8, 
the effective order of the system is 2K  +  i =  16, slightly higher than the one estimated by 
the experimental technique. Tests were carried out with orders between 10 and 20 and the 
results were satisfactory for orders above 12 (section 8.6.2).

The other element worthy of consideration is the estimation of a suitable learning rate p. 

Equation (8.46) gave an easily computable upper limit as , where g xx is the power
of the input signal (the composite EEG, e(n)). In practice, an estimate of the power is 
computed, usually based on a window of the input data:

1 M 1
¿ 2*(n) = ^  5Zx (n  ~  *)2 = “  1) + “  x(n “  M)2] (8-51)

This expression gives a statistically unbiased estimate, but requires considerable memory if 

M  is large. An alternative method uses a simple recursive first order low-pass filter:

=  (1 -  <*Mn)2 +  otolx(n -  1) (8.52)

The above expression is equivalent to the transfer function A(z)  =  =  (1 — a )(l +

a z~x +  a2 z~2 +  . . . )  which is essentially a window of infinite length, but with diminishing 
emphasis for older samples. The parameter a is a positive constant less than unity. When 
it is close to unity, past samples are emphasized more, whereas when close to zero the past

P(z) =
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of x(n ) quickly loses its effect on the estimate, in which case it is largely dependent on the 
instantaneous value of the power, x(n )2. For this reason a is sometimes called the ‘forgetting 

factor’ . The gain 1 — a  has been introduced to ensure that the estimate gives the correct value 
for the power of a constant signal (hence cr^ n ) =  oxx =  1 for x(n) =  1 V n). The estimate 

is biased, since recent samples are emphasized more than old ones, but is adequate for the 
computation of the upper bound for p, which need not be unbiased nor very accurate. The 
selection of a  is not very critical, as long as it is large enough to smooth-out large fluctuations 
in x(n )2, while being sensitive to permanent changes in power, due to the non-stationarity 
of the signal. Widrow[202, p. 148] suggested that a good compromise would be to set its 
value such that the ‘half-life’ of the exponentially decaying window equal to the length of the 

stationarity, ns, of the input signal (c*n* =  ¿). From this the following formula for computing 

a  may be derived:
a =  2“ ^  (8.53)

Assuming that the sampling rate is 160 s_1 and the EEG is stationary for about 1 s, then 
ns =  160 and a  =  0.9956. Halving and doubling the stationarity yields forgetting factors 
with values 0.9914 and 0.9978, respectively, differing only marginally from the above value, 
which was employed in this implementation (although in the actual program it was user- 

defined).
The value for the learning rate was chosen to be a fraction A of the upper limit of the 

learning rate:
p(n) = 0 <  A <  1 (8.54)

(L  +  l ) ^ ( n )
It should be noted that p is now updated on every sample. This time-dependence has been 
reported to work quite well for non-stationary signals and had been applied extensively for 

the linear predictive coding of speech signals[14, pp. 117-121].
Two additional elements were introduced related to the power estimation and the learning 

rate formulae(8.52 and 8.54). The first is a safeguard in case the power of the signal reaches 
zero (making p infinite). After b2xx is computed, if found to be zero (or below a small set 

threshold &2) it is set to the minimal value b2. Alternatively, this value may be added as a 

constant term in equation (8.52), thus avoiding the comparison. Its biasing effect is small 

since the power is typically several orders of magnitude above cr2. The other consideration 

is the initial value of the variance ct2x (0). Normally this is set to a typical value, <r2, based 

on a priori signal information, but its value becomes insignificant after the lapse of a short 
time. By deliberately setting this at a lower value than estimated, a higher convergence 
rate is achieved initially, thus speeding up convergence. This increases exponentially with a 
reaching its ‘ correct’ value after the filter takes its course. In order to guarantee the stability
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of the filter, a2 was set to generate the upper limit for p, crlx{0) =  Act2.

8.4.4 Estimation of the spike model

The main consideration in the estimation of the background activity was the behaviour of the 
adaptive method on-line, to model the unpredictable variations in the background activity 
signal. In the case of epileptic spikes (and other transients) the signal s(n ) contains patterns 
with a similar morphology, which has been captured off-line in the form of the impulse 

response of a linear system, G(z) (section 7.3.2). The elements of this system should be 

known before analysis may begin (sections 7.4.2 and 7.4.4). These considerations, however, 
are based on the assumption that all spikes have exactly the same shape, apart from an 
arbitrary scaling factor (section 7.3.2). Real spikes, although they have similar shapes in 
general, differ in their details. Hence, in order to approximate spikes more precisely, small 
variations were permitted on G(z) at run-time, making the model time-varying. Different 
methods were employed for the initial off-line and the subsequent on-line estimation.

Initial off-line model estimation

A method for the estimation of G~J(z) has already been suggested in section 8.3, using the 
concept of spiking filters, based on finite-length input and output sequences. Spikes were 
marked in the input EEG signal by the interactive (semi-automatic) procedure described in 

section 8.3. Using spike markings as a cue for its position, a segment of the signal extending 
AT samples before and K 2 samples after that instant was extracted. Each one of these 
segments, Si, s2, . . . ,  sp, contained a noisy estimate of a spike in the form of K  =  AT +  AT +1 
consecutive samples of the input EEG signal, =  |e(n,), e(n, -f 1) , . . . ,  e(n,- -(- K  — 1)} . These 

are noisy estimates of spikes, since they are contaminated by background activity. The value 
of K  was chosen for the duration of the window to be approximately a third of a second.

To estimate the best spiking filter, the average spike, formed by the superposition of all 
p available noisy spikes, s =  £[s,]. This can then be applied to the spiking filter procedure 
suggested by equation (8.27). It was anticipated, though, that this approach would not 

have been versatile, because spikes have small differences in their duration and their exact 
alignment is not possible, deeming the consistency of the average questionable.

A better alternative is to find the filter coefficients corresponding to individual spikes 
and to select the best set obtained for every spike. The average of these p coefficient sets are 

then a representative set for any spike.
Although this procedure is carried out off-line, therefore using equation (8.27) directly 

is not restrictive, the recursive solution of the Wiener-Hopf LMS algorithm (section 8.4.2),
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which was already applied to the background activity (section 8.4.3) was adopted instead. 
This special application of the LMS algorithm is considered next. There are p spikes, 

s i,s 2, . . .  ,sp, each consisting if a sequence of K  samples, s, =  {s ,(0), s , ( l ) , . . . ,  s,(R ')}. The 

procedure that follows was repeated for every spike sequence, s
The desired response sequence, {(<4(0), < 4 (1 ),..., dk(K — 1)} for the kth spiking filter 

is such that <4(n) =  1 if n =  k and zero otherwise. The LMS algorithm (equation (8.43)) 

was applied to the spike sequence to estimate the spiking filter of order L < K , g* =  

(go,k,9i,k, • • • ,9L,k)T as follows:

• Initially g fc(0) =  0 .

• For all n =  1 ,2 , . . . ,  K  compute the following:

e(n) =  4 ( n ) - g fc(n)Ts,(n -  1) (8.55)

g k(n) =  gk{n -  1) +  2/xe(n)s,(n -  1) (8.56)

It was necessary to repeat this process several times, reusing a spike again and again until 
gfc(n) reached a steady state. The procedure was terminated once the magnitude of the 
change in the weight vector |2/i£(n)s,(n — 1)| was lower than a preset threshold. After con-
vergence, the filter gj! was applied to the input and the output sequence, <4 (n), and the 
mean squared error, £*, were evaluated. The best three spiking filters were then recorded, 

(in ascending values of £*,). It was observed that in most cases these corresponded to ad-
jacent values of k, which is intuitively appealing, since the degradation of the performance 
is gradual, near the optimal delay value, k. In fact only the best filter was necessary, but 
recording the best three ensured that nearly-optimal cases were not ignored.

Once the best spiking filters were estimated for all p available spikes, their coefficients 
were visually inspected. In general these were clustered in a small region of the weight space, 

and the mean of the coefficient vector

(8.57)
¿=1 k=1

was used in the detection procedure (section 7.4.4). The first six coefficients for a spiking
filter of order L =  10 are shown in pairs in Figure 8.8. All filters were normalized so that

TT---------:, which is independent of the
»1

amplitude of the spike.
Evidently, a higher order system is preferred in terms of accuracy, but with on-line 

coefficient adaptation, suggested in the next section, a system of order L =  2 proved adequate 

for describing the spike feature.

^fc(0) =  1, to correspond to the AR filter Gk(z) =
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Figure 8.8: Distribution of optimal spiking filter coefficients 

O n-line adaptation

The spike generating system, G(z), as well as its inverse (spiking filter) G~l (z), estimated 
by the off-line method, is perhaps the best linear time-invariant (LTI) approximation and is 
capable of modelling amplitude variations (by controlling the strength of the input excitation 

impulse as described in section 7.3.2). Other variations often observed in real spikes, like 

duration and fine detail, cannot be expressed by a time-invariant model, irrespective of its 

order. As seen from the coefficients between the optimal systems for individual spikes (Figure 

8.8), small variations are present, which translate to deviations of individual spikes from the 

output of the typical spike model.

Better spike modelling could be achieved if the system coefficients were allowed to deviate 
from their typical values and take those appropriate for the spike in consideration. This 

process must be performed on-line, as the values of the system for individual spikes cannot 

be predicted before they are encountered.

It is possible, however, to adapt the coefficients until they converge to the optimal during 

the progress of a given spike. According to this approach the coefficients of the system will 

be sub-optimal at the onset of a spike, but will progressively get better.

The adaptation of the coefficients was performed according to an LMS-type algorithm, 
not on the inverse (spiking filter) but on the spike generator filter (G (z ) in Figure 7.5). There
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is a good reason for that. As explained in the previous section it was necessary to restrict the 
input to the spiking adaptive filter so that only segments where the spike signal is strong could 
influence the adaptation procedure. Otherwise, the possibility that the coefficients would 
deviate from those for the spike in favour of some background activity component cannot 

be ignored. This will, in fact, be the case at the end of the spike, where the amplitudes of 
the spike gradually diminish and the background activity becomes dominant. Of course it 

is possible to set a window, as with off-line estimation, but this causes complications, since 
spikes vary in duration and justification of the use of any window length over another would 

be debatable. Also, bearing in mind that the proposed system was structured with the 
possibility of expansion to other transients, some of which may suffer from greater variations 

in their duration than spikes do, suggested the avoidance of windows, which is possible with 

the method employed.

L M S -type algorithm s for recursive system s Adaptation is performed on the autore-
gressive inverse, G(z), of the spiking filter, both of which share the same coefficient values 
(which appear in the denominator polynomial for G(z)). Least Squares estimation for HR fil-
ters is possible, by introducing additional terms in the auto-correlation matrix corresponding 
to the feedback coefficients. The output of such a system is given by the recursive equation

y(k) = S biX(k - *) - S a<y(k ~ *’)
i=0 i=l

=  bTx(fc) — aTÿ  (k — 1)

[bT, - a T]
x(k)

y ( k - i )

=  w Tu(k) (8.58)

where the input vector u (k) to the Wiener filter now contains the previous outputs of the 
filter and the weight vector w contains all the a, as well as the 6,. It is evident that if the 

development of the Wiener-Hopf equation presented in section 8.1 was repeated in this case, 

the input auto-correlation matrix would have the form

Ruu =  E[u(n)u(k)T] = R x x  R x y

R x y  R ÿ y
(8.59)

Which leads to a set of non-linear differential equations, because the terms that incorporate 
y(k)  are functions of the weight vector w. These equations cannot generally be solved in 
closed form[152, p. 262] like the Wiener-Hopf equation (8.9). Numerical optimization in 

the form of the LMS algorithm is still applicable, since the arguments and procedure of
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section 8.4.2 still hold. The resulting recursive relation is complicated by the appearance of 
cross-coupling terms in the derivative V  e =  —V  y(k). Considering the non-recursive and 

the recursive coefficients separately,

f t W  = dbj t=i db:

a A k ) =

x { k - j )  - £ > , & ( * ;  -  *)

da.j i=i da,j

=  - y ( k  - j ) - J 2  aiaA k ~  0
t=i

(8.60)

(8.61)

These can then be put in a single vector u (k) =  [/30(k ) (3\(k) . . .  /3i(k) ati(k) ai(k) . . .  ax,(fc)]T 

and the LMS algorithm written as before:

w(fc) =  w(fc — 1) +  2pe(k)u(k) (8.62)

This differs from the equation proposed by Widrow and Stearns[202, pp. 154-161] only 
on the learning rate. These authors have used a diagonal matrix of learning rates one for 
each weight. A simpler algorithm can be derived, if the derivatives are approximated by 

aj (k) =  ~y{k  — j ) a^d fdj(k) =  x(k — j) .  Hence u (k) «  u (k), an algorithm presented 
by Bellanger[15, pp. 319-322]. Additionally, smoothing the error sequence prior to its 
application to the weight updating equation results in the Hyperstable Adaptive Recursive 

Filter (HARF)[202, pp. 154-161]
The first two algorithm variants (not the HARF) were tried but their results were effec-

tively the same. This similarity is not unexpected, since the initial weight vector is close to 

the optimal solution anyway and the gradient has small values, thus the effect of the terms 

omitted in the simpler algorithm (the summations in equations (8.60) and (8.61)) is small. 
Hence the second is preferred, since it is simpler, requiring considerably fewer operations 
and less memory to implement. Because G(z ) is purely autoregressive, the non-recursive 

numerator coefficients do not apply (6,- =  0Vi > 0, b0 =  1) and the implemented filter struc-
ture is somewhat simpler than the general ARMA filter just presented. The autoregressive 
parameters of G(z), called g, in the previous section, were intentionally named a, here to 
confirm with the usual notation employed in texts giving details of the algorithm.

The value for p was set in a normalized manner similar to the background activity 
(equation (8.54)). The input power factor cr\x, however, was substituted by that of the 
output of the filter <r~. Although this worked well in practice, there is no theory to support
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the convergence of the algorithm for ARMA systems, because of the non-linearity of the 
equations involved. There is also some doubt whether gradient search algorithms would 

find the point of minimum MSE, because the error surfaces for these systems are non-
quadratic and might be multimodal, having local minima to which the weight vector may 
be trapped[202, pp. 154-161]. Widrow and Stearns give an example of such a performance 
surface[202, p. 136], which is clearly multimodal.

Range limiting for the autoregressive coefficients With recursive adaptive systems 

there are two stability issues. Stability of the algorithm and stability of the systems itself (all 
its poles must be inside the unit circle in z). The question of stability of the AR system during 
adaptation is an important issue and is linked to the the maintenance of the autoregressive 

coefficients =  1,2, . . . , L }  within the range of those for spikes. It is possible during

the course of the EEG signal, for a false transient detection to trigger the spike generating 
filter G (z ) (see section 7.4.4), which is adapted to track the input signal. Hence, even if the 
detection is finally rejected by the spike detector, with no restrictions put on the range of 

the coefficients of G (z ), they may drift away from those for spikes in an attempt to model 
the behaviour of the ‘false spike’ . This is hazardous for the detection procedure and the 

detection of future spikes, since not only the signal under consideration may cause a false 
spike detection, but subsequent spikes may be missed, because G(z) would not correspond 
to an epileptic spike any more. To avoid this problem, the coefficients of the system must be 
confined to a small region around their values for the typical spike, estimated during off-line 

adaptation (see previous section).

To develop a procedure for the restriction of the range for the coefficients it is convenient 

to write them in vector form. Thus, g, =  (<7tl . . .  giL )T, is the best spiking filter corre-

sponding to the ith spike. The collection of g i for all spikes i =  1 ,2 ,. . . , p  has been used 

to compute the average, presumed to correspond to the most typical spike, g* (equation 
(8.57)), as they appear in a rather tight cluster (Figure 8.8). It is anticipated that all spikes 
correspond to coefficient vectors within the extent of the cluster and that during adaptation 
these should not leave this region if a detected spike is genuine. The coefficient space, cor-
responding to spikes is a connected region in R*'. As such it is defined by a boundary ip. 

The adaptive process starts with the centroid of the region, g(0) =  g*, which is inside xp and 

subsequent values of g (k) should be maintained inside the boundary. Since the algorithm, 

operates on the unconstrained range, R^, restrictions must be performed on the coefficient 

vector after each adaptive procedure.

Restricting a priori the adaptation rate, p depending on the location of the current g (k)
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is not sufficient, since it will apply on the next recursion, while g (k) may already be outside 
xp. Again, substituting g(k) if outside xp by the one found during the previous iteration, 

g(k  — 1), appeared to affect the progress of the adaptive algorithm, as well as its output. No 
theoretical explanation was found for this phenomenon, which was attributed to the arbitrary 
and discontinuous deviation from the expected course of the filter coefficients. This was a 
general observation for restriction functions that had abrupt discontinuities.

A method for the restriction of the range based only on the location of a weight vector 
was developed, according to which unconstrained adaptation was performed initially so that 

the weight vector, g (k), may be outside xp. An onto mapping g '(k) =  4>(g(k)) from to 
the interior of xp was then applied, ensuring that all coefficient vectors were mapped back 
into the spike region. Finding such a function for an arbitrary boundary xp is not easy. 
Approximating it with a (hyper)sphere, centered at g* is one of the simplest shapes. The 

radius of the (hyper)sphere, p was taken either as

1. the distance from the centre to the furthermost spike vector in the cluster

2. a multiple of the average distance, which is related to the covariance matrix of the set 
of vectors.

Both criteria assume equal spread of vectors in all directions around the centroid and worked 

well in practice, producing similar results, but the second is more easily adapted if the spread 
is not equal in all directions. In this case the covariance matrix may be computed and 

define a hyperellipse boundary. For the cluster considered the spherical assumption was not 
unreasonable. Whichever the criterion, the boundary was defined by xp =  {g; (g — g*)T(g — 
g*) =  p2}. A simple range mapping is one that maintains all points in the interior of xp to 
their current location, while compressing the whole of the exterior of xp on its boundary. This 

maintains the direction of the difference vector Ag =  g — g*, while modifying its magnitude, 

R =  ||Ag||. The direction of the vector is given by the normalized vector

- =  A S _  ^ 6  
11 l|Ag|| R

(8.63)

Hence A g  =  Rn and since (p affects only R, it may be expressed in terms of a mapping of a 
single variable, r =  /( /? ) ,  which is easier to handle. The vector mapping, <p is then given by:

g ' =  A g ' +  g* =  f {R )  n +  g* (8.64)

where f (R )  is an onto function from [0, oo) to [0,p), which should map the centre of the 
sphere to itself ( /(0 )  =  0). Moreover, it should map vectors close to the centroid to or near
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themselves, so that the distortion of typical spike vectors is kept small. This is achieved if 
the derivative / '(0 )  =  1. A simple mapping having these properties is the following:

M R )  =
R R <  p

p R> p
(8.65)

but the lack of smoothness for R =  p seemed to affect the behaviour of the adaptation once 

a vector outside ip was encountered. Several smoother functions, conforming to the above 
criteria, were used successfully:

M R ) =  —  Arctan( —  R)

M R ) =  p (  1 - e ' * )

M R )
2o

Pl +  ( g )2

M R )
P2

p R +  p
pfi+i

M R )
P ( * + p ) n

(8.66)

(8.67)

(8.68)

(8.69)

(8.70)

the mappings fi(R)  to fe(R) are illustrated in Figure 8.9. Although they all perform the 
same task, each function has different properties. f-j, and / 3, for instance, behave almost 
linearly near the origin but compress the space for increasing R towards p. The simpler 
polynomial fractions, / 4, / 5 and fe, are cheaper to compute than / 2 and / 3. f\ folds vectors 
at large distances back on the centroid, hence for large deviations, when the vector is unlikely 
to correspond to a spike, it is returned to those for typical spikes. / 5 behaves like / 2 and / 3, 

whereas its generalization, fe, has low second derivative at the origin and hence its linear 

approximation extends to a larger domain than fe.

System  stability  issues The question whether range limiting affects the stability of the 

filter was raised. Obviously, if the whole of the range defined by ip corresponds to stable sys-

tems, this issue need not be considered further. Spikes and other transients are characterized 

by a deterioration in their amplitude in the time following their onset. They are therefore 

described by the impulse response of stable systems. If these are second order the poles can 

be readily computed. In this case, it was found that the poles of the system lie well inside 
the unit circle in z , for the whole of the coefficient range ip. Therefore, range limiting would 

guarantee stability as well, but the spherical parametrization of ip, being approximate, might 
include unstable coefficient vectors, as will be demonstrated by a simple example.

Let a transient be approximated by a second-order system with two complex conjugate 

poles, p and p*, located away from the real axis. Stable poles have modulus less than unity
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In all cases p =  0.05

Figure 8.9: An assortment of range-limiting mappings

and for complex conjugate poles the square of the modulus is equal to their product, pp*, 

that is the coefficient g2 in G(z). For complex poles, stability is therefore achieved if gi <  1 
If the actual cluster of individual coefficient vectors is elliptic with a major axis rj in the 
direction of g\ and minor axis r2 in the direction of g2, the radius of the approximating 
spherical (circular) cluster would have a value r2 < p <  rx. If the centre of the cluster is 

such that g-2 >  1 — p, although all vectors in the actual cluster are stable, the spherical 
approximation will contain unstable vectors.

Although the number of unstable vectors is expected to be small, testing the stability of 

the coefficient vector and eliminating those that are unstable is very important and can be 

achieved by a range-limiting mapping, similar to the one already described. The simplest 

method to guarantee that all coefficient vectors correspond to stable systems is a modification 
of the parametric form of t/>, so that the entire sphere around the typical central vector g* 
is contained in the stable region. Reducing the radius p of xp so that after range-limiting all 
the resulting vectors are stable might cause vectors belonging to the cluster to be missed. A 
better alternative is to check stability on-line and to map unstable coefficient vectors to stable 

ones independently from range limiting. The range of stability for a second-order system is 
the well-known triangle[151, p. 207][15, p. 171]. Higher order systems cannot be factored 
in general and hence a similar range cannot be determined in coefficient space. Numerical 

methods may be employed for the estimation of the poles of the system[85, pp. 497-551], 
but these are generally iterative procedures (e.g. Newton’s method) and are suitable for 

off-line operation.

Fortunately, a simpler (and faster) test for stability of a system without computing its
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Figure 8.10: Correspondence between g and 7 for L =  2

poles is available. This is the Schiir-Cohn stability tes£[151, pp. 203-206]. According to the 
test, the denominator polynomial G~1(z ) =  F ifz ) =  1 +  <7. z~x is decomposed into a
set of values { 7P\p =  1, 2, . . . ,L } ,  called reflection coefficients with the aid of the reverse 
polynomial, B l {z ) =  z~L +  9i z'~L. The procedure recursively computes one reflection 
coefficient at every recursion as well as a polynomial of reduced order. The basic steps of 

the algorithm are:

• Start with FL(z ) =  1 +  Yj\=\ 9i,L z~l

• For orders p =  L, L — 1 , . . . ,  1 do the following:

-  compute the reverse polynomial, Bp(z)

-  set 7P =  gPiP

-  Compute Fp_x(z) =  jè^ [B P{z) -  7P Bp(z )]

The process fails if any of the |7P| becomes equal to unity (in which case the system is 
unstable anyway). This unlikely problem has been overcome by changing the appropriate 

coefficient by a small amount Æ7 and proceeding with the algorithm. The Schiir-Cohn test 
consists of inspecting the magnitude of the reflection coefficients, since unstable systems have 
some of them greater than or equal to unity (|7P| >  1). There is a correspondence between 
the stability regions in {# ,} and { 7,} , at least for L =  2, where they are both known. This 

is demonstrated in Figure 8.10.
Because the procedure may be reversed equally easily, it is possible to compute the 

coefficient vector g from the reflection coefficients 7 =  (71, 72, •• • ,7 l )T • This is significant, 
as it provides a simple method to stabilize an unstable system, by computing the reflection
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coefficients, applying a range-limiting mapping to bring those outside the range ( — 1, 1) back 
to the stable range and then computing the modified (stable) coefficient vector by the inverse 

mapping.
Range-limiting here could be one of the functions fi  to / 6, (see previous section) with a 

one-dimensional version of equation 8.64 and a radius p =  1.
It should be noted that it is possible to implement both the adaptive procedure as well 

as the application of the filter directly using the reflection coefficients, without the use of g 

at all. This, however, will be discussed separately, as it is a case of an adaptive lattice filter 
(see section 9.3).

Finally, an advantage of the on-line adaptive system to implement G (z ) will be empha-

sized. By choosing a low-order filer (e.g. L =  2) it was possible to approximate epileptic 
spikes quite accurately, despite the simplicity of the model. This may only be attributed to 

one factor. Spikes may be approximated by a linear, but time varying generating process. 
Indeed, a spike resembles the output of a second-order system, whose poles are initially at 
a specific location, but gradually drift towards a lower frequency (angle in the 2-domain). 
These variations could only be followed by a time-varying model, which was implemented 
as an adaptive system. In conclusion, the introduction of the constrained adaptation of 

the coefficients on-line should not be regarded as an additional feature, but as an essential 

element in the successful implementation of spike modelling.

8.5 Other elements of the analysis method

Finally, the decision making elements of the system will be considered. These are shown in 

Figure 7.5 and their function described in section 7.4.4.

8.5.1 The Transient detectors

The role of the two transient detectors is to detect short-lived changes in the (random, 

uncorrelated) background activity generating sequence, u(n) in the presence of the filtered 
noise sequence, vp{n) (section 7.4.1). These are caused by spikes and other transients, filtered 

by H -' i z ) ,  the inverse background activity system and give rise to the components sp(n) 

and tp(n), which have certain properties that make their detection possible:

• they have amplitudes that are generally larger than the signal component u(n) -f vp(n)

• they are the output of all-pole stable systems, G(z) or F,(z), when excited by impulses

• H~l (z ) is the inverse of a stable all-pole system
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The consequence of the second is that the amplitude of these transient signal gradually comes 
to a steady-state of zero, often fairly quickly after the time of their onset. The third suggests 

that H~1(z) is minimum phase, as its zeros lie inside the unit circle in z. The application 
of this on a transient is equivalent to the impulse excitation of a system H~1(z)G (z ), for 
example. This is a stable, minimum phase system. The minimum phase property means 
that most of the energy of its output will be concentrated in the time interval immediately 

after the excitation of the system[l51, pp. 434-437].

Of course both these properties are secondary compared to the amplitude difference 
between transients and u(n) +  up(n) (sections 7.4.3 and 7.4.4). The transient detector is 

a system that takes the output of this inverse filter r(n) =  u(n) +  up(n) +  sp(n) +  fp(n), 
and generates a binary indication, zt(n) which is true for the duration of the transient and 
false  otherwise. The term ‘duration’ here refers to the few consecutive samples near the 
time of onset of the transient. Assuming that the on-going activity is mainly due to u(n), 

which has been assumed to be a white sequence with zero mean and variance cr„u, and 
that the transients occur infrequently, they can be detected as samples with atypically large 
amplitudes, not belonging to the mentioned distribution. The parameters necessary for this 

detector are cr£u and a threshold value for the comparison, t0. a^u is not known, but may 
be computed easily using either a recursive method (equation (8.52)) or the more direct 
approach of equation (8.51). For this detector, the second was preferred, because it was 
unbiased and the maintenance of a window of the r(n) sequence was necessary for other 
parts of the detector, anyway. A small number of samples (about 3, but assume 2Q +  1 in 

general) in the middle of the window were excluded from the computation of the variance. 
This is where transients are detected. The modified equation for computing the variance is

, -Q M

* « »  =  2(M  -  Q) -  1 (¿ / (n ~  +  g r(n ~  i)2) (8'71)

=  ¿ L i " “ 1)

+  m  ‘  j -j M n +  M f  -  r(n +  Q f  +  r(n -  Q f  -  r(n -  M f ]  (8.72)

Notice that the ‘ current sample’ , r(n) is situated in the middle of the window and the 

above operation is non-causal. This convention has been adopted because spike detection 
requires the generation and subtraction of spikes from the signal, which can only occur after 

the transient has been detected, hence on the nth sample. The use of ‘future samples’ 
in the computation of the variance has another significance. Permanent changes in the 
power of r(n) would be associated with an increase in the amplitudes after a certain sample. 

These can only be distinguished from transients by looking ahead in time. If the change is
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permanent this will be reflected in most future samples, whereas for transients this is local, 
characterizing only a few consecutive samples (because of the minimum phase property).

On-line estimation to incorporate power fluctuations in u(n) is expected to increase the 

reliability of the detector. Moreover, Vp(n) may now be taken into account, because the 

estimation is based on r(n), assuming that the infrequent transients have little effect on the 
variance (power) of the signal. Provided that the window taken is large enough, these will 

have a small effect anyway which was verified by monitoring cruu(n).

Once the variance became available, the middle of the window, r(n) was tested for atyp- 

ically large values. Because the distribution of u(n) is uniform in the range (—a, a), and its 

variance cr2u =  y[60, pp. 194-195]. This was estimated by <r2u(n) and the bounding value, 

a, was evaluated on-line from the variance as being equal to Then the normalized
variable t =  . would be less than a threshold t0 =  \/3 for samples belonging to the<7 uu Vri/
distribution of u(n). On-line, to avoid the square root operation on <r2u, t2 was computed 
and tested:

t2

zt{n)

r(n)2

{true t2 > 
false t2 <  tl

(8.73)

where zt(n) is the (binary) output of the transient detector. Alternatively (see Chapters 10 
and 11), r(n)2 may be compared to ¿oCr2u(n). Also, to allow for small timing discrepancies 
between the spike and the transient detection, instead of carrying the test on a single sample 
r(n )2, this was performed on the sum of the central 2Q + 1 values excluded from the variance 

calculation. Therefore in the presence of a transient, its detection persists for a few samples 
in time to allow the spike initiator (section 8.5.2) to form the spike generating impulse at 
the correct time.

During the development of the system, a safety margin of factor 2 was introduced on 
the threshold (tl «  6) and zt was modified to a three-level signal to show whether the 
transient was positive or negative (subdividing true into true+ and true-. This distinction 
has a bearing on the correct detection of some transients (like spikes), which always have 
the same polarity.

In the constructed system there are two transient detectors. One acting on r(n) and the 
other on the output of the (duplicate) system H~1(z), r'(n), whose input is a (presumably) 
spike-free signal e'(n) (see Figure 7.5). The function of both is identical apart from their 
inputs and variance estimates.
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8.5.2 The spike initiator

This has two inputs, the binary output of the first transient detector, zt(n), and the output 

of the inverse spike filter, y(n) =  6g(n) +  d(n) -f fg (n ) +  vq(n) (section 7.4.2 and Figure 7.5). 
Its purpose is to extract the spike-generating (impulse) sequence, d(n), from y(n) for the 
excitation of the spike filter. As explained in section 7.4.4, this cannot be done reliably on 

the basis of y(n) only. Thus, when zt =  true (actually true+), the output d{n) of the spike 
initiator should be an estimate of d(n) (zero otherwise).

Because y(n) cannot be decomposed, the best estimate is the instantaneous value of its 

input, d(n) =  y(n), if zt(n) =  true-(-. Although satisfactory in most cases, occasionally 

the generated spikes had a lower amplitude than they should. This is believed to be due 
to the fixed-gain AR process that approximates the spike, which cannot increase its energy 
level to compensate an underestimated input sequence. Hence the peaks of these spike were 
sometimes poorly approximated, especially when 5g(n) +  v q ( t i )  were large. On the other 

hand over-estimation of d(n) did not have a noticeable effect on the generated spikes, perhaps 
because the adaptive spike generator can adapt this by increasing its damping factor.

Over-estimation required the addition of a positive quantity Ay to make d(n) =  y(n )+A y. 
A proportion of the RMS value, cryy(n) of the signal components that are responsible for the 

error 6g(n) +  VQ(n) was used as the correction factor, as explained in section 7.4.3:

d(n) =  y(n) +  t0dyy(n) (8-74)

The estimation of the variance dyy{n) followed the same formula as the transient detectors 

(see equation (8.72) and explanation in the previous section). Here, the square root on 
the variance could not be avoided, since an amplitude measure is required, but this is only 

necessary on few occasions.
Finally it would be an omission not to stress that d(n) may not resemble an impulse, 

since it may have a duration of more than one samples (as long as zt(n) =  true+). This, 
however did not affect the overall performance of the system. It is appears that some form 
of compensation is provided by the adaptive nature of G(z).

8.5.3 The spike detector

By comparison to the transient detector and the spike initiator, the spike detector has a 
very simple structure. It has two inputs, one from each of the transient detectors Zt(n) and 
z't(n). The first, when positive indicates the presence of a transient in the input EEG signal, 
e(n). The second indicates the presence of a transient in the signal with a spike subtracted, 
e'(n). Genuine spikes cause a positive indication in the first detector, but no indication in
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the second (section 7.4.4). Other conditions are characteristic of the absence of a a transient 
(both detectors are false), or the absence of a non-spike transient (both are true). It may 

also be possible in practice for the second detector to be true when the first is false. The 
task of the spike detector is to isolate the first of these cases in the central sample (as both its 
inputs are windowed) and produce an output zs(n) that shows whether a spike was present 

or absent:

zs(n) =
spike zt =  true +  and z[ =  false

non — spike otherwise
(8.75)

This basic operation may be amended by the addition of secondary known properties of 
epileptic spikes, such as their frequency of occurrence (e.g. at most 3 per second, during a 
seizure of petit mal, if this type of epilepsy is only considered), which may be useful for the 
identification of false spike detections at the beginning of a muscle artifact, which sometimes 

occurs.

8.6 Results

The system described above was tested with simulated as well as real EEG data. Simulated 
records were initially used for testing the functionality of individual elements of the system 
and to observe the behaviour of the complete spike detector when the input is ‘ideal’ . Real 
data were used to verify that it functioned well in practice.

8.6.1 Synthetic data

Despite the detailed analysis of many aspects of the proposed analysis system, it is not 

possible to predict its precise behaviour. There was some concern, especially regarding the 
convergence of the adaptive algorithm and the selection of a suitable order for the background 
activity model, H(z). Then the behaviour of the constrained adaptive HR spike modelling 

system had to be assessed with spikes conforming to the model, prior to its application 
on the imperfectly modelled real epileptic transients. It was actually at this stage when 
it was observed that the simple range-limiting method, initially suggested in section 8.4.4, 
had undesirable side-effects and was subsequently substituted with a smooth non-linear 

mappings.
A synthetic EEG record conforming to the model suggested in section 7.3 was generated. 

The EEG sequence, e(n), consisted of the superposition of four elementary signals, as sug-
gested by the synthesis model: the background activity signal, 6(n), the spike signal, s(n), 

transients, t(n), and noise, v(n). These signals were generated independently, according to
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their assumed individual processes. The details of this procedure may be found in Appendix 

D.

The choice of the sampling rate may appear low (160 s-1) but there are two reasons 
for avoiding a high sampling rate with the proposed method. The first is related to the 
precision of the coefficients of the filter when data are oversampled several times. Most of 

the poles of H( z ) would then be clustered together near the real axis and the coefficients, 

especially those for high powers of z_1, which involve products of the poles would require 
a large precision to represent accurately. On an on-line portable system, precision is often 
limited by the capabilities of the processor. To prevent problems, the poles were dispersed 
over a large sector of the unit disk in the z-domain, which is maximized when sampling 

at twice the Nyquist frequency of the signal (70-80 Hz  normally). Higher sampling rates 
would limit the time available between samples, which should be made sufficient for carrying 

out one cycle of the whole detection procedure described. Even if this was achieved, the 

possibility to process more than one channel at one time should be considered as a possible 
future prospect. Of course a higher sampling rate would mean that changes in the signal 
behaviour occur over a longer span of samples, hence the adaptive procedure could follow 
changes more quickly in terms of real-time. In this case, the system transfer function may 

require a higher order and there is a risk of the filter representing non-EEG signals in the 
upper frequency range (see section 6.5.9 and 6.5.10). These components may be filtered 
out, but then there would be no benefit in oversampling apart from increasing the speed of 
adaptation. This is not a strong argument, however, because the data at the nth sampling 

instant may be reused, carrying out K  adaptation steps for every sampling step and thus 
reducing the time constant of the adaptive process and speeding up the LMS algorithm, as 

Bellanger[14, pp. 119-121] suggested.

Some waveforms to demonstrate the operation of the spike detection system are shown 
in Figure 8.11. The first waveform depicts the input simulated EEG signal. This is then 
processed through the adaptive background activity analysis (inverse) filter (sections 7.4.1, 

7.4.4 and 8.4.3) to produce the deconvolved signal r(n). The noise-like appearance of this 
signal and the superposition of the transients are clearly indicated in Figure 8.11. In the 
same Figure one may observe y(n), the output of the spike analysis system, G~l (z). Here, 
spikes resemble impulses, but they are embedded in other high-amplitude signals (sections

7.4.2, 7.4.4 and 8.4.4). The (three-level) output (section 8.5.1) of the first transient detector, 
z*(n), clearly marks the transients present, whereas the spike initiator impulse output (d(n)) 

and the corresponding spike, s(n) signal out of the generating system G (z ) (section 7.4.4) 
is an accurate representation of the spike, when one had occurred. This is clear after the



8.6. Results 237

e(n)
(simulated)

r(n )

1/(») 

d (n )

s (n )

r '(n )

e'(n)

*t(«)

* « (n )

Figure 8.11: Waveforms showing various stages of the detection procedure for an artificial 

EEG record

subtraction of s(n) from e(n), producing e'(n), which is spike-free. Both components of e(n), 

s(n) and e'(n) are also shown. The absence of the spike is evident in the error, r'(n), after 
the application of the background activity analysis filter, H~1(z) on e'(n) is also shown. 
The final transient and spike detections, zt(n), z't(n) and za, (section 8.5) correctly mark the 

spikes present.

This waveform also shows that transients, initially taken as spikes are rejected because 
they are still present after the removal of the (presumed) spike in the error signal, after 

passing e'(n) through H~1(z).

Evidently, the method behaved well with artificial data, as demonstrated by the wave-

forms presented. It is unnecessary to say that all twenty spikes present in the data record
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shown in the example above were detected successfully and there were no false alarms. This 

record corresponded to a signal-to-noise ratio of 10:1 (/c =  10).
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Figure 8.12: Artificial EEG data showing the deterioration of the signal with increasing noise 

levels

As noise levels increased further to a fifth, a half and then to the same power level as 

the signal, the structure of the signal input gradually became unrecognized (see Figure 8.12) 

and consequently, the performance of the spike detection system gradually deteriorated. The 
results for the same record for the four values of k  tested are shown in Table 8.1.

Clearly, the increase of the noise level in the EEG affected the performance of the spike 
detector considerably. This has not been unexpected. The gradual reduction in the number 

of detected spikes, as the noise level in the input increased approaching that of the main 

signal (the background activity) is the result of two factors. The first is the effect of the 
increasing noise level at the output, r(n), of the inverse background activity model, / / _1(z). 
In the absence of noise, this output contains a random, uncorrelated signal, u(n), from

1 "1" 1 ' " I
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Simulated EEG record* El E2 E3 E4

Noise power ratio (£) 0.1 0.2 0.5 1.0

Spike Correct 20 16 7 2
Detections Missed 0 4 13 18

False 0 1 3 5

*: All records had the same length (10000 samples) and number of spikes (20)

Table 8.1: Results for Artificial Data Records

the background activity, whose power is a^u. On this signal, there are spikes and other 
transients (distorted by H~l (z)) which are clearly distinguished from b{n) because their 
squared amplitudes for a brief duration are well above cr£u (see section 7.4.1). Therefore 
they can be distinguished by thresholding at a level t0 above the level of auu. When noise is 

present, this causes an excess error signal in r(n), which cannot be isolated from u(n) and 

since a\u is measured on-line what is actually computed is the variance of both b(n) and the 
(filtered) noise signal, up(n). Since these signals are independent, their variances are additive 
and because the noise power was a fraction, k  of a*u, in r(n) it may still be regarded as 
proportional, tjcr̂ u. Hence the effective variance will be (1 +  T])â u. For a fixed value of to, the 

threshold level for spike amplitudes would increase by a factor y/\ +  r/. Hence the ‘gap’ that 
separated spike amplitudes from b(n) is narrowed, as it is defined by the amplitude threshold 
function. Therefore some spikes with low-level amplitudes would not pass the threshold any 
more and are missed by the transient detector. The number of spikes missed increased as 

the noise level increased, which raised the threshold even further. When  ̂ reached unity, 

the signal and the noise had the same power and the amplitude threshold increased by a 
factor of \/2, which is almost one and a half times the original and can inhibit some spike 
detections, nonetheless, the results for even for high levels of noise were much better than 

anticipated.

The presence of extraneous signals in the input of the adaptive predictor caused a de-

viation from the optimal weights for H, and affected the convergence characteristics of the 
adaptive algorithm. h(n) The first is clearly demonstrated by considering the theoretical 
solution, expressed in the Wiener-Hopf equation (8.9). This has the second-order statistics 
(correlation functions) of the input and the desired signal. In linear prediction, considered 

here, these are identical, with the input being delayed by one sample (section 8.1.1). The 

optimal linear predictor weight vector is given by equation (8.15). In the absence of noise, 

the input x(n ) =  b(n) and the optimal coefficient vector is a* =  r^. When the input
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is x(n) =  b(n) +  v(n), where v(n) is random, uncorrelated noise, the above equation will 
contain the auto-correlation of x(n), instead of b(n). Because b(n) and v(n) are statistically 

independent, their correlations may be superimposed (added). The auto-correlation function 
of v(n) is zero everywhere, apart from zero lag, where it is equal to its power, r„„(0) =  cr£v. 
Hence Rxx =  Rbb -(- <x̂ ,7 and rxx =  rbb +  [a v̂0T]T. Evidently the optimal coefficient vector 

obtained through these equations is not the same as the one computed in the noise-free case. 

The difference becomes more profound with increasing noise power.

The extraneous noise also affects the adaptive implementation, since it is reflected in the 

estimated gradient vector (see equation 8.43). Noise in the input affects the estimation of 

the gradient, which also becomes noisy and may not point accurately in the correct direction 
to proceed. Hence, adaptation is slowed down. Reduction in the speed of the algorithm is 

also observed because of the on-line estimation of the adaptation rate, p, as explained in 
section 8.4.3 (equation (8.54)). Since p was made inversely proportional to the power of the 
input signal, the presence of noise directly increases the input signal power and thus slows 

adaptation down, since the time constant is related to p.

The inverse spike filter output, y(n) is affected to a lesser extent. The reason for these 
effects is the overestimation of the spike amplitude by the spike initiator (section 8.5.2), 

whose operation is based on the variance of y(n) to compute how much a spike amplitude 
excitation function should be. The presence of noise makes its power higher (the sum of 
variances of the background activity and the noise, after being filtered by G_1(z)) which 

increases the uncertainly of the true amplitude of the spike excitation function. As a result, 
overestimation is now more profound and for some spikes this could not be compensated by 
the on-line adaptive behaviour of the subsequent spike generator, G(z). This made some 

spike estimates larger than they should be, hence causing negative transients when subtracted 

from the EEG, which were observed by the spike detector (section 8.5.3) and rejected as false 
detections.

The combined effect of all sources of error made the detection of many spikes impossible 
when the level of noise was large. In real life, however, noise levels are lower than those that 

caused the deterioration of the system behaviour. Besides, it is expected that some noise- 

reduction method should applied as part of the pre-processing stage before the signals are 

submitted for analysis to either the system or a human analyst. It is important to note that 

in conditions where the system failed, human interpretation could not be applied reliably, 

as visual inspection is seriously impaired by the presence of large noise amplitudes.
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8.6.2 Testing with real EEG signals

After assessing the reliability of the analysis system with artificial signals conforming to the 
assumed synthesis model, tests were carried out using real EEG records. As stated before, 
the models used were only approximate, since the processes of real EEG signal generation 
may be correlated and possibly non-linear.

The response of the system was observed for some EEG data records. Four records were 
sampled and stored in computer files for the purpose of testing. These are the same as those 
used to test the earlier methods presented in Chapter 6. The sampling rate was 160 s-1 for 

all four records. The first record contained many spikes but was clear of artifacts and other 

extracerebral signals. The next two contained both spikes and muscle artifacts, whereas the 
last contained only artifacts. Unfortunately more extensive tests could not be carried out 
due to the unavailability of other data records at the time of completion of this work.

All fifty-two spikes, as identified by visual analysis, in the first record were detected 
correctly by the system. There were two false detections which were caused by transients 
that might have been identified as spikes if their amplitude were higher. These were rejected 

during the manual assessment of the record because they were not clearly distinguished 
from the background activity. This characterization is however subjective and hence it was 
decided not to increase the thresholds for the detection of transients to eliminate them, as 

it is better to detect these disputed spike occurrences for human experts to analyse later.

The next two records contained 8 and 10 spikes respectively as well as some artifacts. 
Spikes present were detected but there were some false detections (2 and 6) respectively 

caused by spiky muscle artifacts whose amplitudes and shape resembled spikes. These were 

located near the beginning of the artifact, which appears as a spike burst.

The same phenomenon was observed in the last record, which technically contained only 
artifacts with no epileptic spikes. In this record there were 25 false detections, observed 
primarily near the onset of muscle artifact bursts, as before. Artifact bursts seem to be 
approximated by the background activity prediction error filter, as they normally have longer 
durations than single spikes. This is evident by the changes of the coefficient vector for H(z) 
observed during the artifact and the noisy appearance of the prediction error, indicating that 
the structure of the signal is captured by H(z). The few initial detections at every artifact 

burst have been associated with the adaptive method. Because coefficients are updated 

in small steps, they cannot change instantaneously with the behaviour of the input signal. 
This did not seem to be a problem with transitions between segments of the background 
activity (section 8.4.3), because they were gradual and, to a large extent, could be followed 
by the adaptive process. On the contrary, muscle artifact bursts start spontaneously and
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bear no relation to the EEG activity currently in progress, which they completely swamp. 
The sudden initial transition cannot be captured by H {z ) (which changes more slowly) and 

may give some initial transients in r(n), which are found by the transient detector and lead 
to false spike detections. The double inverse modelling mechanism cannot detect the error, 
because some artifacts have spectral characteristics similar to epileptic spikes, from which 

they may be distinguished only by considering context information.
Testing with real EEG records will be covered more extensively in the next Chapter, 

where some alternative adaptive algorithms are considered.



Chapter 9

Alternative system realizations

The implementation of H~l {z ) as an adaptive LMS system (section 8.4.3) reflected the 
time-varying nature of the on-going EEG signal. Although the system behaved well with 

simulated signals, there was some concern about its response to real EEG data, especially 

those containing bursts of spiky muscle artifacts. When the system misinterpreted a number 
of artifacts and other large amplitude signals as epileptic spikes, this was attributed to the 
slow dynamic response of the LMS algorithm to changes in the signal behaviour. The rate of 
convergence of this algorithm, is inherently linked to the differences in the spectral properties 
of the signal before and during the artifact burst. Hence, if was ‘close’ to the one
required for the artifact, then the number of false detections was small, otherwise a number 
of spikes were detected until the LMS algorithm changed the system to model the burst 
sufficiently.

The maintenance of the minimum phase property of the linear predictor H~x(z) (hence 
the stability of H(z))  is also crucial. This could be investigated indirectly, using the Schiir- 

Cohn stability test, but other realizations offer simpler methods as well as other desirable 

properties.

To address these issues and to select a configuration which converged fast, to track non- 
stationarities in the EEG signal whilst providing the means to control certain properties 

of the adaptive system, possibly including the location of its poles or zeros, other adaptive 
methods were considered. Some of these use alternative means to search the performance 
surface, not based on the LMS algorithm, and have superior properties. Others use alterna-

tive realizations of the prediction error systems. By restructuring the transfer function it is 

possible to change the shape of the performance surface so that the slow adaptation modes 
of the LMS are eliminated.

In this Chapter three such realizations will be described. The first is an alternative

243
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adaptive algorithm, called the RLS. The other two are variants of the LMS method for 

the cascade and lattice realizations of the transfer function H~l (z). Although these were 

initially considered for the background activity prediction-error filter, the possible realization 
of G(z) was also considered. On some occasions, variants of the ‘standard’ algorithms were 
developed for the purpose of EEG analysis. Various system configurations will be presented 
and their results discussed.

9.1 The Recursive Least Squares (RLS) algorithm

This method utilizes a more sophisticated gradient search method than the one that forms 

the basis of the LMS algorithm. Thus, instead of progressing in the direction of the steepest 

descent, the point of zero gradient is sought by following Newton’s method. In the one-
dimensional case this is developed by considering the following linear approximation of the 
gradient of the function whose zero is sought, at the point where w =  w(k — 1):

J2C(,n(l. _  1 \\ d4(w(k-l)) _  d((w(k))a q(w(k l j )  _  dw(k-l)_____ dw(k) /g
dw(k — l )2 w(k — 1) — w(k)

Solving this for w(k) and assuming that ~  0, results in the following recursive relation
for updating the weight which corresponds to the point of zero gradient[202, pp. 52-54]:

dj(w(k-1))
w(k) =  w(k — i) — ^ ( f c - i rr (9-2)

dw(k—l)2

Since £(w) is quadratic in w, its second derivative is a constant and Newton’s method con-

verges to the correct solution in a single iteration, rather than in small steps, like the steepest 
descent method (section 8.4.1). This property was maintained by the multi-dimensional ex-

tension of Newton’s method. By substituting rxy =  Rxxw* (from the Wiener-Hopf equation 

(8.9)) the following expression is obtained:

V£(w ) =  2Rxxv/ — 2Rxxv/* (9.3)

Solving for w* and converting it into a recursive equation (by letting w =  w (k — 1) and 

w* =  w (k)) the vector form of Newton’s method is revealed[202, pp. 55-56]:

w(*) = w(* -  1) -  i /C V fM * )]  (9.4)

Widrow explained that in practice, because of computational errors in R~£ it is required 
to stabilize the method by introducing a dimensionless convergence rate, p, instead of the
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factor | in the above relation. The result is a ‘generalized’ Newton’s algorithm, which is 

stable for 0 <  n <  1, but critically damped for 0 < g <  which is the useful range. Its 
behaviour may be studied by translating and rotating the weight space using the optimal 
weight vector as the origin and the principal (eigenvector) basis functions as the directions of 

the coordinate axes. It can then be shown that this method of gradient search is equivalent 

to a (non-recursive) geometric series with ratio (1 — 2fi). This is constant for all modes 

of the performance surface and, hence, it is unaffected by the eigenvalue spread, the main 
reason for slow convergence of the LMS algorithm (see section 8.4.2). Expressions for the 
time constant, r, and the misadjustment, M, may also be derived using the same procedure 
and arguments as with the steepest descent method[202, pp. 147-154]:

T Ri

Mtot «

4/x
{L ~b l)^av / 1 \ . p

167V.Pt  V “"

(9.5)

(9.6)

Evidently, the time constant is smaller than for the method of the steepest descent, since it is 

independent of the eigenvalues of Rxx. Newton’s method also has a lower misadjustment[202, 
pp. 89-90]. The better convergence properties of Newton’s method are associated with the 
introduction of the inverse of the autocorrelation matrix of the input signal, which normalizes 
the convergence along every mode and makes the direction of convergence a straight line from 

the initial guess to the optimal w*, rather than the direction of the gradient.

The recursion here is more complicated than that of the steepest descent, because it 
contains two elements that are unknown and need to be estimated, the gradient vector, 
V£[w(A;)] and the inverse of the input auto-correlation matrix, R~l.

A method to estimate the gradient has been suggested by Widrow and Hoff, who sub-

stituted the stochastic function £[w(A;)] with its instantaneous value, e (w )2, leading to the 
approximation V[w(A;)] ~  —2ex(fc), as in the development of the LMS algorithm (section 
8.4.2).

The estimation of R~l is more complicated. A recursive method starts by defining a time-
updating relation for Rxx. A sample autocorrelation matrix may be computed by utilizing a 
finite-length window of past input values, or by an exponentially weighted window, extending 
infinitely into the past. The latter method is a generalization of the (one-dimensional) update 
relation for the power (equation (8.52)):

R{k) (1 — a) ^  a'x(k  — i)x(k  — i)T
i=0

aR(k — 1) +  (1 — a)x(k)x(k)T (9.7)
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where the index in Rxx(k) has been dropped to simplify the notation. The objective, however, 
is to estimate R~1(k ), which may be computed by matrix inversion, but its recursive com-

putation is both simpler and faster. This procedure, which is similar to the one suggested 
by Widrow and Stearns[202, pp. 146-153] is demonstrated here briefly. Pre-multiplying 

equation (9.7) by /2- 1(fc) and post-multiplying by R~1(k — 1):

È r 'W R W R T ' ik  -  1) =  aR~1(k)R(k — \)R~1(k — 1)

+  ( l - a ) ^ - 1(fc)x(fc)x(A:)T̂ - 1(fc -l)

-  1) =  aR~1(k) +  (1 — a)É ~1(k)x(k)x(k)TÀ~1(k — 1)

post-multiplying through by x(k) and solving for R 1(k)x(k) gives the following important 
step in the development of the algorithm:

R 1(k)x(k)
R 1(k — l)x(fc)

a +  (1 — a )x (k )T R*1 (k — 1 )x(k)
(9.8)

The denominator in the above relation is a scalar. Post-multiplying once more by x(k )TR 1 (k—
A

1) and simplifying the expression by substituting R~x(k — l)x(fc) =  s(fc),

R 1 (k )x (k )x (k )T R 1(k — 1)
R r'jk  -  1 )x {k )x (k)TR~1(k -  1) 
a  +  (1 — a )x (k )TR~1(k — l)x(fc) 

s(k)s(k)T
a  +  (1 — a)x (k )Ts(k)

Finally, noting that from equation (9.7), x (k )x (k )T =  R^  ^ the desired expression for

R~*(k) is found to be as follows:

- i 1R -'ik )  =  -  
«

R~1(k -  1) —
(1 — a)s(k)s(k)'1

a  -f (1 — a )x (k )Ts(k)
(9.9)

The Recursive Least Squares (RLS) algorithm is then defined as a set of initial conditions, 
and a recursive procedure to be followed for every sample. Initially, the ‘forgetting factor’ 

is set to a value a  =  2“ ’̂  to reflect the length of stationarity, ns, of the input signal, as 
suggested by equation (8.53) and the associated explanation. As an initial value for R_1(A:) 

Widrow[202, p. 150] suggested the use of the identity matrix multiplied by a large positive 
constant. A more appropriate value was used in the implementation, since some information 

about the signal is known. It should be remembered that, during the construction of the 
LMS adaptive filter for the background activity (section 8.4.3), an initial power estimate a2 
was necessary for the computation of p. The same estimate was used here. If the correlation 
matrix was diagonal, its diagonal entries would have been equal to the power of the signal. In



9.1. The Recursive Least Squares (RLS) algorithm 247

the recursive case the best estimate of the initial auto-correlation matrix, which is considered 
diagonal is i?(0) =  <r2/.  The inverse of this matrix is simply:

R -\ 0 )  =  ^ I  (9.10)a1

The weight vector was initialized at the origin. The algorithm is then described by the 

following procedure:

1. The process is initialized by setting w(0) =  0, R_1(0) =

2. Compute the first weight vector, w (l)  =  w(0) +  2/z.ft_1£(0)x(0), where e(0) =  y(0)

3. for k — 1 ,2 ,. . .  the following steps are repeated

(a) Evaluate the output of the filter, y(k) =  w (k)Tx(k)

(b) Find the error, e(k) =  y(k) — y(k)

(c) Evaluate s(fc) =  R~1(k — l)x(fc)

(d) Compute 7 =  a +  (1 — a)x (k )Ts(k)

(e) Estimate R~1(k +  1) =  ^ [# - 1(fc) — s(k)s(k)T

(f) Change the weight vector, vf(k +  1) =  w (k) +  2g.R~1 (k)e(0)x(k)

Strictly speaking, this is a hybrid algorithm demonstrated by Widrow and Stearns[202, 
pp. 146-153] and called the Sequential Regression algorithm (SER). The RLS algorithm 
consists of the special case when /z =  that is an implementation of Newton’s method in 
the multi-dimensional case.

This algorithm converged to the initial optimal solution more quickly than the LMS 

algorithm described earlier. The price for the speed of convergence is the complication of 
the algorithm which contains many more storage elements than the LMS and requires matrix 

operations. The latter is perhaps more critical, because the number of multiplications per 
iteration necessary for the implementation of an Lth order filter is 3L2 -|- 2L +  3. This 

is proportional to L2 and as L increases the method may be slowed down and its on-line 
implementation on a small portable microcomputer may become impossible. There is also 
the issue of numerical stability of this algorithm, which is particularly susceptible to round-
off noise and may not converge in some cases, especially when fixed-point arithmetic with a 

short wordlength is used, a fact highlighted by Proakis and Manolakis[151, pp. 888-917] and 

Proakis et al.[152, pp. 351-389]. Solutions to the stability problem have been suggested. A 
brief, but thorough review of some of the most popular may be found in the above references, 
as well as in a text by Orfanidis[140, pp. 473-492]. These include the well-known square
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root algorithm, which decomposes the auto-correlation matrix into the product of a lower 

triangular matrix, El , a diagonal matrix, A  and an upper triangular matrix, Ea =  EJj . 
Thus, R(k) =  EL(k)A(k)EL(k)T, where the factors of the matrix, £/,(&) and A (k) are 
updated on every iteration, instead of R(k). This method is more numerically robust than 
the RLS described earlier, but requires even more computations for its implementation (of 
the order of L3). Fast algorithms exist, which require a number of operations proportional 

to L. There are many variants of the basic algorithm and are based on the lattice filters, 

which recursively decompose the autocorrelation matrix into a succession of lower-order 
matrices (see section 9.3). The resulting update relations are performed on scalar quantities 
and thus avoid matrix operations, while being numerically stable. One such method, the 

Fast a Posteriori Error Sequential Technique (FAEST) developed by Carayannis et al.[33], 
requires only 5L operations per recursion. Ljung and Ljung[lll], however, demonstrated 
theoretically that these algorithms are potentially unstable when an arbitrary numerical 

error is introduced into the algorithm.

9.2 The Cascade LMS method

The LMS and the RLS algorithms used the implicit assumption that the system is imple-
mented in direct form, following a (polynomial) transfer function, like the linear predictors 
H~l (z ) and G~1(z). In the time-domain this corresponds to a weighted sum of delayed input 
samples, a straightforward realization, but not free from problems. One major issue arises 
from the minimum-phase constraint imposed on the predictor to ensure the stability of its 
inverse autoregressive system. A similar problem was encountered during the attempt to 

limit the range of adaptation for G(z) (section 8.4.4). If the zeros of the transfer function 

were known, both these problems would become trivial, since the stability and the range 

of adaptation can be tested. Unfortunately, there is no closed form for the factorization 
(root finding) of a polynomial transfer function of order L >  3. Numerical methods could 
be employed, but these would be too costly to implement on-line, compared to other avail-
able solutions to this problem. These suggested the use of alternative realizations, where 

properties related to the zeros of the transfer function could be tested more easily.

The cascade realization has these properties as well as other advantages over the di-

rect realization. The filter structure, as the name suggests, consists of breaking down the 

polynomial transfer function of order L into a product of lower order polynomials:

H~\z)  =  Pi(z)P2(z) • • • PN(z) =  n  Pi(z)
t=i

(9.11)
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If L first-order sections are used, each will have the form P,(z) =  1 —p'z~x and the zeros of the 
polynomial are equal to the coefficients, p,. These, however, are generally complex values and 
in order to avoid complex arithmetic, second order sections, P\{z) — 1 +  a\z~x +  a2z-2 , have 
been implemented instead. The zeros p\ and p2 of these sections may be easily computed, 
using the well-known formula p\ 2 =  — a\ ±  \\Ja\* — 4a2. The stability of H(z) is trivial to 

test, since stable systems have |p*| < 1 for i =  1 ,2 , . . . ,N  and j  =  1, 2.

In this implementation, the order of the filter must be even. This does not affect the 
generality of the method, since possible overestimation of the order by 1 to make it so 
has only marginal effects on the computational requirements for its implementation. The 

factorization of the polynomial transfer function which is implied by the cascade realization 
has other useful properties, apart from the easy test for stability. First of all, the structure is 

less sensitive to the effects of quantization of the coefficients, than the direct one. This may 
be critical for its implementation on a small, portable microcomputer with finite wordlength 
using fixed-point arithmetic. A brief comparison of the two filter structures may be found 
in [151, pp. 750-752]. The effects in question are related to the sensitivity of the zeros 

associated with small changes in the coefficients like those imposed by quantization. It can 
be shown[15, pp. 193-210] that the error on the location of the zeros increases with their 
clustering and with the order of the system, L. Because the first is indeterminate for an 
adaptive system, reduction of the order is the only means of controlling the sensitivity of 

the zeros. The implementation of a high-order system as a cascade of second order systems 
is a practical interpretation of this observation. Moreover, because each section combines 
two poles, which are generally a complex conjugate pair, their clustering is avoided, unless 

these are close to the real axis in z. Another characteristic of the cascade realization is the 

reduction in the dynamic range of its coefficients compared to the direct realization. For 
an Lth order system, there are L zeros and the coefficient ai  corresponding to z~L in the 

polynomial H~1(z) is the product of all the zeros. Assuming that all poles lie in the annulal 
region a <\z\ <  /3, where 0 < a < (d <  1 the magnitude of o.l  must lie in the range (aL, /3L). 
If the system is a linear predictor, ao =  1 and the poles are dispersed in all quadrants of 
the unit circle then the ratio ^  =  ai characterizes the dynamic range of the coefficients. 
For the range of zeros considered, the lower limit is more significant. Hence for a 10th order 
filter and a =  0.9 the range of coefficients may be from an order around 1 to as low as 

(0.9)10 «  0.349. For a  =  0.6,0.5,0.3 the corresponding limits for ai are 0.006,0.00098 and 
0.000006, which indicate the requirement for long wordlengths for their storage. On the 
contrary, the cascade implementation has a fixed range a 2, independent of L, which gives a 

lower limit of 0.09 for a  =  0.3, a dramatic reduction in the dynamic range of its coefficients,
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Figure 9.1: Adaptive System in Cascade Form

enabling all computations to be carried out in fixed-point arithmetic.

The cascade realization is also intuitively appealing, because the second-order factors 

have a direct spectral interpretation, under some circumstances. If the input consists of a 
superposition of sinusoids, some of the two-zero sections will model a sinusoid each, thus 

providing a spectral parametrization of the signal. Expressing the zeros of each section in 
polar form p \ 2 =  roe^“07, then u 0  is the frequency of the modelled sinusoid, whereas r0, the 
distance from the origin in z, related to the bandwidth, is characteristic of the rate of decay. 
For the background activity, this may assist in its automatic classification into, a, /?, S and 
9 (see section 2.5.1), or even provide a continuous description of the dominant frequency of 

the signal and the way this changes with time.

Adaptive cascade systems have not been very popular and the literature on the sub-

ject is rather limited. A paper by Jackson and Wood[94] provides a good coverage. These 

authors proposed a gradient, LMS-type algorithm which was used with modifications by 
other workers for the implementation of both FIR and HR cascade adaptive filters for spe-

cific applications where on-line factorization of transfer functions was required [53, 163]. A 
recursive-least-squares method was also described by Romano et al.[164].

The algorithm of Jackson and Wood was used for the realization of f / - 1(z). A detailed 
account of the gradient (LMS) algorithm for the cascade realization has also been given 
by Bellanger[14, pp. 123—124][15, pp. 318-319]. The adaptive system, implemented as a 
cascade of second-order sections, is shown in Figure 9.1. The overall transfer function is the 

product of the transfer functions of the N = ^ sections, Pi(z) =  1 +  a\z~ 1 +  a2z~2.
The error of adaptation, e(n) is again the difference between the desired signal, y(n), and 

the output of the system, y(n). The cost function to minimize is the MSE, as before £(•) =
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E[e{n)2]. Following the arguments that led to the development of the LMS algorithm for 

the direct system realization (section 8.4.2), the MSE is approximated by the instantaneous 
value of the squared error, £(•) =  e(n)2 =  [y(n) — y(n)]2. This is minimized when its gradient 
is zero. For a gradient descent algorithm, small adjustments of size proportional to y  are 

made on the coefficients of every stage Pi{z) and direction opposite to that of the gradient, 
on every iteration:

a'k(n) =  ak(n - 1) -  p d-d^ r

=  4 (n ~  1) -  2/z e (n )^ H

= a'k(n ~ 1) + 2̂ £(n) ^ T  (9-12)

It is necessary to compute the partial derivative of the output of the filter with respect to 
all coefficients {a'fc; i =  1, 2 , . . . ,  N k =  1,2}. Because y(n) may be related to the input x(n) 
and the {a j j  by means of convolution in the time-domain, it is easier to use the z-domain 

representation, where multiplications substitute convolutions:

Y(z) =  H - 1(z )X (z)  =  l [ P i(z )X (z )  (9.13)
*=i

N

=  I K 1 +  ai*_1 +  4 z " 2)* (2 )  (9.14)
:=1

Employing the inverse z transform,

y(n) =  j> zn lY(z)dz  (9.15)

where T is a closed anti-clockwise contour in the region of convergence of Y (z) enclosing the 

origin, the required partial derivatives may be expressed as follows:

dy{n)
da[

but H l (z )X (z )  

dy(n)

f r zU 1^ I I (1 +  ai z 1 +Ov* 2)X(z)dzk i—l
r N

® zn 1z k JJ (1 +  a\z 1 -f a'2z 2)X(z)dz  
Jr 1=1,.**
N

n  w w (9.16)
i=l

i
* - i . . -u H -\ z )X {z )

z z
Pk{z)

dzhence
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The last expression may be interpreted as the output, g'(n — fc), of an autoregressive system 
with transfer function p fr  =  , , _] .-rs • The presence of the factor z~k for k =  1,2

indicates that the partial derivatives are given by delaying the output of the corresponding 

system, as shown in Figure 9.1.

This algorithm is significantly more complex than the LMS for the direct system imple-
mentation. It requires L =  2N multiplications to implement the filter and an equal number 
to compute the partial derivatives. Updating the coefficients requires another 2 multiplica-

tions per stage and one extra multiplication to scale e(n) by 2p. Overall, a total of 3L +  1 
operations are required per sample, compared to 2L for the direct LMS, hence the penalty 
is not enormous, as it is still proportional to L. Some consideration is necessary for the 
range of the learning rate, p, for which the adaptive process is convergent. This is related 
to a number of issues associated with the shape of the performance surface, <f(a), where 
a =  (a] a\ a\ a\ . . .a ^  a^)T is the coefficient vector. Unlike the direct implementation, 
where the performance surface was quadratic having a unique minimum, here its shape is 

far from quadratic and there are many minima. This is easy to realize, because changing the 

order of the stages {P ,(z )} results in the same overall transfer function. Every such permuta-
tion, however, corresponds to a different coefficient vector, a, all of which axe equivalent. For 
an iV-stage filter there are TV! solutions. Besides, attempting to produce an analytical the-
oretical solution using correlation functions, like the Wiener-Hopf equation, is not possible 
because of the dependence of the coefficients on the outputs of the individual stages (which 
themselves depend on elements of the coefficient vector). This interdependence leads to a set 

of non-linear equations which cannot be solved explicitly[94]. Numerical optimization, using 
the gradient algorithm suggested earlier or otherwise, may yield one of the solutions, but 
there is a possibility that the weight vector may be trapped on flat (almost zero derivative) 
regions between the desired solutions, or on a local maximum (saddle point). These are, 
however small possibilities, because of the multitude of equally optimal minima of the MSE 
surface, and in general the algorithm will eventually converge to one of these TV! solutions. 

Each solution has a basin of attraction around it, which is convex. Hence a gradient algo-
rithm, like the one suggested, may reach a different optimal solution, depending on the initial 
weight vector. Once inside the basin of attraction, certain assumptions may be employed 
to linearize the differential equations and investigate the convergence properties of the algo-
rithm analytically. These may include a Taylor expansion approximation of the error surface 
around the optimal solution, but since the argument only began with the attempt to find 
the range of p for which the algorithm is convergent, a less formal analysis was sufficient. 

In general, the gradient components {g'(n  — k)} for different sections are highly correlated,
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because of the dependencies between the cascaded stages. For coefficient vectors near an 

optimal solution, however, these correlations are small[94][164]. The interdependences are 

absorbed by the decomposition of the input signal to each stage. Since these are responsible 
for the non-linearity of the equations, not only the problem is linearized, but the correla-
tion matrix of the inputs to the stages of the system becomes block-diagonal, each block 
consisting of a 2 x 2 sub-matrix:

rn(0) rn (l) 0 0 0 0 '

rn (l) rn(0) 0 0 0 0
0 0 r22(0) 7-22( 1 ) 0 0
0 0 7-2 2( 1 ) 7-22(0 ) 0 0

0 0 0 0 ' • • 7-^(0) tv\w (1)
0 0 0 0 ••• rjv^(l) t-a w (O) _

R n 0  • 0

0 /? 2 2  • 0

0 0  • • • R n n

(9.18)
where notation was simplified, so that r„(n) is the auto-correlation of the input sequence 
to the ith stage of the cascade (for the first stage this is equivalent to rxx(n) =  rUlUl(n ) 

and for the rest r„(n ) =  r„.Ui(n)). In this form one may use the arguments put forward for 

the quadratic performance surface in section 8.4.2, to derive that the method converges for 
the range suggested by equation (8.36) and then use the practical limit of equation (8.46) 
0 < /i <  • A better limit may be derived, however by considering the above matrix
in its sub-matrix form and hence convert the solution into a set of N  simultaneous equations 

with two unknowns each. Then a different value /z,- may be used for every stage of the lattice 
defined by the inverse of the sum of the diagonal elements of the 2 x 2  sub-matrix This 
is equal to twice the power in its input, u,(n), defining the limits:

0 < n <
1

(9.19)
(2K „ .

The power and the values of the { //,}  were estimated using the recursive methods discussed in 

section 8.4.3, and a (normalized) fraction of the above range, A. The application of different 

convergence rates for every stage enhanced the speed of adaptation, as they tend to reduce 
the difference in the time constants, speeding up the convergence of slow modes. In this 
respect the adaptation algorithm is a hybrid, sharing properties of the steepest descent as 

well as Newton’s algorithm. The block diagonal form of the matrix presented in equation 
(9.18) was exploited further by Romano et al.[164] who developed an RLS algorithm for 
adaptive filters in cascade form, since the inverse of Rzz may be computed easily from the 
inverse of the sub-matrices, Rn (the inversion of these 2 x 2 matrices is trivial).



254 Chapter 9. Alternative system realizations

Figure 9.2: The lattice structure

The adaptive cascade structure suffers from one more potential problem. When two of 

the zeros of the overall transfer function become close to one another, the corresponding 

gradient estimates for sections i and j  where this is observed, become similar in amplitude, 
<7,(n — k) «  <7j(n  — k). This presents a problem in the non-stationary case, because if 

two or more zeros come close together and then separate again, the adaptive algorithm 
cannot separate the coefficients of the corresponding stages, once they become coincident 
( root coalescence). This problem may be prevented by updating only one section on every 
iteration.

The cascade structure was used for the implementation of the background activity inverse 
model, H~1(z), which is known in a factored form. Testing whether it is minimum-phase is 
now possible, whereas each factor may be interpreted in terms of resonant frequencies and 

bandwidths, which have a physical interpretation.

9.3 The Lattice LMS Linear Predictor

The concept of the lattice system realization was encountered indirectly in section 8.4.4 

in the form of the Schiir-Cohn stability test. The test required the computation of a set 

of parameters, { 7, } ,  called the reflection coefficients, from the coefficients {a ,} of the direct 
realization. The { 7, }  were then used to test the stability (minimum phase) of the system, but 
they actually correspond to a special filter structure, called the lattice realization. Adaptive 

lattice systems have been very popular, because they possess several attractive properties.

Unlike the cascade realization, which is linked directly to the polynomial transfer function 
of the system, the connection between the system function and the lattice structure is not 
immediately apparent. Because the lattice consists of cascaded sections with two inputs 
and two outputs each (see Figure 9.2), it is not easy to assimilate to the single-input single-
output system in direct form. The coefficients of the lattice realization, called the partial 

correlation or reflection coefficients, { 7, }  are the same as the coefficients derived by the
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Schiir-Cohn recursive procedure to carry out the stability test in section 8.4.4. The lattice 
realization is an implementation of this recursive procedure, which takes advantage of the 
use of the forward as well as the reverse polynomial and hence it applies both transfer 
functions at once in a coupled form that produces the outputs of the two transfer functions 
simultaneously. Lattice system implementations are linked to linear prediction and arise 
naturally when prediction error systems, like the background activity inverse system, are 

considered. A linear one-step forward predictor has an associated prediction error system 
P (z ) =  1-1- as seen in section 8.1.1. The output of this system is the error of the
prediction of the current sample based on the L previous samples:

L
el(n) =  x (n ) -f ^  a,z(n — i) (9.20)

t=i

The superscript /  indicates that prediction is forward in time, whereas the subscript L 
indicates the order of the prediction system. Similarly, the reverse polynomial, z~LP(z~1) 
corresponds to a system which attempts to predict x(n  — L) using the more recent samples 
up to the present x(n). This ‘backward’ prediction system has a prediction error given by 
the following relation:

L
ebL(n) =  x(n  — L) 4- ^  a,x(n — L +  i) (9.21)

t=i

One of the properties of the lattice realization is the recursive computation of both the 
forward and the backward prediction errors for all orders up to L. With the introduction 
of every new stage, the prediction errors are computed using only those of the previous 
section (corresponding to a predictor of order one less) using the recursive relations[151, pp. 
476-483][15, pp. 236-241]:

eKn) =  ep - i ( n ) +  7p ep - i ( n — 1) (9 .2 2 )

ebp(n) =  e£ -i(n ~  !)  +  7Pe £ - iH

where p =  1 ,2 ,. . .  ,L  and the recursion is initialized by setting e{,(n) =  eb0(n) =  x(n). It is 

easy to show by mathematical induction that the relations (9.20) and (9.22) are equivalent. 
For p =  1, e {(n ) =  x(n ) +  j ix (n  — 1), which corresponds to the direct realization with 
a] =  7i. For p =  k it is assumed that:

k
4 (n ) =  eLi(rc) +  7fc<4_i(rc- 1) =  x(n) + ^ a tfcx ( n - i )

1 =  1
k

eï (n) =  eL i ( n) +  7 fc4 -i(n -  1) =  x(n -  k) +  ^ 2 a^x(n -  k +  i) (9.23)
t=i
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where a* is the coefficient of a predictor of order k corresponding to lag i. For p =  k +  1, 
by substituting the above relations the correspondence between the direct and the lattice 

realization still holds.

4 ( n) +  7fc+i4(n -  !)
k

x (n ) +  ^ a f x ( n  -  i) -f 7*+i[x(n -  k -  1) +  ^ a tfc:r(n -  k — 1 +  *')]
«=i t=i
k

x (n ) +  +  7fc+iaL .) x (n “  0  +  7 k+ix(n -  k -  1)
«=1
fc+i

x(n) +  ^2 a.j 1x(n — i)
t=i

where in the last relation =  7̂ +1 and af+1 =  a* +  7*+ia£_,- for * =  1, . . . ,  k.

Having proved that the direct and the lattice prediction error filters are equivalent, the 
next step is to demonstrate an adaptive algorithm for the lattice structure. Assuming that 

the system has the form of a linear prediction error filter is merely for convenience, since 

any polynomial transfer function may be written in that form with the introduction of an 
output scaling factor, if the coefficient for x(n) is not unity.

Adaptive lattice systems are more laborious to derive than their direct counterparts, 
because it is not immediately clear how the mean squared error minimization affects the 
partial correlation coefficients { 7,} . This relation may be found by considering the Wiener 

equation for (forward) prediction Rk& =  — u*, where the notation has been simplified, so 
that Rk is the k x k autocorrelation matrix of x(n) called Rxx earlier and u* =  rxx is the 

fc-dimensional column vector of autocorrelations. Adding u* on both sides and augmenting 
the auto-correlation matrix by an extra row and column u*; as well as the correlation element 
for zero lag, r0 =  rxx(0), it becomes an (k +  1) x (k +  1) matrix, which has the same form 

as Rk, but has a higher dimension. Calling this matrix Rk+1 and augmenting the coefficient 

vector accordingly by an element equal to 1 the following equation may be written:

Rk+i
1 ro u r 1

1-----

1___

uk Rk . a* 0
(9.24)

where E[ =  [^ouj]
1

ments, using the matrix 

relation is constructed:

is the power of the forward prediction error. With similar argu- 

orm of the optimum backward predictor equation, an equivalent

Rk+1
bfc ’ Rk Vfc 0

1 T
L r° 1

(9.25)
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where v* =  has the same elements as u*; but in reverse order. It should be noted
that Jk is the ^-dimensional co-identity matrix. Moreover, the backward optimum predictor 

coefficient vector, bjt is related to the forward prediction vector ak because of the symmetry 
properties of Rk+i- This matrix is symmetric (for stationary signals) and hence Rl+i =  Rk+1- 
Because it is also symmetric about the secondary diagonal, Jk+iRk+i =  [«/jfc+ii2fc+i]T =  

Rj+iJk+i =  Rk+iJk+i- Using this relation and pre-multiplying the backward prediction 
error equation by Jk+i yields:

Rk+l
1

«/fcbfc
(9.26)

Comparing this relation to the forward prediction equation (9.24), the backward and forward 
prediction error coefficient vectors have the same elements, but in reverse order, ak =  Jk^k- 
Moreover, under these conditions, the forward and the backward prediction errors have the 
same power, E[  =  Ehk =  Ek. Expressions (9.24) and (9.25) are valid for all k and hence for 
k — 1. With the aid of the prediction coefficients for order k — 1 the following two expressions 
hold true:

1 1 Ek- 1
Rk+l a*_i

Rk
T

Vfc
a*_i = 0

n r°0 0 Kk

0 _ 'T 0 $
 

__
1

Rk+l bjfc-i — r0
b/c—1 — 0

Uk Rk1 1 Ek- 1

(9.27)

(9.28)

where Kk =  v j
1 T ---

-1
O

'
?!- 1 t—

» __
1

1 V ?r 1 >—* 1_
__

II e

1
. Multiplying equation (9.28) by 7* =  Kk/Ek- 1 and

subtracting from equation (9.27) to eliminate Kk produces the following equation:

1 ' ( l - i l ) E k - i  '
Rk+l a*_i

0
-  7k

bjt-i = 0
1 0

(9.29)

which by comparison with equation (9.24) produces the recursive relation for computing the 
forward (and backward) prediction coefficients for order k from those for order k — 1:

a*
ajk-i

0

Ek =  (1 -  l l )E k-i

(9.30)

(9.31)



258 Chapter 9. Alternative system realizations

The last relation conforms with the recursive definition of the reflection coefficients for the 
Schiir-Cohn stability test and they can implement the forward and backward prediction error 

systems described by the recursive equations at the beginning of this section.

The above analysis is a summary of the explanation given by Bellanger[14, pp. 135— 
168][15, pp. 322-326] and Proakis et al.[152, pp. 208-251]. It uses the assumption of 
stationarity of the input signal, which is responsible for the symmetry properties of the 

auto-correlation matrix. A more elaborate analysis with extensive explanation which does 
not rely on this assumption has been provided by Orfanidis[140, pp. 195-310].

9.3.1 Properties of lattice prediction error systems

The lattice realization of linear predictors has a number of properties that are worth noting.

Firstly, the forward predictor is a minimum phase system. This is expected, since the 
autoregressive process from which the input was generated is a stable system. This property 
may, however, be explained in terms of the function of the predictor and the minimization of 
the mean-squared error. Several detailed explanations of this property exist in literature[152, 

pp. 208-251] [140, pp. 195-310], but a simple justification will be presented here. Effectively, 

the output of the forward predictor is the difference between the predicted and the actual 
value of its input. The power in this signal for a predictor of order k is the quantity Ek en-
countered earlier. Intuitively, a high-order predictor is expected to have a lower output power 
(which is equal to the minimum achievable MSE) than a low-order one. The improvement 
may stop when the order of the predictor becomes higher than the order of the generating 
AR process, but in any case it will never increase. Since the lattice implements all optimal 

predictors for orders k =  1, 2, . . .  ,L , it is evident that there should be an improvement at 

the output of every stage, and therefore Ek <  Ek- F r o m  equation (9.31), it is obvious that 

for this to be true 0 <  (1 —^\)Ek-i < E k-i , which is true for |'y*:| <  1. This is the condition 
used by the Schiir-Cohn stability test to prove that the roots of a polynomial are inside the 
unit circle. Therefore, the forward prediction error filters of all orders must have their zeros 

inside the unit circle and as such they are minimum phase. A proper proof that does not 
utilize the stability test (which is in fact a consequence of the computation of the { 7*}) may 

be found in a text by Orfanidis[140, pp. 230-233].
As a direct consequence, the backward prediction system is maximum phase. This is 

easy to demonstrate, since it has the same coefficients as the forward predictor, Ak(z) =  

1 +  Yli=1 UiZ~l, but in reverse order, that is B {z ) =  z~k +  ££=1 a,z,-fc =  z~kA(z~l ). This 
has the roots of A (z~1), which are the reciprocal of those for A(z), which is minimum phase 

and has all its zeros inside the unit circle. Therefore the roots of B(z) must all lie outside
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the unit circle making it a maximum phase system.
Of great importance in adaptive signal processing is the fact that the backward prediction 

errors out of all stages are mutually orthogonal. To demonstrate this it is sufficient to recall 
that from equation (9.25) when Rk+i is applied on the weight vector b* =  Ja* the resulting 
vector has zero elements apart from the kth element (which is equal to Ek). By appending 
enough zeros at the end of each vector (b j  1)T to make them L +  1 dimensional and writing 

them in matrix form, B, it is easy to show that Rl +i B =  E, where

0 o

£ i o
;

* ••• El

(9.32)

which is a lower-triangular matrix. The * ’s indicate elements that are produced when the 
coefficient vector of order k is applied to the (L — k) lower rows of Rl - Moreover, B  is an 
upper triangular matrix and hence its transpose, B T, is lower triangular. Pre-multiplying 
the above relation by B T yields B t R l + i B  =  B TE. The left hand side of this relation is 

symmetric, so must be the right hand side. But B TE is the product of two lower triangular 
matrices and it must be lower triangular also. Being symmetric, it must be diagonal and 
therefore all unspecified entries in the E are zero. Noting that the backward prediction error 
vector eb =  B Tx, the autocorrelation matrix for £bk(n) is:

E[eb(eb)T) =  E[B tx x t B] =  B TRL+1B =  E (9.33)

which is a diagonal matrix. Hence the backward prediction errors are uncorrelated 

(orthogonal)[15, pp. 322-326][152, pp. 208-251]. This procedure is equivalent to the decom-

position of the input signal vector into a set of mutually orthogonal signals (the backward 

prediction errors), which is equivalent to the Gram-Schmidt orthogonalization method[ 140, 
pp. 195-310]. This is the reason why the lattice structure is often used in adaptive signal 
processing, as a preprocessing element. The decoupling of the signal correlations is bene-

ficial in the improvement of the speed of adaptation of a subsequent adaptive algorithm, 
especially when the input signal samples are highly correlated a fact highlighted in any text 
on adaptive signal processing^ 4, 152, 140]. A number of other properties, most of which are 
connected with the orthogonality of the input and the prediction error signals or between 

the forward and backward prediction errors, are listed by Proakis et al.[152, pp. 234-235].
Some of its characteristics make the lattice structure more suitable than other realizations 

in some adaptive signal processing applications. The absence of correlations between the out-

puts of every stage of the structure permit the adaptation of the corresponding reflection
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coefficients independently, which is important if a parallel implementation is required[152, 
pp. 227-231]. The orthogonality of the backward prediction error signals makes the lattice 

structure an ideal preprocessing unit for the implementation of adaptive systems, as it re-
moves correlations between adjacent samples, as stated earlier. Finally, because minimum 
phase systems have partial correlation coefficients whose magnitude is less than unity, the 
lattice realization provides an easy way to ensure the stability of the inverse of the sys-

tem during adaptation by employing this test directly. This is essentially the Schiir-Cohn 
test, described earlier, only the computation of the {7*} fr6m the coefficients of the direct 

realization is now redundant.

The decorrelation of the prediction error signals makes the lattice algorithm suitable for 
the implementation of recursive-least-squares adaptive algorithms, since the inversion of the 

(diagonal) autocorrelation matrix E is trivial. Hence matrix manipulations for the inversion 

of Rl  (see section 9.1) are unnecessary. In fact, fast implementations of the RLS algorithm 
are usually based on the implicit use of the reflection coefficients[152, pp. 351-386] [140, pp. 
473-487]. These algorithms are, however, considerably more complex than the LMS (section
8.4.2) and the benefits from their fast convergence have been disputed, since for real EEG 
signals, where stationarity is debatable and ill-conditioning of the correlation matrix possible, 

the stability of a method that use estimates of correlation may also be questioned. Instead, 

an LMS-type gradient search algorithm was realized. This is still faster than the direct 
realization presented in section 8.4.2, but maintains a lot of the simplicity of the original 
algorithm, while avoiding the explicit use of correlations. Descriptions of this algorithm and 
some of its variants may be found in Orfanidis[140, pp. 444-454] and Proakis et al.[152, pp. 

385-389].

The optimal partial correlation coefficients, 71, 72, • • •, 7l  are determined by minimization 
of the mean squared error of the prediction, that is the power of the forward predictor, E[  (see 

equation (9.24)). But since the partial correlation coefficients define the backward predictor, 

they should also minimize E¿, the power of the error from this system (equation (9.25)). It 
was shown earlier that these two are equal in the stationary case, but in reality they may 

be different, especially around a non-stationarity. Hence, a better performance criterion to 

minimize is the average sum of squares of the forward and backward errors:

( l  =  E[eJL{n)2 +  ehL{n)2] (9.34)

which is equal to E [  +  E bL if the two error signals are independent. Using equations (9.23) 

that link 71  to the inputs of the last stage of the lattice and differentiating ( l  with respect
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to 71  gives the following relation

d(L
l

=  2 £ [ e i ( „ ) ^ M  +  e‘ (n )^ M ]
d'i l  d u

= 2E (<•'(„)9t^ - l(n) + ^ - ■ < n Z'>! + „* („ ) Mz l i üz 2 1 ± }
I i?7 L J

=  2£ ;{ [ ei ( n)eL - i ( « - l ) ]  +  [eL(n)ei - i ( n)]} (9-35)

=  2 ^  { [ eL - l ( n ) +  7 1 - 4 - 1  ( n  -  ! ) ] eL - l ( n  -  ! )  +  [eL - l ( n  -  ! )  +  7 L eL - l ( n ) ] eL - l ( n ) ] }

expanding the terms to which the expectation operator is applied, taking 72, as a common 

factor and noting that E {-}  is a linear operator:

H  = 2 {2£[«L, (n)<4-, (<•-!)] + (n -  1 )2 + e'_, (»)’ ]} (9-36)

is minimized when the above expression is zero, from which the partial correlation coef-
ficient may be computed:

2£[e{-i(n )e| /_1(n — !)] 

^ '[CL - l ( n  — ! ) 2 +  eL - l ( n ) 2]
(9.37)

This procedure has been carried out on the last stage of the lattice, but the 7l _ i , 7l - 2, • • •, 7i 
may be computed in an equivalent manner, since they only depend on the inputs of the 

corresponding stages and the prediction error powers for successive stages are mutually 
orthogonal, as demonstrated earlier. The latter means that the optimization of the fcth 

stage may be based on the corresponding criterion =  E[ek(n)2 +  ek(n)2].

9.3.2 A gradient adaptive lattice algorithm

To make the computation adaptive, a gradient descent method has been employed, similar 

to the LMS for the direct realization:

7 f c ( »  +  l )  =  7 k ( n ) - f i k - ^

=  7fc(n) -  2nk [2E[efk_1{n)ebk_1{n -  1)] +  'yk(n)E[ebk_1(n -  l )2 +  e j ^ n ) 2]}

=  7 k(n) ~ 2Hk[Ck + 7 k{n)Dk]

where the ‘ intermediate’ variables Ck =  2E[ek_ 1(n)ebk_1(n — 1)] and Dk =  E[ebk_x{n — l )2 +  
e{_ i(n )2] have been introduced to simplify the notation. Unlike the LMS algorithm, a differ-
ent learning rate fik has been introduced for each stage of the lattice. The reasons for this will 
become obvious in the development of the algorithm that follows. As Orfanidis explained[140,
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p. 445], making 7 time-varying introduces a complication, since Ck and Dk become depen-
dent on the partial correlation coefficients of the previous stages, 71, 72, •• • , 7*-i, which are 

also time-varying. Therefore the resulting equations are non-linear and unlike the LMS al-

gorithm, analysis cannot be carried out exactly. Assuming, however that Ck and Dk have 
their asymptotic values, independent of time, the above recursive relation may be shown 
to be equivalent to the following geometric series, around the (optimal) value of the partial 

correlation coefficient, 7k =  — ;g£, as given by equation (9.37):

7 k(n +  1 ) -  7fc =  (1 -  2pkDk)n+1M 0 )  -  7* )  (9 .3 8 )

where Ck was eliminated by substituting it with —7kDk. The above series converges to the 
optimal value when the geometric ratio |1 — 2pkDk\ <  1. This is true when 0 < pk <

Like with the LMS, using a normalized adaptation rate 0 < A < 1, the learning rate may be 

written as a fraction of the above range:
A

(9.39)

Having determined pk, it is possible to construct the adaptive algorithm by substituting 
from equation (9.35) into the gradient algorithm above using the above expression for p to 

obtain:

7 k(n +  1) =  7 '* (« )  -  2 Jfh E  { i ei ( n ) eL - i ( n “  1)] +  [ez , ( " ) eL - i ( n ) ] }  (9-40)

The gradient adaptive lattice algorithm is derived from this equation by ignoring the expec-
tation operator, as with the LMS:

7k ( n  +  1 ) =  7fc(n) -  2 j r r ^ ; l e L ( n ) e L - i ( n  ~  *) +  e i ( n ) e L - i ( n )] (9-41)Dk(n)
In the above practical implementation, Dk is also computed recursively in the same way as 

the power of the input signal described earlier for the LMS algorithm in section 8.4.3:

Dk(n) =  aDk{n -  1) +  (1 -  a)[ct_j(n  -  l )2 +  e{_.,(n)2] (9.42)

where, as before, a  is linked to the length of the signal stationarity. It should be noted that 

a variant of this method[140, p. 447], uses a similar approximation for the term in square 

brackets (in equation (9.41)), instead of simply ignoring the expectation operator (which is 

equivalent to a  =  0).

9.3.3 Implementing the background activity prediction system, 

H ~ 1(z) and the spike generating system, G ( z )

The lattice structure is suitable for the implementation of linear prediction error systems, 
but some further considerations were necessary to ensure the suitability of this structure to
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Figure 9.3: An HR lattice system

EEG analysis according to the model suggested in section 7.3.

The first system to implement is the background activity analysis system H~1(z). As 

demonstrated in sections 7.4.1, 7.4.4 and 8.4.3 this system is naturally a linear predictor, 
being the inverse of the autoregressive system H(z). This was implemented directly as an 
adaptive lattice system optimized according to the gradient algorithm suggested before.

The question arises for the spike generating system, G(z). It was shown in section
8.4.4 that this is actually an HR all-pole system. There is more than one issue connected 
with the lattice implementation of G(z). First of all, is it not clear how this is linked to 

linear prediction. Then, there are two sides to its optimization, the off-line and the on-line 
constrained adaptive procedure.

It is not difficult to prove that the inverse of G(z) has the structure of a linear predictor. 
Since G(z) is an all-pole system, its inverse is an all-zero system with transfer function 

G- 1(z) =  a0 +  a,2_‘ . Multiplying the whole expression by -L to make the coefficient
for z° equal to 1, the system has precisely the form of the prediction error system which 
is the basis of the lattice realization and may be implemented in lattice form. The scaling 
factor do, may be applied to the input of G(z) and if made time-varying it may be adapted 

independently, using the LMS algorithm. These issues are related to G~1(z)1 but since G(z) 

is also part of the analysis system (sections 7.4.2 and 7.4.4) it is important to ensure that 

it may also be implemented as a lattice structure. HR lattice systems are discussed in most 

signal processing texts, like [151, pp. 495-506][152, pp. 235—239][15, pp. 236-240] and [140, 
pp. 225-230]. They have a structure similar to the FIR lattice, but with inputs and outputs 
reversed, as shown in Figure 9.3.

Having showed that G(z) may be implemented as a lattice, the next issue is to investigate 

its optimization. Off-line optimization, described for the direct implementation in section
8.4.4, was performed with the aid of spiking filter banks. It would have been perfectly feasible 
to optimize a bank of lattice systems with the additional scaling factor a0, but a simpler 

alternative approach was preferred. Direct form filters were constructed using a spiking filter
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bank, as before. Then the coefficients of the optimal system were converted to the reflection 
(partial correlation) coefficients with the aid of the Schiir-Cohn algorithm, outlined in section

8 .4 .4 . This gave the optimal off-line system in lattice form.
On-line adaptation is the last issue related to the spike generating/analysis system. Adap-

tation is carried out on the spike generating system, G(z), for the reasons described in section

8 .4 .4 , while illustrating the direct realization of this system. G (z ) is an autoregressive system 
and has feedback, and hence any attempt for optimization of its parameters, { 7*} would re-
sult in a set on non-linear differential equations. Solution of these in closed form is generally 
impossible and numerical methods may be employed. In an adaptive system optimization 

is done numerically, but the convergence of the method is a critical issue. Gradient meth-

ods, cannot be guaranteed to converge to the optimal solution when dealing with non-linear 
differential equations, which may have many optimal solutions as well as multimodal perfor-

mance surfaces. Provided that the algorithm is initialized with a value close to the optimal, 

a reasonable approximation to a linear system may be assumed, by using a Taylor expansion 
of the cost function around the optimal point or otherwise. Adaptive HR lattice filters are 

not particularly useful, however, because they do not share any of the properties of their FIR 
counterpart. The independent optimization of the FIR lattice stages, is not a characteristic 
of the HR lattice, because the outputs of every stage are not error signals. In fact the use-
fulness of an adaptive HR lattice system is rather limited and no literature was found on the 
subject. A simple algorithm was developed, however, based on the difference, e(n), between 
the desired output y(n) and the output of an Lth order lattice, y(n). The optimization 
criterion employed here is £ =  E{[y(n) — y(n)]2}, where y(n) =  e{,(n) =  e{(n ) -f 7ieo(n — 1). 

Using the same procedures as before, for the development of the LMS algorithm, a steepest 

descent-type algorithm for optimizing 71 may be written:

7 i ( n  + 1) = 7 x ( n ) ( 9. 43)

Using the approximation employed by Widrow for the development of the LMS, £(n) =  
£(n)2 =  [t/(n) — y(n )]2 and differentiating with respect to 71 gives the approximation =  

—2e(n)eb0(n — 1). For the rest of the 7 ignoring the coupling effect due to feedback equiv-

alent updating equations may be derived. Hence the following updating equation has been 

developed and implemented:

7 k(n +  1) =  7 * ( n )  +  2pke(n)ebk_1(n -  1) (9 .4 4 )

This equation may be rather inaccurate for general optimization, but for the restricted range 

of adaptation around the typical spike parameters the non-linearity and cross coupling have
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a small effect on the otherwise small gradients and the above algorithm should suffice. Like 

before, pk, the learning rate for the kth. stage, was normalized by assuming that it consists 
of a fraction A of the inverse of the power in e^_1(n), computed recursively as suggested in 
section 8.4.3. Like in the case of the direct realization, this does not guarantee convergence, 
but in practice, with A =  0.1, the method did not suffer from instability. Range limiting 
here was applied on all the 7*, using the range limiting functions and procedures described 

before in section 8.4.4.

9.4 Comparison of algorithms and structures

9.4.1 Results for different configurations

The algorithms and structures described in the preceding section were incorporated in the 

system to replace either the direct form LMS prediction error systems associated with the 
background activity, H~l (z ) or the spike generating system G(z) and its inverse (sections
8.4.3 and 8.4.4).

The alternatives for H~1(z) include the RLS algorithm for the direct system implemen-
tation (section 9.1) and gradient LMS-type realizations for the cascade (section 9.2) and the 
lattice (section 9.3) structures. G(z) was realized in the form of an HR LMS system in direct 

form as in the original system described in section 8.4.4 and as a lattice IIR-type system 
developed in section 9.3.

Six separate configurations were tested, including the original system described before. 

The results for the three real EEG records on which all previous tests were carried out are 
shown in Table 9.1. All configurations implemented a prediction error system H~1(z) of 
order 16 and had a normalized learning rate of 0.1. Typical waveforms for a section of a real 
EEG signal are shown in Figure 9.4. These correspond to configuration 4 of table 9.1.

Cases 2 and 3 are worthy of some special attention, because the corresponding configu-
rations exhibited anomalies in their behaviour. The RLS algorithm in 2 appeared to operate 

well at the beginning of the records, but after a while it became unstable, as the coeffi-
cients of the system drifted far from optimal with the error levels increasing continuously. 
Reducing the learning rate did not solve the problem. It merely delayed the occurrence of 
the phenomenon and made the increase in the error more gradual, but without preventing 
instability. The cascade LMS algorithm, used in the third tested configuration, suffered 
from a different problem. As time progressed, it seemed that H~1(z ) started adapting to 
spikes. This was more profound in the Record A, which contained many spikes relatively 
close to one another. Despite preventing its adaptation when a spike was detected, which
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Record A B C D

Duration in seconds 210 130 123 242

Number of spikes present 52 8 10 0
Muscle artifacts present? some yes yes many

Subsystem Implementation Spike Detections

# H -\ z ) G(z) V X V X V X V X

1 Direct-LMS Direct IIR-LMS-C 52 2 8 2 10 6 0 25

2 Direct-RLS Direct IIR-LMS-C 16f Of 2f It 3t 3t 0 12f
3 Cascade-LMS Direct IIR-LMS-C 42J 0Î

OO It 9t 4t 0

-n
-

oCO

4 Lattice-LMS Direct IIR-LMS-C 52 2 8 2 9 6 0 22
5 Lattice-LMS Lattice IIR-LMS-C 52 4 8 2 9 6 0 22
6 Direct-LMS Lattice IIR-LMS-C 52 2 8 2 10 6 0 25

Notes:
f: These results correspond to part of the records considered (approximately a third), after 

which the system broke down.

Missed detections increased towards the end of the data records.

Table 9.1: Results for real EEG records and various subsystem structures and adaptive 
algorithms detector

delayed the occurrence of the problem, this realization still absorbed some of the energy of 
the spikes making their detection more difficult. The coefficients of the last stages of the 
cascade acquired values that corresponded to poles in the region of the fundamental of the 
spike, where most energy of this transient was concentrated.

The more detailed interpretation of the various results is the subject of the following 

section.

9.4.2 Comments and interpretation of results

The results presented in Table 9.1 provide a means of comparison of the various algorithms 
and structures implemented. This was based on a number of criteria, which were considered 

important in this application. From the reported results, it became necessary to consider 
the reliability of the resulting system, as some adaptive algorithms developed some unde-
sirable behaviour or even instability. Other important issues are the speed of adaptation 
(initial convergence and tracking properties), their response to artifacts and the possession
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time (s)

(a) e(n) 
(real EEG)

(b ) r (n )

(c) y(n)

(d) d(n)

(e) hats(n)

(f) e'(n)

(g) »-'(n)

(h) *t(n)

(i) z't(n)

(j) 2,(n)

Figure 9.4: Waveforms for a segment of real EEG signal containing spikes
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of additional desirable features.

Reliability and stability of adaptive procedures

The issue of stability was encountered when using the RLS (SER) algorithm to adapt the 
direct form implementation of the inverse of the background activity system H~l (z). Some 
implementations of the cascade LMS algorithm led to unreliable spike detection, but without 

becoming unstable. The other configurations had similar responses to one another and have 

generally been stable. Some minor differences will be accounted for at the end of this section, 

after considering the systems whose function exhibited serious irregularities.

In the RLS implementation of H~1(z), it appeared that the response was the same as 
that of the LMS algorithm, apart from the increased speed of convergence. Later on, though, 
instability of the algorithm became evident by the sudden fluctuations in the filter coefficients 

and a corresponding increase in the error levels. This was observed in both the synthetic 
and the real EEG records and the observed effects could not all be justified theoretically. 
In the first, the instability was transient and the method resumed its proper function after 
approximately 50 iterations. In the case of real EEG data, however, the fluctuation in the 
coefficients increased continuously along with the error. Restoration of the functionality of 

the algorithm did not occur in the duration of the data record.

The problem was initially thought to be related to the numerical instability of the tech-
nique, but no improvements were observed when double precision arithmetic was employed 

in the implementation. It was at this stage when the basic RLS algorithm was modified to 
include a convergence factor p <  i ,  corresponding to the SER adaptive method. When the 

problem persisted, even for p =  0.001, it was decided to test other aspects of the algorithm. 

A modification was introduced to the time update formula for the correlation matrix de-
scribed in most texts. This was incorporated in the development of the procedure, presented 
earlier on in this Chapter, but could easily pass unnoticed. Traditionally, the update rela-

tion for the correlation matrix has the form R(k) =  x (k )x (k )T +  aR(k  — 1), which lacks the 

scaling factor (1 — cv) multiplied with the first term. The gain of this algorithm for constant 
signals is which is large when a  approaches unity, its limiting value. This lead to an 
overestimation of R{k). The introduction of the normalizing factor in the equations for the 

computation of the inverse of the correlation matrix ensured that the correction introduced 
on R (k— 1) is not excessive and the new value, R(k) is more realistic. With this modification 
the system response improved slightly, as divergence was slowed down, but stability was not 

achieved.

Investigations of the results for artificial input signals revealed that the instability was
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linked to a large transition in the transfer function H (z ), that is the boundary between 
two segments. Not all large transitions, however, caused instability, which appeared to 

be associated with some property of the transition, perhaps its direction. Arguably, the 
presence of a non-stationarity has not been the only factor affecting the behaviour of the 
algorithm. It is more likely that it is one of the main contributing factors. Others might 
include the sensitivity of the algorithm to a numerical condition which takes effect when the 

matrix R~1(k) has a value that becomes ill-conditioned by the introduction of the new input 
data. The effect may be related to the numerical instability of some feist RLS algorithms 
highlighted by Ljung and Ljung[lll].

In the case of the cascade realization the algorithm did not become unstable, but it is 
apparent from the results that some spikes were missed. Closer observation of the progress of 
the spike detection procedure revealed that the missed detections occurred towards the end of 
the records and were more profound in Record A, which had longer duration and more spikes 

than B, C and D. The missed detections were related to the progressive reduction in the 

amplitude of the transient in the output of the primary prediction error filter, r(n), which fell 
below the detection threshold and did not produce a transient indication. The source of this 

was traced to the initial coefficient vector. Starting with all elements of the vector set to zero 
results in root coalescence (section 9.2), because all stages are initialized to the same values 
and subsequent attempts to modify these elements would result in the same modification to 
all stages, which would henceforth have the same parameters. To prevent this, the initial 
weight vector was initialized to some small vector. Small random values could work, but it 
is also possible to construct each section k =  1,2, ...,| f to have complex conjugate poles 
PM,2 =  re±j2^ ,  where 0 <  r <  1. This spreads the poles of the system evenly on the 

circumference of a circle with radius r, centred at the origin. The results reported in Table

9.1 correspond to the latter case, but similar results were observed for many random vector 
initializations. It seems that because a number of poles of the initial system lie near the 
region corresponding to epileptic spikes, some of the energy of the spikes is absorbed by one 

or more stages of the cascade. If the order of the system is less than or equal to that of 

the generating process for the background activity, then eventually these poles will move to 
model some of its aspects and the problem will not occur. But if the order of the system 
is greater than required, then the last few stages in the cascade will be fed with essentially 
white noise and transients, due to spikes etc. It is therefore possible for them to lock-on 
spikes, in the absence of any other correlated signal. This was confirmed by testing with 
artificial data, where the order of the system was known. The use of extra stages resulted 

in their attraction to the occasional occurrence of spikes, thus depleting their registration in
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the output. The effects were less profound with some random initial coefficient vectors, or 

with the elimination of the vectors corresponding to the spike region. This, however, does 
not constitute a solution to the problem, because it is possible during adaptation for some 

of the coefficients to move to this region and for the undesirable effect to occur.

In the initial implementation of the lattice prediction error system, the lattice system 

missed some spikes[128]. The source of this discrepancy appeared to lie in the speed of 

adaptation of the gradient lattice structure which is significantly greater than that for the 
direct LMS algorithm. Therefore, when a spike is encountered, the algorithm attempts to 
adapt the system to track this signal. The direct form LMS, being slower, only causes a small 
change to the coefficients of the system, before the transient is detected and adaptation 

inhibited (see section 7.4.4). In the case of the lattice, the change in the coefficients is 
significant even for the few iterations it takes until the transient is detected. On a few 
occasions, the coefficients of the lattice structure adapted to the spike characteristics after a 
sample or two, thus making the detection of the transient in r(n) weak, or too early. As a 

consequence the amplitude of the spike generating (im)pulse, J(n) was either too low or too 
high and its moment of occurrence premature. The resulting spike s(n) was therefore a bad 
estimate and its subtraction from e'(n) did not make the transient disappear, thus the spike 
was rejected as a false alarm by the spike detector. This phenomenon, is only temporary 
and the coefficients of the lattice soon resume the values corresponding to the background 
activity. To improve the detection abilities of the system, the adaptation rate A could be 
reduced at the expense of convergence speed. A better approach which does not make this 
compromise will be described here. The window of the transient detector was extended so 
that Q in equation (8.72) was increased to a value of 2. Since the detection of a transient 
in r(n), inhibits adaptation, the system stops adapting a few samples before the spike is 

encountered and starts again some samples after the transient has effectively ceased. Hence 

adaptation during transients is prevented and spikes are properly detected.

Finally, it is worth noting that in the case of G (z) both the direct and the lattice LMS 

algorithms for HR systems performed in a similar way. In the general case there could have 
been differences, but these were possibly unnoticed because adaptation here was confined to 

a small set of points around the ‘optimal’ .

Speed of convergence

Although the slow convergence of the direct form LMS algorithm was one of the factors that 
initiated the use of other structures and algorithms, it is not a very critical issue[130], since 
for the existing records the LMS algorithm performed well. But it may be argued that the
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test set of EEG signals was rather small and that in practice it is possible to encounter some 
EEGs containing abrupt transitions between one set of parameters and another, for which 
faster adaptation might be necessary for successful transfer function tracking. The speed of 
adaptation for the algorithms tested will now be examined.

Before it became unstable, the RLS algorithm appeared to converge much faster than the 

LMS. This was particularly noticed at the beginning of the record where it took less than 

10 iterations for the RLS to ‘level off’ to the minimum MSE, whereas the direct form LMS 
required approximately 150 iterations.

The convergence characteristics of the cascade LMS structure were not much better than 

the original direct form LMS, requiring over 100 iterations before the MSE approached its 
limiting value.

Finally, the LMS lattice structure took about 20 iterations to reach close to the minimum 

MSE, although it is a steepest descent-type algorithm and should behave similarly to the 
LMS for the direct structure, as Widrow and Stearns reported[202, pp. 177-181]. The 
difference lies in the use of a normalized adaptation rate throughout the stages of the lattice, 

which is modified by the power at every stage to produce the effective learning rate (section
9.3). This results in different learning rates for every stage and bears a relation to the RLS 
algorithm, which uses the inverse of the input autocorrelation matrix to provide a means of 

different adaptation for every coefficient.

Response to artifacts

Although artifacts were taken into consideration during the development of the system (sec-
tion 7.4.4), the adaptive implementation did not concentrate on an artifact tolerant system. 

As different sources of artifacts have different properties, they may be classified into either 

the transient category, or the background activity, depending on their properties and dura-

tion. The exponentially decaying transients that were introduced into the artificial records 
for testing the system belong to the first category. Muscle artifacts are a primary concern, 
because they often possess spectral properties similar to spikes.

The results for records C and D in Table 9.1 indicate that although artifacts caused a 
number of false detections, there was some degree of artifact rejection in all system con-
figurations tested. Excluding the pathological conditions of the RLS and the cascade real-

izations, only some of the artifacts were detected as spikes by the system. Most of these 
were encountered during isolated muscle spikes or at the beginning of artifact bursts. Their 
numbers were influenced by the implementation of whereas that for G (z) did not

have any significant effects. The direct LMS method that initially appeared superior in all
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respects was outperformed by the Lattice LMS with the modification described in the pre-
vious section. Both algorithms responded similarly to isolated artifact spikes (causing false 

detections). The faster speed of adaptation of the lattice system proved advantageous when 

artifact bursts were encountered. The first spike of the burst was falsely detected, but as 

adaptation progressed, the artifact was modelled by its energy was greatly absorbed
by this system, with only an occasional false detection or two during the burst. For the 
direct realization, response was similar, but slow adaptation caused more false detections at 

the onset of the muscle spike bursts.

Although these systems might misinterpret artifacts as epileptic spikes, it was decided 

that artifact rejection could be performed at a later stage, or even off-line, by manual in-
spection of the reconstructed records or even by automatic investigation to reject repetitive 
detections in segments where H (z) represented high power in the spectral region of the spike 
(see also section 9.5 and main Conclusions).

Other properties of alternative system realizations

Some of the adaptive systems tested possess secondary but useful properties that are absent 

from the the direct form LMS adaptive filter originally employed.

The RLS algorithm offers the advantage of fast convergence but little else, because it 
utilizes a direct form realization, like the initial LMS system.

The cascade system consists of second order sections and hence its zeros are easily com-
puted, because the transfer function of each section can be readily factored. It is then easy 

to determine whether all the zeros lie inside the unit circle in z (minimum phase property) 
which ensures the stability of the inverse system, H (z). Moreover, knowing the poles of 

H (z) which coincide with the zeros of the inverse system, is a useful form of parametriza- 

tion. The location of the poles is related to resonant frequencies[15, pp. 152-170] and hence 

to principal frequency components in the signal. In an on-line system this may provide a 
way to describe collectively the main features of the background activity in a way that is 

economical to store for off-line retrieval, as a small set of spectral parameters. It is then 
possible to ‘reconstruct’ the EEG signal so that its main features may be visually inspected. 

Exact reconstruction may not be possible, but manual interpretation rarely depends on the 
details of the EEG signal, which is usually described in very general frequency terms (a, /?, 

i  and 6 activities, for instance).

The lattice structure does not offer simple factorization methods of the transfer function 

it implements, although an algorithm for finding the poles of an HR lattice structure was 
presented by Jones and Steinhardt[100]. Nonetheless, it provides a simple means for testing
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the location of the zeros of the prediction error system, H~l (z) as well as the poles of 
G(z). This property makes the lattice realization appealing for the implementation of both 
systems. The ability to test the location of the poles of the spike generating system G(z) is 
of particular importance, because it provides a simple way to control their range with the 

algorithms described in section 8.4.4.

9.5 General comments and observations

In this Chapter, a number of alternative implementations of the ‘linear’ parts of the spike 

detector proposed in Chapters 7 and 8 have been investigated. All realizations have been in 
the general theme of adaptive linear prediction and filtering. It was demonstrated, however, 
that structures and algorithms like the lattice, outperformed in some aspects the direct-LMS 
realization, whereas others, the direct RLS and the cascade realizations did not perform very 
well.

Irrespective of their results, the possibility to change parts of a system, while maintaining 

the rest unchanged, even at the conceptual level, has shown how versatile a modular system 

can be. It may be possible to replace the linear systems with some non-linear ones, when the 
theory behind the latter becomes well-documented. This future prospect is not shared by 
the earlier detectors of Chapter 6, which were also quite reliable, but depend on specialized 
elements selected for this particular application.

The approach suggested here produces as part of the analysis a number of secondary 

signals, like a spike-free EEG estimate and an estimate of the spike signals as well as a 
number of parameters, which may be used in further analysis, either visual or automatic. 

There is also a possibility for its application to other signals, not necessarily biological. These 

are explained in more detail in the Conclusions of this Thesis.

As far as EEG analysis is concerned, the suggested system may be generalized to detect 

other transients, not only spikes. This would require the extension of the system by adding 
modelling systems for the transients considered in much the same way as with the spike 
model, G (z), as described in section 7.4.2. The decision elements (sections 7.4.4 and 8.5) will 

also need to be modified to include transient detection as well as some means of discriminating 
between the types of transients. This extension to the original system will be addressed in 
the next two Chapters (10 and 11).
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Chapter 10

Generalization of the analysis 
procedure

10.1 Introduction

Although the main objective of this work was the detection of epileptic spikes, the presence of 
other transients cannot be ignored. Their majority consists of signals of non-cerebral origin 
(artifacts) and these spontaneously occurring signals contaminate the EEG signal. Many are 
rejected by the spike detection procedure of section 7.4.4, but determining the source of each 
one has advantages. Verifying the origin of a transient provides an additional confirmation 

that it did not constitute a spike that was missed. It also permits its estimation and hence its 
removal from the EEG. Therefore, the scope of the analysis procedure, proposed in Chapter 
7, may be extended to traditional clinical, as well as ambulatory monitoring, as it may 

provide a means of artifact correction. This is a useful feature, especially when dealing with 

nervous or uncooperative patients, whose EEG may contain a plethora of artifacts.

It should also be reminded that the analysis method proposed in the previous Chapters 

has not been developed specifically for the EEG, but as a more general procedure to analyze 

signals which contain a mixture of transients superimposed on a signal with infinite time 
extent. In those cases, there may be more than one transient of interest and the ability of 
the system to detect all of them is crucial. Relating this to the EEG, it would be desired 
to discriminate spikes from sharp waves, which have longer durations, or even between sub-
classes of spikes as well as other features. These possibilities have not been tested, because 

of the unavailability of records containing a variety of transients, but the extension of the 

system is a possibility deserving some attention from both the signal analysis theoretical 
point of view as well as from the neurophysiological perspective.

275
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In this Chapter the extension of the analysis procedure to detect non-spike transients is 
studied and the necessary modifications to the existing structure and the addition of new 

elements are covered. Finally, results for artificial and real EEG records are presented.

10.2 Transients

Epileptic spikes are not the only transients which have their origin in the cortex. In section
2.5.2, other patterns were listed, not all of which are transients according to the signal 

modelling definition of section 7.3.3. Sharp waves are similar to spikes, apart from their 
longer durations, and are characteristic of this group of signals. Isolated slow waves may 
also be regarded as transients, fc-complexes and vertex sharp waves also fall in this category, 
though not related to pathological conditions. An extended system would ideally attempt to 
detect these transients as well as combinations of them occurring as complexes (spike-and- 

slow-wave, sharp-wave-and-slow-wave, polyspikes-and-wave, etc.).

The second category includes transients whose source is not located in the brain and their 

presence in the EEG is normally undesired. Some of these artifacts (section 2.5.4) originate 
from potentials accumulated on the eyes and appear as discharges in the EEG associated 
with eye movements, opening and closure, blinks and eyelid fluttering. Another category of 

transients with a definite shape originates from the heart. Pulse artifacts are registered in 
the EEG when an electrode is placed close to an artery, but recording of the cardiac rhythms 
directly, in the form of QRS complexes, is also possible. One of the most profound sources 
of interference in the EEG is muscle potentials. Artifacts due to muscle activity, although 
having ‘spiky’ appearance do not have a well-defined shape and often persist for considerable 

periods of time. Hence they are generally difficult to model and eliminate.

Finally, a number of extracerebral potentials originate in the recording equipment and 

the electrodes. Electrode movements, dry contacts, changes in their resistance because of 
changes in the electrolyte solution that forms the contact with the skin (section 2.5.4) are 
among the commonest. These sometimes have characteristic shapes and may be detected 

and subsequently removed.

Not all mentioned transients fit in the signal model (section 7.3.3). Muscle artifacts, for 
instance, which are the most troublesome in spike detection, generally do not have specific 

forms and often have long durations. Those that do conform to the general definition of tran-
sients affect the analysis system (section 7.4.4) at various levels of the detection procedure, 

which are now considered.

Transients, like spikes, are registered as disturbances of large amplitude in the output,
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r(n), of the background activity prediction error system, H~l (z). It is not possible to 
discriminate whether the origin of the disturbance was due to a spike or another transient, nor 

is it possible to differentiate between the various types of transients based on this indication 
alone.

For this reason, the inverse spike model was introduced, so as to provide the signal 
appropriate for the generation of an estimate of a spike every time such an event is detected 
in r(n). The estimated spike is then subtracted from the recorded EEG signal and the 

absence of a transient verifies that the origin of the disturbance was indeed a spike. If 
another transient had occurred, then the subtracted spike would not have removed it, since 
this has a different morphology and the transient would still be registered in the spike-free 
signal, e'(n). This procedure is capable of detecting spikes, but is unable to produce a 

transient-free signal, e'(n), when non-spike transients are present. Moreover, if a transient 
has morphology similar to spikes, it may be detected as one. In the EEGs studied this 

did not occur, apart from some muscle artifacts. The detection and elimination of other 
transients to produce a ‘clean’ EEG signal has been the primary source of motivation for the 
extended system described next. The similarity in the morphology between transients has 
not been neglected, because the possible extension of the range of application of the system 
to other signals was one of the targets during its development. Perhaps in these signals there 

are many transients of interest, some similar to each other, all of which have to be detected.

In the sections that follow, a method for the extension the already developed system is 

proposed. Although the amendments were primarily concerned with the detection of one 
transient, apart from spikes, the procedure is easily generalized for any number of transients.

10.3 Extending the system to detect other transients

The analysis procedure used for spike detection depends heavily on inverse modelling. A 

prerequisite for its generalization is a model for the transients considered, from which some 
inverse may be derived and included as part of the system.

10.3.1 A  reminder of the model of transients

A model for non-spike transients has been constructed and discussed in section 7.3.3. The 
model here is concerned with N  transient types, each described as a signal component, 

[¿i(n ),i2(rc)) • • • 5*;v(n)]- Each one of these, t,(n), was decomposed into a system, F,(z) and 
an excitation sequence, c,(n). The {F ,(z )j could have any structure, but for the purposes 
of analysis and estimation they were considered to be all-pole transfer functions of order
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L , cis with the equivalent spike model, G(z). All the excitation signals, {c ,(n )} consisted 
of impulses occurring at random instants and having different amplitudes. Durations be-
tween consecutive impulses were considered to be an exponential random process, whereas 
amplitudes were assumed to follow a Normal distribution around a mean value. For some 

transients having sometimes positive and sometimes negative polarity, these were made to 

have equal probability of occurrence.

Because spikes are just one of many transients in the extended system, they may be 

included in the model as the zeroth transient, t0(n) =  s(n) where F0(z) =  G (z) and co(n) =  
d(n).

10.3.2 Elements of inverse modeling

Based on the model given above, an analysis procedure may be derived. The procedure is 

exactly equivalent to the one already described for spikes (section 7.4.2) and will not be 
discussed in detail here. In general, the application of the inverse of F,(z) on the recorded 

EEG signal e(n) =  b(n) +  Z)£Lo*«(n) +  v(n ) would produce a signal y,(n) containing the 
generating impulse sequence c,(n) of the ¿th transient, a distorted signal because of the 

background activity, 6(ra), noise due to v(n ) and, in the presence of any of the other transients, 
a corrupted version of them. As explained for the spikes in section 7.4.2 the additive signals 
may be large, rendering the reliable detection of c,(n) impossible.

Of course, the above procedure requires the exact knowledge of the F,(z) or its inverse, 
F~1(z). These systems are generally unknown, but their off-line estimation is possible using 

existing records containing the transients and the method for estimation of optimal spiking 
filters, described in section 8.4.4. On-line optimization, to allow for small deviations of the 

individual occurrences of the transients from the off-line model, may also be introduced in the 

by constrained on-line adaptation of the F,(z), as with G(z) in section 8.4.4. Both the direct 
and the inverse of the F,(z) for all transients considered are required for the implementation 

of the system, which is described next.

10.3.3 Extension of the analysis procedure

The generalized transient detection system is an extended form of the spike detection pro-

cedure, described in section 7.4.4. The most apparent difference is the introduction of an 

array of transfer functions in the place of the spike modelling system. Like the earlier sys-
tem, both the inverses, F0-1 (z), F f  * (z ),. . . ,  Fj^1(z) of the modelling systems and the direct 
transfer functions are present in the system, as demonstrated in Figure 10.1.
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Figure 10.1: Diagram of the extended analysis system
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Modifications have also been introduced in the decision and detection unit, since the 
single spike initiator had to be augmented by N  transient initiators. The role of these 

should be evident from the previous description in section 7.4.4. A brief explanation is, 
however, necessary to clarify some points. This will concentrate on the signals present at 
the output of the prediction error systems, r(n) and r'(n ) and the outputs of the
inverse transient modelling systems, yo(n), yi(n ) , . . . ,  ?//v(n). These define the function of the 

decision and detection unit under different conditions.
Firstly, when no transient is present in e(n), then r(n) contains only the on-going signals, 

due to the background activity and the noise. Therefore the transient detector operating on 

r(n) will not detect any signal and hence the remaining systems will be inactive.

If one of the modelled transients (including epileptic spikes) occurs, this will be registered 
in r(n) as a disturbance whose shape will depend on the type of transient and the condition 
of which is continuously updated. This shape, as mentioned in section 7.4.4 cannot
be predicted, but it should contain components mainly in the higher end of the spectrum, due 

to the high-pass action of the inverse of the (generally) low-pass system H (z). The transient 
disturbance, however, has large amplitudes that are apparent in the ‘noisy’ appearance of the 
on-going signal after decorrelation. These are found by the transient detector (zt(n) =  true). 
The type of transient cannot be determined based on this signal alone. Because, however, 

the shapes of the transients (which are defined by their modelling transfer functions) are 
different, the outputs of the {F i-1 (z )} may be used to detect which transient had occurred. 
The output of the system corresponding to the transient taking place, yj(n), should contain 
an impulse. It is intuitive that this is not possible for the remaining systems, because their 

corresponding transfer functions are different by definition. These outputs play a secondary 
role in the detection procedure, because they are contaminated by large signals, making 
the detection unreliable. Once, however a transient is hinted by zt(n), it may be possible 
to find which of these contained an impulse signal. The combined detection is an output 
from the system. There are N  such outputs, one for every transient, Zo(n), z i(n ),. . . ,  zjv(n). 
Normally one of these, Zj(n) will be true, indicating that the jth  transient was the one 

that had occurred. This signal is used as a mask on the corresponding j/j(n), to derive 
an excitation impulse-like sequence, Cj(n) which will be fed in the corresponding transfer 

function, Fj(z) to generate a model of the transient that presumably occurred. In fact a 
correction, A j(n ) will be added on the corresponding t/j(n), as explained in section 7.4.3:

Cj(n) =  2j(n )[t/j(n) +  A ,(n)] (10.1)

Strictly speaking, this is performed by a separate element of the system, the spike (or 
transient) initiator. One such unit is required for every modelled transient, whose simple
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function has already been described in section 8.5.2.

The model of the transient, ij(n) will then be subtracted from the recorded signal, e(n) 

to produce e'(n), as before. By repeating the transient detection procedure on e'(n) and 

observing the absence of a disturbance in its output r'(n), the detection of the transient that 
occurred is verified. In the present system, where only spikes are of interest, there is need 
for a single output, z3(n), indicating the presence or absence of spikes.

Finally, a transient which is not included in the list of those modelled will still produce 
a detection in zt(n). It is possible, depending on the condition of the {y ,(n )} for a detection 

to appear in one of the {z ,(n )}, especially if the transient bears some resemblance to one of 

the modelled signals. If this occurs, then an estimate of one of the {f,(n )} will be generated 

by mistake. In this case its subtraction from e(n) will not remove the transient, which will 

cause a disturbance in r'(n) and the incident will be correctly identified by the detection 
logic (no transient will be signalled in z3{n)). Obviously, if none of the {F ,(2)} is excited, 
there will still be a transient in e'(n) (since none was subtracted) and the detection logic will 

arrive at the same conclusion.

Evidently, the detection and decision logic in the generalized system is considerably 
more involved and the corresponding system more complex than the one required for spike 

detection.

10.4 Modification of the decision and detection unit

The function of the system described in the previous section bears some resemblance to the 
simple unit required for spike detection, described in section 8.5. In the earlier system, it 
was not necessary to discriminate between types of transients, hence the only inputs to the 

detection unit were the outputs of the two prediction error filters, r(n) and r'(n). There 
were also two outputs, a transient detector, used as a spike initiation signal, zt(n), and a 
spike detection signal, z3(n), indicating the final decision whether a spike had occurred at 
the nth sampling instant.

10.4.1 Additional inputs and outputs

The generalized system must discriminate and generate initiation signals, 
z0(u), z i(n ) ,. . . ,  z^/(n), for any modelled transient. To do this, the outputs of the inverse 
filters of all the modelled transients, yo(n), t/i(n ),. . . ,  j/j v(” ) must be inspected, as shown in 
Figure 10.2.
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r'(n — M) r(n + M) y0(n + M) ys(n + M)

The detection-decision unit is, as before, a combination of ‘continuous’ preprocessing 
functions and logical operations to produce the (effectively binary) outputs.

10.4.2 Preprocessing of the inputs

Preprocessing of r(n) and r'(n) could be maintained as in the earlier system of section 8.5. 

This consisted of squaring the ‘current sample’ , that is the one in the middle of a window of 
length 2M  -|- 1, normalizing it by a variance estimate, based on the samples in the window 
excluding samples around its centre.

It was decided to express this in terms of the information contained in individual samples 

using a weighted sum-of-squares of samples in the window. This approach permitted the 

direct comparison with a later development (section 11.5).

Transients need to be detected in the nth sample value that occupies the middle of 
the window for the signal under consideration (r(n) or r'(n)). It is however more effective 
to allow the detection to ‘ spread’ over a small group of samples, 2Q +  1 before and after 
that time instant. It acts as a window, when there is a small time difference between the 
appearance of the transient in r(n) and the excitation impulse in y,(n) (see section 8.5.2). 
This may be the result of the difference in the phase characteristics between the {F i-1 (z)} 

and the H~l (z). To determine suitable weights, the samples in the window were classified 
in two types. The central 2Q +  1 contribute to the sum increasing it, whereas the 2(M  — Q)
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samples in the ‘tails’ of the window have a decreasing effect. Thus, if the central samples 
are atypically large, compared to the rest, the sum should be positive, otherwise negative. 

The latter should also occur if there are large amplitudes far from the centre of the window, 
although this cannot be guaranteed in all such cases. It is evident that the weights in the 
centre of the window should be positive, whereas the rest should be negative. For simplicity, 
all positive weights were made to have the same value, w+, and the negative ones similarly 

have the value w~. Hence the weighting procedure is defined by:

-Q-1 Q 0+ i
f (n )  =  -  ^2 w~x2(n +  j )  +  ^2 w+x2(n +  i) -  ^2 w~x2(n +  j )  (10.2)

j = —M  i = —Q j = M

where x(n) is the input under consideration (r(n), r'(n), etc.). Suitable values for w+ 

and w— were determined by considering that the summations of the off-centre samples 

are approximated by a multiple of the variance, a2 of the input signal with all transients 
removed. Their total value would then be E_ =  2w~(M  — Q)cr2. Hence, for any one of the 
2Q +  1 central samples to make /(n )  positive, its squared amplitude, weighted by w+ must be 
greater than E- . If a detection must occur when x2(n +  i) >  ¿o<t 2, as suggested in the original 
system (Equation (8.73)), then, for the two detection schemes to be equivalent, f {n ) =  
io+x2(n -f i) — w+tl<r2. By comparison with the definition of /(n ) ,  w+t^o2 =  2w~(M — Q)cr2, 
giving the ratio:

*  =  2(M  ~  Q) (10.3)
W ~  VQ

By setting w~ =  1, and using the parameters of the system (M  =  32, Q =  2 and 11 =  6) the 

remaining parameter is tn+ =  10.

The required binary indication of the occurrence of a transient, z(n ) is derived from the 
linear function / (n )  by thresholding, so that z(n ) =  1 if / (n )  > 0 and z(n) =  0 otherwise. 

Two such weighted sum and threshold units were constructed to implement the two transient 
indicator procedures, one for each of the signals r(n) and r'(n). These are labelled in Figure

10.2 as zt(n ) and z[{n).

With similar considerations detecting impulses in the outputs of the transient modelling 

signals could be performed by similar units, one for each signal, j/,(n). Because the power of 
the extraneous components due to the background activity and the noise in these signals is 

higher than the equivalent in r(n), the detection of the impulse-like components in this signal 

is more difficult and can only be achieved for a lower confidence limit, t0 =  1.65 assuming that 
the distribution of the signal is Gaussian with zero mean and a 10% probability of detecting 
a transient when there is none (see also section 7.4.3). This is a consequence of the reduced 

reliability of these signals when used alone for the detection of transients (section 7.4.4). The
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corresponding binary outputs, zp,(n), of the preprocessing units for each transient (Figure
10.2) are only intermediate and the output detection and activation signals are formed by 

logical operations on these as well as Z t ( n )  and z't(n).

10.4.3 Binary logic for the production of outputs

In the general system there are N + 1 transient initiation outputs, zo(n), zi(n), •. •, -z^(n) 
one for every transient type including spikes. There is also a separate indication of the final 

spike detection, za(n). All these signals may be generated by logical combinations of the 
outputs of the preprocessing units.

Evidently, z,(n) is active (true) if there is a transient (zt(n ) =  true) and there is an 

indication of the transient in zpt , at the same time. This is a logical AND operation, since both 
zt(n ) and z,(n) must be true simultaneously. Similarly, the output of the final spike detector 
is active only when zt(n ) =  true (a transient is present in the input) and z't(n) =  fa lse  (it 
was removed by the subtraction of the modelled transient) and additionally if the removed 
transient had been a spike (Zpo(n) was active). Because it is not possible to compute z't(n), 

due to the absence of values of the signal r'(n +  i) for i >  0, spikes are detected with a 
delay of n — 2M. This has an intuitive interpretation. If a transient is initiated at the nth 

sampling instant, it is not possible to detect whether its main components (which follow 
the initiation) have reduced the prediction error after they have been subtracted from the 

input EEG signal. Consequently, it is necessary to wait for M  samples before attempting to 
observe whether a transient had been removed or not.

As a consequence it is necessary to save at least M  ‘future’ values of the sequences zt(n), 
z't(n) and zpo(n) in order to perform the comparison. Alternatively, additional preprocessing 

units resembling the ones that produced each one of the required signals may be used to 
compute the corresponding values with a delay of M  samples. These have essentially the 
same weight distribution as the former, but they are centred around the (n — M)th input 

sample. The approach is more computationally intensive, but it has been preferred because 

it maintains the ‘combinatorial’ , memoryless, structure of the detection-decision unit, which 

fitted well with a different realization described in the next Chapter. The extra element for 

this implementation, has been depicted in Figure 10.2, labelled by its output zt(n — M ). The 
same weight distribution is actually used to generate z[(n — M ) and Zpo(n — M ).

It should be noted that the logical operations z ,(n )  =  zt(n)AN D zp, as well as za(n ) =  
zt(n — K)\NDzp0(n — Ar)ANDNOTz{(n — K )  may also be implemented as weighted sums with 

thresholding, assuming that the true or active has the numerical value 1 and its complement 

the value 0. Equations implementing these operations are be presented in section 11.5.1.
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According to this scheme, for the detection of N  transients, plus spikes, it is necessary 
to generate N  outputs (one per transient, z,(n)) plus one for spike activation, zo(n) and an 

additional spike detection signal, zs(n — M ), that is a total of N  +  2 outputs. These require 
an equal number of logical operations, as described in the previous paragraphs, and N +  5 
preprocessing units, out of which N  +  2 produce outputs based on the nth sample of their 

inputs and the remaining 3 with a delay of M  samples.

10.5 Results and discussion

The proposed extended analysis method was constructed for the detection of spikes and 
one more transient, having the form of an exponential decay with scaled amplitude. This 

signal does not correspond to any particular transient, but resembled some artifacts due to 
eye movements, as they are registered in the EEG signal or even some electrode movement 

artifacts (see Appendix D). These were artificially generated, because in the four available 
EEG records epileptic spikes were the only transients in abundance.

The decision-detection unit utilized a window of samples from the four input signals, 
r(n), r'(n), yo(n) and t/,(n). Sub-windows of 65 samples each, were used in each one of 
the preprocessing units. Therefore the parameters of the system, as described in section

10.4.2 were M =  32 and Q =  2. The delay for the detection of spikes was, therefore 64 
samples. This combination of parameters was a good compromise between accuracy and 
computational requirements. There were N  +  5 =  6 preprocessing units and N +  2 =  3 
binary units, a number equal to the outputs (spike detections, z„(n — K ), spike activations, 

z0(n) and transient activations Z \ ( n ) ) .

10.5.1 Testing the implemented system

The system constructed was tested with both artificial and real EEG data records.

As before, the sampling rate was 160 s-1 and the background activity modelling system 

had an order of 16, a normalized adaptation rate A =  0.1 and a power estimation parameter 

a =  0.9956. This system H~l (z) was realized as a direct LMS linear predictor, whereas 
F0(z ) =  G(z) and F\(z) were implemented as HR lattice constrained linear systems (section

9.3). The remaining system parameters were unchanged from those of the initial system 
described in detail in section 8.4.

Five records were used for testing the method. The results for those are shown collectively 
in Table 10.1. Record A was synthetic, constructed by superimposing the outputs of the 

background activity, spike, noise and transient generators (as in section 8.6.1).
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EEG
Record

Duration

in
seconds

Number
of

Spikes

Number
of

Transients

Muscle
Artifacts
present?

Detections

Spikes Transients

V X V X

At 62 25 20 No 21 2 18 0

BÎ 210 52 - Some 45 15 - 3

c t 130 8 - Yes 7 19 - 7

Dt 123 10 - Yes 6 23 - 19

Et 242 0 - Many - 55 - 42

Notes:
f: Artificial record of duration 10000 samples.

Real EEG records; they correspond to records A, B, C and D of previous tables.

Table 10.1: Results for simulated and real EEG records for the extended system structure

Records B, C, D and E are real sampled EEG signals. They correspond exactly to records 

A, B, C and D used for testing the spike detectors described in previous Chapters and they 
only contained spikes (and artifacts).

Figure 10.3 shows a segment of the synthetic input signal (Record A), and Figure 10.4 
shows how the system responded to a real signal. The sequences out of the inverse systems 

and the detection signals for the two transients present. The estimated spikes, transients 
and background activity signals are also indicated.

10.5.2 Comparison with the earlier system and comments

Evidently the extended system is not as effective as the original spike detector. There is an 

increase in the number of false detections for both spikes and the transients considered, as 

well as in the number of missed spikes. False detections due to muscle artifacts were more 

numerous here, but the primary concern is the behaviour of the system for the synthetic 

record A, where effectiveness was expected to approach 100%.

The source of this deterioration of performance was traced to the preprocessing units 

and their logical combinations, which comprise the decision elements. The focus here is on 
the transient preprocessing units, whose outputs { zpi; i =  0 ,1 , . . . ,  N }  have two undesirable 

characteristics:

• Each one depends on a single transient, as its input is a window of samples of one of 

the t/,(n) only
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(a) e(n)

(b) z,(n)

(c) e'(n)

(d) s'(n)

(e) <i(n)

Figure 10.3: Response of the extended system to synthetic data

• The zpi(n) are all binary signals.

A consequence of the first property is the inability of the preprocessing unit to relate its 
operation to the signals for other transient types and is, therefore, ‘blind’ to what happens 

elsewhere in the system. A transient of a particular type, say i , is likely to cause some 
‘disturbance’ of relatively large amplitude not only in the signal yi(n) that it represents, but 
also in all other outputs of the transient inverse systems. These are, of course smaller in 
amplitude than the one in j/i(n), but as a consequence of the binary nature of their outputs 

the preprocessing units are inherently incapable of distinguishing between them. Hence, 
there may be multiple detections of transients by more than one preprocessing unit. This, 

in turn, makes every one of the transient activation units, where preprocessing indicated 
a transient, to become active. Therefore more than one transient model is generated and 
subtracted from e(n) (see Figures 10.1 and 10.4). Subsequent testing of the residue signal, 
e'(n), would reveal that a transient is still present, because of the extraneous generation 
and subtraction of a transient. Hence a spike indication would not occur, even when the 

transient was actually a spike.
This interpretation agreed with the observed results and suggested some ways to overcome 

the problem. It is possible to make the outputs of the preprocessing units continuous, instead 
of binary, so that the amplitude of the input transient may be reflected in its output. Then it 
would be the task of the output units to discriminate which transient was the one most likely
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(a) e(n)

(b) z,(n)

(c) e'(n)

(d) *'(n)

(e) t\ (n)

time (in seconds)

Figure 10.4: Waveforms for real EEG signals

to have occurred. Needless to say that the necessary logic would not be binary any more, but 
the thresholded weighted sum implementation of these operations described in section 10.4.3 
may be employed. Of course, each of the elements would need to be modified to add inputs 
from all other transient preprocessing units. The output of the *th unit, z,(n), would only 
be active when zt(n ) is active and 2p,(n) has the largest amplitude of all the preprocessing 

units. This method would only generate one transient at a time, so if two of them occur at 
one specific instant only one would be activated and it is possible for one or both to pass 

undetected, a rather rare eventuality whose effects in practice would be negligible.

Another option is to incorporate all of the transient signals, y,(n) in all of the pre-

processing units. In this way the amplitudes of occurring transients may be compared at 
preprocessing rather than afterwards and hence the (binary) output of each unit would be 
active only when the corresponding transient is the one with the largest amplitude.

Both suggestions appear reasonable, but they are not free from problems. In the first, 

the introduction of the continuous signal in what was a purely binary decision entity made 
the validity of the latter questionable. It is quite possible that the weights corresponding to 

the binary operations (see section 10.4.3) would need to be modified to achieve the expected 
system behaviour. There are, however, no analytic means of describing them, since they 
depend inherently on the nature of the signals concerned. It is also questionable whether a 

linear combination of all the inputs to the unit, according to the second suggestion would
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be capable of discriminating whether a transient is at its peak in a particular sample of the 
multitude of inputs. This would be particularly difficult when the transient is registered 

with fairly large amplitudes in more than one of the {t/,(n)}.
Evidently, a more flexible approach is required to overcome the limitations of the proposed 

modifications of the decision-detection unit. Such an approach is described in the next 
Chapter.
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Chapter 11

A  flexible detection unit

11.1 Introduction

The problems encountered during the extension of the analysis procedure to more than one 

transient, indicated that the rôle of the detection and decision unit could not be undermined. 
Despite detailed considerations during its design in sections 7.4.4 and 8.5, it proved to be 
the limiting factor, as far as the performance of the whole system was concerned.

The general conclusions from the previous Chapter indicated that the insufficiency of the 
decision unit was its inability to locate the source of a transient (on some occasions). This 
was traced to the way it discriminates individual transients, which is based on very limited 

information and ignores their inter-correlations. A method was sought, to overcome these 

limitations by incorporating relative amplitudes between transients and their correlations for 
their detection. This was found in a well-known type of Artificial Neural Network, the Multi- 
Layer Perceptron. This Chapter illustrates that there is a close correspondence between the 
MLP and the existing system, and that the latter is in fact a natural generalization of the 

former.

Nevertheless, its implementation was not trivial, as new issues were raised. The MLP 
achieves its performance by ‘learning by example’. It was therefore necessary to construct 

a ‘training set’ . Moreover, as shown later, its configuration, initialization and conditioning 
of its inputs were issues worth considering. Several configurations were tested. The results 
showed that the earlier, intuitive realization was a step in the right direction, but it required 

some ‘ tuning’ of its parameters.

291
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11.2 Artificial neural networks

Artificial Neural Networks (ANNs) are a broad class of structures, capable of changing their 
behaviour to maximize performance. This property is important in this application, since it 
consists of what the initial decision-detection is missing, the ability to improve its response.

They evolved in parallel with digital computer technology and have a turbulent his-
tory [136, pp. 14-20] (see Appendix E). Recent developments in the 1980’s by a small 
number of enthusiasts highlighted the capabilities of the ANN approach to solve problems 

considered difficult by conventional computing methods, especially those related to pattern 

recognition[166].
Artificial neural networks are characterized by relatively simple functional units, called 

nodes, processing elements or neurons. Inputs to a processing element may be outputs of 
other elements or they may originate outside the network. Similarly, its output may be 
‘internal’ , serving as an input to other processing elements, or output to the ‘outside world’ , 

or both. A node has a transfer function, which describes how the output may be generated 
from its inputs and local memory. The utility of an ANN comes from the collective, parallel, 

operation of its processing elements, which are highly interconnected.
From the outside, an ANN may be regarded as a system which processes a number of 

inputs and generates a number of outputs. This offers the possibility of inclusion of an ANN 
as an embedded unit in a conventional software or hardware system[136, pp. 9-10]. It may 
be implemented either in hardware or simulated in software.

Depending on their general properties, ANNs are classified as associative, mapping, spa- 

tiotemporal, stochastic or hierarchical (see Appendix E). These are described in detail by 

Hecht-Nielsen[136, pp. 79-109] and Lippman[112].
The ones of interest in this application are mapping networks, since for the purposes of 

the construction of the decision-detection unit for the EEG analysis system, what is required 
is a mapping from a set of inputs to a set of binary activation signals and detection outputs. 
One of these backpropagation neural network (a form of the MLP)[136, pp. 110-162] is the 
most likely candidate to perform well in the task at hand without requiring many changes 

in the existing structure of the system.

11.3 Architecture of the MLP neural network

The MLP neural network is a feed-forward structure, that is there is no feedback. Strictly 
speaking, this is not true during training, because this is based on feeding the errors back from 

the outputs through the network (see section 11.4). It is also a layered structure consisting
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processing element detail of processing element
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hidden layer 

output layer

Figure 11.1: Architecture of the MLP

of groups of processing elements (see Figure 11.1). Hence, the inputs to the network are 
all received by one layer, called the input layer and all the outputs are produced by a layer 
of nodes, called the output layer. Between these there are one or more ‘hidden’ layers of 

processing elements, so called because they are not directly connected to the outside world. 
The input layer consists of inactive units, whose only purpose is to provide the inputs to the 
rest of the network. This will be ignored in subsequent analysis, because it has no functional 
significance. The hidden layers are usually numbered sequentially, starting with the one 
closest to the input.

Traditionally, the inputs to the processing elements of one layer are the outputs of the 

previous layer. In some applications inputs from more than one previous layer are provided. 

The rule is that connections always come from preceding layers. One characteristic of the 
MLP is the symmetry of the connections, since there is full connectivity between one layer 

and the next. In other words, the output of an element in a particular layer is an input to 
all elements (nodes) of the next layer, as depicted in Figure 11.1.

As Hecht-Nielsen pointed out[136, pp. 125-138], the backpropagation MLP neural net-
work just outlined does not comply with the definition of an ANN, because during optimiza-
tion it is necessary for a processing element to have more than one output (see next section). 
It is, however, possible to redefine its architecture by decomposing the processing elements 

so as to ensure that all resulting nodes have only one output each.
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11.4 Approximations of functions by optimization

Having outlined the structure of the MLP, it will now be explained why this can act as an 
approximation to a function and how this may be achieved.

11.4.1 The Operation of the MLP

First of all the operation of the MLP must be described. Each processing element essentially
performs the same task as any other. The transfer function of an arbitrary processing

element p of a layer l has a set of weights tu/pl, tc/P2, . . . ,  WipNji each associated with one
of the NJ inputs to the layer xn,X[2 , . . . , x lNi. The operation of the processing element

N*is a weighted summation to produce a linear combination of its inputs, / /p =  wipjxij 
followed by range-limiting, akin to thresholding. This is a non-linear operation, based around 
a ‘threshold’ value, 0ip to produce the output of the element, z/p =  <r(//p — 0tp), where cr(-) 
denotes the range limiting non-linearity. To simplify the description, vector notation will 
be adopted. The threshold will also be implemented as a weight applied to a constant 
input of unity and denoted by the ‘zeroth weight’ in the augmented weight vector, W/p =  

(u>/po, itf/pi, wiP2 , . . . ,  Wipn ‘ )T■> where wip0 =  — 0ip. The input vector may then be denoted by 
X; =  (l,x /i,a :/2, . . .  Then the transfer function of the processing elements of the
MLP may be described by the pair of functions:

fir =  w £x,p 
Zip =  <7 (ftp)

Because in the traditional form the inputs to a layer of the MLP neural network are the 
outputs of the previous layer, the input vector may be expressed in terms of these outputs, 

X/ =  Z/_i =  (1, Z(/_i)i, Z(/-i)2, • • •, Z(/-i )tv,_j )T- Consequently, the number of inputs NJ to a 
layer is equal to the number of outputs (and hence elements) in the previous layer, N i-j. 
By this convention z0 is the input vector, x. Both notations will be used interchangeably. 

Moreover Zjr, will be used to denote the network output vector, since there are L layers in the 
MLP hierarchy (excluding the inactive input layer). In some applications the non-linearity is 

not included in the output layer, thus permitting the functional approximation of the MLP 
to extend to functions whose range is the whole of rather than a compact subset of this 
space.

The non-linearity, <r(:r), originated in the threshold function, whose range consists of two 
values, 0 for x <  0 and 1 for x >  0. This function, however is non-differentiable at x =  0 and 
cannot be used in conjunction with the learning algorithms that are often employed[112]. 

Therefore smoother functions, cr, are utilized, which have the following properties: A limited

( 1 1 .1 )
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range, cr(x) £ [a,6]Vx £ ffi.. Typically, [a, 6] =  [0,1] or [—1,1]. They should also be differen-
tiable at all points and monotonically increasing, which guarantees that lim;E_ _ 00 <r(x) =  a 

that limx_ +00 er(x) =  b. The most commonly used is the logistic function[ 166, 112] [136, pp. 
56-63, 124-137],

**(1 ( 1 ! -2 )

Other possibilities include cr2(x) =  tanh(x) =  and cr3(x) =  ^Arctan(x).

Having explained how the MLP neural network functions it may now be demonstrated 
how it achieves the desired approximation to a required mapping.

11.4.2 Approximation of a given mapping, optimization

Unlike some other ANNs, which attempt to construct a mapping by clustering similar inputs 
based on a set of rules, the backpropagation MLP network requires an explicit description 

of the mapping as a set of input-output pairs of vectors, (x, d). Of course d denotes the 
desired output vector, which may not necessarily be equal to the output of the MLP after 
training, but is expected to be close to it. Therefore, the desired mapping is specified by 
a training set, which is a (usually finite) collection of pairs {[x (n ),d (n )];n =  1 ,2 , . . . } .  It 
is desirable that the training set is comprehensive, covering all possibilities arising in the 

particular application, with adequate representation. These issues will be addressed towards 
the end of this section, as they are related to the training scheme.

‘Training’ the MLP implies the procedure of presenting an input vector example x(n) to 

the network from which its output vector, z l  is computed. The network is then presented 
with the desired, or target, vector, d(n), and is ‘corrected’ by modifying the weights at the 
connections between its processing elements in order to make its output similar to the desired 
response. This procedure must be repeated for the whole of the training set.

This scheme requires two elements: A performance criterion to measure the global be-
haviour of the network to the whole of the training set and a method to compute the weights 
of the network. The performance of the MLP can be measured by ‘how close’ its output 

is compared to the desired mapping implied by the training set. Since this is related to 
the error of the approximation, e(n) =  d(n) — z^(n), performance criteria are typically 
positive, non-decreasing (distance) functions of e(n). The mean-squared-error function, 
£ =  E[e(n)T£(n)] =  E[||£(n)||2] is by far the commonlest, although others like the mean 
absolute error E[||e(n)||] and higher order norms E[||e(n)||I/] have been investigated by some 

authors[180].

The minimization of the MSE function was encountered before, as it is the basis of
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Wiener filtering, discussed in section 8.1. The systems then were linear and it was possible 
to express the solution in closed form with the aid of the correlation matrix. The presence of 

the non-linearities in the outputs of the processing elements and their hierarchical (layered) 
organization make a similar formulation and solution impossible. Numerical optimization is 

often employed to determine the optimal weights recursively.
This is a procedure that uses the weight vector formed by including all weights of all 

processing elements of the network, w. The MSE, being a function of w is minimized when 
its gradient is zero. Therefore, the point of minimum MSE may be determined by starting 
from an initial guess and proceeding in repeated steps n =  0,1,2, . . .  in a direction opposite 
to that of the gradient V£(w):

w(n + 1) = w(n) — ¿iV£(w(n)) (11.3)

This procedure is equivalent to the method of the steepest descent (section 8.4.1). There are 
many varients of the basic equation. To smooth the noisy estimates, a ‘momentum term’ is 
usually introduced, which utilises the previous direction of the gradient, w(n — 1) —w(n)[136, 
pp. 59-63]:

w(n + 1) = w(n) + a[w(n — 1) — w(n)] — (1 — a)^V£(w(n)) (11.4)

To implement a practical scheme it is necessary to estimate the gradient vector, V£(w(n)). 
This consists of the partial derivatives of £ with respect to each weight. An algorithm closely 
related to the LMS , the generalized delta rule, was proposed by Rumelhart et al. [166]. 
Because its description is rather lengthy, but some of its aspects will be necessary for the 
discussion that follows, this has been included separately in Appendix F.

11.5 Implementation of the MLP decision and detec-
tion unit

The earlier detection-decision structure, described in section 10.4, arose naturally as a 
method for the detection of spikes as well as for the production of the signals that control 
the generation of suspected transients. Its structure and function were selected to perform 
the required task using the usual engineering approach of breaking the system into smaller 

entities whose function is simple enough to implement directly. When testing revealed a 
deterioration in its performance, efforts were concentrating on improving the existing unit, 
rather than on replacing it, since its structure appeared logical and so did its functionality. 
The only ambiguous points were the preprocessing of its inputs and the possibility of hidden
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correlations, which could not be considered by the ad hoc design methodology of the earlier 
system. It was therefore surprising to recognize the resemblance between this system and 
the MLP. The latter is a generalization of the former and as such it offers capabilities that 

the initial system could not possess.

11.5.1 Relation to the intuitive system

Initially, the relation of the intuitive system to the MLP may not be apparent. Of course 
both are layered structures, but the first is a mixture of real and binary (logic) elements, 
its output being a binary signal vector, whereas the second performs a mapping from a real 
space to another real space, using affine combinations and smooth non-linearities only.

Moreover, the function of the MLP is generally defined as a mapping from its inputs and 

its desired output rather than by the behaviour of its individual elements, which was the 

basis of the earlier system. Related to this, is the way the connections between its functional 
elements are defined in the two structures. In the existing system these are prescribed by 
the purpose of every element, whereas in the MLP elements lose their individual significance 
and it may not always be clear what part of the whole function each one performs. Therefore 
one layer is fully interconnected to the next.

To demonstrate the similarity of the earlier system to the MLP, the structural equivalence 
between the two will first be shown, followed by a demonstration that the function of the 
processing elements is also the same in both cases.

Similarities of the overall structure

Observing the initial system macroscopically, it is obvious that it contains several functional 

elements that are linked hierarchically without loops (Figure 10.2). The processing elements 
are organized in layers, a preprocessing layer, consisting of elements receiving the inputs 

and producing some intermediate signals, which are received by the elements of the second 

layer from which the outputs of the system are generated. This hierarchical organization 

resembles the MLP structure, where processing elements are also organized in layers. The 
preprocessing layer takes the place of the first (and only) hidden layer and the second layer 
that of the output layer. The input layer of the MLP may be ignored, since it is functionally 
inactive, serving only as a means for distributing the inputs to the first hidden layer.

Similarities also exist between the interconnections. The inputs are only applied to the 
first layer and the outputs of this to the output layer. Unlike the MLP, however, these are 
not fully connected, neither are all the inputs applied to every node of the preprocessing 
(hidden) layer. This is a minor discrepancy, however, because the missing connections may
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be introduced and left unused by the corresponding processing elements. It is believed 

that part of the reason for the deterioration in the performance of the earlier system was the 

absence of certain interconnections. These would give an element a more global view of what 
happened in other parts of the system and hence make it capitalize on the extra information 

to produce a more realistic output when it would otherwise fail. Because the processing 
elements essentially perform linear weighting of their inputs, the equivalence between the 
original system and the backpropagation neural network is possible by assuming that the 
weights in the inputs provided by the additional connections are set to zero (and thus these 
inputs contribute nothing to the function implemented by the processing element).

Having demonstrated their structural equivalence, it remains to demonstrate that the 

processing elements of the two systems can perform the same function.

Comparison of preprocessing elements

According to their description in section 10.4.2 the preprocessing elements receive a window 
of samples from one of the input signals and perform squaring, normalization, weighted 

summation and thresholding to produce a binary output signal.

Squaring of inputs is not normally part of the transfer function of the processing elements 

of the MLP. Normalization is even more ambiguous in terms of neural network functions, 
because it is a global operation requiring the computation of the sum of squares of the 
inputs. Of course an extra processing element could be placed before the preprocessing layer 
to square and average all the inputs and fan out the normalizing factor as an extra input 
to preprocessing. Because, however, squaring of the inputs would have been necessary in 

every preprocessing element anyway, it is more practical to separate these operations from 

the corresponding transfer function and the network. Squaring and normalization may be 

considered as a form of preconditioning of the inputs that may be performed by a separate 
operation acting as a buffer between the signals of the rest of the system and the decision- 

detection unit, as depicted in Figure 11.2. Squaring and normalization is only one of the 

possible forms of input preconditioning, an issue addressed in section 11.6.1.

Having separated the preconditioning stage from its transfer function, the equivalence 
between the preprocessing elements of the intuitive system and those of the MLP is apparent.

Both transfer functions use a weighted sum of their inputs to produce an intermediate 

signal, f (n )  (equations (10.2) and (11.1) respectively). The earlier system, combines only 
selected inputs for the generation of /(n ) ,  whereas the transfer function of an MLP element 

combines all its inputs and has a bias input as well. The former transfer function may thus 

be regarded as a special case of the latter with the weights corresponding to the unused
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Figure 11.2: The MLP realization of the decision-detection system 

inputs and the bias set to zero (see Figure 11.2).

The last element to compare is the non-linearity at the output of the processing element. 
In the earlier system this was a thresholding operation, taking one of two values, either 0 or
1. For the MLP, however, this is a sigmoidal, which takes values in the range between 0 and 
1. It will be demonstrated, however that both may behave in a similar way.

For a given set of weights the linear output of the transfer function is /(n ) ,  and the 

output of the element is z(n) =  <r[/(n)], which is typically linear at f {n)  =  0 and saturates 

towards either 0 or 1 depending on whether / ( n )  is negative or positive. This is actually 
true for the logistic function, but the argument may be extended to other non-linearities. 
Scaling all the weights by a factor Sw would cause an increase in the amplitude of the linear 
output, Swf(n ). If 8W >  1 this would correspond to a compression of the domain of the 
mapping defined by <r(-). As a result, if the turning points of the sigmoid, beyond which 
saturation is more profound, are at / (n )  =  ± 0 , for the original weights they are now pushed 
closer together to ± ^ .  In the limiting case, as 8W —> oo, the above range approaches a single 
point, f (n ) =  0, and saturation occurs for all positive values to 1 and for all negative ones 
to 0. The similarity in the outputs between the sigmoid and the threshold function is, in 
fact, noticed long before 8W approaches infinity, as portrayed in Figure 11.3 for a sigmoid 
with unit inputs and unit weights for various values of 5W.

From these considerations it is clear that the preprocessing units of the earlier system 
may be implemented by the (first) hidden layer of an MLP neural network.
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output

input

Figure 11.3: A sigmoidal function approaching the threshold (step) function as the weights 

approach infinity

Implementation of logic functions

It remains to show that the MLP can also implement the logic operations required by the 
initial system for the generation of the various output signals. It was actually hinted in 
section 10.4.3, that the logic functions required could be implemented as weighted sums 

followed by thresholding.
The required operations are rather simple and can be implemented each by single pro-

cessing elements in the output layer. The first is a simple ANDing of two signals, z,(n) =  

zt(n)ANDzpi. The equivalence between this operation and the following sum and threshold 

pair of functions is easy to determine by considering the corresponding truth table.

f i (n)

Zi(n)

wzt(n) - f  wzpi(n) 

i  1 fi{n) > 6 

\ 0  fi{n) <  0

(11.5)

( 1 1 .6)

where w is a positive weight and 6 =  |iu the threshold. Other combinations are also possible.

For this implementation, w was set to 1 and 6 to 1.5.
Similarly, the second type of logical operation, zs{n) =  zt(n—M)ANDzp0(n —M)ANDNOTzi, (n — 

M ) may be realized in an equivalent way by the summation f a(n) =  zt(n — M ) +  zp0(n —
M ) — z't(n — M ) followed by thresholding at 1.5. Again the operation is invariant to scaling.

If the above operations are implemented as part of the MLP structure and training is to 
be employed, the hard threshold function would have to be replaced by the softer sigmoidal 
function. It would then be simpler to include the threshold values in the form of the bias 

weight in the processing elements. Then, following the analysis of the previous section,
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scaling up the weights (and thresholds) would make the sigmoidal behaviour very similar to 
the threshold function. Because, however, the signals at the output of the output layer are 
generally expected to be binary, it is possible to replace the sigmoidal with hard thresholding 
after training, or to employ an additional mapping on the outputs of the network by replacing 
output values that are above 0.5 by 1 and those below 0.5 by 0.

With these final notes, it is evident that the system of the previous Chapter is equivalent 
to an MLP. It may be postulated that the problems encountered by the former are associated 
with the non-optimality of its parameters for the particular application. Hence, by properly 
training it, the performance is expected to improve.

11.6 Alternative system configurations

The equivalence between the intuitive system and the MLP ceased by the replacement of the 

heuristic ad hoc selection of the weights with more formal criteria. Although it is possible to 

use the same structure as the former system and apply the learning algorithm to determine 

the optimal set of weights, a procedure that was initially followed, the backpropagation neural 
network offered other alternatives, which were tested also. A point of concern was the form 

of input conditioning. Squaring and normalization was inherited from the earlier system, 

where it had some significance. With the use of the MLP, the significance is lost along 
with the individuality of the processing elements. The purpose, and indeed the necessity 
of conditioning the inputs, were questioned. This led to different realizations and network 

configurations to cater for the peculiarities of each, which will be presented here.

11.6.1 Input preconditioning: Is it necessary?

Some artificial neural network enthusiasts state that the inputs may be applied to the network 

without any preprocessing (see for example [83]). This may be true in the majority of cases, 
where the mapping approximated by the network is not scale-invariant. When dealing with 

natural signals, like the EEG, the system is expected to tolerate changes in the dynamic range 
of the recorded signal, since these are usually related to changes in the impedance between 

the source of the signal and the recording apparatus. This argument is better supported by 
a simple example.

Let a signal x(n) with variance a2 =  1 input to a single-input processing element that 
performs weighting by w\ =  10 thresholding at 15= — w0, with a sigmoidal non-linearity. 
If x(n) =  1, the linear output of the element would be f ( n ) =  10 — 15 =  —5 and z[n) =

5 =  0.006 ~  0. If the dynamic range of the signal was doubled (amplified by a factor of
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2) its variance would be o 2 =  4 and the value of the signal would be x(n ) =  2. This would 
produce a linear sum f (n ) =  20 — 15 =  5 and after the non-linearity, z(n) =  0.993 «  1. In 
both cases, of course, the system ought to have behaved in a similar manner, since the input 
signal is essentially the same, apart from a scaling factor, which in many signal processing 
applications should have had no effect. Without preprocessing, the difference in the output 
caused by the change in the range of the input was rather dramatic. If, however, the input 
to the MLP was normalized by dividing it by the standard deviation of the signal (cr =  1 in 
the first case and 2 in the second) then the effective input would have been x(n ) =  =  1
in both cases, producing ‘ consistent’ results. It is, therefore, quite important to condition 
the inputs to the MLP if the consistency, and hence the reliability, of the system is to be 

maintained at run-time.
Sensible preconditioning may also result in a simpler MLP structure, with fewer elements 

or layers, which may be interpreted as performing an intermediate mapping of the inputs 

prior to their application to the network. If this was not done the MLP would have had 
to perform this mapping itself, a process requiring extra processing elements or even a few 
additional hidden layers. Of course such a mapping cannot always be determined, since 

the network is normally treated as a ‘black box’ . In the case of the decision-detection unit, 

however, some insight into the function of the MLP is available from the earlier intuitive 

system and what is required for the network to perform. If, for instance large amplitudes 
are to be detected, irrespective of polarity, the network is simplified if the corresponding 
input is squared (thus eliminating polarity). In this case, a single element with one weight 
and a negative bias (i.e. positive threshold value) would be sufficient. If the ‘raw’ input was 
applied, three elements would have been required. One to detect large positive amplitudes, 

using a positive weight and threshold, one to detect large negative amplitudes (with negative 

weight and threshold) and one to combine these outputs, having an amplitude of 1 if either 

of its input is 1 (an OR operation, with two equal positive weights, W\ =  w-i =  w and a 

threshold, ^).

From these arguments one may conclude that, in general, input preconditioning is often 

vital for the correct operation of the MLP and could lead to a simpler system without 

compromising its performance, if done carefully.

11.6.2 Treatment of the inputs to the MLP

The arguments on the use of preprocessing put forward in the previous paragraph were put 

forward in the realization of the MLP decision-detection unit. Normalization of the inputs 

to maintain the function of the system through changes in the dynamic range of the input
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will be examined first. This is the only necessary operation but it will be demonstrated that 
some additional transformations of the inputs may lead to simpler network configurations.

Normalization

The elimination of the dependence of the output of the network on the strength of the input 
signal is vital for the success of the decision-detection system, especially if it is to operate 
with minimal supervision.

Even in this seemingly straightforward matter a number of questions arose. Should each 
signal be normalized by a measure (such as the variance), derived from individual signals, 
or should a common normalizing factor be used for all? If the second approach is adopted, 
it is not clear which signal measure to use in normalization.

In the system of section 10.4 each signal was normalized by its own variance. This 
had its origins in the statistical origins of the detection procedures employed then, where 

normalization of the corresponding probability distributions was required. Although this is 
justified for the random uncorrelated signals r(n) and r'(n), the same cannot be said about 
any of the y,(n), which are far from uncorrelated random sequences. Hence, although the 
same techniques were applied to these signals, the arguments used then were not strictly 
valid.

In the case of the MLP, normalization was viewed away from its significance in the earlier 
system, just as a means of reducing the effects of changes in the signal level on the operation 
of the network. It is, of course, possible to use measures derived from each signal separately, 

like before. Therefore an input signal to the MLP, x(n), could be divided by its own measure 
of spread, like the ones that follow:

<rx =  {£ [x (n )2]}2 standard deviation
Sx — M|x(n)|l mean deviation

(11.7)
mx =  x(n); P[X (n) <  x(n)] =  | median

px =  maxn[x(n)] — minn[x(n)] peak — to — peak

where x(n) represents r(n), r'(n ) or any one of the y,(n). It should be noted that these 
signals have zero mean, a fact that has been used to simplify some of the above expressions. 
The standard and the mean deviation, are the most favoured measures, because they are 

linear functions of the input signal and may be estimated with relatively simple operations.
The normalization of a signal by its own measure of spread is a valid procedure when 

standard probability distributions are used for statistical testing. This is not so meaningful, 

however when comparisons are to be carried out on the various signals, with common origin, 
like in the proposed analysis system. Again, the reasons are better established by an example,
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with reference to the extended system of Figure 10.1. Let a segment of the EEG, e(n), consist 
of a sinusoidal background activity signal of amplitude Ao and frequency uq  with negligible 

noise and a transient generated from the excitation by an impulse of amplitude 5 , of a 
system Fi(z), whose PSD has a single peak at u>i, away from u0 and a gain such that the 
peak of its output is 1. It will be assumed that another transient has been modelled, whose 
transfer function, Fj(z) has a spectral peak near u0. After the action of the inverse of F{(z) 
there would be an impulse of amplitude 5 , in its output, y(n), but this will be buried in 

the large sinusoidal due to e(n), which would not have been suppressed by F~1(z) (which 
reduces frequencies around u>i). On the contrary, the output of Fj(z), yj(n) will reduce the 

background activity to a level pA0 (p <C 1) and maintain the transient.

The standard deviation, or indeed any measure of spread, depends on the long-term 
variability in the signal. Hence in the case of y,(n) this will be essentially equal to the 
standard deviation of e(n), cre =  oyi =  whereas in the second it will have the reduced 
magnitude, =  Ê .  Therefore, after normalization, the amplitude of the transient in 
y,(n) would have been reduced to j5, =  y/2j^, which is smaller than the equivalent peak 
amplitude in yj(n), Because the normalized transient in yj(n) has a higher

amplitude than that in y;(n), a system that depends solely on amplitudes for the detection 
of its source would be misled into believing that the transient was of type j , when in fact 
it was of type i. Testing r'(n) would, of course reveal the mistake, but there would be no 
means of correcting it. This is an artificial example and depicts a rather extreme event, but 
demonstrates that by scaling all transient signals by the same factor would have prevented 
the occurrence of such mistakes.

Such normalizing factors could be derived from a number of sources within the system, 
independent of the transfer functions of individual transients. One candidate is the standard 
or mean deviation of the output of the background activity, r(n), or of the input EEG signal, 

e(n). Although the first was used successfully[131], it has one potential disadvantage. If the 

EEG signal becomes essentially deterministic, the ‘random’ element may almost vanish, 

reflecting the predictability of the signal. Therefore, its variance (standard deviation, mean 
deviation, etc.) would be small, whereas this may not be the case in the {y ,(n )}, thus 

contradicting the purpose of normalization. On the contrary, the input signal e(n) provided 
a better source for the scaling factor, since it can only be small if the outputs of the Fi(z) 
are small also. Besides, it offers the possibility of scaling e(n) directly, before any processing 
takes place, thus avoiding individual scaling of many samples of the signals which constitute 
the inputs to the MLP, saving a considerable amount of computation as well.

Estimating the variance or the mean deviation recursively could be performed by recursive
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means, like the ones suggested earlier for the computation of the power of the signal in 
Chapter 8 (see equation (8.52)):

al(n) =  otal(n -  1) +  (1 -  a )e(n )2 (11.8)

¿e(n) =  aSe(n -  1) +  (1 -  a)|e(n)| (11.9)

As before, a is a filtering factor, sometimes related to the length of the signal stationarity 
(section 8.4.3). In this case, however, it was made larger, thus taking into account a longer 

sequence of samples, because the changes in the signal power which normalization attempts 

to counteract occur on a much longer time scale than changes in the signal behaviour and 
often take effect over several minutes or even hours. For a sampling rate of 160 s-1 catering 
for changes slower than 60 seconds, a =  0.9999278 (see equation (8.52)). Because this is very 
close to unity and quantization may deteriorate its filtering operation, a practical solution to 

this problem might be a two stage process, with squaring and band-limiting up to a frequency, 
/ ' ,  being L times smaller than the sampling frequency, f s, followed by re-sampling at the 
lower rate This permits a lower value of a, corresponding to the new sampling rate, to 

be subsequently applied.

Although normalization is the only essential input preprocessing operation, other data 
transformations have been investigated. These were carried out on the already normalized 
signals and may be considered as attempts to simplify the task performed by the MLP, by 
removing information believed to be redundant. Hence, the network has a less complex 

mapping to learn and can ‘ concentrate’ on learning those hidden properties in the structure 
of the input signals rather than waste its time and processing elements modelling a data 

transformation known beforehand. As a result the number of processing elements and/or 
layers of the MLP may be reduced, leading to a simpler structure to perform the required 
task.

Numerous such operations are possible. Some are described next, emphasizing for each 
the main reason for their selection, any other properties that are significant to this application 
and the network configuration used in each case. It should be noted that the more elaborate 

network corresponds to a system whose inputs are unprocessed (but normalized) samples of 
the corresponding signals. For this reason it will be presented last.

Squaring

This is the one more reminiscent of the intuitive system (section 10.4), whose input (prepro-
cessing) elements performed squaring and normalization prior to thresholding. The difference 

from that system lies in the fact that the weights of the earlier system were selected infor-
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mally, whereas for the MLP implementation these are selected by optimization. The basic 
operation on the input signals is equivalent to squaring and scaling by the variance of the 

input signal, o^(n):

* 0 0 - ^  (11.10)cre(n )2

where :r,(n) represents any of the signals r{n  — k), r'(n — k) or {yj(n  — k)\j =  0 ,1 , . . . ,  N } 
and the delay factor k ranges over the window of samples applied to the network, [—M, M].

Squaring has two essential properties, concerning the detection of large atypical values 

in a sequence. First of all, x(n) is always positive. In other words, what the subsequent 

preprocessing elements can concentrate on is the magnitude of a sample, and not its direc-
tion (positive or negative), which had already been removed. The second characteristic of 
squaring is the enhancement of large amplitudes with respect to small ones, stretching them 

over a greater dynamic range. Hence it is easier to estimate the threshold for the distinction 
of large magnitudes, especially if the line between large and normal is not very clearly drawn 
owing to the two populations being closely clustered.

Using the intuitive system as a reference, the elements in the first hidden layer must 
perform weighting and thresholding of their inputs, although with different parameters than 
that system. This is suggestive of the number of elements necessary in that layer, which, 

should be equal to N  +  5 for the detection of N  transients (one for every transient plus one 
for spikes, one for r(n) and one for delayed versions of r(n), r'(n) and yo(n), as explained in 
the end of section 10.4).

The outputs of these (pseudo-binary) elements are then used in the output layer directly 

for the production of the N  transient indications, one for spike indications plus one more for 

spike detections (N  +  2 outputs in total). It was assumed, like in the intuitive system, that 
one processing element is capable of performing the logic operations necessary. If this was 

not the case, extra hidden layers would have been required.

This network is perhaps not the smallest possible structure, since it may, in theory, be 

possible to combine more than one of the preprocessing operations in a single element. This, 
however would largely depend on the nature of the signals involved. The proposed rule for 

selecting the number of elements knowing the number of transients to be detected permits 
the system to be generalized in a simple and systematic way. This selection criterion is 
a practical guideline, based on a structure that seems intuitively adequate and not on any 
formal performance criteria. It has worked well in this application and is believed to perform 

equally well, should the system be extended to more transients.
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Using the moduli of the inputs

Akin to squaring is the modulus operation, in the sense that both eliminate the sign in-
formation from the signals they are applied to. In conjunction with normalization, this is 
described by the following operation performed on every input to the MLP:

i , ( n ) M » )l
<7e(n) ( 11. 11)

The normalizing factor now is the standard deviation of the input signal, not the variance. 
Alternatively, the mean deviation could have been used.

The modulus operation has the same basic property as squaring, but does not enhance 
the amplitudes. It is, however, simpler and faster to compute, even on a small computer.

The structure of the required MLP for this type of normalization is effectively the same 

as that for squaring, already described, with N  -f 5 elements in its only hidden layer, byt the 
values of the individual weights would, in general be different.

A hybrid realization

Squaring and normalization are sensible if the direction (positive or negative) of all transients 
considered is irrelevant in their detection, which sometimes is not the case. Epileptic spikes, 
for instance, are always electro-negative, hence are registered in a unipolar montage with 

always the same polarity (pointing up). If a spike of the reverse polarity is encountered, it 
does not constitute a valid occurrence. In a working system, should polarity be ignored, a 
number of false detections may be registered, an undesirable phenomenon that could have 

been avoided. This would be possible by maintaining some sign information, especially in 
the central samples for every signal, where transients are detected. Constituting a natural 

extension to the existing system, it is also linked to the structure of the system without 

preprocessing, described under the next heading. It deserves some elaboration because it 
requires modifications to the MLP configuration to work properly.

For this function the inputs are squared and normalized as described earlier with the 
additional re-introduction of the polarity for the samples in the centre of the window from 
each signal. For example for y,(n), the corresponding inputs to the network would be as 
follows:

y,(n+t-AT)2
<Mn)2 - N  < k < -Q

n -f k — N  ) =  < |y. ( n + k - N )  |y; (n+fc-N ) VI

O*1 k < Q (11 .12)
y i ( n + k - N ) *

<Mn)2 Q < k < N

where N  and Q have the same significance as in the earlier system (section 10.4). An 
equivalent implementation could be developed for the modulus function.
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The price to pay for the discrimination of polarity is an extra layer and an increased 
number of elements on the first hidden layer. The latter is necessary to cater for transients 
which may occur with either polarity. This is established by considering what operations are 

required. A single processing element consisting of a weighted linear sum and thresholding 
can only distinguish linearly separable input conditions. This has been the reason why the 
XOR logic function could not be implemented by the perceptron[124, 166]. For a given set 
of weights and threshold, it is not possible to have a node produce the same output for both 
a positive and a negative central sample. Therefore it is necessary to have two elements, 
one detecting atypically positive (having output z+(n)) and the other atypically negative 
(z“ (n)) samples as well as a further one to combine the two using a logical OR operation 

(f (n ) =  wz+(n) +  wz~(n) — |io, z(n) =  <r[/(n)], Allowing for all transients to be bipolar, 
and maintaining the layered structure of the MLP where each layer feeds to the one directly 
above it, 2N  +  10 elements are necessary in the first hidden (preprocessing) layer, but this 
may be reduced to 2N  +  6, since spike detection and initiation only deal with positive 

transients (signals t/0(n)> yo(n — At), r{n — M ) and r'(n — M )) and require one, instead of 
two, preprocessing elements each. A further N  +  5 OR units form the second hidden layer, 
with the N  +  2 output elements. Although the elements in the second hidden layer have 
been referred to as OR units, it is understood that this is a simplification that may not reflect 
their function after optimization has been completed.

A System without preprocessing

Evidently, from the three types of preprocessing already described, the network complexity 
increases with the amount of information included in the input. To investigate whether 

preprocessing was really necessary, the an MLP with its inputs normalized, but without any 

other processing was constructed:

ii(n) = f S  in-«)(T e y l )

Normalization is a scaling operation and does not modify the shape of the applied signal, 

thus preserving virtually all information contained in the waveforms. This is expected to 
result in a more accurate system, since the network can ‘choose’ an appropriate mapping 
of the inputs using its ability to approximate arbitrary functions. Perhaps different inputs 

need to be preprocessed in different ways and their inter-dependencies exploited from the 

first hidden layer, rather than by units that can only combine already processed information.

This configuration, like the hybrid preprocessing structure of the previous section pre-
serves the polarity of the signals and requires at least another hidden layer. The first hidden 
layer must have 2N  +  10 elements, the second N  +  5 and the output layer N +  2 elements.
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Again, these are guidelines to deal with N  transients and give a near minimal system. Be-
cause the processing elements can only perform simple functions, it may be necessary, in 
practice to have more elements or layers than the ones specified by the given rule, depending 
on the complexity of the embedded mapping. For the system tested, however, this did not 
prove necessary, as demonstrated by the results presented later.

11.6.3 A  non-intuitive realization

In most applications of neural networks there is very little or no information as to which 
configuration is appropriate. The selection of a network topology is a task that its designer 
has to complete normally by trial and error. Effectively, if a structure does not work, more 
processing elements are introduced in the hidden layers, whose number may also be increased.

It has been a general observation that the introduction of more layers often reduces the total 
number of nodes to achieve a desirable performance level[136, pp. 132-133].

Although in this application there are definite clues about the structure and size of 
the MLP, which were exploited to suggest the topology of the network for each type of 

preprocessing in the preceding section, the ‘traditional’ approach could not be ignored, at 
least for comparative purposes. By constructing an MLP without using the earlier system 
to suggest the topology, it is possible to verify whether the cues derived from that system 
can be used as satisfactory guidelines for constructing and generalizing the system.

The performance of the earlier networks, which were based on the structure of the in-
tuitive system (section 11.6.2) may be evaluated explicitly, as the MSE after training is 
completed, or in terms of the performance of the spike and transient detection system. 

Performance determines whether a given MLP configuration can approximate a specified 

mapping well, but it provides no indication whether the same performance could not be 

achieved by a simpler network. Starting from a small network, the best approximation to 

the required mapping is expected to be poor and the minimum MSE after optimization large.
As more processing elements and layers are added, the approximation improves and there 
is a point when the minimum MSE ‘levels off’ and further increase in the network size is 

accompanied by marginal, if any, improvement in its performance. Having redundancy in 
the network is undesirable, since it is accompanied by unnecessary processing and waste of 
computing power and could lead to over-training, since the extraneous processing elements 

may model detailed features specific to the training set and not to the underlying mapping 

(see Appendix F),

The usual approach of constructing a neural network system consists of building and 
training a number of different configurations and selecting the one having the best performance[13C
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p. 119].
For the system considered, a number of configurations with one or two hidden layers 

were tested. The only preprocessing performed on the inputs was normalization, as in the 
corresponding system of section 11.6.2. Initially one hidden layer was considered. The 
performance of the system for an increasing number of processing elements was evaluated, 
by recording how the MSE dropped with the progressive increase in the number of processing 
elements in the hidden layer, until the error function stopped decreasing significantly. The 
same was repeated for two hidden layers, although matters here have been complicated by the 

fact that the number of processing elements in either layer may be increased independently, 
requiring long hours to train each one of them. The main obstacle was connected with 
configurations whose MSE was high, even after it seemed to have levelled off. In these cases 

it is uncertain whether a local minimum or flat region of the error surface was the cause, or 
whether the global minimum was at a high error level. Hence it was necessary to re-train 
the network using different parameters to increase the confidence of the results.

Results for these system configurations are reported separately in section 11.8.3.

11.7 Implementation problems and other issues

The previous section focused on the interface of the MLP with the rest of the system, with 
emphasis on preprocessing. The structure of the required network and how to select it was 
also elaborated for every type of preprocessing, but little was mentioned on its implemen-
tation. Having decided how many layers and how many elements should exist in each, it is 
necessary to optimize the performance of the network for this particular application, as an 
untrained MLP is of little use. This requires the construction of a training set of input-output 

example pairs which define the mapping the network is required to approximate (see section
11.4.2). Then, before training (optimization) may commence, the weights of the processing 

elements must be initialized to some value, preferably close to the optimal, if possible, to 
minimize the number of iterations necessary to achieve a low MSE. These implementation 
issues and problems encountered during training are examined in this section.

11.7.1 Defining a training set

The mapping to be approximated by the MLP is specified at a discrete set of points in its 
input space, paired with the corresponding output points, on which optimization is based. 
The inability to form a comprehensive set of such pairs is one of the reasons why this 

network cannot be used in a number of cases. A suitable training set should consist of a
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large set of examples of the desired mapping and should cover a representative sample of 
all input conditions that may arise in practice, selected according to a uniform probability 
distribution, if possible.

It became apparent from the beginning that defining such a training set would not have 
been a trivial task. Firstly, the mapping to be approximated is not known exactly for real 
EEG records, due to the limited number of transients present, most of which are spikes. 

Hence, other transients are grossly under-represented and would have a small effect on the 
MSE, deteriorating their detection. It is desirable for all transients to be represented well, if 

the network is to be successful. Under-representation is not the only concern here. Because 
the models for the transients used in the system are only approximate, there are differences 

between their theoretical outputs and those actually produced when a real signal is applied. 
Thus a practical ‘ impulse’ generated by one of the {E ,(z)} (see section 10.3) may spread over 
more than one sample and its exact location, with respect to the input transient, may be 
ambiguous. Besides, the only reference available for the required mapping is the behaviour 

of the earlier system (section 8.5.2), which is not 100% accurate. Therefore, a different 
approach was adopted.

Using the signal model of section 7.3 synthetic data records were generated, containing 
large numbers of transients, with approximately similar probability distributions for each, 
ensuring that large, similar numbers for all the modelled transients are present. This would 
eliminate the problems of under-representation already stated.

The use of artificial data has other advantages. The excitation functions for the various 

transients, particularly their location in time, is known exactly and errors associated with 
their uncertainty in real records are automatically eliminated. Moreover, for synthetic data 
records all the elements of the model are known, since they are used for the construction of 
the signal (section 7.3).

The MLP, being a versatile non-linear modelling tool is expected to learn the inverse of 
the synthesis procedure, based on the linear modelling elements (section 7.4). This is only 

possible if a set of examples of the input excitation functions are known during optimization. 

A training set may then be formed so that the indications of the transients in the various 
outputs of the inverse systems are the inputs to the system and the instances of occurrence 
of the transients, become the desired response.

For the artificial signal, the desired mapping is known, since at a given EEG sample, e(n) 
the values of the excitation functions for the various transients, c o ( n ) ,  C i ( n ) , . . .  are known. A 
training set could then be constructed by processing e(n) through the inverse linear systems 
f / - 1(z), {E “ 1^ ) } ,  to obtain the inputs to the MLP, r(n ), r'(n) and y0(n), yx (n ) , . . . ,  yu^n).
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The desired signals are derived from the {c ,(n )}, having the value of 1 when the corresponding 
c,(n) are non-zero and 0 otherwise. A delayed indication for spikes was also included, as this 

is the desired spike detection signal.

Although in general the desired responses consist of long sequences of zeros with isolated 
unity-valued samples, in order to cater for deviations from the precise model and the possi-
bility that in real life an impulse could occur in the period between two sampling instants 
with its energy ‘ leaking’ in the two adjacent samples, each time an impulse was recorded at 

the nth instant in the excitation sequence, c,(n), corresponding desired signal, dCi(n) was 
constructed by extending the indication of the impulse in the two adjacent sample values. 
Thus, if c,(n) ^  0 then dCi(n — 1) =  dCi(n) =  dCi(n +  1) =  1.

Another advantage of this approach lies in the ability to generate as many artificial 

samples as required to train the MLP, without depending on the limited supply of real EEG 
records, which were used primarily as a validation set for testing the integrity of the trained 

network[136, pp. 118-120].
It should be noted that a real EEG record was also used at the final stages of training, in 

order to observe how large was the deviation of the network parameters for real and artificial 

data. The changes in the weight values, were, however, insignificant, demonstrating that the 
MLP was close to the desired optimal (see section 11.8.1). The desired response for the real 
EEG data was formed from the response of the earlier system (section 10.4) by correcting 
the signal when the system was in error (removing overdetections and introducing missed 

transients).

11.7.2 Weight initialization

It is necessary for the backpropagation training algorithm to have an initial value for the 
required weight vector, from which optimization may commence. In the absence of a better 
alternative, a small random weight vector is often used. It is, however, clear that this 

may be far from the basin of attraction of a global minimum of the error surface and in 
its course towards it, the weight vector may wander around the surface having to find a 
direction towards the minimum, possibly encountering flat regions and local minima as it 

moves around the error surface. If, however, there is some more ‘sensible’ way to select 
this initial value, so that it is close to one of the global minima of the error surface, many 
of these problems could be avoided, since once in its basin of attraction, the weight vector 
would inevitably converge to the optimum.

Such an initial condition is not available, in general, but for the present application the 
earlier fixed-weight system may be useful, as its performance was better than pure chance and
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the weight values are consistent with the function each processing element performed[131].

Initialization with intuitive weights

The generalized fixed-weight system, described in Chapter 10, corresponds to only one type 
of preprocessing, namely squaring and normalization. For the other types of preprocessing 
the weights of this system would be of no great use. The task of the decision-detection 
system may be divided in two functional entities: A preprocessing stage, performed by the 
hidden layers whose outputs indicate the presence or absence of certain phenomena in the 
inputs and the detection stage, which combines these to form the outputs of the system.

The preprocessing stage depends on the operation performed on the inputs prior to their 
application to the MLP. The detection stage is generally independent of the inputs, because 
it is performed on the output of the preprocessing stage. Hence it is possible to define a set of 
weights for the output stage to perform the task of detection for all tested configurations and 
then define the weights of the preprocessing elements for each input treatment independently.

The detection stage consists of a single layer of N  +  2 elements, one for each output of 
the system. Each one of these combines the outputs of the previous layer. With reference 

to section 11.5.1 these signals may be interpreted as indications of whether a transient 

(signals zt(n), zt(n — K ) and z[{n — K ))  or an impulse (signals zp0(n), zpi (n ) ,. . . ,  z p n ( t i )  

and Zpo(n — K )) occurred in one of the inputs. The weights of the processing elements in 
this stage were set to zero (to ignore the inputs) apart from the ones more relevant to each 

output, which were set so that the logic functions of the intuitive system were realized, as 
described in section 11.5.1.

The outputs of the preprocessing stage were generated by weighting the inputs to the 
network. The initial weights will now be examined separately for every type of treatment of 

the inputs. Because all elements of this stage perform the same task the operation of one 
such element will be examined. Each one of these depended on delayed samples of one of the 
input signals to produce its output. Therefore the weights for all other signal samples are 
set to zero. The same operation applies to any one of the input signals (normalized versions 

of r(n), r'(n — K ), yo(n — K ) or {y .(n )}) which will be referred to as a:(n).

For squared inputs (section 11.6.2), there is a single hidden layer with N  +  5 elements. 

Each element deals with a window of a signal, The weights of such an element were
related to those of the earlier system (equation (10.2)), where the values of the weights were 
set to -1 for all samples in the window of size 2 M  +  1, apart from the central 2Q +  1 samples 
where the weights were set to Hence the bias weight tulp, =  0.

When the moduli of the inputs are used (section 11.6.2), the weight distribution for a
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processing element is similar, but the amplitudes of the central samples are equal to 2̂ p ^  

(scaled by t0, instead of t%, for the same statistical significance).

For the hybrid realization, which incorporates the sign of the central samples the above 
weights are not directly relevant, because every processing element in the previous realiza-
tions would be replaced by three, two on in first and one in the second hidden layer, (section
11.6.2) . The first two are complementary, one indicating positive and the other negative
transients in the centre of one of the input signals. One is identical to the processing el-
ement used with squared inputs, with the same central sample weights of and the

rest equal to -1 and can detect large positive amplitudes in the central 2Q +  1 samples. If 

they are negative, or some positive and some negative but with large magnitudes there may 
not be a detection, since their weighted combination may be small. Like before, the bias is 
zero. The second element has a similar weight distribution (outer weights are equal to -1), 
but with the central ones have negative sign, ( — 2̂ ~ ^ ) to detect negative transients.

The N  +  5 elements in the second hidden layer combine the indications for positive and 
negative transients from the first hidden layer (,z+(n) and z~(n)) to form a single indication 
of a transient. Their represents an OR operation, defined by the following linear combination 
/(n )  =  wz+(n) -f wz~(n) — y , where w is a positive weight value (set to 1 in this case), 
followed by range-limiting. These also receive inputs from all units of the first layer, even for 
other transients, but these are ignored by initially setting the appropriate weights to zero. 
For some transients, like spikes, which only occur with one of the two polarities, the OR 

units would a single one non-zero weight, corresponding to the valid polarity and they are 

effectively redundant.

Finally for the structure where normalization is the only treatment of the inputs (section

11.6.2)  , the structure with the two hidden layers is similar to the one for the hybrid realiza-
tion. The elements of the second layer are still OR operators and the function of those in 

the first layer is the same as the ones of the previous system. The corresponding weights, 
though, are not the same. In fact no simple set of weights could be defined for this system, 

since the inputs may have any polarity and if they are random, as they are in some signals, 

any trivial weighted sum could be close to zero. In the absence of a better alternative it was 
decided to set all weights to zero, apart from those in the central 2Q -f 1 samples, which 
were set to 1 for the detection of positive transients and to -1 for negative. The threshold 

was set to t0, hence when any of the central js above this value the output of the 
corresponding element would be close to 1. A problem could arise in theory, if the central 
samples have large amplitudes of different sign, as the resulting sum may be small, but this 

was not encountered for any valid transients.



11.7. Implementation problems and other issues 315

One possible drawback, perhaps the only one, of this weight initialization scheme is the 
possibility that the intuitively derived weights are near a local minimum of the performance 

function. Such an event would result in a network whose performance is lower than that 
which could be theoretically achieved. Although this did not appear to occur in practice, it 

should be noted, as there is no guarantee that this form of initialization is generally better 
than random weight selection. Even if the initial condition is near a local minimum, it is 

one at a low error level and could serve well in practice, arguing that a random initial weight 
could also be near a local minimum and lead to a sub-optimal solution.

Small random initial weights

The above scheme was compared to the traditional initialization of the weights of the network 
to small random values. Hence this alternative approach was also put to the test. Typically, 

the weights are made small, so that the outputs of the processing elements are close to zero 
and the sigmoidal non-linearities operate in their ‘ linear’ region away from saturation.

The approximation of the mapping by this network would be a nearly linear one, an 
almost flat surface. During optimization, the magnitudes of some of the weights is expected 
to increase, driving the corresponding elements’ outputs into saturation and making the 
mapping more ‘ creased’ .

The magnitude of the initial random weights (including the bias units) was selected so 
that if all inputs have their maximum achievable values (close to unity) and weights happened 
to have polarities such that their application would contribute to the linear output (the 
summation) of the element in the same way, then the corresponding output would not be 

driven in one of the narrow tails of the non-linearity. This range was chosen to be from 0.25 

to 0.75, which translates in values of the linear sum in the range of approximately [-1.1,1.1]. 
These values were used to define the range of the weights so that their linear output when all 
are combined is never above this value. Thus for an element with N  inputs, the magnitude of 
the weights should be such that N\w\ =  1.1. Thus the initial weights were selected separately 
for each element from a uniform distribution having a probability density function:

( JL _  Li < w < hi 
p(w) =  22 N . . N (11.14)

I 0 otherwise

Random initialization of the weight vector was the only means of starting the algorithm 
for the structure described in section 11.6.3, which is completely disconnected from the earlier 

system.
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11.7.3 Software simulation of the MLP

A neural network may be implemented either as a purely hardware system, or on a separate 
dedicated neurocomputer. In both these cases the user communicates with the network 
through a conventional computer via a suitable interface.

In recent years, however, a number of ANN simulators have appeared. These are packages 
that run on a general-purpose computer usually having a graphic user interface to enable the 

interactive definition, construction, training and testing of a network. They typically offer 
a comprehensive repertoire of standard network topologies and learning rules. The progress 
of the network during training may be monitored by inspecting the MSE and the weights 
on graphical displays. Some ANN simulators offer the option to save a trained network as a 

program module which may be linked with a user’s program and called as a routine, when 
necessary, thus providing a cheaper option (at a price of reduced speed of operation), than 

purchasing a dedicated neurocomputer.

Initially, the latter approach seemed the most appropriate and efforts were directed into 

finding an appropriate ANN simulator. Further consideration of the system as a whole 
revealed that the network could not be trained in isolation, as it is an integral part of the 
system. Referring to the block diagram of the system (Figure 10.1), some of the inputs to 
the MLP are generated from the EEG signal after processing through the inverse modelling 
systems. Most of the outputs of the MLP control the operation of other elements of the 
system, namely the transient modelling systems. But their outputs are subtracted from the 

EEG and e'(n) is processed to generate r'(n), which is also an input to the network. In 
other words, there is feedback. This is undesirable, since incorrect operation of the MLP, 

while training, would almost certainly affect the response of the systems it controls. As a 
result, a different sequence r'(n) may be generated during and after training, invalidating the 
learning process. Recurrent backpropagation neural networks, where feedback is intentional, 
have been developed[136, pp. 183-191]. Their theoretical basis, however, is still weak and 

a lot of ground has to be covered before they are understood well enough to be used with 
confidence. Another problem had to do with the details of many of the packages,

Even if this problem was overcome, ANN simulators, in general, do not provide enough 

information, especially on the exact algorithms used for optimization and weight initialization 
schemes. Hence, although these may be excellent for the feist development of neural network 
solutions to problems, they tend to hide many of the implementation details. These may 

be unimportant in most cases but ignorance of their operation is rather prohibiting for the 

replication of the work presented.

An alternative approach consisted of writing a library of routines, which may be linked
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directly with the existing system and facilitate the construction and training of a neural 
network. A brief description of this library appears in Appendix G.

11.8 Results

The design of a Multi-Layer Perceptron system to overcome some of the limitations of the 
earlier decision-detection unit raised numerous new questions. Because of the complexity 
and the non-linearity of the system and the function it attempts to approximate, these could 
not be answered by considering the system in general. Therefore, any attempts to address 
these questions were based on building and testing the various configurations.

Perhaps there is no end in the number of issues raised when using the system in question. 
The tests carried out concentrated on the following points:

• Whether a system trained with artificial data is consistent with one trained with real 
EEG signals

• The effect on the performance of the system with various types of input treatments

• How weight initialization affected the convergence properties of the training algorithm 
and the performance of the system

• How the systems based on the earlier structure compared with those whose architecture 
was chosen experimentally

• The effects on the performance in terms of size and accuracy for the experimentally 

selected configurations

• Whether the systems based on the earlier structure are sufficiently large to perform the 
required task and, if they are, how does their size compare with the smallest system 
having the same performance.

The investigation of all possible system configurations for all of the listed aspects would 
have been impossible as well as unnecessary. Hence only a sample of all possible combinations 

were investigated, but even this proved a formidable task. The conclusions from their results 
may be easily generalized.

Tests were grouped into three sections, covering training with real and synthetic data, 
systems with various types of treatment of the inputs and weight initialization and tests on 
networks having different sizes.
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All systems tested were concerned with the detection of epileptic spikes and one more 
transient, as described in section 10.5, with the earlier decision-detection unit replaced by an 
MLP. Due to the considerable computational load for both training and running the MLP, 
it was necessary to reduce the length of the windows of its input signals. The signal buffers 
used remained unaffected, but only a fraction of their centred values were used. The value 
of Q was reduced from 2 to 1, resulting in 3 central samples, whereas M  was reduced from 

32 to 5, making the effective length of the buffer equal to 11. As demonstrated later, despite 

these restrictions, the MLP outperformed the earlier system.

11.8.1 Training with real and synthetic EEG records

Some of the primary concerns when using the MLP in the current system was the unavail-
ability of large numbers of transients, their rarity and their short duration. This had a 
double impact on the issue of the adequacy of a training set. As explained in Appendix 
F.2 an inappropriate training set could result in an inferior performance of the system. 

Under-representation of transients is a fact, because these occupy only a small fraction of 
the signal used during training and also the formation of a training set for a real data record 
(section 11.7.1). Moreover, due to the limited number of real EEG records, it would not 
have been possible to reserve any for validation if training was based entirely on real data 
records. Training using artificial data records was an option that solved these problems, 
but the consistency in the behaviour of a system so trained when used on real records was 
questioned.

To investigate the last issue, the system was optimized using two schemes. The first 

consisted of training the system with artificial data only. These were generated from the 

model of the EEG signal, according to the prescription given in Appendix D. Because 
this provided an unlimited supply of input and desired signals, different data were used 

for training and testing the MLP. Five records were constructed, each consisting of 10000 
samples, containing approximately 25 spikes and 20 exponential decay transients each. Four 
of those were used for training, by recycling them in a random order through the network. An 
adaptation rate of p =  0.1 was employed throughout the learning procedure in conjunction 

with a momentum term of a =  0.9 (section 11.4.2). Training was initialized with random 
weights, following the scheme of section 11.7.2 and was terminated when the difference 
between the estimated MSE between two successive iterations was less than 0.1% of the sum 

of powers of the three desired output signals. After that, the trained system was tested with 
the remaining artificial EEG record and the available real records. The results of the test 

appear in table 11.1.
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Record A B C D E
Duration in seconds 62 210 130 123 242
Number of spikes present 25 52 8 10 0
Number of transients present 20 0 0 0 0
Muscle artifacts present? no some yes yes many

MLP Detections
Configuration Spikes Transients Spikes

Input

# Treatment Topology § V X V X V X V X V X V X

It X 2

?I 49-6-3 25 0 20 0 52 2 8 4 10 8 0 34

2Î X 2 49-6-3 25 0 20 0 52 2 8 4 10 6 0 33

3t X 49-12-6-3 25 0 20 0 52 2 8 2 10 5 0 28
4Î X

_________ 49-12-6-3 25 0 20 0 52 2 8 2 10 3 0 30

Notes:
§: This indicates the number of processing elements in each layer, separated by dashes.
The first is equal to the number of inputs (49) and the last to the number of outputs (3) 
f: Trained with artificial data only 

Trained with artificial and real data

Table 11.1: Results for simulated and real EEG records for the extended system structure

The alternative scheme used the same learning parameters and random initialization of 
the weights. Initially the artificial set was used. Training was interrupted when the error 
level fell at 5% of the desired signal power and the training set of four artificial records was 
replaced by a single real EEG record, containing 10 epileptic spikes. The desired outputs 

of the MLP were constructed from the response of the earlier system (section 10.4) with 

small amendments performed manually to eliminate false detections and to introduce the 

ones missed by the system. Testing this system used all real data records and the remaining 
artificial EEG (Table 11.1).

Two MLP configurations were considered. The first used squaring, as part of the prepro-
cessing, whereas the second employed only normalization.

The weights of the trained networks with artificial and real data were also recorded. 
These were almost indistinguishable by visual inspection after being plotted. To quantify 
their similarity, a summary measure was computed. The weights sequences may be regarded 

as vectors in the ‘weight space’ wr, for training with real and wa for training with artificial
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data. The modulus of their difference was first computed (the square root of the sum of 
squared differences) and then divided by the modulus of their mean, w =  |(wa +  wr):

(11.15)

The value of this measure was approximately 0.001 for squared and normalized and 0.034 

for normalized inputs.

11.8.2 Performance of systems with different preprocessing and 

weight initialization

Most of the remaining issues related to the use of the backpropagation decision-detection unit 
are related to the fundamental question whether the inputs to the MLP should be processed 
beforehand, and the subsequent selection of an appropriate input mapping. In order to in-

vestigate this, a number of network configurations were tested, covering the operations on 

the inputs described in section 11.6.2. Four types of preprocessing were performed (squaring 
and normalization, modulus and normalization, a hybrid normalized structure and normal-
ization only). The network configuration corresponding to each type of input treatment was 

related to the earlier intuitive structure, as explained in section 11.6.2.

Training was carried out with artificial data only, following the scheme used in the pre-
ceding section, using the same parameters for accomplishing optimization as before (p =  0.1 
and a =  0.9).

Two initialization schemes were tried for each configuration. In the first, the initial values 
of the weights corresponed to the earlier system, following the reasoning of section 11.7.2. 

The second was the more traditional random weight initialization, whose details appear in 

section the same section.
The eight input processing and weight initialization combinations were trained and tested 

with both real and artificial data, as before. The number of correct and incorrect spike and 
transient detections were recorded as well as the number of iterations required for the network 
to converge, so that the change between two successive iterations was less than 0.1% of the 
average power of the three desired output signals, as in the previous section. This number 

is an integer multiple of 10000, which has been the length of every sequence of samples used 
for training. The results of these tests have been summarized in Table 11.2.

Typical waveforms during the test of one of the configurations appear in Figures 11.4 

and 11.5. These show the input EEG signal, the outputs of the inverse modelling systems, 
the estimated spikes and transients, the transient-free signal and the spike detections. The
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Record A B C D E
Duration in seconds 62 210 130 123 242
Number of spikes present 25 52 8 10 0
Number of transients present 20 0 0 0 0
Muscle artifacts present? no some yes yes many

MLP No. of Detections
Configuration iter- Spikes Tran. Spikes

# Preproc. Topology § ations y X s/ X V X V X V X V X

If X 2 49-6-3 10000 25 2 20 0 52 2 8 4 10 8 0 34

2Î 49-6-3 60000 25 2 20 0 52 2 8 4 10 7 0 34

3t l£l
O c

49-6-3 10000 25 2 20 0 52 2 8 6 10 11 0 42

4f kl
O e

49-6-3 50000 25 2 20 0 52 2 8 6 10 11 0 45

5t hybrid 49-12-6-3 30000 25 0 20 0 52 2 8 4 10 4 0 31

6Î hybrid 49-12-6-3 50000 25 0 20 0 52 2 8 4 10 4 0 33

7f X

O c
49-12-6-3 60000 25 0 20 0 52 2 8 2 10 5 0 28

st X

_______ 49-12-6-3 80000 25 0 20 0 52 2 8 2 10 5 0 29

Notes:
§: This indicates the number of processing elements in each layer, separated by dashes. The 
first is equal to the number of inputs (49) and the last to the number of outputs (3) 
f: Initial weights corresponding to the earlier system, as prescribed in section 11.7.2 
f: Random initial weights

Table 11.2: Results for different input treatments and MLP weight initializations

system corresponds to the seventh configuration of table 11.2. These are similar to the 
waveforms for the extended system, presented in section 10.5 as well as those for the earlier 
spike detection system, described in Chapters 8 and 9.

11.8.3 Results for the different MLP sizes

The final set of tests had a different aim. To reveal whether a working system based on the 

assumed functionality of its units, described in sections 11.5.1 and 11.6.2, is actually adequate 
to perform the required task and whether the intuitive configuration is close to the minimal 
in terms of number of processing elements and layers. To investigate this issue, different 

backpropagation neural network configurations were constructed, according to section 11.6.3.
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Figure 11.4: Behaviour of the system with artificial input data
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Figure 11.5: Behaviour of the system with real EEG input
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Layer 2 
Layer 1

n/af 2 3 4 5 6 7 8 10 20

2 19.21 f 24.92 22.55 23.98 22.64 21.59 22.06 21.96 22.05 21.82
4 11.45f 17.59 16.46 19.24 18.56 18.23 18.09 17.33 17.16 17.19
6 7.32f 12.70 11.53 9.96 9.74 9.78 9.73 9.69 9.47 9.45
8 5.77j 10.67 8.22 8.53 8.45 8.33 8.29 8.05 7.78 7.43
10 2.36f 8.50 4.19 3.29 1.97 0.06 0.03 0.03 0.01 0.01
12 1.24f 7.61 3.65 0.75 0.02 0.01J 0.01 0.01 0.01 0.00
14 0.96f 7.20 2.21 0.36 0.01 0.01 0.01 0.01 0.01 0.00
16 0.84f 7.13 0.98 0.10 0.01 0.01 0.01 0.01 0.00 0.00
18 0.32t 6.68 0.50 0.07 0.01 0.01 0.01 0.01 0.00 0.00
20 0.27| 5.97 0.32 0.06 0.01 0.01 0.01 0.00 0.00 0.00
30 0.09f 5.66 0.11 0.06 0.01 0.01 0.01 0.00 0.00 0.00

Notes:
All configurations have 49 inputs and 3 outputs 
fThese configurations have only one hidden layer

JThis setting corresponds to the system derived from the earlier intuitive system
All entries have been rounded to 2 decimal places. The zero entries on the bottom-right
corner of the table correspond to MSE values of less than 0.005

Table 11.3: The final MSE for various network configurations

Although all types of preprocessing could have been tested, this is unnecessary, since it would 

not have provided any further indications to the suitability of the intuitive systems. Besides, 
the tests carried out in this section are not conclusive, since the general case of the detection 
of any number of transients is not covered here. Hence only one case was investigated, the 

network whose inputs are simply normalized by the standard deviation of the input signal, 

The intuitive configuration had two hidden layers with 12 and 6 elements each, 49 
inputs and 3 outputs. The object of the test was to vary the number of layers and processing 
elements, train the resulting configuration and record the final MSE at the end of training. 
The configurations considered had either one or two hidden layers having up to 30 processing 
elements each. Training was performed with the momentum variant of the backpropagation 
algorithm, as in the previous sections. The initial weights were made random.

Training followed the procedure of the previous section, using artificial records only. The 
resulting normalized MSE for every configuration is recorded in table 11.3.
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11.9 Discussion, comments and conclusions

The objectives of the tests whose results have been listed in the preceding section were con-
nected with the performance of the system, compared with the previous intuitive structure 
and with various issues related to the selection of the appropriate size, weight initialization 

scheme and treatment of the inputs for the MLP structure. These results are analysed here.

As with the results of the previous Chapters, the small number of EEG records used in 
the tests limited the level of confidence of analysis. They give, however a good indication 
of how the system would operate in practice. Besides, the proposed analysis procedures 
constitute a rather flexible methodology, whose parameters are derived from the available 

signals. Hence, as new EEG records become available, these could be applied to modify the 

parameters of the system and hence improve the performance of the suggested system.

11.9.1 Comparison of training schemes

The first test, described in section 11.8.1 attempted to demonstrate whether training with 
real EEG records had a significant impact on the performance of the system, compared to 

training with artificial records generated by the model of the EEG signal. Two configurations 
were tested separately with artificial EEG data and with a mixture of real and artificial 
records.

The results, of the application of the trained systems to a number of records, summarized 

in table 11.1 revealed that there was little difference between the systems trained with 
artificial data records and with real data. Configurations 1 and 3, which were trained only 
with artificial data performed equally well compared to configurations 2 and 4, which were 

trained using real EEG records. There were no noticeable differences in the detection of 
spikes and transients for the four combinations when tested on artificial data. A similar 
observation was made for real records containing spikes. All spikes present in records B, C 
and D were detected. A small number of false detections occurred in each record, related 

to some muscle artifacts which resembled spikes. Both systems trained with either real 
or artificial data produced the same number of overdetections for records B and C. Small 

differences were observed in records D and E, which contained more profound artifact activity. 
The results for record D favoured the systems trained with real data but those for record E 
were inconclusive, as for the system with normalized inputs training with real EEG signals 
appeared to have worsened the performance slightly.

The differences in the response of the two types of training have not been significant. The 

disagreement is in a small number (1 or 2) false detections and there is no evidence that one
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training scheme was better than the other. Variations are believed to be circumstantial and 
more extensive testing with a larger set of records is expected to confirm their equivalence. 

Of course this may reflect the similarity in the model for the spikes and real epileptic spikes, 
which was evaluated from real spikes using the methods of section 8.4.4. Therefore artificial 
spikes have a good resemblance to real spikes and hence training with artificial data is 
indirectly related to the real ones, a fact that could explain the observed similarity in the 
results.

The likeness in the two systems is also apparent from the closeness of the weight vectors 
for the systems trained with real and artificial data. The comparative measure, Sar, given 

by equation (11.15) is a characteristic indication of their similarity. For the MLP with 
normalized and squared inputs Sar had a value of 0.01. This value is small, indicating that 
the weights after the completion of training with artificial data were close to those obtained 
when real EEG spikes were included. Sar quantifies the proximity of the two weight sets 
in weight space. In this case it shows that they lie on sphere whose radius is only 1% of 
the distance between its centre and the origin, hence they are close to each other. For the 

normalized input case, 8ar =  0.03, which is higher than the in previous case, but is still 
relatively small.

In conclusion, no significant differences were observed between the weights of the MLP 

trained with either purely artificial data or a mixture of artificial and real EEG signals. 
Thus, when real data are scarce, it is still possible to attain a reasonable performance if the 
system is trained with synthetic data, based on a signal model for the transients in question. 
This, of course, requires a reasonable model for the signal, especially the transients to be 
detected.

11.9.2 The effects of input preprocessing

Having established the suitability of the training set, the effects of input preprocessing on the 
performance of the system were assessed. Four types of preprocessing were used, all described 

in section 11.6.2. The test was described in section 11.8.2 and the results summarized in 
table 11.2. Although this table contained other pieces of information, which are analysed 
later, this section is concerned with the performance of the various configurations.

All spikes and transients of the synthetic record A were detected correctly by all sys-
tems, irrespective of the treatment of the inputs. Two false spike detections were, however, 
registered by the system with normalized and squared inputs (table entries 1 and 2) and by 
the configuration which used the moduli of the normalized inputs (entries 3 and 4). These 
detections are associated with two spikes, which were introduced with reverse polarity in the
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record, to verify the response of the four configurations to signals with a shape similar to 
one of the modelled transients, but a direction contradicting its definition.

The inability of the systems mentioned to distinguish polarity is inherently linked with 
the type of preprocessing performed. Squaring and the modulus operations removed the 

sign of the signals prior to their application to the MLP, which is then unable to distinguish 
between signals with opposite polarity. False detections may then be observed, when it is 
known that a particular transient always occurs with the same polarity. This limitation 
was not observed for the other modelled transient, because occurrences in either direction 
constitute valid transient events. Similarly, no difference was present in the first real record, 
B, since this did not contain any spikes with the incorrect polarity. It was evident in the 
rest of them, especially in the results for record E, which contained artifacts, some of which 

imitate epileptic spikes. The smaller number of false detections for the systems which use 
polarity (5 to 8 in table 11.2) is clearly linked to their ability to reject signals which do not 
have the correct polarity. The improvement in artifact rejection was small but noticeable.

Evidently, the systems with no preprocessing (7 and 8) performed better than the rest. 
This is believed to be linked with the maintenance of all information in the inputs of the MLP 
which enabled the network to form its own internal operations, rather than those imposed 

externally. Nonetheless, the differences from the hybrid structure were small. The latter 
provided the network with most of the information in the central samples of each signal 
window, on which the detection of transients is primarily based. As there is no improve-

ment in the performance of the hybrid structure compared to one with no preprocessing 

and both use a network of the same size, one may conclude that the latter is preferable. 

The hybrid structure may prove useful if the system is extended to more transients, when 
this type of preprocessing may simplify the task of the MLP, especially if correlations exist 
between the modelled transients. Squaring the inputs came third in the rank of perfor-
mance, with the modulus preprocessing being the last. The extraneous false detections by 

the modulus-preprocessed system were associated with some boundary cases, like artifacts 
causing transient disturbances registered with small amplitudes in the inputs to the MLP. 

These have caused detections, because they were possibly near the threshold value for the 

nodes of the first hidden layer, although this is difficult to verify. In other words, the clusters 
of transients and non-transients in input space are closer for the modulus operation. Perhaps 
squaring expanded the range of the inputs, stretching these clusters and, thus, making their 

discrimination easier.
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11.9.3 Convergence of network initialization schemes

One of the elements recorded in Table 11.2 during the tests for the systems with different 
preprocessing was the number of iterations until convergence of the MLP was achieved. This 
has been recorded at the end of every record used for training. It represents the number of 
samples from initialization until the estimated MSE for two consecutive iterations changed 
by less than a preset value (see section 11.8.2).

The objective then was to observe the convergence characteristics of the backpropagation 

learning algorithm for a given network architecture with two initialization schemes. The 
four tested networks were initialized either using the hints derived from the earlier intuitive 
system (section 11.7.2) or using random values. The tested networks with the first type of 
initialization appear as odd-numbered entries in Table 11.2, whereas the second as even- 
numbered entries.

When consecutive entries in the aforementioned table (representing the same setup with 
different initialization) were compared in terms of the number of iterations to obtain a 

satisfactory performance, some of interesting observations were made. In general, the systems 
initialized using the concepts of the earlier system required fewer iterations to achieve an 
acceptable error level than their randomly initialized counterparts. This supported the view 
that the considerations that led to the development of the earlier system (section 10.4) were 

‘in the right direction’ , although the system was sub-optimal. Hence, training acted as ‘fine 
tuning’ of the MLP parameters, rather than as a blind search for an appropriate set, which 
is the case with random initial weights.

The improvement in convergence, when using the preset instead of the random initial 
weights, was more apparent for the system whose inputs were normalized and squared (f|). 

Here, a speed-up by a factor of 6 was recorded, which shows that for the given system the 

initial values were close to the optimal. In fact the weight vector was in the basin of attraction 

for one of the minima of the performance surface. The improvement was somewhat lesser 

for the system with ^  (a reduction of the number of iterations by a factor of 5). The 
improvements for the hybrid input treatment was less than 2 and for ^  it had the marginal 
value of |.

In terms of performance, the two initialization schemes were comparable. Small differ-

ences were observed, which were more profound in the results for record E, for which the 
number of false spike detections appeared to depend on the initialization scheme employed. 

These differences were, however, small and did not favour one or the other initialization 
methods, since for the first system, the number of false detections was the same irrespective 

of initialization, for the next two the number was higher with random initial weights, whereas
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for the last it was lower.
In general, initializing the network to the preset weights, suggested by the earlier system, 

was more favourable than the conventional random initialization procedure, not only because 
it accelerated convergence without any apparent loss in performance, but also because it 
reduced the risk of encountering local minima and, possibly, flat regions which could prevent 

the generalized delta rule from finding an optimal solution. This cannot be guaranteed, 

but it is evident that there is a higher probability that the algorithm may encounter such a 
pathological condition during its progress, if the initial weight vector is far from one of the 
global minima of £(w). In general, for the systems tested, the intuitively derived weights 

appear to be near an optimal, something that cannot be claimed for a weight vector selected 

at random.
Comparison between the final weights for the two initialization schemes was not possible. 

Despite their equivalent performance, the two weight sets for all tested configurations were in 
three out of four cases very different. This is not unexpected, since gradient-based algorithms 
attempt to find the nearest point of zero derivative, irrespective of the level of the MSE it 
represents. Thus, different initial weights may lead to either local minima, or to different 

global minima. As Chen and Nielsen[42] demonstrated there are multiple global minima in 
the performance surface of a given MLP application. Hence, starting from different initial 

weights is likely to lead to different, but equivalent solutions. In the tests carried out there 
is a small possibility that some of the solutions correspond to local minima. If this is the 
case they must be at an error level close to the theoretical minimum, otherwise the observed 
performance level would not have been possible.

■ • n 1 * ’ *• 1

11.9.4 Comparison with the earlier detector

The primary reason for the development of the MLP decision-detection unit was the poor 
performance of the earlier detector, which was based on the apparently successful spike detec-
tor of the previous Chapters. Hence it was considered important to compare the performance 

of the MLP-based system with both earlier systems.

The results of the earlier transient detector were listed in Table 10.1. Comparing these 
with the results of any of the tested combinations of treatment of the inputs and MLP 
configurations (Table 11.2), there is a clear advantage in favour of the MLP-based systems. 

Even the worst performance, achieved by the MLP system with modulus preprocessing 
(entries 3 and 4 in the aforementioned table) was markedly better than that for the earlier 
system, which failed to detect all spikes and transients even in artificial record A. For real 

EEG records the response of the earlier system was clearly not very successful, since it missed
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about a fifth of the spikes present in records B, C and D and produced a large number of false 
detections. On the contrary, the MLP-based systems detected all spikes in these records with 
a smaller number of false detections. The reduction in the number of false detections in record 
E, which contained artifacts, was also noticeable for the optimized backpropagation systems, 
being about 40% less than that for the intuitively constructed system. In conclusion, the 
introduction of the MLP in the system made the difference between a moderate and a fairly 

good performance, justifying the extra processing for off-line training and on-line operation 
of the system. The MLP systems are considerably more flexible than the earlier system and 
are expected to be more versatile in possible future extensions of the system.

The response of the system to spikes was comparable with that of the successful spike 
detectors of Chapter 9. Those were only concerned with the detection of epileptic spikes and 
disregarded other transients. Its results for the four real EEG records appear in table 9.1. 
Only the first system in that table is comparable with the MLP-based structures, since all 

other configurations contained adaptive sub-systems not corresponding to the configuration 

used in conjunction with the MLP decision-detection system. Both systems detected all 

spikes present in the records they were applied to. In terms of false detections, they were also 
comparable. Some of the MLP-based systems produced a higher number of false detections 

than the earlier structure, but this was compensated by other configurations, which had a 

lower number of false detections. On average the MLP structures had a higher number of 
false detections, especially for the artifact-contaminated record E, but the increase has not 
been significant.

11.9.5 Sufficiency and ‘minimality’ of the intuitively defined con-

figurations

The final two questions raised at the beginning of section 11.8 were connected with the size 

and configuration of the neural network. The number of layers and elements in each layer 
of the MLP were selected using the earlier intuitive system as a guideline. This method of 

selection has not been based on any formal criteria (these do not exist anyway) and raised two 
questions: Whether a system so selected has a sufficient number of parameters to perform 
the designated task satisfactorily and whether there exists a smaller MLP that can do the 
same job, in which case there is redundancy in the proposed system. To investigate these 

issues, MLPs with different numbers of processing elements and layers were tested and the 
MSE, after training was completed, was recorded for one of the input conditioning schemes 

(see section 11.8.3). Table 11.3 shows the normalized mean-squared error function for one 
or two hidden layers with various processing elements in each.
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The question of sufficiency of the network proposed by the intuitive system was answered 
positively by its performance, but the results of Table 11.3 support this claim by further 
demonstrating that the MSE achieved by this system (corresponding to a 2-layer structure 
with 12 and 6 elements respectively) is quite close to that with larger numbers of elements. 
Indeed, an improvement by 1% required almost double the number of elements in each layer 

to take effect.

The question of minimality was more difficult to answer, but the reported MSE values 
suggested that the intuitive structure is close to the minimal system with acceptable perfor-
mance. Looking into the rows of Table 11.3 it is not difficult to establish that for a given 
number of elements in the first layer, the MSE decreases with the introduction of more el-
ements in the second layer. The error level, however did not drop significantly, until the 

number of elements in the first layer reached 10. For configurations having more elements 
in the first layer there is a marked drop in the MSE from an unacceptable level to a small 
fraction. This is associated with the transition from a network too small for the task to one 
larger than necessary, for which there is no marked improvement in the MSE. Somewhere 
close to this transition point there exists system configurations which perform quite well, yet 
do not have an excess of processing elements.

A similar observation can be made for the second layer (looking at the columns of Table
11.3). In this case, acceptable performance required at least 5 processing elements.

As a result, for the error level to be small there was a minimum requirement of about 10 
elements in the first hidden layer and 5 elements in the second. The configuration based on 
the intuitive system had 12 and 6 nodes respectively, which was quite close to the minimum 

requirement.

These conclusions about adequacy and minimality only apply to the system tested (for 

the detection of spikes and one more transient). If this is extended to detect many transients, 
it is possible for the intuitively derived system to be excessively large. For example, a smaller 
network could exploit possible differences and redundancies which would enable one node to 
perform clustering or separation of more than one input signal. Similarly, there is a possibility 
that inter-correlations between the inputs may lead to more complicated boundaries between 
the different classes of input conditions, thus requiring a larger network. In any case, the 

system suggested by the intuitive system may be used as a guideline, which can be trimmed, 
or extended to make an adequately large working system.
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11.9.6 Concluding remarks

Generally speaking, all MLP-based configurations tested performed well with both synthetic 
as well as with real EEG data. It is interesting to note that in spite of training the network 
mainly with synthetic data, its behaviour with real EEG signals was quite good. This may 
be due to the small number of data records considered in this study, but it demonstrates that 

the neural network approach has the capabilities to perform in a reasonable manner, even 
when there are differences between the training and testing sets. This is a general charac-
teristic of mapping neural networks, which behave as generalized regression or interpolation 
systems[136, pp. 120-121].
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Chapter 12

Comments and conclusions

This thesis was concerned with the analysis of EEG signals suspected of containing specific 
patterns (spikes) connected with epilepsy. In the first two chapters it was shown that al-
though there is a connection between the recorded signal and the activity of underlying neural 

activity, this is by no means straightforward and is influenced by many factors. Nonetheless, 
the presence of specific patterns in the EEG, which are characteristic of the general operation 
of the brain and its disorders, like epilepsy have been identified. Despite its importance in 

the diagnosis of epilepsy, as shown in Chapter 3, brief routine EEG recordings sometimes 
prove inadequate for the reliable assessment of patients and for controlling anticonvulsant 
medication, where reaching a therapeutic dosage while minimizing the possibility of side- 
effects of the drugs used are equally important for the successful treatment of constitutional 
epileptic attacks.

To overcome practical problems associated with the large volume of data produced by 
the more effective long-term EEG monitoring, automatic analysis was proposed. From a 
review of this subject appearing in Chapter 4, it became obvious that authors do not all 
follow a specific methodology, but agree that to achieve reliability of an automatic system, 
it is necessary to work closely with medical experts and to find a way to use the experience 

of the latter. This is not an easy task, as medical experiece cannot be expressed exactly and 
medical definitions are often vague and are based on subjective, visual observations, rather 
than on objective criteria, based on understanding in detail the underlying processes.

With these considerations in mind, two main problems were identified, producing accurate 
definitions and finding a way to utilize medical experience in an automatic system. As both 
problems are linked to the internal description, the model, of the signal, used by human 
analysts, producing a suitable model for the EEG signal became the initial target of this 
work. Such a model could suggest a way for the analysis of the signal without considering
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specific examples of EEG data records.

12.1 Discussion of methods used

In this Thesis there have been two approaches for the solution of the problem, both withing 
the common framework of signal modelling, but with distinct characteristics. The generalized 

modelling approach is preferred over the early ad hoc methods, but both methods will be 
discussed briefly here concentrating on their usefulness, effectiveness, elegance, clarity and 

simplicity.

12.1.1 The early methods

In the beginning, some models were proposed, based on the appearance of the signal, espe-
cially the spike-and-wave epileptic precursor. Some of the early models, presented in Chapter 

5 did not lead to an analysis procedure. They motivated the study of certain attributes of 
the signal that led to the development of a class of simple single-wave models, on which two 

useful spike detectors were based.

These were based on the time derivatives of the signal, as many of their predecessors, 
but have one fundamental difference from them. They were based on a rigorous analysis 

procedure, founded on a model rather than on heuristics extracted from specific test signals. 

As a result, their functionality could be predicted and even when they did not perform as 
expected, it was possible to give a detailed and accurate explanation, based on the proposed 
models. Some of limitations of the initial detector were solved by the state-space approach 

of the second attempt, which was less sensitive to muscle artifacts than the first.

The main advantage of these methods, apart from the rigor of the approach is their 
simplicity, and their capability of operating in real-time on relatively modest hardware.

Among their disadvantages is the absense of neurological significance in the proposed 
models making the intervention of medical experts difficult. The early specialization of the 

analysis, the simplicity of the model and the use of application-specific techniques made 
these techniques inflexible and difficult to assimilate to the function of a human expert. As 

a result, the approach is not easy to describe in a general way to medical experts, and its 

performance cannot be enhanced without changing its fundamental concept.
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12.1.2 The generalized modelling approach

It became obvious that ad hoc models, constructed without considering the generating mech-
anisms of the signal and neurological definitions would not be a suitable starting point for 
collaboration with human experts from the medical field. Therefore, a composite model was 

proposed. This was based on existing definitions used by neurophysiologists to describe the 
EEG, like background activity, spikes, transients and artifacts. These terms were examined 
both in terms of their generating processes and their nature (amplitude, persistence, shape, 
etc.). From this examination these terms were formulated using general signal processing 

techniques. Specifically, these were considered as components of the (composite) EEG signal. 

Each one was described in terms of a system with (generally) constant or rarely changing 
characteristics and a simple input signal. Hence, the ‘uncertainty’ of a signal (time of oc-
currence, amplitude or power) was condensed in the input and the known characteristics in 
the system.

This approach is general, covering all the components of the EEG and not specific to 
neither epileptic patterns, nor to any particular signal processing method. The significance 
of the latter is its ability to describe the signal in a way familiar to the EEG analysts while 

maintaining their definition for the benefit of the signal processing analysts.

12.2 Conclusions

Evidently, the detailed signal modelling approach is far superior to the earlier method. Not 
only has it accomplished its primary function, the detection of epileptic spikes in the EEG 
but has also proved its potential for improvement and generalization. These issues will be 
elaborated in this section, demonstrating that the methodology suggested may form the 

basis of a continuously improving system, capable of analyzing the EEG in general, useful 

to individual medical analysts, with plenty of scope for application to other signals.

12.2.1 Reliability of the detector

First of all, it should be noted that in terms of spike detection the results of the system, based 
on an elaborate signal modelling approach were not considerably better than those for the 

simpler system, based on derivatives, described in section 6.5. In fact the performance-to- 
complexity ratio of the earlier detector was much better than the signal modelling approach. 
The latter, however, has other desirable properties making it a more versatile analysis tool, 
applicable not only for the analysis of the EEG, but also for other signals, not necessarily of
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biological origin.

12.2.2 Generality

This system does not depend on the shapes of the signals involved, nor on heuristics derived 

by making specific assumptions about the nature of transients. It rather describes a procedure 
to follow for the modelling and detection of transients, whose approximate characteristics are 
known a priori, when these are embedded in a continuous signal which may have possibly 
unknown characteristics. The transients in question, spikes in the case of the EEG, are 
modelled in a consistent way and, unlike the earlier system, where the model was used 
only implicitly to develop the method, here it constitutes an integral part of the analysis 

procedure.

12.2.3 Useful by-products of the rigorous system

Signal analysis

At the centre of the suggested EEG analysis method is signal modelling. The background 
activity b(n) is modelled by the prediction error system f / -1 (z) and the error sequence, u(n). 
Spikes are described by the all-pole system G(z) and the impulse excitation sequence, d(n). 
In this manner, the power signal component, b(n) is separated from the energy components, 

spikes and other transients[128, 129, 130].

The system offers the ability to study these signals separately, using their parametric 
representations in terms of a transfer function and an input sequence. This is related to 
more conventional methods of treatment of the EEG[133].

Synthetic spectrum evaluation

It is often advantageous to visualize the EEG in the frequency domain, where dominant 

frequency components and other characteristics are easier to detect[130]. The presence of 
transients makes the interpretation of the spectrum difficult, because they are wide-band 
signals, contaminating a broad area of frequencies. This has been solved by the proposed 
system, because spikes and the background activity are characterized by separate input 
sequences and transfer functions. Hence, their corresponding frequency characteristics may 
then be studied independently. In fact, the power spectral density, Sbb(uj) of the background 

activity may be computed from H (z) and the power cr\ in the white sequence u(n) by
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evaluating H (z ) around the unit circle in z as suggested by equation 7.8:

S»(u>) =  (12.1)

This is much simpler to evaluate than the FFT and it may be computed at any desirable 
frequency resolution. The PSD of individual spikes may be evaluated in an equivalent way, 

using G(z), although the usefulness of this may be limited.

Capability for data compression

In long-term monitoring, there is a requirement to store the recorded signal for visual in-

spection or for additional off-line analysis. Although the proposed method performs analysis 

and spike detection on-line, it may be required to verify that it performed as expected by 
visually assessing the signal. Besides, maintaining some record of the progression of events 
in the EEG apart from spikes may be of clinical use. Storing the signal directly is inefficient, 
requiring a large amount of extra memory or even a mass storage device, thus increasing 
the complexity, size and cost of the system. Therefore some form of data compression is 
required.

The spike detection system was not designed for signal compression, but it may be 
possible to use it directly for this purpose, although the propositions that follow need to 
be considered in more detail during the development of such a system.

A scheme for signal compression based on the parametric form of the EEG will be outlined 
briefly. Assuming that the background activity is piecewise stationary, small segments of it 
may be modelled by a random input sequence and a time invariant system H (z ) (section 
7.3.1). Therefore, by ignoring small changes in H (z ) during adaptation, it is possible to 
define segments in the signal, as sets of consecutive samples between two large transitions 

in the parameters of H(z).  Each segment may be characterized by the parameters of H(z)  
before the transition or some average over the whole segment and the error sequence, u(n), 
which has a smaller dynamic range than the input EEG signal. Assuming that a segment 
has an average duration of one second (160 samples for the sampling rate used), H(z)  should 

only be saved at the end of every segment. For a 16th order system with every parameter 
stored as a 16-bit value, its storage requires 256 bits per second. If the sampled signal is a 
12-bit quantity and the error signal an 8-bit value, then with the parametric form, saving 
the number of parameters, the length of the segment as a 6-bit value and the error signal 

requires 256 +  8 - f 6 x l 6 0  =  1224 bits per second, whereas the unprocessed EEG requires 
12 x 160 =  1920, that is a saving of about 36%.

If the shape and the phase of the signal is not important, (for example during visual 
inspection, where a general ‘ feel’ of the signal is required), the error sequence may not be
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stored, only its power (16 bits, say), which leads to a compression rate of 85%! Spikes may 
be incorporated in the signal during reconstruction, by saving their time of occurrence from 

the beginning of the segment (8 bits), the amplitude of the generating impulse (12 bits) and 
the difference vector from the typical spike (optional). Since no more than three spikes can 
occur in a second, and they are infrequent, the overhead in their storage is small.

Further compression may be achieved if individual parameters are not stored, but on-line 

spectral analysis is carried out, to detect the type of activity occurring (e.g 0, S, a  or /?). 
Reporting only this information for every segment, as well as the instants of spike occurrences 

may be sufficient.

Although this would not allow visual inspection of the record directly, it would provide 
a general impression of the behaviour of the signal during the period of monitoring, while 

being extremely economical in terms of storage, as the memory required for twenty-four 
hours of monitoring does not exceed 300k bytes.

12.2.4 Improvements, generalization, future prospects

Generalization for the detection of many transients

One of the key issues in the modelling approach for EEG analysis was the possibility of 
generalization. This may be viewed in the context of the EEG signal or in the more general 
frame of signals consisting of a structured (correlated) sequence with superimposed transient 

components whose detection is required.

As far as EEG analysis is concerned, the suggested system may be generalized to detect 
any number of transients, as demonstrated in Chapters 10 and 11. This would require the 
isolation of the transients manually and the application of the off-line estimation procedure 

of section 8.4.4 to derive a model for the new transients and their incorporation in the model 
along with the existing spike and other transient models. The decision elements (Chapters 

10 and 11) must be changed also, but this modification is almost trivial, consisting of the 
introduction of a few more processing elements in the artificial neural network, as already 

explained in section 11.6, preferably with their weights initialized according to the scheme of 
section 11.7.2. Although the system is expected to operate as it is, retraining the network to 
finalize the details of the new transient and to integrate it fully with the remaining system 
may be necessary.
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Introduction of secondary features

Other minor improvements on the existing system include the realization of the computation 
of the synthetic spectrum and the subsequent segmentation of the signal, as suggested in 
section 12.2.3. It would then be possible to construct the EEG data compression method 
outlined in the same section and by detecting the type of activity that occurred during every 
segment to produce the encoded summary of the activity, which constituted the proposed 
high-compression method. Ths could lead to an off-line reporting system, which would 

read and interpret that information, providing a report of the findings during the period of 

monitoring in a concise form using standard EEG terminology. This could be of better value 

for clinical purposes as it may be directly interpreted by human analysts and medical staff.

Provision of a user-friendly interface

The developed prototype system consists of a number of software parts: The main, on-line 
EEG analsysis system, a small program reading its output and isolating segments corre-
sponding to transients and spikes, the spiking filter for extracting the parameters of new 
transients and converting them to an average and a covariance matrix and the neural net-
work implementation.

Combining them under a unified user interface would result in a tool suitable for use 
by medical experts. The expert may then view existing sampled EEG records on a graphic 
display (a primitive form of this is currently available), mark and label the transients of 

interest, or correct the existing annotation by the automatic procedure. The system may 
then use this information to improve detection, based on the cues provided by the expert, by 
re-training the existing MLP. The user may also define new transients to be incorporated by 
the system, by marking them and applying the spiking filter (non-interactively). The output 

of the spiking filter may be put automatically as a new set of parameters and the system 
may be automatically modified to include it in the future.

Artifact detection and reduction

Artifacts, signals that have their origin outside the cerebrum and contaminate the scalp 
EEG recordings, often to a degree beyond recognition, are a serious problem of many EEG 

analysis procedures. Although it has been shown in section 7.4 that these may fall in the 

category of the background activity (thus modelled by H( z)) or they may be considered as 
transients, they are still a major concern in any long-term EEG analysis system. The most 
serious source of artifacts are muscle potentials, whose shape is variable and amplitude high.
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It was demonstrated by testing that the rigorous system has an inherent ability to reject 
many artifacts as unrecognized transients, but this was not always possible, as some muscle 
artifacts resembled epileptic spikes. A more rigorous approach is therefore required. Artifacts 
may be reduced by some separate pre-processing, or by using an additional artifact rejection 
procedure fed with the parameters of the system, like the transfer function H( z ) and the 
power of the noise sequence output from its inverse after the occurrence of a transient.

Multichannel analsysis

Closely related to artifact reduction is the use of more than one EEG channel during analysis. 
Evidently, muscle artifacts would vary between electrodes, whereas genuine spikes due to 
generalized epileptic attacks are expected to be present simultaneously in more than one 
channel. The proposed modelling concepts need not be modified for the multichannel case, 

only the scalar signals have to be converted to vector quantities. The analysis of such a 
system is a generalization of the existing system. Although the case may be trivialized by 
treating each channel independently and combining their results, a more appropriate concept 
would be the integration of all signals in one system from the beginning, so that existing 

inter-correlations may be utilised for more accurate results.

Generalization to other signals

Finally, the proposed method is not confined to the EEG. Other biological signals, like the 

ECG may be treated in a similar way. The QRS complexes in the ECG may substitute the 
role of spikes, although the equivalent to ‘background activity’ may only consist of occasional 
interfering signals. The blood pressure waveform is another possibility. Non-biological signals 

consisting of some background signal on which transients are superimposed may be analyzed 
in a similar way. These could include images, where edges are to be detected in a noisy 
signal, containing texture information. Some initial work on the use of adaptive filtering 

for the purpose of edge detection has been reported[127], but the realization of a system 

equivalent to the one for EEG analysis has been hindered by the two-dimensional nature 
of images and hence the absense of a natural, unique, direction for the application of the 
algorithm, provided by ‘time’ in the case of the EEG.

Non-linear modelling

The modelling elements of the constructed system have been linear. This was a limitation 

imposed by existing theory. Work in non-linear signal processing systems is still experimen-
tal but new developments are anticipated in the near future. The concepts on which the
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model was constructed do not have linearity as a necessary condition. Therefore elements 

of the analysis procedure may be converted to non-linear if required (e.g. for more accurate 

modelling). This would not require the modification of the rest of the system. The first ele-
ments that might be modelled by non-linear processes are the spikes and perhaps some other 

transients. Although small perturbations of a low-order linear system were often adequate 
to describe spikes, a non-linear model may provide a more accurate and ‘neat’ solution. A 
method that appears to be promising for this application is Volterra Networks[113, 173]. 
These are a special class of artificial neural networks, whose process consists of a non-linear 
process, y(n) =  Pm(x (n )) of its input vector followed by linear weighting to produce its out-
put, z(n ) =  wTy(n). The non-linear operator is a polynomial expansion of the input vector, 

so that the intermediate vector y(n) consists of the components of x(n), their cross-terms 
and all terms of their polynomial expansion up to and including those of order m. The 
linear weighting is effectively a Wiener Filter which was the basis of linear adaptive filters. 
In this sense Volterra networks are a non-linear extension to conventional adaptive filters 

and subject to similar theory.

12.3 Closing remarks

In this thesis a method for the detection of epileptic spikes in the interictal EEG has been 
analyzed. Based on a rigorous model, derived from neurophysiological descriptions and the 

nature of the processes that generate the EEG, this is a generalized approach, and provides 

a framework for collaboration of experts from both the medical and the signal processing 
fields. The method is versatile and with trivial amendments it may be applied to many other 
transients, and to non-EEG signals. The main contribution lies in the concept of a detailed 
model of the EEG, that includes transients, on which to base the analysis method, so that 
its performance may be predicted and its limitations understood. The developed model is 
rather general and there is no unique method to realize the implied analysis system. The 

proposed implementation, was based on essentially linear systems, but with advances in 
signal processing some of its elements may change in the future. Being largely a procedure 

to follow, rather than a rigid system, it may be improved by interaction from expert human 
analysts, without the supervision of a ‘designer’ . New transients may be included and the 

overall systems performance may be tailored to the performance of one analyst, or it may 
act as a reference for many analysts, depending on how it was trained.

The ability of the system to ‘ learn’ by example is very important because it may be the 
only means to incorporate medical experience into an automatic system.
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Appendix A

Orthogonality and triangular 
waveforms

For the set of triangular functions mentioned in section 5.4 to be orthogonal it is necessary 
to prove that the following hold true:
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These integrals may be computed easily using the Fourier expansions for <j>AT(t) and <f>BT{t) 

to simplify and generalize the operations. Direct evaluation is tedious because triangular 
functions are piecewise-linear and so are their integrals. It can be shown (see for example
[121][pp. 96-97]) that the corresponding Fourier series are:
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Note that the Fourier coefficients of the expansion for (f>Ar(t) are all positive, whereas those 
of 4>BT(t) have alternating sign. Both expansions contain only odd harmonics. Using the 
left-hand side of equation (A .l),
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since f*™  cos at sin btdt =  0 for all a and b. Hence the 4>a Ti (t) and the 4>b Ti {t) are orthogonal.
Orthogonality is also necessary for functions belonging to the same group. Using the 

left-hand side of equation (A .2),
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Since f*+oo
OO cos at cos btdt =  0 the above integrals would cancel for
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However, there are values of n, m, for which in this relation the left- and right-hand sides are 
equal although 7\ /  T2. For example, if T\ =  3T2 Then for m =  3n — 1 the integrals would 

not cancel and the result of the expression in equation (A.6) would be non-zero. In other 

words, the {<f>AT ( t ) }  functions are not orthogonal. It can be shown, using similar arguments, 
that the {<psT{t) }  are not orthogonal either.

Note that this argument also holds for a a finite period of integration, T  when the basis 
is limited to the functions that are harmonically related (i.e. have periods n =  1 ,2 ,...) .
□



Appendix B

Spike models with special derivative 
properties

B .l A modification of the Hanning window for contin-
uous derivatives

The Hanning window of duration To and amplitude Aq is expressed by the following function:

Wh(t) =  0 t < 0
=  ^ (1  — cosu0t) 0 > t > T O (B .l)
=  0 t >  T0

where ai°~2,r. The main concern is the behaviour of the function and its first two derivativesTO
at the points where t =  0 and t =  t 0. For fm[0, To], the derivatives are:

w k(t)

and

w z(t)

AqUJq
2

sinw0t

AqWq

2
COS UJot

(B.2)

(B.3)

(B.4)

Obviously, Wfc(0) =  WkT0 =  0 and W ({0) =  W fo  =  0 but W £(0) =  W fa  =  ^  ^  0. 
Hence, Wk(t) has to be modified to form a new window, VFS, such that VF"(0) =  W "{ t q) =  0 

as well.
A simple way to accomplish this is by windowing the derivative of the signal, using a 

second Hanning window:

K ( t )
AqUIq

4
AqUIq

4

sinw0t(l — coscio t) (B.5)

(sin wot — -  sin 2w0t)
ù

(B.6)
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Then, the second derivative will be

W "(t) =  ■■ (cos u0t — cos2w0 t) (B.7)

which is zero at the specified two points. The actual window can be easily determined by 

integration and setting 1^,(0) =  0 to be as follows:
1 1 3

Ws(t) =  A0 (—  cos2u0t -  -  c o s +  — ) (B.8)
lb  4 lb

This function is zero at the end-points of the range [0, r0] but in the centre of its this 
range it has a value of instead of 1. This can be easily corrected by multiplying all terms 

by 2, which gives the required function:

A s(t) =  0 t <  0

=  Aq (§ — I coso;0t +  I cos2w0t) 0 > t >  t 0 (B.9)
=  0 t > T0

B.2 A further modification to achieve half-wave sym-
metry

Ws satisfies the requirement for the end-points. At t =  W4( ^ ia) =  1 and Ws{^ )  =  0. But
the second derivative, =  — AquJq ^  0. This is a problem in case the window is used in
conjunction with a constant amplitude, like in the case of the Tukey window, where the first 
half of a hanning window is used for a smooth transition form 0 to some value Ao, which is 

maintained for a period of time, before it is smoothly returned to zero by the second half of 

the Hanning window. In this case the transition curve will need to maintain continuity at 
the end-points of the “constant” segment, which has zero first and second derivatives. This 
means that at t =  ^  both derivatives have to be zero. This has been achieved, as before, 
by windowing the first derivative of the function by a window which is zero at that critical 
point. A cosine window with double the frequency of the one used in the development of

Ws(t) would suffice. Hence, the new function has a derivative

Wftt) =  sin w0t (1 — cos 2w0f ) (B.10)

=  sin w0t(2 sin2 u0t) (B .ll)

AqUq . 3 
=  —-— sin w0t

¿j
(B.12)

which gives a second derivative

W "(t) =  0 sin2w0t cos Wot
2

(B.13)
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which is zero when t =  Integrating W[[t)  like before and using the fact that kkf(O) =  0 
to determine the value of the constant produces the following function:

Wt(t) =  -  l-cosuot +  i c o s 3a>0i) (B.14)
6 1 0

Of course, the amplitude needs to be normalized, since =  |. Hence dividing by this
value gives the final version of the function:

A t(t) =  0 t < 0
=  Ao — \ cosLj0t +  \ cos3u0t) 0 >  t >  To (B.15)
=  0 t >  T0

B.3 A function for non-linear variations in 6(t)

6(t) is the angular argument in the oscillatory part of the model suggested in section 6.5. 
Since it should be such that as t varies from 0 to r0 exactly one oscillation is completed, 
then 0(0) =  0 and 0(t o) =  2n, and 6'{t) > 0 for t 6 [0, r]. The requirement for continuity 
and differentiability of the derivative puts additional restrictions on the functions to use. 
It was decided to use a model that allows 0 to increase slowly near 0 maintain a constant 
rate of increase between some time limits [̂ 1,^2] after which its rate of increase should drop 

gradually, until t =  r0. The behaviour resembles that of an epileptic spike, which starts from 
a slowly varying frequency, acqyires a maximum and then gradually decreases its frequency 
after the trough is reached. Since the specifications are mainly on the “frequency” , 6'(t), 
modelling began with this function. The slow variations were modelled by Hanning window 
sections with a constant in the middle:

6'{t) =  0 t <  0

=  K  (1 — cosu it) 0 >  t > t\

— 2K  t\ <  t <  ¿2

=  K  [1 — cosw2(i — To)] t2 > t > r 0 
=  0 t >  T0

where ^  and u 2 =  and K is a constant scaling factor.
The second derivative of this function,

0"{t) =  0 t <  0

=  K  sinu;^) 0 >  t >  <1 
=  0 t\ < t  < t 2
— K  U>2 sin U}2{t — To) t2 > t > T0
=  0 t > To

(B. 16)

(B.17)
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is continuous, since 0"(O) =  0"(t o) =  0 and 0"(ti) =  0"(t2) =  0.
To find 6(t) one has to integrate 0'(t), taking into account the initial condition 0(0) =  0. 

Hence, integrating the first section gives:

9(t) =  K  J 1 —coseo\t dt (B.18)

=  (B.19)
U\

At the end of this segment, 9(ti) =  K  which is the initial condition for the next segment:

6(t) =  2K  J l d t (B.20)

=  2 K t - K t x (B.21)

=  K ( 2 t - U ) (B.22)

Which ends up when t =  t2 
first apart from a constant:

with a value of K  (212 —U). The final segment is similar to the

m =  K  J \ — c o s a c i  — t 0) dt (B.23)

=  K [ t  sin“ ’! (< -  T»)] +  K  ( ( , t„)
LÜ2

(B.24)

(B.25)

At the end of this segment the value of the angle should be equal to 2t t , thus 9{t0) = 
K  r0 +  K  (¿2 — h )  =  27t , which gives the value of the scaling factor K  =  — - '2tir_ -■.



Appendix C

Properties of the Wiener filter

This Appendix contains material to complement the brief summary on Wiener filter theory, 
described in Chapter 8. Although it is not by any means complete, there are proofs of 
most of the properties of the Wiener estimator stated in section 8.1 and enough material to 

support both the concept of system modelling and its adaptive implelemtation, covered in 
section 8.4.2 and in Chapter 9.

Most of the properties of the estimator are associated with the Mean Squared Error 
optimization criterion, which may be transformed using the linear properties of statistical 
expectation, £[•], from its defining equation to the as follows:

£ =  £ [y (n )2 — 2y(n)wr x(n) +  w Tx(n )x (n )Tw]

=  E[y(n)2] — 2wT£[y(n)x(n)] -f w T£ [x (n )x (n )T]w 

=  ryy( 0 ) - 2 w Trxy +  vfTRxx'w (C .l)

This expression was given in section 8.1 as equation (8.6) and was employed to derive the 
Wiener-Hopf solution to the optimal filtering problem:

w * =  K l v*y (C.2)

The shape of the Mean Squared Error function, which is a scalar function of the weight 
vector, £(w), will now be considered, because most of the properties of the filter and its 
implementation stem directly from it. Because £, a function of w, is non-negative it must 

possess at least one point of minimum MSE. In fact this minimum is unique, given by 
equation (C.2), occurring at w =  w*. Its value, £m,n =  £(w*), may be found by substituting 
equation (C.2) into (C .l):

imin =  ^ ( 0 )  -  2w*Trxy +  W*T/?XIW*
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— ryy(0) ^\RXXrxy] rxy +  [RxxrXy] RXX[RIX rxy]

=  ryy (0) — 2rxyRxxrxy +  rxyRxx [RXXRXX\r*y 

=  rvy(°) -  rTxyR~lrxy =  ryy(0) -  r jyw* (C.3)

where the symmetry of the autocorrelation matrix RXXT =  Rxx was used.

Starting from equation C .l, substituting /  =  RXXRXX and adding and subtracting the 

term rxyRxxrxy results in the following expressions:

£(w) =  ryy(0) -  2wTRxxRxxrxy +  TTxyR~lvxy -  vTxyRxl r xy +  w T# xxw

=  ryy(0) -  2wT Rxx[Rxxrxy] +  [rTxyRxl]R xx[Rxlv xy\ -  rTxy[Rxl r xy\ +  w T/?XIw 

=  [r y y ( ° )  -  r J y w *]  -  2w t Rxxw * +  W*TRXX-W* +  wTRxx-w ( C . 4 )

where the symmetry of Rxx has been used as well as Wiener-Hopf equation. Identifying the 

term in square brackets as £mtn and using the fact that scalar terms like w T Rxxw* are equal 
to their transpose, the above equation may be rewritten as

£(W)-£ m m  =  W*TRxxVf* ~  [WTRXXV/*]T +  WTRXXW ~ WTRXXW*

= wTRxxw -  w t Rxxw * +  w*Tf?xxw* — w*T/?xxw 

=  wT/?xx(w -  w*) + w*Tf?xx(w* -  w)

=  (w -  w*)Tf?xx(w -  w*)

Or £mtn =  £min) — V /?XXV (C.5)

where v  =  w — w*. The expression above has a clear form of a quadratic (hyperparaboloid) 
in v  (hence in w too, which is translated by a factor of w"). Because Rxx is positive 

(semi)definite, it is concave upwards[202][p. 20-25]. For these reasons the unique point 
of zero gradient is a minimum. Also, the locus of w having the same MSE, £c lie on a 
hyperellipse[202][p. 38].

These statements will be substantiated using equation (C.5), where the origin of the 

weight vector space has been translated to w* and to zero. The eigenvalues of the 

correlation matrix, Aj, A2, . .. are all real and positive (since Rxx is positive definite) [202] [p. 
34-43]. The eigenvetors corresponding to each one of the eigenvalues, q i, q2, •. • are linearly 
independent and may be constructed to be orthonormal. Then the modal matrix Q =  
(q iq2 . . . )  whose columns are the eigenvectors is such that QQT =  I or Q -1 =  a direct
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consequence of the orthonormality of its columns. Using the diagonal eigenvalue matrix

Ai 0 • 0

o
 

.

Aj  • 0

.. 
o

o Afc

(C.6)

and the characteristic equation of the correlation matrix, Rxx may be factored as follows:

RXXQ =  AQ =  QA

=>• Rxx =  QAQ~X

=> Rxx =  QAQ t  (C.7)

The matrix Q corresponds to a rotation[202][p. 34-43] and when equation C.7 is substituted 
into C.5 it corresponds to a change of basis from v  to a new one u :

£v)-£m m  = [VTQ]A[QTV]

=  [g Tv]r A [gTv]

£ u )  -  £mtn =  u t Au  (C.8)

Since A is a diagonal matrix with positive entries, the above quadratic expression may be 
epressed in the more recognizable form

£(«1, «2,. . .) -  (min =  Ai u\ +  A2 u \  +  . . . (C.9)

In this form, the parabolic shape in any direction u, is revealed by setting all other variables 

to constants, giving the parabola £ — £min =  A, u\ +  const. Because all the eigenvalues of 
the positive-definite matrix Rxx are positive, the coefficient of u, is positive, resulting in an 
upwards-concave parabola.

Similarly, for constant £ — £mtn =  £c the above expression gives the locus of the weight 
vectors having the same MSE output level. This has the form of a (hyper)ellipse. Different 
values of £c give concentric hyperellipses (centred at w*) having the same orientation. In this 
case the eigenvalues and eigenvectors have a geometrical sigificance. The fth eigenvector, q, 

gives the direction of the fth principal axis of the hyperellipse. The corresponding eigenvalue, 
A, is the reciprogal of the square of the radial distance from the centre of the hyperellipses 
to the one corresponding to £c =  1 in that direction. Widrow[202][p. 34-43] interprets the 
eigenvalues as the second derivatives in the direction of their corresponding eigenvectors. It
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should be noted that the smallest eigenvalue, Amin corresponds to the longest principal axis 

of any hyperellipse whereas the largest, Amax to the smallest.
One of the most important properties of the Wiener filter arising from the use of the MSE 

function is the decorrelation of the input and the error. Algebraically, the desired response 

vector, y =  ( . . . ,  y(n — 1), y(n), y(n +  1 ) ,. . .)  may be represented in a vector space, V. The 
vector space, U, spanned by the input vectors to the weights, (x (n )} is a subspace of V. 

The estimate produced by the Wiener filter, y, may then be regarded as a projection of y 
on this subspace, calU. y is a linear combination of the {x (n )}, scaled by the weight vector, 
w. The error vector is the difference between y and y. Hence, e(n) =  y(n) — x (n )Tw and 

the expected value of the product of e(n) and x(n) when w =  w* is zero:

E[e(n)x(n)] E[y(n)x(n)] — £ [x (n )x (n )Tw*] 

rXJ/ -  Rxxw*

r Xy R x x  R x x

r xy -  rxy =  0

(C.10)

(C .ll)

In other words, the error is orthogonal to the input vector space when the optimum weight 
vector is used. This has a geometric interpretation, because the MSE criterion is equivalent 
to the square of the distance between y  and y. Since the perpendicular distance to a the 
(hyper)plane spanned by the {x (n )} is shorter than that in any other direction, the length 
of the error vector is minimized when e is perpendicular to U. Consequently, the output of 
the filter y  6 U, and e are orthogonal (decorrelated) as well.



Appendix D

Details of the simulated EEG record 
used for testing the adaptive spike 
detection system(s)

The background activity b(n) (see section 7.3.1) was generated by processing a white se-
quence, u(n), by a piecewise linear system, H. The input sequence was a uniform ran-
dom, uncorrelated sequence with zero mean and constant variance (power), cr̂ u. This was 
generated from a standardized uniform random number generating function whose output 
w(n) ~  Uni(0,1) was shifted by — | and then scaled by the standard deviation of the re-

quired signal to produce u(n) =  auu [z(n) — |]. The piecewise-linear system H consisted 

of a collection of transfer functions, {H<(z)}. For practical reasons this was restricted to 
a set of five. Normally one of these is active at any time, but there is a transition period 

between consecutive segments, during which both are active. According to the model, all 
transfer functions are continuously active (to prevent the transients of switching their input 
on and off) and hence the selection of one of the six outputs to be 6(n) determines which 
transfer function is active at any time. The duration A,- of activity of the current A ,(z) 

was made variable (random perturbations around a mean duration). A, was conveniently 
assumed to be an exponential random variable having a mean of pn samples (corresponding 
to approximately 2 s of real time. For a sampling rate of 160 s-1 , A, ~  Exp(320). Selecting 
which transfer function was active for this duration was adone in a random manner, using 

the u n ifo rm  random number generator, with output between 0 and 1, scaled by a factor 
of 6 and truncated into an integer between 0 and 5, with equal probability, used to index 
the active transfer function. At the end of the activation period a new period and transfer 
function was selected in the same manner. Transition periods were considered at the end of
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every segment. These were short, their duration being M  ~  Exp(20) facilitating the smooth 
transition between segments. In this period, the output of the expiring transfer function was 

scaled down to zero using a cos2 ( ^ n ) ,  while the new transfer function was scaled up from 
zero to its maximum value using sin2 The selection of these two functions was based
on the fact that their sum is always 1. Therefore, if both transfer functions have the same 
amplitude levels in their output, they are mixed so that the amplitude level is maintained 
throughout the transition period, although the composition will change gradually.

Spikes, s(n), were generated independently using a software implementation of the gen-
erating process described in section 7.3.2. According to this definition, spikes are the output 

of a LTI system with transfer function G(z),  under the excitation of infrequently occurring 

impulses with scaled amplitudes, d(n). The input sequence was easily generated, as it is 

normally zero, apart from certain rare discrete instances. The time difference, A M  (in sam-
ples) between two consecutive spike occurrences was varying randomly about some mean 
value pm following an Exponential distribution, A M  ~  Exp(/im). Although spikes occur 
quite infrequently in the interictal EEG, pm was taken as 3 s, (or 480 samples), so that a 
reasonable number of spikes were present in a record of 10000 samples. The amplitudes of 
the excitation impulses in d(n) were made variable, but at a level well above that for the 

backgrond activity, since spikes should be clearly distinguished from this. It was found that 
by setting the mean amplitude of the excitation impulses to about six times above the RMS 
value of the background activity input process (pj. =  6<ruu) produced spikes which were at 
the same level above the background activity as the real signals available. Variability was 
introduced on spike amplitudes by random variations on this mean amplitude with a vari-
ance <7j j  =  following a Normal distribution. This ensured the presence of spikes with a 

wide range of amplitudes. The transfer function, G(z)  contained the average coefficients for 
real spikes, g*, which were estimated by the method suggested in section 8.4.4. The order 

of G(z)  was chosen to be L =  10, although the spikes out of a second order system, were 
still reasonably similar to real spikes. Variability on the shape of spikes was introduced by 
small perturbations on the coefficients of G(z)  every time a new spike was generated. These 

were in the range described in section 8.4.4 and were used to test on-line adaptation to 

spikes described in that section. The resulting coefficient vectors were Normally distributed 
with mean g*. This is a multivariate distribution with equal entries in the diagonal of the 

covariance marix and zero everywhere else (each coefficient is independent of all others and 
are all identically distributed). With this model no two spikes are exactly the same and tests 
for the behaviour of the detector with variable spikes are more objective.

The process of generating any other transient (section 7.3.3) is similar to the one just
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described for spikes. It differs only in the values of its parameters, especially the transfer 
function. Because there are many transients, there should actually be a collection of such 

processes, each one with its own parameters and transfer function. Due to the small number 
of EEG records available, most of which contained essentially spikes, constructing models for 
other transients was impossible because of unavailability of data. To test how the method 
behaved in the presence of at least one non-spike transient an artificial simple model was 

constructed. This consisted of a second-order system, F(z),  with two real poles. These were 
typically set to 0.75 and 0.40, but were allowed to vary randomly by 20% of their typical 
values in either direction from one transient to the next. The impulse response of F ( z ) was 
an exponential decay. This could be taken as a model of some electrode movement artifacts 

or a simplified model of eye movement arifacts. Small variations were introduced on the 
filter parameters, which changed the shape of its output slightly. F(z)  was excited by a 

sequence of impulses occurring randomly, c(n), following the same distribution as with the 
spike model, but with a mean duration of 320 samples between occurrences (corresponding to 
2 s for the sampling rate used). The amplitudes of the impulses in c(n) were made random, 
following a normal distribution around a mean fic =  4auu (higher than that for spikes) having 
a variance â c =  <r̂ u, which produced more dispersed amplitudes than for spikes. There is no 

particular reason for the selection of these statistical parameters, since the signal is, unlike 

spikes, artificial. An additional polarity parameter taking the value +1 or —1 with equal 
probability determined whether the excitation impulse and hence the generated transient 
was positive or negative.

Finally, random, Gaussian, uncorrelated noise t>(n), as described in section 7.3.4, was 

generated by the Normal random value generator, used in all previous signal components. 
This had zero mean and a variance (power) depending on a variable user-defined signal-to- 
noise ratio, n. The variance for the noise was computed based on that of the ‘signal’ , b(n) (or 
rather u(n)), o 2vv =  ĉr̂ u. The actual signal-to-noise ratio is normally larger than « , because 

H( z ) tends to amplify the signal power in b(n). It does serve as a guideline, though.
These signals were then added together to generate an artificial EEG signal e(n) on which 

the spike detection method was tested.
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Appendix E

An introduction to Artificial Neural 
Networks (ANN)

E.l Historical Overview

This possibly misleading name was adopted to describe a wide class of systems and is rather 

suggestive of the neurological origins of these systems. They emerged in the mid 1940’s 
along with the first digital computers[136][p. 14-20]. Then the idea of computing machines 
was quite novel and digital computer technology was still in its infancy. In those early days 
the primary concern was the development of a machine exhibiting intelligence. There were 

different theories on how this could be achieved. On one extreme were the supporters of 
a ‘programmed’ machine, having a powerful processing unit executing instructions explic-
itly. This led to the development of today’s computers. On the opposite extreme were the 
‘connectionists’ , who supported a distributed system, consisting of massively interconnected 

processing elements. Characteristic of that period was the work of W. McCulloch and W. 
Pitts, who demonstrated that simple models of neurons could compute basic logic functions. 
Although the structure and function of these elements was simple, the supporters of this the-
ory believed that the system as a whole could exhibit complex behaviour. The latter were 

the predecessors of todays Artificial Neural Networks. Another importance contribution was 
the work of D. Hebb, who presented in 1949 a ‘ learning law’ , by which individual neurons 

could change their response depending on their input stimuli.

In the beginning the supporters of the two philosophies overestimated the capabilities 
of their corresponding systems. It is quite clear nowadays that the first approach, which 
led to the development of the digital computer, was not the way to intelligence, although 

it comprises a powerful machine for executing predefined sequences of mathematical and
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data manipulations. The second approach was also pursued and the first ‘neurocomputers’ 
were built in the 1950’s. The most successful ones were Rosenblatt’s Perceptron in 1958 

and the ADALINE by Widrow and Hoff, which has been the predecessor of the LMS algo-
rithm discussed in a section 8.4.2. The apparent success of these early methods in solving 
simple problems had its shortcomings. Many of the researchers approached the field from 
an experimental standpoint and overstated the capabilities of the early methods they used. 
Consequently, the field ran out of new ideas and was also discredited, because of the lack of a 
sound theoretical basis. The unrealistic speculations of some about the future of the subject 

were criticised and eventually attention was drawn away from neurocomputing in favour of 
the more reliable and consistent digital technology. The book Perceptrons by Minsky and 

Papert (1969)[124] contained extensive criticisms on the field, as it emphasized that the per-
ceptron was unable to compute the logical exclusive-or function, concluding that all neural 
networks suffered from similar limitations. Some serious artificial neural network enthusiasts 
continued their work in associated fields (for example Widrow in signal processing) but a 

few new ‘recruits’ managed to maintain the interest in the field until the 1980’s, when the 

field re-emerged, with stronger foundations laid by a handful of enthusiasts with analytical 
skills, like J. Hopfield, T. Kohonen, S. Grossberg, D. Rumelhard and J. McClelland. The last 
two were the editors of two volumes on Parallel Distributed Processing (PDP) in 1986(166], 
containing a number of key papers on neurocomputing, including some on the Multi-Layer 
Perceptron (MLP) and its training algorithm.

E.2 Structure and Function of ANNs

The internal structure (organization) of the network may have, in theory, any form. The only 

restrictions that apply are that every processing element has only one output, all memory 
is local and the connections between the elements are unidirectional and instantaneous[136, 
pp. 21-44]. Every processing element has a transfer function, which describes how the 
output may be generated from the inputs and the local memory. This may be continuous- 
or discrete-time. In the latter case a scheduler may be required to synchronize the activity 
of the various processing elements. The inputs and the outputs of the network need not 
all be of the same mathematical type, a rule that applies to the inputs and outputs of the 

processing elements, which may differ in their structure and function from one another.

Despite the generality of the definition of what constitutes an ANN, most network struc-
tures used in practice are much more restrictive in their architecture. Typically, one or two 

data types are used and the topology of the interconnections has a great deal of symmetry
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and regularity. Moreover, although the definition does not rule out feedback, this is a prop-
erty of only a few ANN structures. The structure of a network is often related to its general 
function. Hecht-Nielsen in his book “Neurocomputing” [136] classified ANNs into associative, 
mapping, spatiotemporal, stochastic and hierarchical networks.

Associative networks, produce a mapping from an input vector to an output vector. This 
is effected by one array (layer) of processing elements. ANNs belonging to this category 
may have feedback (recurrent) or not (feed-forward). Typical examples of associative net-
works include the linear associator and its binary equivalent, the learnmatrix, both of which 
are feed-forward networks. The most famous recurrent associative ANNs are the Hopfield 
network, which is essentially binary, and its real-number equivalent brain state in a box 
(BSB) network. Associative networks have been reviewed in an article by Lippman[112] and 

described in some detail by Hecht-Nielsen[136, pp. 79-109].

Mapping networks attempt to form an approximation to the relation of input vectors 
to output vectors by means of examples of the required mapping. Both the input and the 
output spaces must be bounded. The approximation is normally effected by minimizing a 
performance measure, such as the mean squared error of the approximation for all examples 
presented to the network. Mapping networks are related to statistical linear regression of 
which they are a generalization. Examples of mapping networks include the backpropagation 

neural network (a form of the MLP), Kohonen’s self organizing map, the counterpropagation 

network and the group method of data handling (GMDH)[136, pp. 110-162].
Spatiotemporal networks, as the name suggests are ANN structures, which can incorpo-

rate time in their input patterns and hence can deal with temporal sequences. The time 

information may be incorporated as external feedback using network connections like in the 
recurrent backpropagation network or as part of the transfer function of individual nodes, 

like in the spatiotemporal pattern recognizer. Stochastic neural networks employ probabilis-
tic means of ‘ learning’ , like the Boltzmann Machine. Finally, hierarchical networks use sparse 

connections between groups (layers) of processing elements with rules to direct training to-
wards specific intermediate patterns. The neocognitron is a typical example of this class of 

ANNs.



362 Appendix E. An introduction to Artificial Neural Networks (ANN)



Appendix F

The MLP and its training algorithm

F .l The generalized delta rule

Because of the layered structure of the MLP there are differences in the expressions for 
the derivatives depending on where a weight is located in the network and there is need to 
consider them individually.

The fth weight of the pth processing element of the /th layer of the network, is adjusted 
using the following scalar equivalent of equation 11.3:

wiPi(n +  1) =  wlpi(n ) -  (F .l)
dwipi

It is necessary to compute . Using the expressions for the transfer function of the
element (equation 11.1) and the chain rule for differentiation, the partial derivative may be 
decomposed as follows:

¿%(w(n)) _  d£(w(n)) dzip(n ) dfip(n)
dw^i dzip dfip(n) dwipi

_  d£(w(n)) da[flp(n)]dYlk=o wiPk{n)z(i_1)ik(n)
Ozip dwipi

=  (F.2)

where denotes the first derivative of the non-linearity in the output of every element. In 

some applications where this is absent, as explained earlier, it may be substituted by unity.
For the algorithm to be complete must be evaluated. A general step is its esti-

mation has been due to Widrow and Hoff and is known as the delta rule, although it is more 
well known in signal processing circles as the LMS algorithm, the basis of adaptive filtering 
described previously in section 8.4.2. This is based on the assumption that the MSE may be
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estimated without bias from a finite sum of squared errors, £(w(n)) =  jj J2n=i £2(n)i where 
e2(n) — — zLj(n)}2- Since this is true for any N,  it is also true for N =  1, which

A

further simplifies estimation to £(w(n)) =  e2{n).
If the weight considered belongs to a processing element in the output layer (/ =  L), then 

the required derivative is

d£(w  (n)) de2(n)
dZLp dZLp

d{T?Aldj(n) -  *Lj(n)]; }
dzj_,p

d[dp(n) -  zLp(n )]2 
dzLp

=  - 2 [dp(n) -  zLp(n)] (F.3)

For weights in the intermediate (hidden) layers, the expressions for the partial derivatives 
are somewhat more complex, because each output from the layer affects every element of 
the subsequent layers and there are multiple paths to the network outputs. Considering a 
node in the hidden layer just before the output layer,

d£(w (n)) _  de2(n)
d z(L-l),p dz (L-l),p

=  d j ^ j d A n )  -  zLj(n))2}

dz(L-l),p

^  djdAn) -  zLj(n)}2

h  dz(L-i),P

=  - 2 3 « - ^ .  ) ) p ^ -
j = 1 dz(L-  1),P

=  (F.4)
j = i  ° Z(L-1),P

Since z ij{n ) =  v[f i j {n)]  and f i j (n )  =  Ylk=o* wLjk{n)z(L-i),k, by a further application of 

the chain rule, =  cr' [ fL j(n )]wLjp■ Substituting into equation F.4 and noting that

— 2 [dj(n)  —  ZLj{n)\ (r'[fLj[n)\  — the above expression may be written as:

d ftw (n))
d z (L -\ ) ,p

Nl

=  £
j =i

dj( w)
d fLj

wLjp{n) (F.5)

This expression may be generalized to any layer, binding the required partial derivatives 
to those of the layer above the one considered. By denoting 8ip(n) =  it is possible

to express the weight updating algorithm in terms of the (z/p(n )}, the { / /p(n )} and the
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{¿/p(n )}, which can be evaluated recursively starting from the output layer and propagating 
backwards through the hidden layers, an action that gave the network its peculiar name. 

Summarizing the weight updating procedure, usually called ‘network training’ in neural 
network nomenclature:

• Initially, the MLP with L layers, has random weights. There also exist a training set, 
{[x(n), d(n)]; n =  0 ,1 ,2 ,. . .} ,  and a learning rate, p

• For every pair [x(n),d(n)] in the training set repeat the following:

• Apply x(n) to the input layer and run the network to produce the output vector z¿(n)

• For every layer in the network l =  L, L — 1 , . . . ,  1 do the following:

— For every processing element, p — 1 ,2 , . . . ,  iV/ in the current layer perform the 
following:

* Compute the the partial derivative, i/p(n) =  , where

<Mn)
—2<7'[/£p(n)][dp(n) — z lv {t i)] for the output layer, L 

<r'[flP(n)] E j^ i1 O+i,j,p(n) for all other layers
(F.6)

* For every input i =  0 , 1 , . . . ,  of the processing element do the following:

• propagate the errors to the previous layer, by computing 
QPi(n) =  Sip{n)wipi(n)

• Update the weight using the update relation

wiPi(n +  1) =  wipi(n) -  p8iv{n)z(i-\)j(n -  k)

It should be noted that if z(n) =  cr[/(n)] is the logistic function z{n) =  1+el ;(„) then 

its derivative is given by <r'[/(n)] =  z(n)[l — z(n)], which may be computed without the 
expensive operation of exponentiation.

Although the procedure outlined is the one generally employed, small differences that 
appear to improve the performance of training have been suggested. These normally affect 
the weight updating stage of the algorithm only. The two most widely used modifications 

of the updating equation result in the batch and the momentum variants[136][p. 59-63, 

133-137].

The first does not update the weights every time a new input vector is applied to the 
network. The errors are still propagated every time, and the errors collected and averaged in 
‘batches’ of K  trials. Updating occurs at the end of every batch, according to the following
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relation:
iwipi{n +  1) =  wipi(n -  K ) -  p —  ^  Slp(n -  k;)2(/_i),,(n -  k ) (F.7)

This approach produces more reasonable (less ‘noisy’) estimates of the propagated errors 

than the original delta rule. This is advantageous in some applications.
The momentum version of the algorithm utilises the previous value of the weight, tw/p,(n — 

1). The change in the weight is not only based on the ‘correction’ term —p5ip(n)zp_i^i(ri), 

but on a ‘prediction’ term, based on the ‘trend’ of the weight, which is approximated by the 
difference from the previous weight value. In physical terms this is equivalent to giving the 

weight resistance to instantaneous changes in the direction of adaptation, which is analogous 
to momentum. The weight updating equation is normally expressed as follows:

wipi(n +  1) =  wipi(n) +  a[wipi(n) -  wipi(n -  1)] -  (1 -  a)pSlp(n -  fc )*(» -i),* (n ) (F.8)

Where the new factor a  € (0,1) defines the contribution of the prediction and the correction 
terms. A value of a  close to unity pays more attention to the trend of adaptation rather 
than the new information and requires a large number of iterations with i/p(n — 
pointing in a specific direction to effect a change in the direction of adaptation. A value of 
a  close to 0 makes the algorithm similar to the original delta rule.

The momentum algorithm may help the weight to descend to a minimum when a flat area 
or a shallow trough of the error surface is encountered. In both these cases the traditional 
algorithm will proceed very slowly or even stop descending, since the gradients will be small. 
Smoothing of erroneous oscillations of the weight in a direction lateral to the one of minimum 

derivative due to noise in gradient estimation is another desired property of this variant.
Other gradient-based algorithms have also been adapted for the layered backpropagation 

algorithm with some success, like the conjugate gradient algorithm[40].

F.2 Some notes on the use of the MLP

From the description of the backpropagation neural network it may appear that this it is a 

universal tool, a panacea to all modelling problems. This is, in fact far from truth. It should 
be used with care and the some scepticism when initial results appear to be ‘ too good’ . 
There are a number of issues that should be kept in mind, when developing a mapping 

neural network. Some of these are inherent to the MLP and its training algorithm and 
anyone who has attempted to train a network must have come across at least one of them.

One of the primary issues is the selection of the architecture of the network. With the 

number of inputs and outputs known in advance, it remains to determine the number of
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hidden layers and the number of processing elements in each layer. Unfortunately, there are 
no general rules on how to achieve this. In theory[136][p. 122-124], it is possible to solve a 
problem with a single hidden layer, but the required number of processing elements may be 
unacceptably high. The introduction of multiple hidden layers may yield a more economical 

procedure, but the determination of how many is still ambiguous. Fortunately, in the current 
application a study of the earlier intuitive system provided some guidelines which worked 

well in practice (see section 11.5.1).

The remaining issues are related to training. Unlike adaptive filtering, where range for the 

adaptation rate, p for which the algorithm converged was known, the range of the learning 
rate for the backpropagation algorithm is largely unknown. This is associated with the non-
quadratic shape of the performance surface, £(w). Although this is not known exactly, it 

may be shown that it is highly degenerate, with plenty of global minima, which in some cases 

lie at infinity. The shape between these minima is unknown, but flat regions as well as local 
minima are known to exist and their presence has been verified experimentally [136] [p. 111- 
125]. Consequently, there are many basins of attraction where a gradient-based algorithm 
may converge. Although locally these may ‘look’ quadratic, their parameters are not known 
and hence it is not possible to determine the upper limit for the adaptation rate a priori. It 

is therefore necessary to find it by ‘trial and error’ and sometimes to change it to navigate 
around the error surface until a minimum is reached. The shape of the error surface is often 
the reason gradient-based algorithms fail to reach the point of minimum achievable error. 

Because the search for the minimum proceeds in a direction opposite to that of the gradient 
of the surface, it fails to proceed if the gradient is small, like on a flat region of the surface 
or zero, like a local minimum. In the first case the descent may become extremely slow, 
whereas in the second it may be stopped because the local minimum may act as a basin 

of attraction for the algorithm[136][p. 111-115]. Things may become worse because of the 
noisy estimates of the gradient. Both problems are often overcome by employing one of the 
modified algorithms. For example the noise level is reduced by the batch process, whereas 
overcoming flat surfaces and shallow basins of attraction due to local minima are often solved 

by the momentum term. There are, however, cases when the modifications of the algorithm 

may make things worse.

Finally there are two issues, under-representation of some input conditions and overtrain-

ing, which are specific to the MLP. These are related to the way the training set is selected 

and applied to the net work [136] [p. 115-121].

Under-representation may arise if the selection of the training set is far from uniform 
over the domain of the mapping. In this case there are more examples drawn from one
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region and less from another. Because training schemes are based on the mean-squared-error 
criterion, which is more sensitive to large frequently occurring errors, poorly represented 

regions will have a lesser effect on the MSE than those represented by large numbers of 
examples[136][p. 111-114]. As a consequence, the final approximation may be inadequate 
for regions represented by few examples.

Overtraining arises in situations where the training set is small and there is need to apply 

it many times before the network parameters converge to the optimal (training often requires 
a considerable numbers of iterations). If this occurs, the following peculiar effect is often 
observed. The MSE for the training set reduces and levels off. At this point the network has 
‘learned’ all information it could and further training produces little improvement. When 
testing with new data, not present in the training set, though, the MSE for this set drops 
and then starts increasing again. In other words, the ability of the network to interpolate has 

been lost, although the fit to the training set may be almost perfect. This is often linked in 
the way the network forms the approximation. It originally starts by constructing a smooth, 
continuous input/output mapping surface, which becomes more ‘ crinkled’ , as the network 
learns the required mapping. If training continues past that stage, the surface becomes 
convoluted and attempts to fit the points presented as a training set, ignoring what occurs 
between them. To remedy this problem, noise is often introduced in the input vectors during 

successive applications of the training set. This generates is equivalent to an expansion of 
the training set by the introduction of a number of ‘fake’ pairs. This is not expected to be a 
problem in the application considered, since the training set is large (thousands of samples).
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Artificial Neural Network Library

A portable library of routines to construct, train and use Artificial Neural Networks is 
described here. It was written in the C programming language under the UNIX operating 
system but it may be ported to other systems without modifications. The library provides 
a small number of subroutines which may be grouped into three categories:

Network Constructors: These are routines that allow the user to define the topology 

of the network, how many inputs, outputs and layers it has, how many processing 
elements in each layer and how these are interconnected. Because of the complexity 
of this information, these were specified in a file, which is read by the constructor 
routine, called creatNetO and allocates the required network in memory, forming the 

necessary connections between the various elements. The current system only permits 
the construction of layered structures, like the MLP, but the data structures were 
defined in anticipation of its generalization later. Initial weights may also be specified 
along with the structure. Thus the system may be set up as explained in section 11.6.2. 

An example configuration file is shown at the end of this Appendix.

Network Operators: These include three main routines, which deal with the operation of 
the network. initNet() initializes all weights of the network to small random values, 

as already explained in section 11.7.2. runNetO performs the forward pass of the 
network, thus for the current input it produces the output vector. This is repeatedly 
called both for training and afterwards, during the operation of the MLP. Finally, 

trainNetO performs backward propagation of errors and weight adjustment. There 
are also some auxiliary routines, related to the operation of the network. These provide 

a means of selecting between a number of sigmoidal non-linearities (see section 11.4.1) 
and variants of the backpropagation learning algorithm (section 11.4.2).
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Interface R outines These include a routine showNetStat ( ) ,  which reports the status 
(MSE, weight values, changes in the MSE from the previous adaptation of weights, 

etc.) so that the progress of the network during training may be monitored. It also in-
cludes two more routines, which write the network configuration and the weight values 
after training, either on the screen (showNetlnfoO) or in a specified file, (saveNetO). 
The format of the written information is the same as that used by creatN et() and 

may be readily used for further training. The format of this is also convenient for visual 
inspection, which proved helpful for drawing some conclusions at the end of Chapter 

11.

A file used by the library to read or save an ANN contains both the configuration (geom-
etry of the network) as well the weights of all its processing elements. An example of such 
a file is shown here:

lambda 0.100000 

nu 0.100000 

alpha 0.000000 

initW 0.300000 

traceR 288.866753 

inputs 6 

layers 2 { 

nodes 6[7 2] {

{ 0.131312 -0.160101 0.042230 0.081605 0.151219 0.058248 0.012904 >

{ 0.029806 -0.001687 -0.025264 0.156314 -0.042600 -0.102633 -0.022871 >

{ 0.132936 -0.090213 0.017072 0.015283 -0.031051 -0.122041 0.061764 >

{ 0.096641 -0.136355 0.039885 -0.106059 -0.005646 0.006175 -0.051060 >

{ 0.022416 0.153271 -0.100071 -0.115765 -0.095419 -0.002896 0.126090 >

{ 0.127473 0.100500 0.108526 0.065083 0.127340 -0.013964 -0.064449 >

>
nodes 2 [7 1] {

{ 0.165319 0.055438 -0.085959 0.178045 0.078292 -0.538782 0.101768 >

{ -0.186715 0.108167 0.248357 0.001600 0.297533 0.149091 -0.213862 >

>
>
outputs 2
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ON-LINE DETECTION OF THE EPILEPTIC PRECURSOR
S. A. MyIonast R. A. Comley1

A BSTR AC T:-The use o f a portable microcomputer-based programmable medical instrument 
for long-term  EEG  m onitoring is outlined. A n algorithm  for real-tim e detection o f a feature 
associated w ith the onset o f petit mal epilepsy is described. Early results on the evaluation 
o f the perform ance o f the method arc presented. The degree o f success in meeting the 
objectives is discussed.

1 .0  I N T R O D U C T I O N

T h e  h u m a n  e l e c t r o e n c e p h a l o g r a m  ( E E G )  h a s  b e e n  u s e d  a s  a  m e d i c a l  d i a g n o s t i c  a i d  f o r  m a n y  

y e a r s .  T a k i n g  a n  E E G  is  a  s i m p l e ,  h a r m l e s s  a n d  n o i l - i n v a s i v e  p r o c e d u r e .  E l e c t r o d e s  a r c  p l a c e d  

o n  t h e  s u r f a c e  o f  t h e  s c a l p ,  in  a  s t a n d a r d  m o n t a g e ,  w i t h  e i g h t ,  s i x t e e n ,  o r  m o r e  c h a n n e l s  

r e c o r d e d  o n  p a p e r  f o r  s u b s e q u e n t  h u m a n  i n t e r p r e t a t i o n ,  b a s e d  o n  c h a r a c t e r i s t i c  f e a t u r e s  

r e l a t e d  t o  d i s o r d e r s  o f  b r a i n  f u n c t i o n  [ 1 ] .  T h i s  i s  o f t e n  a  t e d i o u s ,  t i m e - c o n s u m i n g ,  r e p e t i t i v e  

a n d  e r r o r - p r o n e  a c t i v i t y ,  l e a d i n g  t o  s u b j e c t i v e  r e s u l t s ,  a s  B a r l o w  [ 2 ]  e x p l a i n s .  T h e  n e e d  f o r  

s t a n d a r d i z a t i o n  a n d  m o r e  t i m e - e f f e c t i v e  u s e  o f  h u m a n  a n a l y s t s  h a s  l e d  t o  n u m e r o u s  a t t e m p t s  

t o  a u t o m a t e  t h e  a n a l y s i s  o f  t h e  E E G .  H o w e v e r ,  d e s p i t e  s e v e r a l  d e c a d e s  o f  r e s e a r c h ,  h u m a n  

i n t e r p r e t a t i o n  r e m a i n s  t h e  m a j o r  m e a n s  o f  a n a l y s i s  t o  t h i s  d a y .

T h i s  p a p e r  is  c o n c e r n e d  w i t h  t h e  a u t o m a t i c  d e t e c t i o n  ? 

o f  t h e  S p i k e  a n d  W a v e  ( S A W )  f e a t u r e  (F - 'ig . 1 . 1 ) ,  i b « ?  

w h i c h  i s  a s s o c i a t e d  w i t h  a  f o r m  o f  i d i o p a t h i c  e p i l e p s y ,  

k n o w n  a s  p e t i t  m a l  ( a b s e n c e ) .  T h e  a b s e n c e  a t t a c k s  

u s u a l l y  s t a r t  i n  c h i l d h o o d .  T h e y  l a s t  f o r  a  f e w  s e c o n d s  

a n d  a r e  c h a r a c t e r i z e d  b y  t r a n s i e n t  l o s s  o f  c o n s c i o u s -

n e s s  a n d  m o m e n t a r y  i n h i b i t i o n  o f  a c t i v i t y  [ 3 ] .  S e v e r a l  

a t t a c k s  m a y  o c c u r  e v e r y  d a y  b u t  d u e  t o  t h e i r  n a t u r e  

a n d  d u r a t i o n  t h e y  c a n n o t  b e  i d e n t i f i e d  u n a m b i g u o u s -

ly  f r o m  n o n - a b s e n c e  i n c i d e n t s  w i t h  a  s h o r t ,  t r a d i t i o n -

a l ,  E E G  r e c o r d i n g .  L o n g - t e r m  m o n i t o r i n g  h a s  b e e n  F ig  

s u g g e s t e d  a s  a  b e t t e r  a l t e r n a t i v e ,  m o n i t o r i n g  ‘ L ~

A W\
I VA\ r ,V

-------es us i® P* t imc-ws
Typical Spikc-and-W avc (S A W ) feature

b e t t e r  a l t e r n a t i v e ,  m o n i t o r i n g  t h e  

p a t i e n t s  i n  t h e i r  n o r m a l  w o r k i n g  e n v i r o n m e n t .  A  m e t h o d ,  l e a d i n g  t o  t h e  d e v e l o p m e n t  o f  a  f u l l y  

p o r t a b l e  u n i t ,  b a s e d  o n  m i c r o p r o c e s s o r  t e c h n o l o g y ,  h a s  b e e n  p r o p o s e d [ 4 ] .  T h e  E E G  is  

a n a l y z e d  o n - l i n e ,  i n  r e a l - t i m e ,  d i s c a r d i n g  h o u r s  o f  c l i n i c a l l y  i n s i g n i f i c a n t  r e c o r d i n g  a n d  i s o l a t -

i n g  t h e  f e w  s e c o n d s  o f  1 J
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p e t i t  m a l  s e i z u r e s  t o  b e  

r e c o r d e d  f o r  c o n f i r m a -

t i o n  b y  a n  e x p e r i e n c e d  % - a a

h u m a n  a n a l y s t .  R e s u l t s  o f  

a u t o m a t i c  a n a l y s i s ,  a l s o  
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c o u l d  b e  u s e f u l  f o r  c r o s s  

r e f e r e n c i n g .

A n  a l g o r i t h m  t o  m e e t  Fig. 1 ^  Atypica l SAW  features

t h e s e  r e q u i r e m e n t s  h a s  b f c e n  d e v e l o p e d  a n d  is  t h e  m a i n  s u b j e c t  a r e a  o f  t h i s  p a p e r .  T h e  p r o p o s a l  

o f  a  s i n g l e  S A W  d e t e c t i o n  m e t h o d  is  i n h i b i t e d  b y  f a c t o r s  a s  f u n d a m e n t a l  a s  i t s  d e f i n i t i o n ,  s i n c e  

t h e  m e d i c a l  l a n g u a g e  i s  o f t e n  q u a l i t a t i v e  a n d  i n f o r m a l ,  n o t  s u i t a b l e  f o r  d i r e c t  c o m p u t e r

f Centre fo r In form ation  Engineering, C ity University, London, EC1V OHB, U nited Kingdom.
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i m p l e m e n t a t i o n .  M o r e o v e r ,  t h e  e x p e r i e n c e  o n  w h i c h  

h u m a n  a n a l y s t s  s o  o f t e n  r e l y  i s  n o t  p o s s i b l e  t o  i n c o r -

p o r a t e  a s  s o f t w a r e  o n  a  c o m p u t e r .  T h e s e  t w o  f a c t o r s  

a c c o u n t  f o r  t h e  s u c c e s s f u l  i d e n t i f i c a t i o n  o f  v a r i a b l e  a n d  

d i s t o r t e d  S A W s  ( F i g .  1 . 2 )  w h i c h  h a s  n o t  b e e n  m a t c h e d  

b y  a u t o m a t i c  d e t e c t o r s  y e t .  F i n a l l y  t h e  c o n t a m i n a t i o n  o f  

t h e  E E G  b y  s p i k y  m u s c l e  a r t i f a c t  p o t e n t i a l s  ( F i g .  1 . 3 )  

o f t e n  c a u s e s  f a l s e  d e t e c t i o n s .  I t  s h o u l d  b e  s t r e s s e d  t h a t  

a u t o m a t i c  a n a l y s i s  o f  E E G  s i g n a l s  i s  n o t  a i m i n g  t o  

r e p l a c e  t h e  t r a d i t i o n a l  m a n u a l  a n a l y s i s  b u t  r a t h e r  t o  

c o m p l e m e n t  i t .

2 . 0  B R I E F  R E V I E W  O F  C O M P U T E R I Z E D  E E G  A N A L Y S I S

T h e  p o s s i b i l i t y  o f  c o m p u t e r i z i n g  E E G  a n a l y s i s  h a s  l o n g  b e e n  a p p r e c i a t e d .  W i t h  o b j e c t i v e s  

v a r y i n g  f r o m  n o i s e  c a n c e l l a t i o n  t o  t h e  p r o d u c t i o n  o f  f u l l  r e p o r t s ,  a  n u m b e r  o f  w o r k e r s  f r o m  

m e d i c a l ,  e l e c t r o n i c s  a n d  c o m p u t e r  d i s c i p l i n e s  h a v e  p r o d u c e d  n u m e r o u s  s y s t e m s  t o  m e e t  t h e s e  

o b j e c t i v e s  w i t h  v a r y i n g  d e g r e e s  o f  s u c c e s s .  S o m e  t e c h n i q u e s  u s e d  f o r  t h e  d e t e c t i o n  o f  e p i l e p t i c  

e v e n t s  w i l l  b e  b r i e f l y  o u t l i n e d  h e r e .  T h e  i n t e r e s t e d  r e a d e r  i s  r e f e r r e d  t o  t h e  r e v i e w  b y  B a r l o w  

[ 2 ]  a n d  t h e  p a p e r s  b y  G e v i n s  [ 5 ]  a n d  J a n s e n  [ 6 ]  f o r  a  d e t a i l e d  a c c o u n t  o f  t h e s e  a n d  o t h e r  

t e c h n i q u e s .  T h e s e  m e t h o d s ,  m a y  b e  b r o a d l y  c l a s s i f i e d  i n t o  f i v e  c a t e g o r i e s .

B a s e l i n e  c r o s s i n g  a n d  s e l e c t i v e  f i l t e r i n g  a r e  u s e d  t o  d e t e c t  s p e c i f i c  f e a t u r e s  t h a t  a r e  r e l a t e d  t o  

s p e c i f i c  f r e q u e n c y  b a n d s  [ E h r e n b e r g  a n d  P e n r y  ( 1 9 7 6 ) ] .

M a t c h e d  F i l t e r i n g  a n d  i t s  v a r i a n t s  c a n  b e  u s e d  t o  d e t e c t  p r e d e f i n e d  f e a t u r e s  i n  a  s i g n a l ,  u s i n g  

c o n v o l u t i o n  a n d  t h r e s h o l d i n g .  I t  f i n d s  m o s t  u s e  i n  t h e  d e t e c t i o n  o f  k n o w n  s i g n a l s  i n  r a n d o m  

n o i s e  [ S a l t z b e r g  e t  a l .  ( 1 9 7 1 ) ,  H e r o l f  ( 1 9 7 1 ) ,  S a l t z b e r g  ( 1 9 7 5 )  a n d  B a r l o w  a n d  D u b i n s k y  

( 1 9 7 6 ) ] .  S i m i l a r  t o  t h i s  i s  i n v e r s e  f i l t e r i n g  [ B a r l o w  ( 1 9 7 8 ) ] .

S i g n a l  p a r a m e t r i z a t i o n  c o n s i s t s  o f  r e p r e s e n t i n g  t h e  E E G  s i g n a l  b y  v a r i o u s  a m p l i t u d e s  a n d  

d u r a t i o n  m e a s u r e s  a n d  u s i n g  p a t t e r n  r e c o g n i t i o n  o r  s t a t i s t i c a l  t e c h n i q u e s  t o  c l a s s i f y  s e c t i o n s  

o f  t h e  E E G  [ B i c k f o r d  ( 1 9 5 9 ) ,  K o o i  ( 1 9 6 6 ) ,  B r a z i e r  ( 1 9 6 7 ) ,  S a l z b e r g  ( 1 9 6 7 ) ,  B u c k l e y  ( 1 9 6 8 ) ,  

S m i t h  a n d  K t o n a s  ( 1 9 7 4 ) ,  G o t m a n  a n d  G l o o r  ( 1 9 7 6 ) ] .

V a r i o u s  m e a s u r e s  b a s e d  o n  t h e  t i m e  d e r i v a t i v e s  o f  t h e  E E G  s i g n a l  h a v e  b e e n  u s e d  t o  e n h a n c e  

a n d  d e t e c t  s p i k e s .  F a s t ,  s i m p l e  a n d  r e l a t i v e l y  e f f e c t i v e  s p i k e  d e t e c t o r s ,  s u i t a b l e  f o r  r e a l - t i m e  

h a v e  b e e n  r e p o r t e d  [ C a r r i e  ( 1 9 7 2 ) ,  W a l t e r  ( 1 9 7 3 ) ,  H i l l  a n d  T o w n s e n d  ( 1 9 7 3 ) ,  G e v i n s  e t  a l .  

( 1 9 7 5 ) ,  C o m l e y  a n d  B r i g n e l l  [ 4 ] ( 1 9 8 1 ) ,  S t e l l e  a n d  C o m l e y  [ 8 ] (  1 9 8 9 ) ] .

A u t o r e g r e s s i v e  f i l t e r i n g  h a s  b e e n  u s e d  f o r  s i g n a l  a n d  s y s t e m  m o d e l l i n g ,  c a l c u l a t i o n  o f  s p e c t r a  

e t c . .  A n  a u t o r e g r e s s i v e  f i l t e r  i s  e s t i m a t e d ,  w h o s e  o u t p u t  r e s e m b l e s  t h e  r e q u i r e d  s i g n a l ,  u s i n g  

e r r o r  m i n i m i z a t i o n  c r i t e r i a .  L a r g e  e r r o r  l e v e l s  m a y  i n d i c a t e  t r a n s i e n t s ,  s u c h  a s  s p i k e s .  T h e  

m e t h o d  i s  g e n e r a l l y  u n s u i t a b l e  f o r  r e a l - t i m e  a n d  i t  h a s  b e e n  u s e d  w i t h  v a r i a t i o n s  b y  k n o w n  

r e s e a r c h  g r o u p s  [ L o p e s  D a  S i l v a  e t  a l .  ( 1 9 7 7 ) ,  P r a e t o r i u s  e t  a l .  ( 1 9 7 7 ) ,  B i r k n e r  e t  a l .  ( 1 9 7 8 ) ,  

P f u r t s c h e l l e r  a n d  F i s c h e r  ( 1 9 7 8 ) ] .

3 . 0  T H E O R E T I C A L  B A S I S  O F  O U R  M E T H O D

3 .1  M o d e l l i n g  t h e  E E G  w a v e f o r m

S e v e r a l  m a t h e m a t i c a l  m o d e l s  o f  t h e  S A W  h a v e  b e e n  s u g g e s t e d .  T h e s e  a r e  o f t e n  e m p l o y e d  f o r  

f o r m a l  d e s c r i p t i o n  o f  d e t e c t i o n  a l g o t i t h m s .  T h e  m o d e l  d i s c u s s e d  h e r e  w a s  s e l e c t e d  n o t  f o r  i t s  

a c c u r a c y  b u t  f o r  t h e  f o u n d a t i o n  o f  t h e  t h e o r e t i c a l  b a s i s  o f  o u r  w o r k .  T h e  E E G  w a v e f o r m  w a s  

a s s u m e d  t o  b e  o s c i l l a t i n g  w i t h  b o t h  i t s  f r e q u e n c y ,  Q ,  a n d  a m p l i t u d e .  A ,  v a r y i n g  w i t h  t i m e :

e ( t )  =  A ( t )  s i n [ Q ( t ) t ]

I t  w a s  f u r t h e r  a s s u m e d  t h a t  b o t h  A ( t )  a n d  Q ( t )  d o  n o t  s u f f e r  s u d d e n  j u m p s  ( d i s c o n t i n u i t i e s ) .
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I f  A ( t )  a n d  Q ( t )  a r e  c o n s t a n t s  A a n d  Q 0 r e p e c t i v e l y ,  t h e  s i g n a l  i s  a  s i n u s o i d a l  a n d  i t s  f i r s t  t w o  

d e r i v a t i v e s  a r e  a  c o s i n u s o i d  a n d  a  s i n u s o i d  

s c a l e d  a c c o r d i n g  t o  i t s  f r e q u e n c y .  T h e r e f o r e ,  

p l o t t i n g  t h e  s e c o n d  a s  a  f u n c t i o n  o f  t h e  f i r s t  

d e r i v a t i v e ,  l e t  u s  c a l l  t h i s  t h e  d - p l o t ,  w i l l  g i v e  a n  

e l l i p s e  c e n t r e d  a t  t h e  o r i g i n  ( F i g . 3 . 1 a ) :

[ e ( t ) f  [ e ( t ) ’ j

+ = 1

w h e r e  a  =  A ^ Q q  a n d  b  =  A 0 Q 02 

O b v i o u s l y ,  t h e  s h a p e  o f  t h e  d - p l o t  w i t h  v a r y i n g  

A ( t )  a n d  W ( t )  w i l l  n o t  b e  a n  e l l i p s e  a n y  m o r e  

( F i g .  3 . 1 b ) .

32  The Spike Detector f'g- 3.1 Examples o f d-plots

A c c o r d i n g  t o  t h e  m o d e l ,  i f  t h e  r a n g e  o f  b o t h  A ( t )  a n d  Q ( t )  i s  l i m i t e d ,  t h e  c a s e  f o r  t h e  n o r m a l  

E E G  s i g n a l ,  t h e  d - p l o t  w i l l  o c c u p y  a  l i m i t e d  a r e a ,  b o u n d  b y  a  c l o s e d  c u r v e  c .  S p i k e s ,  o n  t h e  

o t h e r  h a n d ,  a r e  c h a r a c t e r i z e d  b y  v a l u e s  o f  C 2 (t )  w h e r e  a m p l i t u d e s  A ( t )  a r e  h i g h e r  t h a n  n o r m a l .  

I f  “ n o r m a l ”  i s  r e l a t e d  t o  t h e  b e h a v i o u r  o f  t h e  s i g n a l  e x c l u d i n g  s p i k e s ,  i t  i s  e x p r e s s e d  a s  t h e  

i n t e r i o r  o f  t h e  c u r v e  c. T h e r e f o r e ,  a s s u m i n g  t h a t  t h e  s p i k e  w a s  s i n u s o i d a l ,  w i t h  A ( t )  =  A s a n d  

Q ( t )  =  £2S r e s p e c t i v e l y ,  t h e  d - p l o t  w o u l d  b e  a n  e l l i p s e  o f  l a r g e r  s i z e  t h a n  t h e  n o r m a l  d - p l o t s .  

T h i s  f a c t  i s  u s e d  t o  d i s t i n g u i s h  s p i k e s  f r o m  n o r m a l  E E G  s i g n a l s ,  u s i n g  t h e  d e s c r i p t i o n  o f  a  s p i k e  

d - p l o t  a s :

-  p a s s i n g  f r o m  t h e  i n t e r i o r  t o  t h e  e x t e r i o r  o f  c  a n d

-  d e s c r i b i n g  a n  e l l i p s e  w i t h  a s =  \  Q s a n d  b s =  A ^ 2

I n  p r a c t i c e ,  t h o u g h ,  c  i s  n o t  g e n e r a l l y  k n o w n  a n d  r e a l  s p i k e s  a r e  n o t  s i n u s o i d a l .  A d d i t i o n a l l y ,  

r e a l  s p i k e s  v a r y  o n e  f r o m  a n o t h e r .  F o r  t h e s e  r e a s o n s  s o m e  t o l e r a n c e  l i m i t s  o n  s p i k e  d - p l o t s  

w e r e  s p e c i f i e d ,  a s  o u t l i n e d  l a t e r  in  s e c t i o n  4 . 1 .  T h e  p r o b l e m  o f  d e f i n i n g  t h e  s e p a r a t i o n  s u r f a c e  

c  w a s  s o l v e d  b y  s t a t i s t i c a l  m e a n s .  A n a l y s i s  o f  e x i s t i n g  E E G  r e c o r d s  s h o w e d  t h a t  d - p l o t s  w e r e  

c o n c e n t r a t e d  a t  t h e  o r i g i n ,  s p r e a d i n g  i n  b o t h  h o r i z o n t a l  a n d  v e r t i c a l  d i r e c t i o n s ,  t h e  n u m b e r  o f  

p o i n t s  r e d u c i n g  w i t h  i n c r e a s i n g  d i s t a n c e  f r o m  t h e  o r i g i n .  U n d e r  t h e  a s s u m p t i o n  t h a t  t h e  

d i s t r i b u t i o n  o f  s u c h  p o i n t s  i s  b i v a r i a t e  n o r m a l  w i t h  z e r o  m e a n ,  t h e  d e c i s i o n  s u r f a c e ,  c ,  i s  a n  

e l l i p s e ,  w h o s e  s h a p e  a n d  o r i e n t a t i o n  d e p e n d s  o n  t h e  c o v a r i a n c e  m a t r i x :

d>=

w h e r e  A  =  ct^ 2 a 2 - a ^  a J  a n d  x  a n d  y  a r e  t h e  f i r s t  a n d  s e c o n d  t i m e  d e r i v a t i v e s  o f  t h e  E E G  

s i g n a l ,  r e s p e c t i v e l y .  I t s  s i z e  d e p e n d s  o n  a  p r e s e t  s i g n i f i c a n c e  l e v e l ,  d 0 a n d  i s  d e f i n e d  b y  t h e  

( M a h a l a n o b i s )  d i s t a n c e  m e a s u r e :

K w i t h  —
/  Oyy2 0Xy2 \

Wxy °yy 1 A °xy <7xx J

c :  y V ’ y  =  d 0

Jyy
w h e r e  y  =  ( x

-  2 - - x y

y  ) ,  g i v i n g  t h e  e l l i p s e  
2

Oxx n
+  -------------y 2  = 1 ( 1)

d o A  d o A  d o A

T o  d e t e r m i n e  t h e  l o c a t i o n ' o f  a  p o i n t  w i t h  r e s p e c t  t o  t h i s  e l l i p s e ,  i t  i s  s u b s t i t u t e d  in  t h e  L H S  o f  

e q u a t i o n  ( 1 ) .  I f  t h e  r e s u l t ,  d ,  i s  b e t w e e n  0  a n d  1 t h e  p o i n t  i s  i n s i d e  t h e  e l l i p s e ,  i f  i t  i s  1 i t  i s  o n ,  

i f  g r e a t e r  t h a n  1 it  i s  o u t s i d e  t h e  e l l i p s e .  T h e  r e s u l t ,  d ,  i s  a  m e a s u r e  o f  h o w  f a r  a w a y  f r o m  t h e  

e l l i p s e  a  p o i n t  l i e s .  I t  w a s  f o u n d ,  d u r i n g  t e s t i n g ,  t h a t  o^ w a s  s m a l l  a n d  c h a n g e d  r a n d o m l y  a b o u t

3
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z e r o .  T h i s  w a s  a s s u m e d  t o  b e  d u e  t o  s a m p l i n g  u n c e r t a i n t y .  T h e r e f o r e  t h e  e q u a t i o n  f o r  c  w a s  

f u r t h e r  s i m p l i f i e d :

y2 = 1 (2)
dO CTxX dO C7yy

T h e r e  w a s  n o  e v i d e n c e  o f  d e g r a d a t i o n  i n  t h e  p e r f o r m a n c e  o f  t h e  d e t e c t o r  d u e  t o  t h i s  

s i m p l i f i c a t i o n .

3 . 3  T h e  S l o w  W a v e  d e t e c t o r

U n f o r t u n a t e l y  t h e  m e t h o d  f o r  d e t e c t i n g  s p i k e s  i s  u n s u i t a b l e  f o r  t h e  d e t e c t i o n  o f  s l o w  w a v e s ,  

s i n c e  t h e s e  h a v e  v e r y  l o w  d e r i v a t i v e s  a n d  a r e  o f t e n  c o n t a m i n a t e d  b y  h i g h e r  f r e q u e n c y  s i n u s o i d s  

w h i c h  w o u l d  d o m i n a t e  i n  t h e  d - p l o t .  A  m e t h o d  u s i n g  t h e  e n e r g y  d i f f e r e n c e  o f  t h e  E E G  s i g n a l  

f r o m  a n  i n i t i a l  t i m e ,  j u s t  a f t e r  t h e  n e g a t i v e  p e a k  o f  t h e  s p i k e ,  t o  s o m e  l a t e r  t i m e ,  t 0 +  r ,  w a s  

u s e d .  T h e  i n t e r v a l  r  w a s  d e t e r m i n e d  a s  t h e  d u r a t i o n  o f  a  t y p i c a l  s l o w  w a v e ,  a s s u m e d  t o  b e  a  

s e c t i o n  o f  a  s i n u s o i d  o f  f r e q u e n c y  f s =  3 . 5  H z ,  s t a r t i n g  a t  t*,. T h e  b a s e l i n e  f o r  c a l c u l a t i o n  o f  t h e  

e n e r g y  i s  t h e  v a l u e  o f  t h e  w a v e f o r m  a t  t  =  t ^  e ( t o ) .  T h e  i n t e g r a l

E e =  { e ( t - t o ) - e ( 0 }  d t

i s  c o m p a r e d  t o  t h e  e n e r g y  o f  a  t y p i c a l  s l o w  w a v e

E t =  { A j  sin[27r ̂ - ( t - t o ) ]  d t  =  ^ ¡ f - T  (l-cosZa^)

I n  p r a c t i c e  a  r e l a t i v e  m e a s u r e ,  £ s =  E / E c, i s  e v a l u a t e d ,  w h e r e  t h e  n o r m a l i z i n g  f a c t o r  E s =  A , r  

i s  t h e  e n e r g y  o f  a  c o n s t a n t  s i g n a l  o f  v a l u e

A  s i m i l a r  r e l a t i v e  m e a s u r e ,  £ e =  E c/ E c i s  c o m p u t e d  o n - l i n e ,  a n d  c o m p a r e d  t o  £ s f o r  t h e  

d e t e c t i o n  o f  t h e  s l o w  w a v e . T h e  u n k n o w n  a m p l i t u d e  \  e s t i m a t e d  b y  t h e  m a x i m u m  d e v i a t i o n  

o f  t h e  l o w - p a s s  f i l t e r e d  e ( t )  f r o m  t h e  b a s e l i n e ,  e ^ ) ,  f o r  t h e  d u r a t i o n  o f  i n t e g r a t i o n .

<D-

e’ 0 2
Parameter 4
C alculator

A /D  D  
Reader

SpikeSpi
Dcelector

Report

Result

4 . 0  I M P L E M E N T A T I O N  A N D  P R A C T I C A L  C O N S I D E R A T I O N S

A l t h o u g h  t h e  t h e o r e t i c a l  b a s i s  o f  t h e  d e t e c t i o n  t e c h n i q u e  w a s  d e v e l o p e d  u s i n g  c o n t i n u o u s  

s i g n a l s ,  t h e  i m p l e m e n t a t i o n  w a s  i n  d i s c r e t e - t i m e .  A  s c h e d u l e r ,  c a l l e d  o n  t h e  a r r i v a l  o f  a  n e w  

s a m p l e ,  o r g a n i z e s  t h e  e x e c u t i o n  o f  a l l  s c h e d u l e d  t a s k s  ( F i g .  4 . 1 )  w i t h i n  o n e  s a m p l i n g  p e r i o d ,  

T  ( i . e .  i n  r e a l - t i m e ) .  A  m o r e  

d e t a i l e d  d e s c r i p t i o n  o f  t h e s e  t a s k s  

f o l l o w s .

T h e  a n a l o g u e - t o - d i g i t a l  c o n v e r t e r  

r e a d e r  o b t a i n s  a  n e w  s a m p l e  a n d  

s t o r e s  i t  i n  a  c i r c u l a r  b u f f e r ,  e ( ) .  c ( i )

T h e  l o w - p a s s  f i l t e r  r e m o v e s  a n y  —  

f r e q u e n c i e s  a b o v e  5 H z  i n  t h e  E E G ,  

w i t h  a  s i m p l e  s e c o n d  o r d e r  I 1 R  f i l -

t e r .  I t s  o u t p u t  i s  u s e d  b y  t h e  s l o w  

w a v e  d e t e c t o r .

T h e  s p i k e  d e t e c t o r  c o m p u t e s  t h e  

f i r s t  t w o  d e r i v a t i v e s  o f  t h e  E E G  s i g -

n a l ,  c a l c u l a t e s  t h e  d i s t a n c e  f r o m  t h e  

e l l i p s e  b o u n d i n g  t h e  b a c k g r o u n d  ( n o r m a l )  E E G  a c t i v i t y  ( s e e  d - p l o t s  i n  s e c t i o n  3 . 2 )  a n d  

d e t e r m i n e s  i f  a  s p i k e  h a s  o c c u r r e d .  A  d i s c r e t e - t i m e ,  d i f f e r e n t i a t o r  i s  r e p r e s e n t e d  b y  a  f i l t e r

G (< w )  =  j<u f o r  ( k - h a > s < < » s ( k  +  ^ )a > s, k  e Z  ( F i g .  4 . 2 ) ,  w h e r e  i s  t h e  s a m p l i n g  f r e q u e n c y .  T h e

c(n)

Low-pass 
F ille r r

—

PSlow Wave 
Detectors

4S'

Permanent
Storage

Fig. 4.1 A  block diagram o f the implemented algorithm .

4



377
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H ( © )

1y
- 2 w

Frequency plots
2 w

1.0

c o r r e s p o n d i n g  i m p u l s e  r e s p o n s e ,  g ( n T )  =  { - ^  -  ̂  x [ ( n - i ) T ] } ,  i e  Z  w a s  a p p r o x i m a t e d  b y  t h e

s i m p l e r  d i f f e r e n c e  e q u a t i o n  h ( n )  =  ^ { x [ ( n +  l ) T ] - x [ ( n - l ) T ] } ( t h e  c o n s t a n t  T  d r o p p e d  i n  t h e

p r a c t i c a l  r e a l i z a t i o n ) .  T h e  d e c l i n i n g  p e r f o r m a n c e ,  a s  

f r e q u e n c y  i n c r e a s e s  ( F i g .  4 . 2 ) ,  p r o v e d  t o  b e  a d -

v a n t a g e o u s  s i n c e  i t  r e d u c e s  h i g h - f r e q u e n c y  i n t e r -

f e r e n c e  c a u s i n g  f a l s e  a l a r m s  [ 3 ] [ 8 ] .  C i r c u l a r  b u f f e r s  a r e  

u s e d  t o  s t o r e  t h e  f i r s t  a n d  s e c o n d  d e r i v a t i v e s ,  e ’ ( )  a n d ’ 

e ” ( ) .  T h e  v a l u e s  c o r r e s p o n d i n g  t o  s a m p l e  e ( n ) ,  

x  =  e ’ ( n )  a n d  y  =  e ” ( n ) ,  a r e  u s e d  t o  c a l c u l a t e  t h e  d i s -

t a n c e  f r o m  t h e  e l l i p s e  c  ( s e c t i o n  3 . 2 ) ,

. -2 y2
d = ---------2—  +  ----------- 2

do a »  do<^-
I f  d  i s  l e s s  t h a n  1 , t h e  c u r r e n t  s a m p l e  i s  c o n s i d e r e d  p a r t , 8 < „ > ,0  

o f  t h e  b a c k g r o u n d  E E G  a c t i v i t y .  O t h e r w i s e  a  p o s s i b l e  

s p i k e  i s  i n  p r o g r e s s .  U p p e r  l i m i t s  o n  t h e  v a l u e  o f  d  w e r e  

e s t a b l i s h e d ,  t o  g u a r d  a g a i n s t  m u s c l e  a r t i f a c t s  a n d  o t h e r  - i  .a

h i g h - d e r i v a t i v e  i n t e r f e r e n c e ,  u s i n g  d e f i n i t i o n s  b y  o t h e r  -1 6  n 1 6

a u t h o r s  [ 4 ] [ 7 ]  a n d  t h e  s p i k e s  f r o m  s a m p l e  E E G  r e c o r d -

i n g s .  I n s t e a d  o f  a  s i n g l e  o p t i m a l  m a x i m u m  d ,  f o u r  w e r e  

u s e d ,  o n e  p e r  q u a d r a n t ,  i n c r e a s i n g  t h e  i m m u n i t y  o f  t h e  

d e t e c t o r  a g a i n s t  n o n - e p i l e p t i c  s p i k e s .  L o w e r  l i m i t s  w e r e  a l s o  s p e c i f i e d  in  t h e  s a m e  w a y .  F o u r  

c l a s s e s  o f  w a v e f o r m s  a r e  d i s t i n g u i s h e d :  T r u e  b a c k g r o u n d  a c t i v i t y  ( d <  1 ) ,  e x t e n d e d  b a c k g r o u n d  

a c t i v i t y  ( d  >  1 b u t  l e s s  t h a n  t h e  l o w e r  s p i k e  l i m i t s ) ,  s p i k e s  ( a s  d e f i n e d  a b o v e )  a n d  a r t i f a c t s  ( d  

e x c e e d s  t h e  u p p e r  s p i k e  l i m i t s ) .  I f  a  s p i k e  i s  d e t e c t e d ,  a  n e w  s l o w  w a v e  d e t e c t o r  is  i n i t i a l i z e d .  

M a n y  s l o w  w a v e  d e t e c t o r s  c o u l d  b e  r u n n i n g  c o n c u r r e n t l y  s i n c e  a  n e w  s p i k e  m a y  a p p e a r  b e f o r e  

a  s l o w  w a v e  t e r m i n a t e s .

......................- i

 ̂ g ( n /

-16 n
Impulse Responses

Fig. 4 2  D ig ita l differentiators

T h e  s l o w - w a v e  d e t e c t o r  i s  a l m o s t  a  d i r e c t  i m p l e m e n t a t i o n  o f  t h e  m e t h o d  d e s c r i b e d  in  s e c t i o n  

3 . 3 .  I t  i s  i n i t i a l i z e d  b y  t h e  s p i k e  d e t e c t o r  w h i c h  p r o v i d e s  t h e  i n i t i a l  v a l u e  e ( 0 )  a n d  t h e  t i m e  o f  

i n t e g r a t i o n  i n  s a m p l e s ,  n ,  s o  t h a t  r  =  N T .  T h e  e n e r g y  i n t e g r a l  i s  a p p r o x i m a t e d  b y  a  s u m m a t i o n :

E e =  2  [ e ( n T ) - e ( 0 ) ] T
n = 0

w i t h  t h e  c o n s t a n t  T  d r o p p e d  f o r  s i m p l i c i t y .  T h i s  i s  c a l c u l a t e d  b y  u p d a t i n g  E e w i t h  e a c h  n e w  

s a m p l e ,  e ( n T ) ,  b y  a d d i n g  t h e  v a l u e  ( e ( n T ) - e ( O ) ]  t o  t h e  p r e v i o u s  s u m .  T h e  m a x i m u m  o f  t h e  

l o w - p a s s  f i l t e r e d  E E G  f o r  t h e  p e r i o d  o f  i n t e g r a t i o n  is  r e c o r d e d  a s  a n  e s t i m a t e  o f  A ^ . L o w  p a s s  

f i l t e r i n g  w a s  n e c e s s a r y  t o  a v o i d  m i s c a l c u l a t i o n  o f  \  i n  t h e  p r e s e n c e  o f  h i g h - f r e q u e n c y  

c o m p o n e n t s .  W h e n  t h e  i n t e g r a t i o n  t i m e  i s  o v e r ,  E c =  A j . n  i s  c o m p u t e d ,  a n d  £ C =  E , / E C is  

c o m p a r e d  t o  t h e  c o n s t a n t  £ s w i t h  s o m e  t o l e r a n c e  t h r e s h o l d ,  f o r  a n  o p t i m a l  f a l s e  a l a r m  a n d  

m i s s e d  d e t e c t i o n  r a t e .

T h e  p a r a m e t e r  c a l c u l a t o r  e s t i m a t e s  p a r a m e t e r s  o f  t h e  e l l i p s e ,  b o u n d i n g  t h e  b a c k g r o u n d  

a c t i v i t y  ( s e e  s e c t i o n  3 . 2 ) ,  u s e d  b y  t h e  s p i k e  d e t e c t o r .  T h e  i n i t i a l  p a r a m e t e r  v a l u e s  a r e  n o t  v e r y  

c r i t i c a l ,  a s  t h e y  a r e  q u i c k l y  d i s c a r d e d .  O n l y  s a m p l e s  c l a s s i f i e d  a s  t r u e  o r  e x t e n d e d  b a c k g r o u n d  

a c t i v i t y  a r e  u s e d  f o r  u p d a t i n g .  E s t i m a t e s  o f  t h e  c o v a r i a n c e  m a t r i x  e l e m e n t s  f o r  t h e  f i r s t  ( x )  a n d  

s e c o n d  ( y )  d e r i v a t i v e s  o f ’t h e  s i g n a l  f o r  a  s a m p l e  o f  s i z e  N  a r e  c a l c u l a t e d :

°xx ~ n- i^x * °*y-  N -i^y  ant̂  °yy ~ N-i^y2
C i r c u l a r  b u f f e r s  a r e  u s e d  h e r e  a s  w e l l ,  t o  s t o r e  t h e  s q u a r e s  o f  t h e  d e r i v a t i v e s  a n d  t h e  c r o s s  

p r o d u c t s .  T h e  e l l i p s e  p a r a m e t e r s  a r e  t h e n  c o m p u t e d  a s  i n d i c a t e d  i n  s e c t i o n  3 . 2 .
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F i n a l l y ,  t h e  r e s u l t  r e p o r t e r  k e e p s  t r a c k  

o f  t h e  n u m b e r s  o f  t h e  s p i k e  a n d  w a v e  

d e t e c t i o n s  a n d  r e c o r d s  c l i n i c a l l y  i m p o r -

t a n t  s e c t i o n s  o f  t h e  E E G  s i g n a l  o n  n o n -

v o l a t i l e  s t o r a g e  m e d i a  f o r  h u m a n  

a s s e s s m e n t  l a t e r .

5.0 E X P E R I M E N T A L  R E S U L T S  

T h e  m e t h o d  w a s  t e s t e d  u s i n g  a  n u m b e r  

o f  F M  t a p e  r e c o r d i n g s  o f  E E G  s i g n a l s ,  

b a n d l i m i t e d  t o  7 0 H z  a n d  s a m p l e d  b y  a  1 2 - b i t  d a t a  a c q u i s i t i o n  u n i t  a t  a  r a t e  o f  1 6 0  s a m p l e s  p e r  

s e c o n d .  T h e  m e t h o d  i s  c u r r e n t l y  t e s t e d  w i t h  h i g h e r  s a m p l i n g  r a t e s .  N o r m a l  a n d  a b n o r m a l  

r e c o r d s  w e r e  t e s t e d  b y  a n  e x p e r i e n c e d  h u m a n  a n a l y s t  a n d  t h e  a b n o r m a l  f e a t u r e s  w e r e  

i n d i c a t e d .  T h e  a u t o m a t i c  s y s t e m  w a s  u s e d  t o  c l a s s i f y  t h e  s a m e  r e c o r d i n g s  b y  d e t e c t i n g  t h e  S A W  

f e a t u r e s .  T h e  n u m b e r  o f  c o r r e c t l y  c l a s s i f i e d  a n d  m i s s e d  s p i k e s  a n d  w a v e s  a n d  t h e  n u m b e r  o f  

f a l s e  a l a r m s  w e r e  r e c o r d e d .  T h e s e  a r e  p r e s e n t e d  i n  t a b l e  5 . 1 .

6.0 D I S C U S S I O N  A N D  C O N C L U S I O N S

I n  g e n e r a l  t h e  m e t h o d  p e r f o r m e d  w e l l .  T h e  m u s c l e  a r t i f a c t s  t h a t  h a v e  c a u s e d  t h e  f a l s e  

d e t e c t i o n s  p r o v e d  t o  b e  v i s u a l l y  s i m i l a r  t o  s p i k e s  a n d  w e r e  r e j e c t e d  b y  t h e  h u m a n  a n a l y s t  

b e c a u s e  t h e y  w e r e  p a r t  o f  a n  a r t i f a c t  b u r s t .  T h e  m i s s e d  S A W  f e a t u r e s  w e r e  c a u s e d  b y  a l m o s t  

n o n - e x i s t e n t  s l o w  w a v e s .  H u m a n  o b s e r v e r s  h a v e  t h e  a b i l i t y  t o  c h a n g e  t h e i r  " t h r e s h o l d i n g ” 

c r i t e r i a ,  u s i n g  e x p e r i e n c e ,  t o  d e a l  w i t h  s u c h  c a s e s ;  t h i s  i s  v e r y  d i f f i c u l t  e m u l a t e  u s i n g  a n  
a u t o m a t i c  s y s t e m .

S o m e  f u r t h e r  i m p r o v e m e n t s  a r e  p l a n n e d .  T h e s e  i n c l u d e  m o r e  a r t i f a c t  r e j e c t i o n ,  b a s e d  o n  t h e  

f r e q u e n c y  o f  o c c u r r e n c e  o f  s p i k e s  a n d  t h e  s i g n a l  b e h a v i o u r  b e f o r e  a n d  a f t e r  t h e  s p i k e ,  in  o r d e r  

t o  i d e n t i f y  a r t i f a c t  b u r s t s .  R e d u c t i o n  o f  m i s s e d  f e a t u r e s  i s  a l s o  p l a n n e d  b y  r e v i s i n g  t h e  m u l t i p l e  

h a r d - t h r e s h o l d i n g  o n  t h e  s p i k e  a n d  t h e  s l o w  w a v e .  T h u s  t h e  d e t e c t i o n  l e v e l s  f o r  t h e  s l o w  w a v e  

w i l l  b e  c o n d i t i o n e d  o n  t h e  q u a l i t y  o f  t h e  p r e c e d i n g  s p i k e .  S l o w  w a v e  d e t e c t i o n  s e e m s  t o  b e  a  

g e n e r a l  p r o b l e m  i n  S A W  d e t e c t i o n .  T h i s  c o u l d  b e  t h e  r e a s o n  w h y  m a n y  w o r k e r s  o f t e n  

c o n c e n t r a t e  o n  s p i k e s ,  a v o i d i n g  a n y  a t t e m p t s  t o  r e c o g n i z e  t h e  s l o w  w a v e  f e a t u r e .

A C K N O W L E D G E M E N T S

O n e  o f  t h e  a u t h o r s ,  M r .  S .  A .  M y l o n a s ,  w o u l d  l i k e  t o  t h a n k  t h e  C o m m i t t e e  o f  V i c e  C h a n c e l l o r s  

a n d  P r i n c i p a l s  o f  t h e  U n i v e r s i t i e s  o f  t h e  U n i t e d  K i n g d o m  ( C V C P - O R S  a w a r d  s c h e m e s ) ,  f o r  

t h e  p r o v i s i o n  o f  f i n a n c i a l  s u p p o r t .
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EEG record 
Number

Spikes found by 
Human Autom atic 

__E E G cr_____ Detector

Missed
Features

False
A larm s

1 39 38(97.4%) 2( 5.1%) 1(2 .6 % )
2 52 45(86.5%) 7(13.4%) 1(1.9%)
3 0 4 0 4.

Total 91 87(95.6%) 9(9.9%) 6 (6 .6 % )

Table 5.1 Experim ental results
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S U M M A R Y

A  m e t h o d  f o r  r e m o v i n g  n o i s e  f r o m  d i g i t a l  i m a g e s  u s i n g  a d a p t i v e  f i l t e r i n g  is  

i n t r o d u c e d .  N o i s e  c a n c e l l i n g  is  e x t e n d e d  t o  a  r e l a t e d  e d g e  d e t e c t i o n  m e t h o d ,  b a s e d  o n  

t h e  d e r i v a t i v e  o f  t h e  a d a p t i v e  f i l t e r s ,  s i m p l e  n o n - m a x i m u m  s u p p r e s s i o n  a n d  

t h r e s h o l d i n g .  I t  w i l l  b e  d e m o n s t r a t e d  th a t  t h is  p r o c e s s  c a n  b e  p a r t i t i o n e d  f o r  d a t a  a n d  

f u n c t i o n a l  p a r a l l e l i s m ,  s u i t a b l e  f o r  i m p l e m e n t a t i o n  o n  a  t r a n s p u t e r  n e t w o r k .  S o m e  

n e t w o r k  c o n f i g u r a t i o n s  a n d  t h e  c o r r e s p o n d i n g  a l g o r i t h m s  a r e  p r e s e n t e d .  T h e  

p e r f o r m a n c e  o f  t h e s e  s t r u c t u r e s  a n d  t h e  r e s u l t s  o f  t h e  m e t h o d  o n ,  s o m e  i m a g e s  a r e  

d i s c u s s e d .

1 .  I N T R O D U C T I O N

T h e  w o r k  p r e s e n t e d  in  t h is  p a p e r  u s e s  a n  a d a p t i v e  a p p r o a c h  t o  n o i s e  c a n c e l l i n g  

in  d i g i t a l  i m a g e s .  T h i s  i m p r o v e s  t h e  p e r f o r m a n c e  o f  a  s u b s e q u e n t  e d g e  o p e r a t o r .  N o i s e  

f i l t e r i n g  i s  n e c e s s a r y  a s  a  p r e - p r o c e s s i n g  s t a g e  f o r  e d g e  d e t e c t i o n  [ 1 ] ,  B y  u s i n g  a n  

a d a p t i v e  f i l t e r ,  a s s u m p t i o n s  u s u a l l y  m a d e  a b o u t  t h e  n a t u r e  o f  t h e  n o i s e  in  t h e  i m a g e  a r e  

r e l a x e d .  T h i s  l e a d s  t o  a n  i m p r o v e d  p e r f o r m a n c e  o v e r  a  w i d e  r a n g e  o f  i n p u t  i m a g e s .

T h e  a l g o r i t h m  i m p l e m e n t e d  c o n s i s t s  o f  t w o  l in e a r  n o i s e  c a n c e l l i n g  f i l t e r s  

c a s c a d e d  w i t h  t h e  t r a n s p o s e  o f  t h e i r  d e r i v a t i v e s .  T h e  o u t p u t ,  t h u s  p r o d u c e d ,  is  p a s s e d  

t h r o u g h  a  n o n - m a x i m u m  s u p p r e s s i o n  p r o c e s s  w h i c h  e n s u r e s  a  s i n g l e  r e s p o n s e .  T h e  

r e s u l t i n g  i m a g e  i s  t h r e s h o l d e d  u s i n g  a  s m o o t h  n o n - l i n e a r  f u n c t i o n .

I n h e r e n t  p a r a l l e l i s m s  a r e  i d e n t i f i e d  a n d  e x p l o i t e d  t h r o u g h  t h e  u s e  o f  a  

t r a n s p u t e r  n e t w o r k .  D a t a  p a r a l l e l i s m  l e a d s  t o  p a r t i t i o n i n g  o f  t h e  i m a g e  i n t o  s m a l l  

s e g m e n t s  t h a t  a r e  p r o c e s s e d  i n d e p e n d e n t l y .  F u r t h e r  p a r a l l e l i s m  c a n  b e  i d e n t i f i e d  in  t h e  

a l g o r i t h m ,  s i n c e  t h e  h o r i z o n t a l  a n d  v e r t i c a l  k e r n e l  c a n  b e  a p p l i e d  t o  t h e  i m a g e  

s e p a r a t e l y .

1 Machine Vision Group.
2 Centre for Information Engineering.
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2  S I G N A L  P R O C E S S I N G  A N D  D I G I T A L  I M A G E S

O n e  o f  t h e  f i r s t  s t a g e s  in  i m a g e  p r o c e s s i n g  i s  t h e  e x t r a c t i o n  o f  i n f o r m a t i o n  f r o m  

a n  i m a g e ,  p r e s e n t e d  in  d i g i t a l  f o r m  a s  a  m a t r i x  o f  i n t e n s i t i e s  in  q u a n t i z e d  ( g r e y  l e v e l )  

f o r m .  A t  t h i s  l e v e l  t h e  i m a g e  m a y  b e  r e g a r d e d  a s  a  t w o - d i m e n s i o n a l  s i g n a l  c o n t a i n i n g  

i n f o r m a t i o n  s u c h  a s  o b j e c t s  o n  a  b a c k g r o u n d .  T h e s e  a r e  o f t e n  c o r r u p t e d  b y  o t h e r  

s ig n a l s ,  s u c h  a s  n o i s e .

N o i s e  a f f e c t s  t h e  r e l i a b l e  e x t r a c t i o n  o f  f e a t u r e s ,  l i k e  e d g e s  f r o m  a n  i m a g e .  

M o s t  e d g e  d e t e c t o r s  u s e  g r a d i e n t  i n f o r m a t i o n  t o  d e t e c t  b o u n d a r i e s  o f  o b j e c t s  a n d  a r e  

p a r t i c u l a r l y  s u s c e p t i b l e  t o  " h i g h - f r e q u e n c y "  ( s p i k y )  i n t e r f e r e n c e .  I t  i s  t h e r e f o r e  

n e c e s s a r y  t o  r e d u c e  o r ,  i f  p o s s i b l e ,  r e m o v e  t h e  n o i s e  b e f o r e  e d g e  d e t e c t i o n  c a n  t a k e  

p l a c e .

2 . 1  N o i s e  c a n c e l l i n g

N o i s e  i s  o f t e n  r e m o v e d  b y  a p p l y i n g  a  f i l t e r  t o  t h e  i m a g e .  T h e  f i l t e r  c o e f f i c i e n t s  

a r e  s e l e c t e d  t o  r e m o v e  a s  m u c h  o f  t h e  n o i s e  a s  p o s s i b l e ,  b y  s m o o t h i n g  t h e  i m a g e  w h i l s t  

m a i n t a i n i n g  t h e  d e s i r e d  i m a g e  f e a t u r e s  u n c h a n g e d .  F a i lu r e  t o  s e l e c t  t h e  a p p r o p r i a t e  

c o e f f i c i e n t  v a l u e s  m a y  r e s u l t  in  e i t h e r  h i g h  l e v e l s  o f  n o i s e  o r  e x c e s s i v e  s m o o t h i n g .  B o t h  

e f f e c t s  c a n  b e  h a z a r d o u s  f o r  s u b s e q u e n t  e d g e  d e t e c t i o n  s i n c e  t h e y  m a y  l e a d  t o  e i t h e r  

f a l s e  d e t e c t i o n s  o r  m i s s e d  e d g e s .

I f  t h e  c h a r a c t e r i s t i c s  o f  t h e  n o i s e  a r e  k n o w n  b e f o r e h a n d ,  t h e  f i l t e r  c a n  b e  

t a i l o r e d  a s  d e s c r i b e d .  T h i s  i s  o f t e n  n o t  t h e  c a s e .  I t  i s ,  h o w e v e r ,  p o s s i b l e  t o  s t a r t  f r o m  

a n  in it ia l  g u e s s  f o r  t h e  c o e f f i c i e n t s  a n d  c o r r e c t  t h e m  w h e n  t h e  i m a g e ,  a n d  h e n c e  t h e  

n o i s e  c h a r a c t e r i s t i c s ,  b e c o m e  a v a i l a b l e .

T o  d e t e r m i n e  t h e  o p t i m a l  n o i s e  c a n c e l l i n g  f i l t e r ,  t h e  s t u d y  o f  t h e  s ig n a l  t h r o u g h  

a  m o d e l  i s  o f t e n  u s e f u l .

2 . 2  A  m o d e l  f o r  t h e  i m a g e

A l t h o u g h  a n  i m a g e  i s  a  t w o - d i m e n s i o n a l  s i g n a l ,  i t s  h o r i z o n t a l  a n d  v e r t i c a l  

c o m p o n e n t s  c a n  b e  s t u d i e d  s e p a r a t e l y .  F o r  e d g e  d e t e c t i o n  p u r p o s e s  t h e  c r o s s - s e c t i o n  

o f  a n  e d g e  i s  a l m o s t  c o n s t a n t  in  a n y  d i r e c t i o n ,  f o r  s m a l l  s t e p s  in  t h e  p e r p e n d i c u l a r  

d i r e c t i o n  [ 1 ] ,

E d g e s  u s u a l l y  s i g n i f y  b o u n d a r i e s  b e t w e e n  r e g i o n s  o f  i n t e r e s t ,  s u c h  a s  o b j e c t s .  

I n  a  g r e y - l e v e l  i m a g e ,  t h e s e  a r e  d i s t i n g u i s h e d  f r o m  t h e i r  d i f f e r e n t  i n t e n s i t i e s .  O b j e c t s  

n o r m a l l y  a p p e a r  a s  t r a n s i t i o n s  in  t h e  i n t e n s i t y  o f  t h e  i m a g e  t h a t  la s t  f o r  s e v e r a l  p i x e l s .  

N o i s e ,  o n  t h e  o t h e r  h a n d ,  c o n s i s t s  o f  r a n d o m  t r a n s i t i o n s  in  t h e  i n t e n s i t y  t h a t  f l o o d  t h e  

i m a g e  a n d  h a v e  n o  s t r u c t u r e .  T h e  n o i s e - f r e e  i m a g e  s ig n a l  S ( i j )  a n d  n o i s e  N ( i j )  a r e  

a d d e d  t o  f o r m  t h e  r e c o r d e d  i m a g e  I ( i j )  ( f i g u r e  3 .1  ( a ) ) :

l (>J)  = S ( iJ )  + N ( i , j )

N ( i j )  i s  n o r m a l l y  t r e a t e d  a s  a  s t o c h a s t i c  p r o c e s s  w i t h  f i x e d  s t a t i s t i c a l  p r o p e r t i e s  

t h r o u g h o u t  a n  i m a g e .  T h e  b e s t  n o i s e  c a n c e l l i n g  f i l t e r  s h o u l d  r e f l e c t  t h e s e  p r o p e r t i e s .
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2 . 3  T h e  a d a p t i v e  s o l u t i o n  t o  o p t i m u m  f i l t e r i n g

I f  a  s ig n a l  d ( n )  is  t o  b e  p r o d u c e d  f r o m  a n o t h e r  s ig n a l  x(n )  b y  l in e a r  w e i g h t i n g ,

y(/i) =  y W ( , i  —/) =WX(n)
i —-H

a  c o s t  f u n c t i o n ,  s u c h  a s  t h e  m e a n  s q u a r e d  e r r o r

J =E[[d(„) ~y(n)f]

m u s t  b e  m in i m i s e d .  T h e  b e s t  w e i g h t  ( c o e f f i c i e n t s )  v a l u e s  JV = ( w ...........» ) '

s a t i s f y  t h e  W i c n c r - H o p f  E q u a t i o n

JL

W h e r e  Ra  i s  t h e  a u t o  c o r r e l a t i o n  m a t r i x  o f  x ( n )  a n d  R& i s  t h e  c r o s s  c o r r e l a t i o n  v e c t o r  

b e t w e e n  x ( n )  a n d  d ( n ) .

I n  a  n o i s e  c a n c e l l i n g  s i t u a t i o n ,  x ( n )  i s  t h e  l i n e a r  c o m b i n a t i o n  o f  t h e  w a n t e d  

s ig n a l  s ( n )  w i t h  u n c o r r e l a t e d  a d d i t i v e  n o i s e  n ( n ) :

x(n )  = s ( / / )  + / ? ( / / )

T h e  o b j e c t i v e  i s  t o  f i n d  W  s u c h  t h a t  y ( n )  is  t h e  b e s t  a p p r o x i m a t i o n  o f  s ( n ) .  I f  

d ( n )  is  n o t  a v a i l a b l e  s e p a r a t e l y ,  l i k e  in  o u r  c a s e ,  x ( n )  c a n  b e  u s e d  a s  a  n o i s y  e s t i m a t e  o f  

it .

T h e  W i e n c r - H o p f  E q u a t i o n  c a n  b e  s o l v e d  r e c u r s i v e l y ,  e . g .  u s i n g  g r a d i e n t  s e a r c h  

t e c h n i q u e s [ 2 ] [ 4 ] ,  A  s i m p l e  r e c u r s i o n  e q u a t i o n  f o r  W  w a s  d e s c r i b e d  b y  W i d r o w  a n d  

I I o f T [ 2 ] ,  I t  i s  k n o w n  a s  t h e  L e a s t  M e a n  S q u a r e s  ( L M S )  a l g o r i t h m :

lV(n + 1) =IV(/i) +2h e(/i )X(/ i)

w h e r e

e(/i) =x(n)  -y (n )  

y(n)  = W {n )X { n )

H =X /l r (Rxx) ( 0  < X  < 1 )

H i s  t h e  a d a p t a t i o n  s t e p  a n d  g o v e r n s  t h e  r a t e  o f  c o n v e r g e n c e  o f  t h e  f i l t e r .  S m a l l  fi 
c a u s e s  s l o w e r  a d a p t a t i o n  b u t  s m a l l e r  e r r o r  in  t h e  f i n a l  W .



382 Appendix H. Publications

3 .  A D A P T I V E  N O I S E  C A N C E L L I N G  A N D  E D G E  D E T E C T I O N

3 . 1  N o i s e  c a n c e l l i n g  i n  i m a g e s

M o s t  o f  t h e  a d a p t i v e  a l g o r i t h m s  w e r e  i n i t ia l l y  d e v e l o p e d  f o r  t i m e  s e q u e n c e s .  

T h e  L M S  a l g o r i t h m  i s  n o t  l i n k e d  w i t h  t i m e - r e l a t e d  d a t a  a n d  is  t h e r e f o r e  s u i t a b l e  f o r  

a p p l y i n g  t o  i m a g e  d a t a .  T h e r e  is  h o w e v e r  a  f u n d a m e n t a l  d i f f i c u l t y  in  t h e  a d a p t a t i o n  

p r o c e d u r e .  W h e r e a s  in  a  t i m e  s e q u e n c e  t h e r e  is  a  n a t u r a l  a n d  c o m p u l s o r y  d i r e c t i o n  f o r  

f i l t e r  a p p l i c a t i o n  a n d  a d a p t a t i o n ,  ( i . e .  f o r w a r d  t i m e ) ,  s u c h  a  d i r e c t i o n  d o e s  n o t  e x i s t  f o r  

a  s i n g l e  i m a g e .  A  g o o d  p r o c e d u r e  is  t o  s e l e c t  r a n d o m l y  t h e  n e x t  l o c a t i o n  in  t h e  i m a g e  

o n  w h i c h  t h e  f i l t e r  i s  t o  b e  a p p l i e d .  T h i s  m e t h o d ,  h o w e v e r ,  s u f f e r s  f r o m  t w o  p r a c t i c a l  

l i m i t a t i o n s .  F i r s t ,  t h e  a d a p t a t i o n  a n d  f i l t e r i n g  s t a g e s  h a v e  t o  b e  s e p a r a t e d ,  t o  g u a r a n t e e  

t h a t  a l l  i m a g e  e l e m e n t s  a r e  p r o c e s s e d .  S e c o n d ,  l o c a l i s a t i o n  o f  f i l t e r  c o e f f i c i e n t s  c o u l d  

b e  l o s t .  L a s t ,  n o i s e  c h a r a c t e r i s t i c s  m a y  d i f f e r  f r o m  o n e  p a r t  o f  t h e  i m a g e  t o  a n o t h e r .  

B e t t e r  r e s u l t s  a r e  t o  b e  e x p e c t e d  f r o m  l o c a l l y  o p t i m a l  f i l t e r s  t h a n  a  g l o b a l l y  o p t i m i s e d  

f i l t e r  o v e r  a  l a r g e  a r e a .  F o r  t h i s  r e a s o n  t h e  f i l t e r  is  a p p l i e d  in  t h e  h o r i z o n t a l  a n d  t h e  

v e r t i c a l  d i r e c t i o n s .

I n i t ia l l y ,  a  t w o - d i m e n s i o n a l  ( N X N )  f i l t e r  w a s  u s e d  f o r  s m o o t h i n g .  T h i s  r e q u i r e d  

2 N 2 o p e r a t i o n s  a n d  d i d  s m o o t h i n g  in  b o t h  d i r e c t i o n s  s i m u l t a n e o u s l y  a n d  r e s u l t e d  in  

r o u n d e d  c o m e r s .  S u b s e q u e n t  e d g e  d e t e c t i o n  h a d  t o  b e  c o m p l e t e l y  s e p a r a t e d  f r o m  t h e  

f i l t e r i n g  o p e r a t i o n .

A  d i f f e r e n t  a p p r o a c h  p r o v e d  m o r e  e f f e c t i v e  b o t h  in  t e r m s  o f  n u m b e r  o f  

c o m p u t a t i o n s  n e c e s s a r y  a n d  in  t e r m s  o f  e d g e  d e t e c t i o n .  I t  w a s  b a s e d  o n  a  c o m m o n l y  

u s e d  f i l e r  s t r u c t u r e  in  i m a g e  p r o c e s s i n g ,  t h e  u s e  o f  t w o  o n e - d i m e n s i o n a l  f i l t e r s  t o  

r e d u c e  n o i s e  in  t h e  b o t h  t h e  h o r i z o n t a l  a n d  t h e  v e r t i c a l  d i r e c t i o n s .  T y p i c a l l y ,  t h e s e  

f i l t e r s  h a v e  f i x e d  c o e f f i c i e n t s  b a s e d  o n  a s s u m p t i o n s  a b o u t  t h e  n a t u r e  o f  t h e  n o i s e .  

G a u s s i a n  f i l t e r s ,  a r e  a m o n g  t h e  c o m m o n e s t .  T h e  v a r i a n c e  o f  t h e  G a u s s i a n  f u n c t i o n ,  

w h i c h  d e t e r m i n e s  t h e  a m o u n t  o f  s m o o t h i n g  is  s p e c i f i e d  a t  t h e  b e g i n n i n g  o f  t h e  f i l t e r  

p r o c e s s  a n d  i s  n o t  m o d i f i e d  a f t e r w a r d s .  E a c h  f i l t e r  p r o d u c e s  i t s  o w n  o u t p u t ,  w h i c h  is  

u s e d  f o r  f u r t h e r  p r o c e s s i n g .

O u r  p r o p o s e d  m e t h o d  o f  s m o o t h i n g  i s  s im i la r ,  b u t  t h e  f i x e d - c o e f f i c i e n t  f i l t e r s  

w e r e  r e p l a c e d  b y  a d a p t i v e  o n e s .  T h e  c o e f f i c i e n t s  o f  t h e  t w o  f i l t e r s  w e r e  i n i t ia l i s e d  t o  

e i t h e r  z e r o s  o r  t o  t h o s e  o f  a n  in it ia l  e s t i m a t e  o f  a  G a u s s i a n  f i l t e r .  B o t h  m e t h o d s  

p e r f o r m e d  a l m o s t  i d e n t i c a l l y .  A n  e x a m p l e  o f  a  s m o o t h e d  i m a g e  p r o f i l e  i s  s h o w n  in  

f i g u r e  3 . 1 ( b ) .

3 . 2  E d g e  d e t e c t i o n

U s u a l l y  e d g e  d e t e c t o r s  a r e  f i x e d - c o e f f i c i e n t  d i f f e r e n t i a l  o p e r a t o r s .  T h e  

d i f f e r e n t i a t o r  p r e s e n t e d  h e r e  u s e s  t h e  d e r i v a t i v e s  o f  t h e  a d a p t i v e  f i l t e r s  a f t e r  a d a p t a t i o n  

i s  c o m p l e t e d .  E a c h  o f  t h e  d i f f e r e n t i a t e d  f i l t e r s  w a s  t h e n  a p p l i e d  t o  t h e  s m o o t h e d  i m a g e  

p r o d u c e d  b y  t h e  o t h e r  f i l t e r ,  l i k e  in  t h e  C a n n y  o p e r a t o r .  T h e  o u t p u t  o f  t h i s  o p e r a t i o n  is  

a  s e t  o f  t w o  i m a g e s ,  w i t h  s h a r p  t r a n s i t i o n s  e m p h a s i s e d  a n d  t h e  r e s t  o f  t h e  i m a g e  

s u p p r e s s e d .  B e c a u s e  t h e  o t h e r  s o u r c e  o f  l a r g e  g r a d i e n t  v a l u e s  ( i . c .  n o i s e )  w a s  a l r e a d y  

s u p p r e s s e d ,  t h e  r e m a i n i n g  l a r g e  g r a d i e n t s  a r e  e x p e c t e d  t o  i n d i c a t e  e d g e s .
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A l t h o u g h  t h i s  o p e r a t i o n  l a c k s  m a t h e m a t i c a l  r i g o u r ,  e a r l y  r e s u l t s ,  p r e s e n t e d  in  

t h i s  p a p e r ,  w e r e  e n c o u r a g i n g .

3 . 2 . 1  G r a d i e n t  d e t e c t i o n

T h e  t w o  d i f f e r e n t i a l  i m a g e s  p r o d u c e d  in  t h e  p r e v i o u s  s e c t i o n  w e r e  t h e n  

c o m b i n e d  t o  d e t e c t  e d g e s  in  a n y  d i r e c t i o n .  T h e  h o r i z o n t a l  a n d  v e r t i c a l  d i f f e r e n t i a l s  a t 

e v e r y  p o i n t  m a y  b e  r e g a r d e d  a s  a  v e c t o r  o f  t w o  o r t h o g o n a l  c o m p o n e n t s .  T h e  m o d u l u s  

o f  t h e  v e c t o r  w a s  t a k e n  a s  a  m e a s u r e  o f  " c d g c n c s s " .  T h e  " d i r e c t i o n "  o f  t h e  e d g e  w a s  

a l s o  d e t e r m i n e d  a s  a n g u l a r  d e v i a t i o n  f r o m  t h e  h o r i z o n t a l ,  a l t h o u g h  t h i s  f e a t u r e  w a s  n o t  

u s e d .

3 . 2 . 2  N o n - m a x i m u n i  s u p p r e s s i o n

T h e  d i f f e r e n t i a t e d  i m a g e  w a s  t h e n  t r e a t e d  f u r t h e r  t o  p r o d u c e  a  b i n a r y  i m a g e  

i n d i c a t i n g  w h e t h e r  a  p o i n t  w a s  c l a s s i f i e d  a s  a n  e d g e  o r  n o t .  A  g o o d  e d g e  d e t e c t O F  

s h o u l d  n o t  o n l y  d e t e c t  t h e  e x i s t i n g  e d g e s ,  b u t  p e r f o r m  g o o d  l o c a l i s a t i o n  t o o .  P a r t  o f  

t h e  s e c o n d  p r o c e s s  is  a  s i n g l e  r e s p o n s e  t o  a n  e d g e .

A  s i m p l e  n o n - m a x i m u m  s u p p r e s s i o n  a l g o r i t h m  p r o d u c e d  g o o d  r e s u l t s  in  t e r m s  

o f  s i n g l e  r e s p o n s e .  A  c a n d i d a t e  e d g e  is  n o t  s u p p r e s s e d  i f  it  i s  a  l o c a l  m a x i m u m  in  a n y  

d i r e c t i o n .  T h i s  t e s t  i n v o l v e s  e v a l u a t i n g  i t s  g r a d i e n t  m o d u l u s  a g a i n s t  t h a t  o f  i t s  e i g h t  

n e i g h b o u r i n g  l o c a t i o n s .  A  f u r t h e r  t e s t  is  t h e n  p e r f o r m e d  t o  d e t e r m i n e  i f  t h e  g r a d i e n t  

is  h i g h  f o r  t h e  a r e a  w h e r e  t h e  p o i n t  l i e s ,  b y  p a s s i n g  i t s  g r a d i e n t ,  g ( i , j )  t h r o u g h  a  

s i g m o i d a l  n o n  l i n e a r i t y  w h e r e  t h e  t h r e s h o l d  S is  t h e  m e a n  a n d  i t s  e x p o n e n t i a t i n g  f a c t o r  

a  i s  t h e  s t a n d a r d  d e v i a t i o n  o f  t h e  g r a d i e n t  in  t h e  n e i g h b o u r h o o d :

fiSi'J))  | +(;- «<*(,.;)- 9)

O n l y  i f  t h e  o b t a i n e d  v a l u e  is  o v e r  1 /2 ,  t h e  p i x e l  a t  ( i , j )  is  c o n s i d e r e d  t o  b e  a n  e d g e  

( f i g u r e  3 . 1 ( c ) ) .

Figure 3.1 One scan line from  the image
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4. IM PLEM ENTATION

I n  t h i s  s e c t i o n  t h e  a l g o r i t h m  is  d e s c r i b e d  a n d  a  t r a n s p u t e r  i m p l e m e n t a t i o n  is  

p r o p o s e d .  F i r s t ,  t h e  p o t e n t i a l  p a r a l l e l i s m s  a r e  i d e n t i f i e d ;  t h e n  a  m a p p i n g  o f  t h e  

a l g o r i t h m  o n  a  n e t w o r k  o f  p r o c e s s i n g  e l e m e n t s  i s  p r e s e n t e d .  T h e  a n a l y s i s  is  b a s e d  o n  a  

m e s s a g e  p a s s i n g  f r a m e w o r k ,  s u i t a b l e  f o r  t r a n s p u t e r  m o d e l l i n g .

4.1 Algorithm description

T h e  i d e a s  b e h i n d  t h e  a l g o r i t h m  c a n  b e  d e r i v e d  f r o m  t h e  d e f i n i t i o n  o f  t h e  

p r o c e d u r e  a d o p t e d .  F i r s t ,  b e c a u s e  o p e r a t i o n s  in  d i f f e r e n t  a r e a s  o f  t h e  i m a g e  a r c  

i n d e p e n d e n t ,  d a t a  c a n  b e  s h a r e d  a m o n g s t  a  p o p u l a t i o n  o f  p r o c e s s o r s .  N e x t ,  t h e  u n it  

p r o c e s s  i s  i d e n t i f i e d  in  o r d e r  t o  t a k e  a d v a n t a g e  o f  a n y  in h e r e n t  f u n c t i o n a l  p a r a l l e l i s m .  

T h e  n o t i o n  o f  i d e n t i f y i n g  i n d e p e n d e n c e  d e r i v e s  f r o m  t h e  n e c e s s i t y  t o  l im i t  t h e  a m o u n t  

o f  c o m m u n i c a t i o n  a m o n g  p r o c e s s o r s ,  a n d  t r y  t o  a c h i e v e  i n d u c t i o n  i .e .  l i n e a r  s p e e d u p .

4.2 Inherent parallelism

As m e n t i o n e d  a b o v e  t h e  s y s t e m  c o n s i s t s  o f  a n  a d a p t i v e  n o i s e  c a n c e l l e r ,  

c a s c a d e d  w i t h  a  l o c a l  g r a d i e n t  o p e r a t o r ,  o b t a i n e d  b y  d i f f e r e n t i a t i n g  t h e  f i l t e r  

c o e f f i c i e n t s .  T h e  o u t p u t  o f  t h e  l a t t e r  is  f e d  i n t o  a  n o n - m a x i m u m  s u p p r e s s i o n  u n it  th a t  

e n f o r c e s  s i n g l e  r e s p o n s e .  F i g u r e  4 .1  s h o w s  a  g r a p h i c a l  r e p r e s e n t a t i o n  o f  t h e  p r o c e s s e s  

t h a t  i m p l e m e n t  t h e  s y s t e m .

4.2.1 Data parallelism

A d a p t i v e  n o i s e  c a n c e l l i n g  r e l i e s  o n  t h e  a b i l i t y  o f  a  v a r i a b l e  k e r n e l  e v a l u a t e d  f r o m  a  

n e i g h b o u r h o o d  o f  p i x e l s  a r o u n d  t h e  s a m p l e  t o  e s t i m a t e  t h e  s ig n a l .  T h i s  c o m p l e t e l y  

l o c a l  d e p e n d e n c y  s u g g e s t s  t h e  p a r t i t i o n  o f  t h e  i m a g e  i n t o  i n d e p e n d e n t  b l o c k s  t h a t  d o  

n o t  r e q u i r e  e x t e r n a l  d a t a .  B e c a u s e  t h e  n o i s e  c a n c e l l e r  a n d  t h e  s u b s e q u e n t  g r a d i e n t  

o p e r a t o r  a r e  c o n v o l u t i o n  o p e r a t i o n s ,  h a l f  a  m a s k  s i z e  o v e r l a p  h a s  t o  b e  p a c k e d  w i t h  

t h e  d a t a  f o r  e a c h  b l o c k .  A l t h o u g h  t h i s  p r e s e n t s  a n  o v e r h e a d ,  it  is  a  m a j o r  s e t  b a c k  o n l y  

f o r  v e r y  s m a l l  b l o c k s .  A t  t h i s  p o i n t ,  t h e  i m p o r t a n t  i s s u e  in  m a p p i n g  s u c h  a  p a r t i t i o n  o n  

a  n e t w o r k  o f  p r o c e s s o r s  i s  t o  m in i m i s e  t h e  d i s t a n c e s  t r a v e l l e d  b y  d a t a  p a c k e t s ,  b e a r i n g  

in  m i n d  t h a t  t h e  r e a l  d i s t a n c e  i s  n o t  o n l y  t h e  n u m b e r  o f  h o p s  t h a t  d a t a  p a c k e t s  m a k e s  

b u t  t h e  d e l a y  i n c u r r e d  d u r i n g  r o u t i n g  a s  w e l l .

4.2.2 Functional parallelism

T h e  d i f f e r e n t  s t a g e s  o f  t h e  a l g o r i t h m  ( f i g u r e  4 . 1 )  a r e :

• H o r i z o n t a l  s m o o t h i n g ,

• V e r t i c a l  s m o o t h i n g ,

• T r a n s p o s i t i o n ,

• H o r i z o n t a l  g r a d i e n t ,

• V e r t i c a l  g r a d i e n t ,

• N o n - m a x i m u m  s u p p r e s s i o n  a n d  t h r e s h o l d i n g .
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F ifiu re  4 .1  B lo ck  d ia g ra m  o f th e  s y s te m

T h e  h o r i z o n t a l  a n d  v e r t i c a l  s m o o t h i n g  o p e r a t i o n s  a r e  i n d e p e n d e n t  a n d  c a n  b e  

c a r r i e d  o u t  in  p a r a l l e l .  T h e  t r a n s p o s i t i o n  o p e r a t i o n  r e f e r s  t o  t h e  f a c t  t h a t  t h e  g r a d i e n t  

o p e r a t o r  in  o n e  d i r e c t i o n  is  a p p l i e d  t o  t h e  o u t p u t  o f  t h e  s m o o t h i n g  o p e r a t o r  in  t h e  

o t h e r .  T h e  o u t p u t s  o f  t h e  g r a d i e n t  o p e r a t i o n s  a r e  c o m b i n e d  t o  p r o d u c e  t h e  c o m b i n e d  

g r a d i e n t  m a p .  T h i s  l e a v e s  t h e  n o n - m a x i m u m  s u p p r e s s i o n  a n d  t h r e s h o l d i n g  a s  a  f in a l  

s t a g e .  T h i s  c a n  b e  i m p l e m e n t e d  a s  t h r e e  s e p a r a t e  s t a g e s .

4.3 Transputer Configurations

T h e  n e t w o r k s  d e s c r i b e d  h e r e  t w o  t y p e s  o f  p a r a l l e l i s m s  m e n t i o n e d  a b o v e .  F i r s t  

a  s i m p l e  l i n e a r  s t r u c t u r e  is  g i v e n ,  t h e n  t h e  f u n c t i o n a l  p a r a l l e l i s m  is  i n c o r p o r a t e d  t o  y i e l d  

a  m o r e  e f f i c i e n t  a r c h i t e c t u r e .

4.3.1 Simple linear structure

A  s i m p l e  l in e a r  s t r u c t u r e  o f  s i x t e e n  t r a n s p u t e r s  w a s  i m p l e m e n t e d  t o  t a k e  

a d v a n t a g e  o f  d a t a  p a r a l l e l i s m .  M o r e  c o m p l e x  n e t w o r k s  h a v e  n o t  b e e n  c o n s i d e r e d  

b e c a u s e  o f  t h e  l a r g e  p r o c e s s i n g  t o  c o m m u n i c a t i o n  r a t io .  T h e  f u r t h e r  p e r f o r m a n c e  

i m p r o v e m e n t  th a t  c a n  b e  a c h i e v e d  f o r  s u c h  a  s m a l l  n u m b e r  o f  t r a n s p u t e r s  w i l l  b e  

m a r g i n a l .  F i g u r e  4 . 2 a  s h o w s  t h is  s i m p l e  s t r u c t u r e ,  w h i l e  f i g u r e  4 . 2 b  p r e s e n t s  t h e  

p r o c e s s e s  i n s id e  e a c h  t r a n s p u t e r  in  t h e  n e t w o r k .  T h e  r o o t  t r a n s p u t e r  i n t e r f a c e s  w i t h  t h e  

h o s t  s y s t e m  (  a  S u n  S p a r c  s t a t i o n )  a n d  p r o v i d e s  d a t a  p a r t i t i o n  s e r v i c e s  a n d  o v e r l a p  

c a l c u l a t i o n s  f o r  t h e  r e s t  o f  t h e  n e t w o r k .

_____ L
Canto a<

------- 1
T«|0*

Ti|14|

I
ifiiw
i ___

Ftgma 4,7 ■) Tha » m l »  linaa« »tiuci»»». b) >n»«W Ti|i| 1 - 0 .1 6

4 . 3 . 2  M u l t i - l e v e l  p i p e l i n e s
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T h e  a l g o r i t h m  a s  d e s c r i b e d  a b o v e  d e c o m p o s e s  i n t o  t h r e e  s e p a r a t e  s t a g e s .  

H o w e v e r ,  a n  e f f i c i e n t  i m p l e m e n t a t i o n  c a n n o t  c o n s i d e r  t h e  t h i r d  s t a g e  ( i . e .  n o n -

m a x i m u m  s u p p r e s s i o n  a n d  t h r e s h o l d i n g )  a s  a n  c l e m e n t  o f  t h e  p i p e l i n e  s i n c e  t h is  

p r o c e s s  is  f a r  l e s s  c o m p l e x  t h e n  t h e  o t h e r  t w o  s t a g e s .

T h e  s t r u c t u r e  p r o p o s e d  h e r e  c o n s i s t s  o f  s c r i e s  o f  s i m p l e  t w o  s t a g e  p i p e l i n e s  

c o m b i n e d  w i t h  a  t h i r d  p r o c e s s o r  t o  f o r m  o n e  l e v e l  in  t h e  s t r u c t u r e .  L e v e l s  a r c  s t a c k e d  

t o  f o r m  t h e  o v e r a l l  n e t w o r k .  T h e  t h ir d  p r o c e s s o r  in  e a c h  l e v e l  is  u s e d  t o  r u n  t h e  

s i m p l e r  f in a l  s t a g e .  A n d  r o u t e  t h e  r e s u l t s  b a c k  t o  t h e  h o s t  s y s t e m  ( f i g u r e  4 . 3 ) .

Figure 4.3 Unit structure for multi-level pipeline

5 RESULTS

R e s u l t s  o f  t h e  e d g e  d e t e c t o r  a r e  s h o w n  f o r  t w o  s a m p l e  i m a g e s  in  

f i g u r e  5 .1  ( c , d ) ,  t o g e t h e r  w i t h  t h e  o r i g i n a l  i m a g e s  ( f i g u r e  5 .1  a , b ) .  T h e  o u t p u t  s h o w s  

s i n g l e  r e s p o n s e  t o  d i f f e r e n t  t y p e s  o f  e d g e s  a n d  a  g o o d  l o c a l i s a t i o n .

F i l t e r  c o e f f i c i e n t s  a f t e r  a d a p t a t i o n  ( f i g u r e  5 . 2 )  s e e m  t o  c o n f i r m  t h e  v a l i d i t y  o f  

u s i n g  a  g a u s s i a n  m o d e l  f o r  a d d i t i v e  n o i s e  in  d i g i t a l  i m a g e s .  H o w e v e r ,  t h is  n o i s e  i s  n o t  

s t a t i o n a r y .  T h e  a d a p t i v e  f i l t e r  r e l a x e s  s t a t i o n a r i t y  a n d  'z e r o - m e a n '  c o n d i t i o n s .

A  s p e e d - u p  o f  1 2 .5  w a s  r e g i s t e r e d  w i t h  a  s i x t e e n  t r a n s p u t e r  n e t w o r k  ( s e c  

s e c t i o n  4 . 3 . 1 ) .  T h e  n e t w o r k  o f  s e c t i o n  4 . 3 . 2  w a s  p a r t ly  i m p l e m e n t e d  a n d  r e s u l t s  a r c  

n o t  a v a i l a b l e  a t  t h i s  w r i t i n g .  F u r t h e r  i m p r o v e m e n t s  a r c  a n t i c i p a t e d  s i n c e  t h e  m a in  

p r o c e s s i n g  l o a d  w h i c h  c o n s i s t s  o f  t h e  t w o  c o n v o l u t i o n  p r o c e s s e s  is  p a r t i t i o n e d .  T h e  

a d d i t i o n a l  c o m m u n i c a t i o n  d u e  t o  p a s s i n g  t h e  s a m e  b l o c k  t o  t h e  t w o  p r o c e s s o r s  in  t h e  

p i p e l i n e  s t a g e  i s  c o u n t e r e d  b y  t h e  f a c t  t h a t  o n l y  c o e f f i c i e n t s  a r c  p a s s e d  b e t w e e n  

p r o c e s s o r s ,  a f t e r  s m o o t h i n g .
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Figure 5.1 Original and processed images

Figure 5.3 Modulus of weights vector during adaptation
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6 CO M M EN TS AND CONCLUSIONS

T h e  s y s t e m  p r e s e n t e d  h e r e  is  i m p l e m e n t s  a d a p t i v e  n o i s e  c a n c e l l e r  a n d  e d g e  

d e t e c t o r .  T h e  r e s u l t s  s h o w  a  g o o d  l o c a l i s a t i o n  o f  e d g e  e l e m e n t s  a n d  i m m u n i t y  t o  n o i s e .  

T h e  t r a n s p u t e r  i m p l e m e n t a t i o n  s h o w e d  s p e e d  u p s  w h i c h  s u g g e s t  t h a t  f u r t h e r  

i m p r o v e m e n t s  a r e  p o s s i b l e  i f  m o r e  p r o c e s s o r s  a r c  a d d e d  t o  t h e  s y s t e m .

A n  i n t e r e s t i n g  o b s e r v a t i o n  w a s  m a d e  w h e n  a n a l y s i n g  t h e  f i l t e r  c o e f f i c i e n t s .  T h e  

k e r n e l s  s e e m  t o  l a t c h  o n  t o  t e x t u r e d  a r e a s  o f  t h e  i m a g e .  T h i s ,  t o g e t h e r  w i t h  t h e  g o o d  

i m m u n i t y  t o  n o i s e ,  s u g g e s t s  t h a t  a d a p t i v e  f i l t e r s  c a n  b e  u s e d  a s  a  l e a r n i n g  p r o c e s s  f o r  

t e x t u r e  r e g i s t r a t i o n .  T h e  f i l t e r  c o e f f i c i e n t s  t h u s  o b t a i n e d  c a n  f o r m  c l u s t e r  c e n t r e s  o f  a  

p a r a m e t e r  s p a c e  t o  s e a r c h .
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Abstract

A  m ethod fo r  a u tom atic  detection o f ep ileptic 
spikes in  the E E G  is presented. I t  is based on ad-
ap tive  linea r p re d ic tio n  and filte rin g . T he  m ethod 
is suitable fo r  on-line in  rea l-tim e  opera tion  on re-
la tive ly  inexpensive hardw are. T he  theory  behind 
the m ethod is ou tline d  and the im p lem enta tion  is 
described. F in a lly  some results are presented and 
discussed. T h e  technique also produces in term e-
d ia te  results w liich  m ay be o f c lin ica l value and 
can be generalized fo r the  de tection o f o th e r EEG  
transients and the rem oval o f a rtifac ts .

INTRODUCTION

Electroencephalography is a sim ple d iagnostic aid 
fo r  the de tection  o f a num ber o f b ra in  disorders. 
T he  electroencephalogram  (E E G ) has been used 
fo r m any years fo r  the detection o f epilepsy and, 

despite advances in  b ra in  im aging, i t  is s t ill in -
valuable fo r the screening o f pa tien ts w ith  dis-
orders no t re lated to  s tru c tu ra l damage o f the 

b ra in . P e tit m al (m in o r epilepsy) in  children, a 
fo rm  o f Id io pa th ic  ep ilcpsy[7], is a good example.

M in o r ep ileptic a ttacks have the fo rm  o f tra n -
sient ‘absencess’ , typ ica lly  associated w ith  the ap-
pearance o f a characterisic p a tte rn  in  the EEG  
record. T h is  p a tte rn , know n as the  spike-and- 
wave com plex (S A W C ), is o ften  n o t detected in  
the b rie f pe riod  o f an E E G  recording session. I t  
has been suggested th a t prolonged E E G  m o n it-
o ring  in  the p a tie n t’s n a tu ra l environm ent would 

im prove the re lia b ility  o f assessment[6 ]. T h e  large 
volum e o f da ta  produced by these m ethods makes

hum an assessment im p ra c t ic a l[ lj.  T h e  need fo r  
m o b ility  o f the pa tien t suggests the use o f sm all 
pro tab le  m on ito rin g  devices[3]. T he  use o f ‘in te l-
lig e n t’ m on ito rin g  devices, based on m icrocom -
pu ters has been used fo r some years now w ith  
vary ing degrees o f success[l]. E E G  assessment, 
however, is heavily based on the experience o f hu-
man experts ra th e r than fo rm a l c rite ria  which are 
required by a com puter. There fore com puterized 
analysis cannot su b s titu te  hum an in te rp re ta tio n ; 
i t  can on ly assist and com plem ent it .

T h is  paper describes a com puterized system 
made p rim a rily  fo r the detection o f the precursor 
o f m in o r epilepsy (S A W C ) in  the E E G . I t  is based 
on m odelling o f the tim e  evo lution o f the E E G  
signal using adaptive linear p red iction . I t  w ill be 
shown th a t th is  m ethod is more general than a 
pu rpose-bu ilt SAW C de tector and can be used fo r 
o th er signals as well. T he  de tector is also capable 
o f p rov id ing  a spike-free EEG  signal and o ther 
param eters which can be used by e ither a hum an 
o r a com puter system fo r subsequent processing.

THEORY

T he E E G  signal from  a signal processing p o in t o f 
view has a non-s ta tionary  na ture . Its  frequency 
content changes w ith  tim e. However, fo r  short 
periods o f tim e, the signal p roperties could be 
considered fa ir ly  constant. I t  is therefore pos-

sible to s tudy the E E G  signal using stochastic 

models[2, 4].

1
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M o d e l o f  th e  s ig n a l

A  sam pled E E G  signal e (n ) was m odelled by three 
com ponents.

•  T he  background a c tiv ity , b (k ), which is con-
sidered as a stochastic process, generated 
by passing w h ite  random  noise th rough  
an autoregressive f ilte r .  T h is  com ponent 
corresponds to  the ongoing E E G  ac tiv ity . 
Changes in  the  properties o f th is  com pon-
ent are associated w ith  changes in  the f ilte r  
coefficients.

•  T ransient a c tiv ity , t (k ) ,  consisting o f char-
acte ris tic  p a tte rn s  o f sho rt d u ra tio n , due 
to  signals o f e ithe r cerebral o rig in , like epi-
le p tic  spikes and evoked potentia ls , o r ex-
te rna l sources, like  ocu lar and muscle a r t i-
facts.

•  U ncorre la ted  Noise, n (& ), from  various 
sources.

T hus

e (k )  =  b (k )  4- t (k )  +  n (k )  ( 1)

T h e  m odel described in  th is  section was 
chosen fo r  its  s im p lic ity . I t  is a signed processing 
ra th e r th a n  a neurophysio logica l m odel, suitable 
fo r  developing the  a lg o rith m  to  be used and no t 
fo r  describing the  un de rly ing  mechanisms o f the

E E G .

A d a p t iv e  f i lt e r in g

A ccord ing  to  the  m odel, de tecting  ep ileptic spikes 

is associated w ith  separating the  transients, t (k ) ,  
from  the stochastic com ponent, b (k ), and the 
noise. O p tim a l linea r p re d ic tio n  is a m ethod of-
ten used fo r  m odelling stochastic signals, like b (k ), 
w ith  a few param eters. I t  is based on estim ating  
the  best f i l te r  coefficients, u>;, th a t m in im ize  the 
m ean-squared e rro r o f the p re d ic tio n  process.

T h e n  the inverse o f the f i lte r  w ould  correspond 
to  the  generating process o f the signal m odel and 
the o u tp u t o f the f i lte r  is w h ite  noise[4].

A n  o p tim a l lin ea r p re d ic to r can be im plem en-
ted as an adaptive f ilte r , so th a t i t  continuously 
ad justs its e lf to  m atch  changing signal conditions. 
T h is  can be achieved by one o f the  adaptive al-
go rithm s, like the  Least M ean Squares (L M S ), de-

spike background estimated

indications EEG spikes

Figure 1 : B lock diagram  o f the  system 

veloped by W id ro w  and H off[9, 10]:

N

e (k )  =  b (k )  4 - ^  w nb(k  -  n )  ( 2 )
n =  1

u /i( l: +  1) =  W i(k) - f  2 ^ c (k )b (k  —  »') (3)

w h ere  0  <  p  <  --------------1 . . ..
N (P o w e r  m  b (k ))

A lth o u g h  signal track in g  has n o t been m a th -
em atica lly  proved, i t  is o ften achieved in  practice, 
provided the signal characteristics change slow ly 

w ith  t im e [8 ].
S im ila rly , spikes and o th e r transients can be 

m odelled by adap tive filte rs , w ith  im pulse ra th e r 
than noise exc ita tion .

T he  m athem atica l basis o f these processes can 
be found in  any book on o p tim a l f ilte r in g  like [5],

IMPLEMENTATION

T h e  m a in  e le m e n ts  o f  th e  sy s te m

T he tw o w h iten ing  filte rs  (figu re  1 ) are associ-
ated w ith  the stochastic com ponent o f the EEG . 
T hey  essentially pe rfo rm  the same opera tion  on 
d iffe rent signals. T h e  in p u t signal is processed by



one p re d ic to r to  m odel the stochastic com ponent, 
b (k ), as explained in  section 2. Its  o u tp u t w ill 
conta in  w h ite  noise, u(fc), from  m odelling o f b (k ), 
excess noise, v (k ) ,  due to  in p u t noise and trans i-
ents f ( k ) ,  w liich  correspond to  transien t changes 
in  the in p u t, t (k ) .  T he  la tte r, is a re liab le in -
d ica tion  o f transients b u t, being d is to rte d  by the 
pred ic tion  filte r, i t  cannot be used fo r its  reliable 
classification. T he  o th er p re d ic to r perform s the 
same opcation on a signal e '(k )  which is identica l 
to  the in p u t w ith  estim ated spikes removed. D oth 

pred icto rs have the same coefficients a t any tim e 
instance b u t one o f them  is made adaptive so as 
to  achieve and m a in ta in  a good m odel o f b (k ).

T h e  inverse spike generator f ilte r  acts in  a sim -
ila r  way, b u t focuses on the transients, t (k ) ,  in -
stead. Its  transfe r fu n c tio n  is the inverse o f th a t 
o f the adaptive spike generator (figure 1). I f  a 
p a tte rn  s im ila r to  the spike m odel is encountered, 
an im pulse-like waveform , d (k ),  is generated a t 
the o u tp u t (inverse f ilte r in g  action ). T h is  can be 
used to  regenerate the spike from  the m odel using 
the adaptive spike generator b u t is an unreliable 
spike in d ica to r, since non-spike signals m ay pro-
duce s im ila r responses. T h e  in p u t also contains 
b (k ), n (k )  and non-spike transients, w h ich cause 
a com pound o u tp u t com ponent w (k ) .  T h e  spike 

generator, when excited by an im pulse, generates 
a m odel o f the  spike trans ien t in  its  o u tp u t. I t  
is made adaptive to  cate r fo r varia tions between 
the theore tica l m odel and real spikes and fo r vari-
ations am ong spikes.

T he  trans ien t de tecto r identifies transients in 
the o u tp u t o f the p re d ic to r by sim ple s ta tis tica l 
significance testing . T he  spike de tector perforins 
a s im ila r opera tion  on b o th  o f its  inputs.

H o w  th e  sy s te m  o p e ra te s

I f  the in p u t signal contains a transien t, the tra n -
sient de tecto r w ill set the hypothesis th a t i t  is a 
spike by causing an im pulse, based on u (k )  +  f ( k ) ,  
to  its  o u tp u t. T h is  w ill produce a spike estim ate 
a t the spike generator o u tp u t which is subtracted 
from  the in p u t signal to  produce a hypo the tica l 
spike-free signal, e \ k ) .  I f  the hypothesis is cor-
rect, app ly ing  the same linea r p re d ic to r as used 
on the in p u t, should generate no transien t in  its  
o u tp u t, u u (k ), since i t  was a spike and was re-
moved. T h is  is tested by  the spike de tector to  
produce a fina l decision.

RESULTS, DISCUSSION AND  
CONCLUSIONS

T he adaptive system was tested w ith  b o th  sim u-
lated and real data. T he  m ethod perform ed qu ite  
well on bo th  types o f da ta  records. There  were 
only fou r false alarm s ou t o f s ix ty  tw o detections 
in a 10 m inute record, and no spikes were missed. 
M uscle a rtifa c ts  increase the num ber o f false de-
tections b u t extensions in the basic system to  im -
prove the ve rsa tility  o f the de tecto r arc cu rre n tly  
being studied. T he  results fo r a typ ica l in p u t are 
shown in  figure 2 . T he noise sequences in  the er-
ro r  signals show th a t the selection o f the linear 
pred iction  model has no t been unrea lis tic . T he  
transients which are apparent in  the o u tp u t o f 
the EEG  p re d ic to r b u t no t in  th a t o f the adaptive 
p re d ic to r dem onstarte th a t spike rem oval is per-
form ed well. T h is  also supports the chosen model 
o f the spike generator.

(a ) Input EEC signal and spike detection

P//
tUde

(b) Error signals

200.
100.

O.
-lO O ,
- 200,

(c) Estimated background and spike activity
0Q_
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00.

t
-------- 1— v— ----- 1--------- 1---------1n---------1---------1---------1

0 . 4 0  0 . 8 0  1 . 2 0  1 . 6 0  :
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Figure 2: Results

T he  spike ind ica to r, shown under the in p u t 
waveform , is no t the on ly useful o u tp u t o f the sys-
tem . As an in te rm edia te  resu lt, a spike-free EEG  
is generated. T h is  may conta in  o th e r in fo rm a-
tion , which can be studied, w ith o u t the obstrue-
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t io n  caused by the  spikes, fo r  fu r th e r  assessment 
o f the p a tie n t’s cond ition . M oreover, the coeffi-
cients o f the  p re d ic to r and the spike filte rs  can be 
used fo r  the com p u ta tio n  o f the syn the tic  spectra 
o f the  spike-free E E G  and the spikes separately 
o r used d ire c tly  as spectra l param eters.

F ina lly , the m ethods described fo r spike de-
tec tion  m ay be extended to  o th e r transients by 
the inclusion o f the  necessary inverse filte rs . T h is  
could prove valuable fo r  the detection and removal 
o f a rtifa c ts  and fo r the iso la tion o f evoked po ten-

tials.
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Abstract

A  signal processing m odel fo r the ep ileptic  EEG  is p ro-
posed. T h is  is used to  fo rm u la te  an analysis m odel, based 
on linear p red ic tion . T h is  fo rm u la tio n  is im plem ented as 
a  num ber o f adap tive  filte rs  and applied fo r the detection 
o f ep ileptic spikes. T h e  theory behind the m ethod is ex-
pla ined and the im p lem enta tion  is described. Results arc 
presented and com pared fo r  tw o adaptive f i lte r  realizations. 
T h e  a lg o rith m  is com p u ta tio na lly  effic ient and can be im -
plem ented in  rea l-tim e  on a sm all m icrocom pu te r system 
fo r  on-line analysis. In term edia te  results, produced by th is 
m ethod m ay be used fo r  fu r th e r analysis. G eneralization 
fo r  the de tection  o f o th e r E E G  transients and the removal 
o f a rtifa c ts  can be easily achieved. 1

1 Introduction

Electroencephalography is a sim ple non-invasivc technique 
fo r  m on ito rin g  the electrical a c tiv ity  o f the bra in  by pla-
cing electrodes on the surface o f the scalp. T he  evolution o f 
the electrical po ten tia ls  o f the bra in  over.a period o f tim e, 
may be m anually inspected fo r specific pa tte rns  known to 
be associated w ith  m enta l functions o r m ental disorders. 
Recent advances in  C lin ica l neurophysiology, like m agnetic 
resonance im aging (M R I)  have underm ined the usefulness 
o f the E E G . T h e  la tte r , though, is s t ill a useful diagnostic 
«aid fo r b ra in  disorders n o t generally associated w ith  s truc-
tu ra l damage o f the b ra in . A  m a jo r app lica tion  is in the 
de tection  o f id io p a th ic  c p ilc p s y [ ll] ,  like  p e tit  mat in  ch il-
dren.

P e tit m al, o r  m in o r epilepsy, is evidenced in the form  o f 
b r ie f ‘absences’ in  ch ildren, tho ugh t to  be associated w ith  
borcdom [5 ]. M in o r epilepsy is characterized by a specific 
p a tte rn  in  the  E E G , know n to  neurophysiologists as the 
spike-and-wavc com plex (S A W C ) because o f its  shape on 
conventional E E G  paper records. A ltho ug h  th is  p a tte rn  
is qu ite  cha racteris tic  o f p e t it  m al, i t  may no t be present 
in  sho rt c lin ica l recordings. T h e  use o f prolonged m o n it-
oring , has been suggested fo r more re liab le assessment o f 
p a ticu ls [5 , 10]. H um an in te rp re ta tio n , however, would be 
im p rac tica l because o f the  large volume o f da ta. C om -
p u te r analysis has been cm p lo ycd [l] and w ith  the increas-
ing speed, accuracy and in tegra tion  o f m icrocom puter sys-
tem s th is  can now be earned ou t on-line in real lim e . Un-
fo rtu n a te ly , hum an assessment is sub jective and qu a lita tive

and docs no t rely on fo rm a l c rite ria . I t  varies according to 
the ongoing EEG  a c tiv ity  and between observers.

In  th is  paper a m ethod fo r the analysis o f the ep ileptic 
EEG  using adaptive p red ic tion  and estim ation  w ill be de-
scribed. T h is  is believed to  m im ic  more closely some as-
pects o f the hum an analysis process than a lte rna tive  tech-
niques. V aria tions on the basic m ethod using dilTcrcnt ad-
ap tive f ilte r  s truc tu res arc ou tlined  and com pared.

A ltho ug h  the w ork presented here concentrates on the 
detection o f the precursor o f p e t it  m al, i t  can be easily 
generalized fo r o th e r signals. I t  is also capable o f separating 
the EEG  in to  transien t and ongoing a c tiv ity  as well as 
param etriz ing  i t  fo r  fu r th e r s tudy o r compression.

2 T h eory

2.1  R e a l  E E G  s ig n a ls  a n d  s ig n a l m o d e llin g

A n EEG  signal is a record o f the tim e evo lu tion  o f the 
electrical po ten tia l between a p o in t on the scalp and a ref-
erence po in t. Neurons, on the surface o f the b ra in , em it 
feeble e lectrical impulses W hen great num bers o f neigh-
bouring neurons operate sim ultaneously, the electric field 
produced becomes strong enough to  be measured from  the 
surface o f the scalp, b u t is o ften contam inated by external 
signals, such ns electrical in terference, eye m ovem ent po-
tentia ls  and muscle po tentia ls  (a rtifa c ts ).

' f l ic  EEG  is o ften stud ied isolated from  its  neuro-
physiological generating mechanisms, which arc o ften in -
com plete ly understood and p o o rly  m odelled. Thus, nu-
merous a il hoc signal models have been proposed [ 1].

Signal analysis shows th a t the EEG  signal is non- 
s ta liona ry . T h a t is sho rt segments, ex tracted  from  i t  have 
d ifferent frequency content. T h is  is p a rtly  due to  (per-
m anent) changes in the signal behaviour and p a rtly  be-
cause o f transien t events. In  the absense o f transients the 
no n -s fa tio u a rity  would be due to perm anent changes only. 
Assum ing th a t these varia tions arc slow, then the signal 
could be regarded as (q u a s i-)s ta lio n a ry  fo r b rie f periods o f 
tim e [3, '1, G]. U nder these conditions, stochastic m ethods 
can be employed.

A s ta tion a ry  signal, ii(u ) , can be produced by passing 
w hite  noise, u (u ), th rough a shaping f ilte r , / / ( z ) ,  to  ob-
ta in  a specific power spectra l density. A lth o u g h  / / ( z )  lias, 
generally, bo th  poles and zeros, a ll-p o le  (autoregressive) 
models (E quation  1 arc s till general enough and have some

1
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T hi s  m o d el, s h o w n i n  fi g u r e 1, li a s b e e n u s e d «as a r e f -

e r e n c e f o r t h e a n al y si s o f t h e E G G  i n t hi s p a p e r.  N e v -

e rt h el e s s, t r a n si e n t s a r c o ft e n m o r e i m p o rt a n t i n cli ni c al 

a p pli c a ti o n s. T h e  S A W C  c o m pl e x w a s al s o m o d ell e d b y a n 

a ut o r e g r e s si v e filt e r, G ( z ) ,  w it h  sl o wl y v a r yi n g p a r a m et e r s, 

e x cit e d b y a s e q u e n c e o f i m p ul s e s, d ( n ), o f v a r yi n g a m p -

lit u d e s, o c c u r ri n g a t r a n d o m  i n t e r v al s f oll o wi n g <a P oi s s o n 

di s t ri b u ti o n .

F o r c o m pl et e n e s s, o t h e r tr a n si e nt s, i ( n ) , li k e m u s cl e 

a n d o c ul a r a rtif a c t s , w e r e m o d ell e d b y i m p ul s e e x cit a ti o n 

o f a filt e r, T ( z ) ,  w h o s e s t r u c t u r e  i s n o t o f p a rti c ul a r i n -

t e r e st i n  t hi s p a p e r.  Fi n all y, r a n d o m , u n c o r r cl al c d , z er o 

m e a n n o r m all y  di s t ri b u t e d  ( G a u s si a n ) n oi s e, u ( n ), w a s a d -

d e d t o  t h e si g n al t o  m o d el m e a s u r e m e nt, q u a n ti z a ti o n a nil 

e n vir o n m e n t al n oi s e.

T h e r e f o r e t h e r e c o r d e d E E G  si g n al, e ( n ), i s a c o m p o sit e 

si g n al:

c ( n ) =  6 ( n ) +  a (ii ) +  £ ( » ) +  u ( n ) ( 2 )

T hi s  a gr e e s w it h  t h e w a y n e u r o p h y si ol o gi st s oft e n q u al-

if y  t h e E E G . S pi k e s, a ( n ), a n d o t h e r t r a n si e n t s, i ( n ) , a r c 

s u p e ri m p o s e d o n t h e o n g oi n g ( b a c k g r o u n d ) « a cti vit y, 6 ( n ).

2 . 2   E E G  a n a l y s i s  a n d  i n v e r s e  m o d e lli n g

A n al y si s o f t h e E E G  m a y b e r e g a r d e d a s t h e i n v e r s e o f t h e 

s y nt h e si s o p e r a ti o n j u s t d e s c ri b e d. A lt h o u g h  t h e d e t e cti o n 

o f e pil e p ti c s pi k e s, s ( n ) ,  i s t h e ai m  o f t hi s p a p e r, t h e e x-

t r a c ti o n  o f b ( n )  f r o m  c ( »i) i s p a rt o f t h e pr o c e s s d e v el o p e d.

F o r a r e al E E G , o nl y t h e c o m bi n e d o u t p u t, c ( n ) i s 

k n o w n . I f  t h e t r a n s f e r f u n c ti o n  I I ( z )  w a s k n o w n o r c o ul d 

b e e sti m a t e d , t h e eff e ct s o f t h e a p pli c a ti o n o f it s  i n v er s e, 

H ~ ' ( z )  ( P ( z )  i n  fi g u r e 1) o n e ( n ) m a y b e st u di e d i n  t h e 

z - d o m ai n :

I i { z )   =

+

+

w h e r e   A ( z )   =

I I - \ z ) E { z )

H ~ l  (z ) H ( z ) U ( z ) +  i r ' ( z ) G ( z ) D ( z )  

i r ' ( z ) T { z )  +  H ~ ' ( z ) V { z )

U { z )  +  A ( z ) D { z )

H - ' ( z ) n z )  +  H - \ z ) V ( z )   ( 3 )

H - ' ( z ) G ( z )

T h e o ut p ut of t h e i n v e r s e filt e r, r( n), c o nt ai n s t h e s e-
q u e n c e u( n) t h at h a s g e n e r at e d t h e o n g oi n g a cti vit y . a n d

tr a n si e nt s f r o m  t h e e x cit a ti o n  o f A ( z )  a n d I { ~ ' ( z )  b y t h e 

i m p ul s e s e q u e n c e s i/ ( n ) a n d £ ( n ) r e s p e cti v el y.  T h e  t r a n -

si e nt s a r c . a p p. ar c nl b e c a u s e t h e i r . a m plit u d e s a r c t y pi c all y 

l a r g e r t h a n t h e o t h e r el e m e nt s o f t h e si g n al a n d h a v e v e r y 

b ri e f d u r a ti o n s. T h e s e p r o p e rti e s h. a v c b e e n u s e d b y [ 3] a n d 

[ 7] f o r t h e d e t e cti o n o f s pi k e s.

U n f o rt u n a t el y  n o n - s pi k e tr a n si e n t s, g e n e r at e d b y T ( z ), 

oft e n p r o d u c e a si g n at u r e i n r ( n )  si m il a r t o t h a t o f t r u e 

s pi k e s.  A p pl yi n g   t h e i n v e r s e o f t h e s pi k e g e n e r ati n g 

fill e r , G ( i )  ( Q ( * ) i n fi g u r e 1 ), l o  c ( n ),

>'( *)

w h e r e   C ( z )

=  G - ' ( z ) E ( z )

=   C ( z ) U ( z )  +  D ( z )

+ c -' ( z y r ( z ) + c -' ( z ) v ( z )  

= G ~\ z ) U( z )

(-1)

. a s s u mi n g a s b ef o r e t h a t G ( z )  c o ul d b e e sti m at e d. T h e 

s pi k e g e n e r ati n g i m p ul s e s e q u e n c e, d ( n ), i s o n e o f t h e o u t -

p u t el e m e nt s. T h e o t h e r c o m p o n e nt s, a r c n o t i m p ul s e -li k e, 

b u t h. a v c p o w e r l e v el s l a r g e e n o u g h l o  m a k e t h e d et e cti o n 

o f i m p ul s e s i n ;/ ( » ) diffi c ult.

I n c o n cl u si o n, r ( z )  m a y b e u s e d f o r t h e r e l i a b l e  d e-

t e cti o n o f t r a n si e n t s b u t i s u n a bl e l o  di sti n g ui s h w hi c h o f 

t h e m  a r c s pi k e s, w h e r e a s y ( n ) i s c a p a bl e o f t h e a c c u r a t e  

d e t e cti o n o f s pi k e s, al b eit u n r eli a bl e. T h e  c o m bi n a ti o n o f 

t h e t w o c a n f o r m  a c o m p o sit e s pi k e d e t e ct o r w hi c h m a y b e 

b o t h  r eli a bl e a n d a c c u r at e. T h e  p r o p o s e d d e t e c t o r h a s t h e 

a b ilit y  t o  m o d el t h e s pi k e s a n d p r o d u c e s e p a r at e o u t p u t s, 

f o r t h e e sti m at e d s pi k e s a n d t h e si g n al w it h  t h e s pi k e s r e-

m o v e (fi g u r e 1 a n d s e cti o n 3 ).

2 . 3   O p t i m a l s i g n a l p r o c e s s i n g , li n e a r  p r e d i c 

ti o n  a n d  a d a p t i v e  f il t e r i n g

T h e  t r a n sf e r f u n cti o n s o f t h e fill e r s  H ( z )  a n d G ( z )  w hi c h 

a r c u n k n o w n, m a y b e e sti m a t e d u si n g o p ti m u m  si g n al p r o -

c e s si n g. T h e  t h e o r y, b a s e d o n t h e w o r k o f W i e n e r a n d K al -

m a n [ 2 , 9, M ] i s q uit e  e xt e n si v e. I t  d e al s w it h  t h e p r o bl e m  

o f a p p r o xi m a ti n g  a (li m e ) s e q u e n c e { . . . ,j / ( n  —  2 ), y ( »i —  

1 ), !/( > *), ! / ( " +  1 ) , . • . )  b y li n e a r w ei g hti n g o f a n o t h e r s e-
q u e n c e, { . . . , x ( > i -  2 ) ,i ( n  -  1  ), * ( » » ), x ( n  + 1 ) , . . . } :

O O

y(") = ¿ 2  U»**( ||  — 0 = w • X( H) = w- X( H)  ( 5)
I = — O O

w h e r e y ( n ) i s a n a p p r o xi m a ti o n  t o !/ (’ ■) a n d X pi ) i s a v e c-

t o r f o r m e d b y d el a yi n g t h e {■»:( »)} s e q u e n c e b y i i  s a m pl e s. 

I n p r a cti c e t h e b o u n d a ri e s o f t h e . s u m m ati o n « ar c li m it e d  

t o s m all i nt e g e r s, f o r o b vi o u s r e a s o n s.  T h e  ( u n k n o w n ) 

w ei g ht s, (i w, ), a r c s el e ct e d t o o p ti m i z e a c o st f u n cti o n ( c ri -

t e ri o n f o r g o o d n e s s o f fit ) . T h e  m e a n s q u a r e d e r r o r,

N

t"2 = £[ y( n) -  i >(»*)] 2 = E { [ y( > 0 -  1 3  w’ x( n ~  *')]*} ( 6)
i s I

i s t h e o n e n o r m all y u s e d. T h e  o p ti m al w ei g ht s m u st m i n -

i mi z e c 2. T hi s  l e a d s t o t h e W i c n c r - H o p f e q u ati o n

Il w =   q

w = / r ' q  ( 7)

w h e r e l l ( i , j ) =  l i [ x ( n  —  j ) x ( n  —  i ) ] a n d 

q ( j )  =  £ [ y ( n )j: ( n  —  »')] a r c t h e a u t o c o r r el a ti o n  m a t ri x  o f x  

« a n d t h e cr o s s c o r r el a ti o n v e ct o r b et w e e n x  a n d y r e s p e ct-

i v el y.  O p ti m al li n e a r p r e di cti o n , [ 2, 9] i s a s p e ci al e a s e 

o f c o n str ai n e d W i e n e r filt e ri n g , w h e r e t h e c u r r e n t s a m pl e 

v al u e, x ( n )  i s t h e d e sir e d o u t p u t, l o  b e e sti m at e d f r o m  N  

p a st s a m pl e s o f t h e s a m e s e q u e n c e.

N

*( ») = 1 3  Wi X( "  “  ') ( 8)
1=1
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T h is  gives

c (n )  =  [ i ( n )  -  £ (n ) ]2 =  ] P a , r ( M  -  «') (9)
1 =  0

=  a T x (n) ( 10)

assuming l l ia t  do =  1 and a, =  —  tu.V» >  1. I f  ( x ( n ) }  is an 
autoregressive sequence, like l>(ri) in  the previous section, 
the o p tim a l linear p re d ic to r w ill be the inverse operation, 
whose e rro r sequence is the uncorrc la tcd random  generat-
ing sequence. In  o th er words, linear prediction could be 
used to find the required inverse o f the modelled EEG pro-
cesses.

A da ptive  filte rs  solve equation (7) using recursive tech-
niques, hence «achieving significant com puta tiona l savings. 
As such, they c.an be im plem ented on small cost-elfectivc 
hardware. M ethods th a t estim ate the inverse corre lation 
m a tr ix  recursively, known as recursive lc.ast squares (RLS) 
tcchniqucs[2, 9, 14] are available, b u t o ther m ethods arc 
often sim pler.

G rad ien t search techniques perform  num erical o p tim iz -
a tion  on equation (G) d ire c tly  by ite ra tive ly  m od ify ing  the 
weight vector, w , in  sm all steps to  reduce the gradient o f 
c 2:

W ( p )  =  W ( P -  1) - p V w c 2 (p -  1) (11)

where p is the num ber o f ite ra tions.
W id ro w  and H o ff made a significant step in the es-

tim a tio n  o f the unknow n gradient vector by ignoring the 

expectation op era to r le tt in g  t 2 — c2, which converts equa-
tion (11), to  the W idro w -IIo iT  (least mean squarcs-LM S) 
a)gorithm [14, 12]:

w (p) =  w (p  —  1) —  / iV w c2(p  -  1)

W (p) =  w (p -  1) - 2 / r c (p -  1)VWC(P-  1) (12)

w (p) =  w (p -  1) + 2 /J c (p -  l ) x (p -  1) (13)

where C(p—  1) =  ¡/¡p— 1)— w jp — l ) TX (p — 1). I t  converges fo r 

0  <  p  <  A 1 where Am«,x is the largest eigenvalue o f the 
au tocorre la tion  m a tr ix  o f { 1 (11) } .  In  practice a more s tr ic t 
range is used which docs no t use the corre la tion m a trix  
exp lic itly :

_______ 1_______
^  1 ^  N (P o w e r  in  ( x ( n ) } )

U pda ting  o f w  is done on -lin e , «as every new sample 
x(j>) becomes available. Its  s im p lic ity  is sometimes olfscl 
by its  slow convergence, when the r.atio o f the largest to 
the sm allest cigcnv.aluc o f the corre la tion m a trix  is large. 
In the c.asc o f the EEG  signal convergence is .achieved in 
«a few seconds and is ins ign ifican t compared to the tim e of 
opera tion  o f the f ilte r  (several hours).

2.4  C o m m e n ts

We have seen th a t transfe r functions, in it ia lly  assumed 
constant, can be estim ated by op tim a l linear prediction. 
T he  constancy assum ption m.ay also be p a rtly  relaxed w ith  
adaptive filte rs, since they continuously ad just themselves 
try in g  to  m a in ta in  a sm all e rro r . A lthough  they c.annot 
fo llow  a ll changes in  a transfe r fun c tio n , track ing  o f tim e- 
varying coefficients is possible fo r changes slower th.au the 
tim e constant o f a d a p ta tio n [l3 ]. 3

3 System  description 

3.1  S t r u c t u r a l  d e sc r ip t io n

T he synthesis-analysis model presented in the previous sec-
tion  is on ly a theoretica l fram ew ork. A w orking system

spike background estimated

indications BUG spikes

Figure 2: S truc tu re  o f com plete system

needs to  be more cl-aboratc like the one shown in figure 2 . 
T he various elements o f th is  w ill be described here.

3 .1 .1  L in e a r  p r e d ic to r  s t r u c tu r e s  a n d  a lg o r i th m s

T he linear pred ic to r, P (z ) ,  and iLs function  have already 
been discussed. T w o  common realizations and the cor-
responding adap ta tion  «algorithms arc presented here, the 
d irec t and the la ttice  gradient a rlaptivc filters.

T he  d irec t rea liza tion (figure 3 (a )) uses the transfer 
function  o f the linear p re d ic to r in  its  po lynom ia l form :

U (z )  =  1 + a t z ~ '  + « iZ ~ 2 +  . . .  +  {4ai z ~ N (14)

A d a p ta tio n  is done using W id ro w ’s a lgorithm  (equation
(I-*))-

T he la ttice  s truc tu re , shown in figure 3 (b ), is based on 
the decom position o f the in p u t signal in to  orthogonal sig-
nals and if  n a tu ra lly  arises in linear prediction. T he  (par-
tia l co rre la tion) coefficient fo r stage t, 7 ,, can be updated 
according to  the fo llow ing a lgorith m :

M l » )  =  « d , ( p -  1) + [c2._,(p) +Cbi_ , ( p -  1)015)

= [c iAi>)ci>.-Ai> - >) + ci>.(/Oca - i (p)](16) 
7 . ( p + l )  =  7.(/>) +  ^ r c . - ( p )  (17)

where «  is a power estim ating  sm ooth ing fa c to r and A is 
the norm alized «adaptation ra le .

3 .1 .2  S p ik e  d e te c t io n  a n d  g e n e ra t io n

In section 2 . 1, a general model fo r SAW C  generation was 
given. Form ally, a SAW C consists o f a b rie f d isturbance 
(a spike) w ith  du ra tio n  20-70ms followed by a h a lf sinus-
oidal com ponent w ith  frequency around 3 Hz (a slow wave). 
E arlie r studics[8 ] have shown th a t the slow wave is n o t a re-
liable feature, since m any spikes arc no t followed by d is tin c t 
slow waves, and so was ignored in th is  study. T he trans-
fer function  o f the spike-generating autoregressive model, 
C7(r), w,as determ ined by o p tim iza tio n , experim ent and 
earlier models. 'I ’his Ic.ad to  a hc.avily dam ped sinusoid,
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Li(z)

Intpmal cbi-Hn> cbi(n)
T

structure 
of filter 
stages " 1-1

l l

A  1
cf-l(n) cfi(ll)

(b) Lattice structure

Figure 3: p re d ic to r realizations

s (ri) =  r n s in (2 ir f0n T ) ,  which corresponds to  the fo llow ing 
autoregressive transfe r fun c tio n :

^  l - 2 m , , ( 2 , / ! . ) , -  + a . - »  " 8)

whose inverse is linea r p re d ic tio n  s tru c tu re  (section 2 . 1). 
T h is  loosely relates to  an earlier model o f the spike as a 
single sinusoidal osc illa tion [8 ].

In it ia lly  G (z )  and Q (z ) were set to  correspond to a 
typ ica l spike. Detected spikes arc used a t ru n -tim e  to  adapt 
Q (z )  to  m a in ta in  the efficiency o f the de tector fo r “ non- 
ideal”  spikes. T h e  poles o f Q (z )  arc confined inside the 
u n it  circle in  the z-dom ain , to  ensure s ta b ility , and in the 
v ic in ity  o f the poles fo r  ideal spikes, to  l im it  the effects o f 
biassing from  possible false detections.

A  grad ient adaptive a lgo rith m  fo r M il filte rs  was im -
plem ented fo r  Q (z ). T h is  is s im ila r to  W id ro w ’s a lgorithm  
fo r F IR  filte rs  [14]:

a (p ) =  a (p  -  1) +  2p e (p )y (p ) (19)

3.1.3 Decision elements

In  the analysis m odel, a decision block was necessary to 
detect spikes, using the o u tp u ts  o f the linea r p re d ic to r and 
the inverse spike f ille r .  T h is  consists o f the transient de-
te c to r «and the spike de tector (figure 2 ).

T he  trans ien t de tector perform s a s ta tis tica l hypothesis 
test on the o u tp u t o f the p red ic tion  f ilte r  to  find samples 
th a t have a h igh p ro b a b ility  o f being caused by transients. 
Its  o u tp u t is an exc ita tio n  im pulse fo r the spike generator, 
when a trans ien t is detected.

T he  spike de tecto r perfo rm s s im ila r tests on the o u t-
pu ts  o f b o th  the in p u t and the o u tp u t predictors. I f  a tra n -
sient exists in  the in p u t b u t n o t in  the o u tp u t p red ic to r, «a 
spike in d ica to r is activa ted.

3.2  F u n c t io n a l d e sc r ip t io n

I f  the in p u t , c (u ), contains a spike, s (ri), o r o th er tra n -
sient, <(n), i t  w ill produce a transien t disturbance, / i(n ) ,  
«at the o u tp u t o f P ( z )  and i f  i t  is a tru e  spike, an impulse 

r/(u ), a t the o u tp u t o f Q (z ) (section 2 .1). T he  transient 
de tector w ill detect / i(n ) ,  am i under the hypothesis th a t 
i t  is a spike, w ill o u tp u t an estim ate o f d (u ), to  the spike 
generator, (7 (z). T h is  w ill produce «an estim ate o f a spike, 
S(n), which w ill be sub tracted  from  the in p u t signal, c (n ), 
to  produce a h yp o the tica lly  spike-free signal, c '(n ) .  I f  the 
transient in c (n ) was rea lly a spike, then c '(n )  would be 
identica l to  e (u ) w ith  the spike removed. lienee applying 
P ' ( z )  =  / '( z )  on c ’ (n )  should generate no transien t dis-
turbance in its  o u tp u t sequence, u '(n ) .  T he  spike detector 
perform s the same opera tion  as the transien t de tector on 
the ou tp u ts  o f bo th  P { z )  .and P '( z ) .  I t  is on ly the presence 
o f a transien t in the o u tp u t o f P ( z )  and the absense o f one 
from  the o u tp u t o f P ' ( z )  th a t indicates a spike, otherwise 
the transien t is ignored. T he  model o f the spike, i ( u )  and 
the spike-free E E C  signal, c '( r i) ,  arc also made available 
fo r fu rth e r processing.

4 Results and discussion

T he system was tested w ith  bo th  s im ulated «and real data. 
T h e  results o f these tests arc presented here fo r the d irect 
and la ttice  adaptive p re d ic to r structures. T yp ica l wave-
form s are shown in figure 4. T he  noise sequences in the 
e rro r signals show th.at the selection o f the linc.ar predic-
tion  model has no t been unrea lis tic . T h e  transients which 
arc .apparent in the o u tp u t o f the EEG  pred ic to r (F igure 
4 (b ), m iddle waveform ) b u t n o l in  th a t o f the ad.aptive 
p re d ic to r (F igu rc4 (b ), b o tto m  waveform ) dem onstrate th a t 
spike m odelling is perform ed well.

200 .
10O.

o .
-loo ,
- 200 ,

OdJ
00
ou.

(a ) Input EEC signal and spike detection

0.00  

( b )  h l r r o r  s ig n a l s

_j--------- ,--------- ,--------- |-----
0 . 4 0  0 . 0 0  1 . 2 0  1 . 6 0

tinte (secondo)

(c) Estimated background and spike activity
200 « 

1 0 0 . 
O. 

-1 OO, 
- 200.

oa
oq.

-------- 1— *— ----- 1--------- 1---------1-i---------1-------- 1---------1
0 . 4 0  0 . 8 0  1 . 2 0  1 . 6 0

Unte (secondi)

Figure 4: Exam ple waveforms

'F lic  tw o structu res .arc comp.arcd, based on a num ber 
o f c rite ria .

4 .1  E ffe c t iv e n e ss

B oth  f ilte r  realizations perform ed equally well w ilh  sim u-
lated data, de tecting «all spikes w ith  no false alarm s. In the 
c.asc o f rc.al da ta, sm all differences were present (see table
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1). In  record A , which contained genuine spikes, m inor 
differences were observed. A ltho ug h  the d irec t rea lization 
perform ed s lig h tly  b e tte r than the la ttice , there is no sig-
n ifican t difference in the results. S ensitiv ity  to muscle a r-
tifac ts , g iv ing  a num ber o f false detections, is evident for 
b o th  realizations. T h is  is p r im a rily  because some a rtifac ts  
arc ind istinguishab le  from  spikes. T hey can only be iden ti-
fied from  th e ir con text (they  occur in  bursts, whereas genu-
ine spikes arc isolated), b u t th is  would no t have affected 
the com parison.

Spike detections
Record A Reçoi t I 13

P red ic to r (72 Spikes) (on ly arl.ifac(.s)
s truc tu re (Jori* M iss False C o ir M iss false

D irect 72 0 7 0 0 25
I<alticc 71 1 9 0 0 31

Table 1: Results

4 .2  S p e e d  o f  co n v e rg e n ce

T he la ttice  s tru c tu re  has the fastest in it ia l convergence 
ra te. T h is  proved to  be true  fo r track ing  perm anent 
changes in  the in p u t signal behaviour (no n -s ta tio n a rily ). 
T h e  d irec t s tru c tu re  was slower. T h is  is n o t a very ob ject-
ive result, since the norm alized adap ta tion  rate has d iffer-
ent significance fo r each s truc tu re . T he  speed o f adap ta tion  
o f the la ttice  s tru c tu re  is p robab ly  responsible fo r the high 
false detection ra te  in  record D, which contained muscle 
artifac ts .

4 .3  M o d e lin g  a c c u r a c y  a n d  s t a b il it y

T he  accuracy o f the fille rs  can on ly be quoted fo r the sim u-
la ted  da ta, where the correct transfer functions arc known. 
B o th  filte rs  approxim ate  the true  transfe r function  w ith  
m in o r fluc tua tions p a rticu la rly  in  coefficients w ith  a large 
tim e  lag.

S ta b ility  o f the adap ta tion  process is the on ly critica l 
issue. T he  d irec t rea liza tion d id  no t e xh ib it in s ta b ility  for 
A inside its  theoretica l bounds. T he  la ttice  appears to  be 
more sensitive to  large in it ia l transien t signals, fo r adap t-
a tio n  rates close to  1 , in  which case coefficients lim y grow 
to  large m agnitudes and sometimes diverge. T h is  could 
be due to  the assum ption o f signal s ta tio n a rity  being more 
c r itica l in th is  case. S ta b ility  is easy to check, though, 
since a stab le la ttice  filte r  has reflection coefficients w ith  
m agnitudes less than 1.

4 .4  S p e c ia l p ro p e r t ie s  o f  e ach  f i lt e r  re a liz a t io n

A ltho ug h  bo th  filte rs  produced com parable results, the 
choice o f which s tru c tu re  to  use in  a p a rticu la r applica-
tio n  depends on secondary properties o f each realization.

T he  d irec t fo rm  is o ften used when s im p lic ity  and the 
num ber o f com puta tions are im p o rta n t. I t  requires 2 N  +  '1 
m u ltip lica tio n s  per sample processed. Its  behaviour w ith  
no il-s ta tio n a ry  signals and m any o f its  properties have been 
stud ied and there is a considerable theoretica l background 
to  support th is  type o f filte r.

Studies o f the la ttice  s tru c tu re  ind ica te  th a t the dy -
nam ic range o f its  coefficients to  achieve a p a rticu la r per-
form ance is sm aller than o th er s tru c tu rcs [2 , 9], T he  m ain 
advantage o f the la ttice  fo rm  arises from  the orthogona lity  
o f the signals a t every stage, m aking the already calculated 
coefficients unaffected by changes changes in  the order o f 
the filtc r[9 ]. T hus, in  p rinc ip le , i t  is possible to  increase the 
order o f the p re d ic to r by adding more stages and adapting 
the new stages only.

5 C om m ents and conclusions
T he results arc com parable w ith  those o f p u rpo se -bu ilt 
spike detectors [5, 8 , 10]. T he  spike ind ica to r, shown in  
figure 4(a) under the in p u t waveform , is no t the only use-
fu l o u tp u t o f the system . Extensions in the basic system 
to  im prove the ve rsa tility  o f the de tector are cu rre n tly  be-
ing studied. Unlike o th e r m ethods, the one described here 
no t only detects ep ileptic spikes b u t also separates them 
from  the ongoing EEC  a c tiv ity . T he  spike-free EEG  pro-
duced ns an in term ediate  resu lt (b o tto m  waveform , Figure 
4(c )), may contain o th er in fo rm a tion , which can be studied, 
w ith o u t the obstruction  caused by the spikes. Moreover, 
the coefficients o f the p re d ic to r and the spike filte rs  can be 
used fo r the com p u la tion  o f the synthetic  spcctra[9] o f the 
spike-free EEG and the  spikes, separately, o r used d irec tly  
ns spectra l param eters.

F ina lly, the m ethods described fo r spike detection may 
be extended to  o th er transients by the inclusion o f addi-
tiona l analysis-synthesis f ilte r  pairs. T h is  could prove valu-
able fo r the de tection and removal o f a rtifa c ts  and the isol-
a tion o f o ther signal com ponents w ith  defin ite  fo rm , like 
evoked potentia ls.
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A u to m a tic  analysis o f the electroencephalogram  is im p o rta n t in c lin ica l diagnosis o f epilepsy and 
o th e r b ra in  disorders. A  m odel o f the E E G  signal is proposed and used to  derive an analysis m ethod, 
based on adaptive linea r pred ic tion . A n  a rtific ia l neural ne tw ork is used to  d is tingu ish  ep ilep tic  spikes 
from  o th e r transients. E arly  results were encouraging and the genera liza tion o f the m ethod to  detect 
o th er transients is possible. T h e  m ethod is suitable fo r on-line analysis in  rea l-tim e.

1 Introduction
The importance of the electroencephalogram (EEG) has been undermined by recent techniques, like com-
puted tomography (CT) and magnetic resonance imaging (M ill). Despite this, the EEG is clinically indis-
pensable because o f its simplicity, low-cost and diagnostic value, particularly in some forms of idiopathic 
epilepsy, where there is no structural abnormality in the brain, only a transient functional disorder persisting 
for the duration of the seizure. The EEG provides a profile of the brain function over a period of time, and 
often contains indications of an abnormality. These have been identified and some correlate well with specific 
brain disorders. The “spike and wave” pattern, named after its shape on the EEG record, is characteristic 
of petit mal epilepsy. Petit mal attacks arc characterized by transient loss of consciousness, lasting for a 
few seconds, during which the EEG is swamped by successions of spike and wave discharges, appearing 
synchronously over all areas of the scalp[15]. Occasionally isolated spike and wave patterns appear in the 
EEG between seizures and may or may not be recorded during the course of a usual clinical EEG recording, 
which only lasts for about 20 minutes. For the more reliable screening of patients, prolonged monitoring was 
recommended[5]. This makes human interpretation difficult because of the large volume of data produced.

Computer interpretation has been suggested <is a viable altcrnativc[5, 14]. In fact, computerized EEG 
analysis has been applied with varying degrees of success for many ycars[l]. With the increasing speed, 
accuracy and integration of microcomputer technology, on-line processing of EEG signals is possible on a 
fully portable pocket-sized system. The real challenge is the establishment of a reliable automatic assessment 
procedure. This is not an easy task at all, because human assessment is subjective and qualitative having no 
formal criteria. Often it is heavily dependent on the experience of the observer. A plethora of computerized 
methods of incredible diversity has hence dcvclopcd[l].

The method presented in this paper attempts to address the EEG assessment problem as one of signal 
alnalysis. By using a theoretical model of the EEG signal, the problem becomes one of decomposition 
of the signal into its basic elements. It was achieved using adaptive linear prediction and estimation for 
preprocessing and a neural network for making decisions, and controlling the other elements of the system. 
This bears some resemblance to certain aspects of the analysis process as carried out by human analysts. 
Although the main objective was the detection of the petit mal epileptic, pattern, the separation of the EEG 
in transient and ongoing activity and its parametrization arc performed as part of the process.

2 Theory

2.1 EEG Signal modelling
The source of the EEG signal is, primarily, the cerebral cortex. External signals, such as electrical inter-
ference, potentials due to eye movement and muscle potentials arc sometimes picked up by the electrodes. 
These non-cerebral potentials, usually referred to as artifacts, contaminate EEG and cause problems in its 
interpretation.

1
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Most EEG analysis methods use ad hoc modcls[l], because the neurophysiology cannot provide an ac-
curate and detailed model of the signal. Signal processing methodology, previously applied by a number of 
workers[l, 4, 7] forms the basis of the method presented here.

It is quite easy to demonstrate the non-slalionarily of the EEG signal, since its frequency content changes 
over time. This is due to permanent changes in the signal behaviour, related to the changing mental state of 
the subject, and transient disturbances, making small EEG segments to have completely different spectral 
properties from longer ones. If one could ignore the transients, selected segments of the EEG signal could 
be regarded as quasi-stationary[4, 3, 7] enabling stochastic modelling methods to be used. A stationary 
signal, 6(n), with a specific power spectral density, is produced at the output of a shaping filter, 7 /(2 ), when 
excited by white noise, u(;i). 7 /(2 ) may have both poles and zeros, but an all-pole (autoregressive) model is 
adequate for many applications (sec Figure 1):

7/(2)
i -

( i )

Nevertheless, it is transients like the spike and wave complex, that have more diagnostic value. I11 fact, 
spikes arc characteristic of many forms of epilepsy. Isolated spikes, s(n), arc produced at the output of an 
autoregressive filter, G(z), having an impulse response that resembles a spike, when excited by a sequence 
of impulses, d(n), whose occurrence follows a Poisson distribution. Varying the amplitude of the impulses 
produces spikes of varying amplitude (Figure 1).

Other transients, t(n), like muscle and ocular artifacts, may be modelled in a similar way. To avoid 
complications these have been grouped into a multiple input multiple output filter, 7’(2), excited by impulses 
(see Figure 1). The whole process is also affected by quantization and environmental noise, v(n), assumed 
to be additive, uncorrclatcd, following a Normal (Gaussian) distribution with zero mean.

The superposition of these signals produces the EEG model, c(n), which .agrees well with those assumed 
by neurophysiologists, where b(n) is often called the “background” and s(n) and l(n), collectively, the 
“transient” activity:

c(n) =  6(n) +  s(n) + l(n) +  v(n) (2)

2.2 EEG Signal analysis
The advantage of having a signal model lies in the ability to derive an analysis method using the inverse 
of the model and some additional assumptions. In real EEG recordings only c(n) is known. If the transfer 
functions 77(z) and G(z) were known, the application of their inverses, 77_1(z) and G, - l (z) on e(n) (shown 
in Figure 1 as P(z) and Q(z), respectively), would produce outputs »•(») and 1/(71), respectively.

The noise sequence u(n) which generated b(n), is regenerated in r(n) along with a distorted noise signal 
due to 11(71) and transients due to 1/(71) and i(»i) exciting A(z) and ll~l(z) rcspcctivcly[l 1], The transient 
responses have larger amplitudes, and short duration, making them visible on top of other elements of the 
signal, a fact used by Da Silva ct al.[9] and Birkcmcicr ct al.[3] for the detection of spikes in the EEG. 
Similarly, the spike generating sequence, 1/(71), is one of the components of j/(»i). The other components, 
arc distorted versions of « (« ) ,  11(71) and l(n). Their power is often large enough to make the detection of 
impulses in 7/(71) difficult, especially the non-spike transients, generated by T (z )[ll],

The simultaneous use of r(z) and 7/(71) has combined the reliable transient detection properties of II~l(z) 
with the accuracy of spike modelling of G~l(z) to produce a reliable spike detector. Post-processing is 
necessary for this combination (Figure 1), leading to the separation of spikes s(n), from the ongoing EEG 
activity, 6(u), and the detection of spikcs[l 1, 12].

The concepts described so far do not solve the problem since ll(z) and G(z) arc not known in practice, 
not to mention the ambiguous post-processing clement. The unknown transfer functions of the filters P(z) 
and Q(z) (Figure 1) may be estimated using optimum signal processing methods. The supporting theory, 
based 011 the work of Wiener and Kalman, is well-known and can be found in signal processing texts[17, 2, 13]. 
In its general form Wiener theory deals with finding a set of linear weights, w =  { . . . ,  U7„_i, wn, wn+t, . . . }  
that can produce the best approximation, 7/(71), of one (time) sequence, y =  { . . .  , 2/(71 — 1), J/(«), y ( » +  1), • •.} 
using another, x =  { . . . ,  x(?i — l),x (n ), x(n +  1 ) ,. . .) :

O O

y(n) = ]C  WiX(n ~ •) (3)
» = — 00

2
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In practice, the boundaries of the summation arc constrained, for obvious reasons. The (unknown) optimal 
weights, Wi, minimize the mean squared error e2 =  E[t/(n) — y (»)]2 This leads to the Wicncr-Hopf equation:

Rw =  q (4)

where R(i,j) =  jE[x(n — j)x(n — i)] is the auto-correlation matrix of x  and <j(i) =  £[t/(ii)x(n — »')] the 
cross-correlation vector between x and j/(?i).

A Wiener filter can be implemented by recursively optimizing the weight vector, w, instead of solving 
equation 4 directly. This is called an adaptive filler and leads to significant computational savings. Recursive 
Least Squares (RLS) adaptive filters converge f;isl[2, 17, 1 *t], but gradient-search methods arc simpler and 
numerically stable[lG], although they generally converge slowly. These repeatedly estimate the gradient of 
c2 and modify w in small steps to make the gradient close to zero. Widrow and 1 lofT made a significant step
in the estimation of the unknown gradient vector by letting < = r2 which leads to the Least Mean Squares 
(LMS) algoritlnn[17]:

w (p) =  w (>,_,) + 2/u(p-  l ) x ( p -  1) (5)

where c(p — 1) =  y(p — 1) — w(p — l)r x(/>— 1). w is updated as every new sample, x(p), becomes available. 
Converge is guaranteed for when 0 < p < wl>cre A i s  the largest eigenvalue of R, but in practice
the simpler upper limit N(Fower\n {»(„))) is uscd-

When y  is identical to x, the special case of linear prediction ariscs[2, 13], equivalent to estimating the 
current value of this sequence using the previous N samples.

N

<(«) = 53  ~ (6)
<=0

where ao =  1 and ai =  — to,Vi >  1. Adaptive linear prediction is the basis of the realization of the EEG 
signal analysis method presented here.

3 Implementation
3.1 Predicting the stationary part of the signal
The background EEG signal, 6(u) is produced by an autoregressive filter, ¡I(z) (section 2). The optimal 
linear predictor filter (equation 6) for this signal is the inverse of the generating filter, II~x[z), and e(n) 
identical to the generating sequence, « (» ) :

N

«(»*) = ~ *) (7)
»=o

N

where ll~l (z) =  1 — hjz~‘
i=i

Adaptation was performed by the LMS algorithm (equation 5). Slow convergence is not a real issue in our 
case, since it is achieved in the first few seconds of operation, an insignificant period of time compared to 
several hours of operation after convergence. Once it has converged, the filter can follow permanent changes 
in the spectral properties of the signal, provided these arc slower than the time constant of adaptation[lG]. 
The use of other structures and algorithms, that have faster convergence, like the lattice was investigated. 
The advantages were insignificant; fast convergence led to sensitivity to large transients! 12].

3.2 Detecting and estimating spikes
Optimization and experiment lead to the description of the spike as a heavily damped sinusoid[12, 11]. This 
corresponds to the autoregressive transfer function

G ( z )
___________ 1___________
1 — 2 r c o s ( \ n f 0) z ~ x +  r 2z ~2 ( 8)

3
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whose inverse is a linear prediction structure (equation C). Initially G(z) and its inverse, Q(z) were set to 
correspond to a typical spike. Q(z) is adapted every time a spike is encountered to follow small discrepancies 
from the ideal, using a gradient (LMS) adaptive algorithm for HR fillcrs[16], similar to equation 5. Divergence 
from the typical spike, due to false detections, was prevented by restricting adaptation so that the poles of 
G(z) stay in the vicinity of those of a typical spike, using a non-linear mapping. Stability is
ensured since this restriction ensures that the poles stay inside the unit circle in the z-planc.

3.3 T he w orking system
The analysis model (section 2.1) required some refinement and extensions to make a working system. This 
is shown in figure 2, where the decision making block has been refined and the transfer functions P'(z) and 
G(z) have been added. Their purpose is now explained.

Spikes, s(n) and transients, l(n) in the input, r(n), when passed through P(z) cause a disturbance /*(»), 
at the output. A genuine spike would also generate an impulse </(»), when passed through Q(z) (section 2.1). 
These two arc combined by the transient detector to generate an impulse, d(n), assuming that the transient 
is a spike. The spike generator (7(;), excited by this, will generate a spike estimate, i(»i). Subtracting 
this from the input signal, c(n), should produce a, hypothetically, spike-free signal c '(n ). P'{z) is identical 
to P(z) but attempts to predict c'(n ). Hence, if the hypothesis that the transient was a spike is true, no 
transient should be observed in its output, u'(n), a fact verified by the spike detector. A transient in u'(n) 
would indicate that the detected transient was not a spike. The model of the spike, s(n) and the spike-free 
EEG signal, c '(n ), arc also made available for further processing.

Adaptation of P'(z) ensures the correct function of the predictor. Similarly adaptation of G(z) ensures 
tracking of detected spikes. It should be noted that P(z) and P'(z) share the same coefficient values at all 
times, as do G(z) and Q(z).

3.4 D ecision  e lem en ts-th e m ulti-layer perceptron
Little has been said so far about the structure of the transient and the spike detectors. Initially, these were 
represented by simple statistical hypothesis testing elements, detecting whether a sample input belongs or 
not to the same statistical distribution as the rest of the samples, thus delecting “outliers” , assumed to 
be due to transientsfl 1, 12], This approach worked quite well, but required that the significance level of 
the statistical tests be tailored to minimize false alarms and false detections. A more flexible approach was 
found in the form of artificial neural networks. The multi-layer pcrccptron (MLP) structure was found quite 
suitable for this purposc[6, 8].

The MLP learns its function by example. It is “programmed” by presenting it with training patterns, 
consisting of pairs of input and desired output vector patterns, {(xo{]>), d(p)). It is then trained so that its 
output, y  is as close as possible to the desired response, much like an adaptive filter. This is an optimization 
problem, involving minimization of the mean-squared error and is traditionally done by the generalized delta 
rule on every node n of layer /:

w/ri (;>) = (;»-  I ) + (1 -  o)W/,, (;» -  2) + 2//c5|„ (/' -  1 )x/(p -  1) (9)

where Stn(p) = dn(p) -  t//„(p) for the nodes in the output layer and <$<„(/>) = cr'[w,M (;>)] (p)u/i+i inj-
for the nodes in the hidden layers and <r'[ ] is the derivative of the sigmoidal non-linearity in the output 
Vi,n(p) =  <r[vi,».(/>)] of every node.

The inputs to the network arc power-normalized past outputs of / '(r ) , Q(z) and P'(z) (11 samples from 
each signal). It has three outputs, one for spike indications, one for producing cl(n) and one for the production 
of ocular artifact indications (still on experimental stage). It has 38 input, 20 hidden and 3 output nodes. It 
has been trained mainly with simulated data at this stage. Training required approximately 3000 iterations 
to produce a satisfactory output.

4 Results
The system was tested with both simulated and real EEG data. Simulated EEG records contained a stochas-
tic component, produced by filtering white noise through a low-pass autoregressive filter, spikes, using impulse 
excitations of the modelling filter with random perturbations on its poles and ocular artifacts using a impulse

d
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excitation of a first order filter with random perturbations of its only pole. White noise was also added to 
the system.

Two real records have been used to test the method. The first contained 72 spikes, which were all 
detected by the system. There were also 5 false detections. The second record contained muscle artifacts 
and no spikes. There were 28 false detections.

Figure 4 shows typical waveforms of the process. The error signals agree with the theoretical model. Spike 
modelling is not unrealistic, since the removed spikes give no apparent transients in the output spike-free 
signal.

5 Comments and conclusions
The method presented here may be regarded jus  superior to earlier special-purpose spike dctcctors[5, 14, 10], 
mainly because of its generality. Adaptation for the detection of other transients has already begun.

The ability of the system to separate transients from the ongoing EEG activity allows these signtds to be 
studied independently. This permits spectral methods to operate on a spike-free EEG signal, without the 
obstruction caused by spikes and other transients. 1’aramclrization of the EEG signal, performed by linear 
prediction, may be used for compression, storage, or further analysis.

Although the use of the neural network for decision making did not show any apparent improvements 
in the system performance, which is almost identical to earlier systcms[ll, 12], significant advantages are 
expected to be gained by the ability to train the system whilst in operation. An expert clinician, who need 
not know the internal details of the system, can continue training of the neural network by presenting it with 
an EEG signal where transients have been marked and labelled. This work is still at an early stage, but has 
worked well with simulated EEG records containing both spikes and ocidar artifacts. It has been tested on 
real records containing spikes and showed good prospects. The advantage of having a learning clement in 
the system is twofold. Individual experts could tailor its behaviour to closely resemble their own decisions 
and groups of them could collectively train it .as a common reference for EEG analysis bringing together 
medical experience and engineering formalism.
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EEG Signal Analysis Using a Multi-Layer 
Perceptron with Linear Preprocessing
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A b s t r a c t

A  system fo r the detection o f ep ileptic spikes and o ilie r  tra n -
sients in  the E E G  w ill be described. I t  consists o f a num ber o f 
adaptive linear filte rs  com bined w ith  a non-linear de tection  u n it  
to  con tro l th e ir  opera tion. T h is  has been im plem ented as a m u lti-
layer perceptron. C onfigura tions using d iffe rent in p u t preprocess-
ing, in it ia liz a tio n  and ne tw ork  sizes w ill be presented along w ith  
a discussion on th e ir corresponding results.

1 Introduction
The generation of feeble electrical signals by the brain was known since 
the end of last century, although their study with the primitive equip-
ment of that time was not easy and the restricted understanding of their 
origins made interpretation difficult. Witli the establishment of neuro-
physiology on a scientific basis and the advances in electronics in the 
1950’s it became possible to record these time-varying signals on paper 
by attaching electrodes on the surface of the scalp. Nowadays, such a 
recording, called the electroencephalogram (EEG) can be taken in many 
hospitals following a harmless as well as inexpensive procedure. Features 
that relate to the age and level o f consciousness and general indications of 
the mental activity are registered in the EEG, giving a profile of mental 
health.

Despite recent advances in medical imaging, the EEG is still of great 
value in monitoring and screening patients suffering from neurological 
conditions or idiopathic epilepsy, where the abnormality is only func-
tional and transient[17].

In epilepsy the abnormal EEG patterns that characterize seizures of-
ten occur isolated in “larval” form and are registered in the interictal 
clinical EEG. Spikes, so called because of their shape on a conventional 
recording are among the commonest patterns. Their presence, absense 
and frequency of occurrence are valuable clues in the diagnosis and the 
treatment of this condition[2]. Conventional EEG recordings are some-
times too brief to be trusted for the assessment of patients in order to 
prescribe some effective therapy. Hence prolonged recording has been 
suggested as a more reliable alternative[6, 16]. Human interpretation, 
however, is hindered by the enormous volume of data and the difficulty 
in their collection from several ambulatory patients. On-line analysis by
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a portable microcomputer-based unit was considered as a feasible solu-
tion. Early methods were simple because of the limited capabilities of 
the computers of the time[l]. Despite the sophistication and speed of 
modern processors no method has been developed as yet to analyze the 
EEG with total success. This is mainly because the only reference for 
comparison are human experts, who learn by experience how to perform 
the highly qualitative and often subjective task of EEG analysis. No for-
mal criteria seem to be followed and even the definitions of the various 
patterns[5] act as mere guidelines. Intra and inter-reader variability is 
not uncommon.

The method for automatic EEG analysis described here attempts to 
combine some attributes of human decision making with the formalism 
of conventional signal processing tools to form a flexible, but consistent 
automatic system.

2 Signal modelling and analysis
2.1 A  sim plified m odel for the signal
The behaviour of the EEG signal, varies with the level of consciousness, 
eye opening and closure, mental activity etc. Experts usually separate 
the EEG into background activity, which is the signal present at all times 
and on which transients are superimposed. These have been discrimi-
nated into epileptic spikes, which are of medical interest, and other tran-
sients. Noise is often present also. Therefore the recorded EEG may be 
represented as a composite signal:

e(n) =  6(n) +  s(n) +  <(n) +  v(n) (1)

where b(n) is the background activity, s(n) and t(n) are spikes and other 
transients, respectively, and u(n) is the noise component. Each one of 
these components was modelled as the output of an an all-pole sys-
tem excited with either a sequence of impulses or a white uncorrelated 
sequence[12, 13, 14]. The components of the generating model of the 
EEG signal are shown in Figure 1.

2.2 EEG signal analysis
The analysis of the EEG signal was based on the inverse of the model. 
The inverses of H(z), related to the background activity and G ( ; ) ,  re-
lated to spike generation, are both transversal “linear predictor” filters[12, 
13] with transfer functions of the form P(z) =  1 -f h¡z~’ . H~l(z) 
was estimated using on-line linear optimization (adaptive filtering)[19]. 
It can also track slow changes in the signal behaviour] 12, 13], as ex-
plained in [18]. G -1 (z) was estimated off-line from available spikes, but 
on-line adaptation of G(z), in the neighbourhood of the optimal, was 
carried out for better modelling of individual spikes[13].

Other transients may be treated in a similar way. Only one transient 
was considered this, having the form of an exponential decay with arbi-
trary polarity, imitating interference potentials from movements of the 
recording electrodes on the scalp or of ocular origin.
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When H~1 (z) is applied to the (recorded) EEG signal e(n) the out-
put, r(n), contains the white sequence, u(n), transients due to s(n) and 
t(n) and additive distorted noise. Similarly, the application of G_1(z) 
on e(n) would reproduce the sequence of impulses rf(n), and other com-
ponents in the output y(n). Likewise, application of the inverse transfer 
function of any other transient would produce its generating sequence in 
j/, (n), among other components.

Spikes are registered in r(n) a fact used by earlier systems for their 
detection[3, 4, 9, 11]. When other transients are present, they are also 
registered and the results are inconclusive. Impulses present in y(n) and 
in any of the y,(n) are not very reliable indications, because they are 
burried in non-random signals, caused by b(n).

The proposed method[12, 13], depicted in Figure 2, detected tran-
sients in r(n). Making an initial assumption about the origin of the 
transient, by inspecting y(n) and y,(n) for all modelled transients and 
deciding which one is the most likely to have occurred it was possible 
to generate an excitation impulse to the appropriate generating trans-
fer function (G(z) for spikes) whose output was subtracted from the 
recorded EEG signal, e(n) to produce a supposedly transient-free signal, 
e'(n). Processing this through and observing no disturbance in
its output r'(n) confirmed the presence of the suspected transient.

3 The need for decisions in signal classifi-
cation

The reliability of the above scheme, is linked to the accuracy of the 
detection of transients in r(n) and r'(n) and the discrimination of their 
origin in either y(n) or one of the y,(n).

Initially, simple statistical significance testing was employed for the 
detection of transients. Both r(n) and r'(n) are essentially random se-
quences, consisting mainly of u(n) if the noise level is low. This follows a 
normal distribution with zero mean. Transients have amplitudes that are 
atypically large and may be detected with a certain degree of certainty, 
p% using the assumed probability distribution to derive a corresponding 
level of significance v. Usually the standard normal distribution is em-
ployed, and hence the sample is normalized by the standard deviation of 
the signal.

This method, however, did not discriminate between isolated atyp-
ical samples, which are genuine transients and longer bursts which are 
related to certain extracerebral phenomena, like muscle artifacts. To 
overcome this problem, every time a new sample became available, a 
linear combination of the N most recent sample values was formed.

/(« ) E
i = - N /  2

Wi *(»)2
° l {n)

( 2)

where x(n) is either r(n) or r'(n) and cr^(n) is an on-line estimate the 
power (variance) of x(n), making f(n) independent of the signal level. 
The weights, {iu,} were positive for i <E [—M /2, M / 2] where M is a small
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number of samples (1,3 or 5) and negative otherwise. The statistical 
significance level, £ is implicitly included in the weights. By applying a 
threshold 6 on f(n), a binary detection, z(n) is formed.

407

z(n) 1 f(n) > 0
0 f(n) < e (3 )

Two such elements applied on r(n) and r'(n) verified whether transients 
were present (zi(n) and Z2 (n)). Similar units were introduced to detect 
transients in y(n) and j/i(n) (z3 (n) and z,}(n)). The outputs of these 
units were combined to produce activation signals for the spike (z,(n) = 
Zi(n)ANDz3 (n)) and for the other transient (zt(n) =  zi(n)ANDz4(n)) 
as well as the “spike detected” output, z0(n) =  zi(n)AND NOTz2 (n). 
Zj(n) and zt(n) were used as windows on y(n) and j/i(n) to generate the 
(presumed) impulse activation function of the spike or transient generat-
ing filters, for example d(n) =  zs(n)y(n). The logical operations required 
may also be implemented as weighted sums (e.g. / s(n) =  zi(n) +  Z2 (n) 
and / 0(n) =  zi(n) — Z2 (n)) followed by thresholding (6 , = 1.5 and 
6 0 =  —0.5). This scheme is an extension of an earlier method which 
considered only spikes[12]. Unlike its predecessor, which was quite suc-
cessful, the performance of the extended system was only moderate. 
The problems associated with the generalized structure are believed to 
be associated with the selection of an appropriate set of weights for the 
elements that act on the inputs, rather than with the structure itself.

4 A Multi-Layer Perceptron structure as a 
decision unit

The layered fixed-weight structure of the decision unit had a logical 
interpretation. The function of any of its elements may be described 
in terms of a linear combination of its inputs (equation 2) followed by 
thresholding (equation 3).

This bears a strong resemblance to the Multi-Layer Perceptron (MLP) 
neural network, originally described by Rumelhart and McClelland[15], 
as every layer receives inputs from the previous layer only. The only 
difference is that the intuitive system does not have all outputs of one 
layer connected to the next, but with the introduction of these with zero 
weights the two became equivalent.

Because all the inputs to the MLP are all treated in the same man-
ner .  they loose their individual significance and they may be grouped to 
form a single input vector: x(n) =  [lr(n +  N/2) . . r(n — N/2)r'(v + 
■V/2).. .r '(n  -  N/2)y(u + N/2)...y(n -  N/2)yi(n + N/2) .. .y ,(n  -  
V/2) ]7 . Describing the weights of the fcth element of the /th layer in a

similar way wj* =  [uiffcow/fei • • -]T the weighting operation may be defined 
as an inner product, /ifc(n) =  wfkx(n). The bias weight, wiko is multi-
plied by unity and plays the role of the threshold in the earlier system. 
The output of the element, yifc(n) =  <r[/ifc(n)] is produced by applying 
a limiting function (non-linearity), <r[-] on the linear output /ifc(n). The 
operation of the element of any layer may be described in terms of the
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inner product fik(n) =  w(̂ y (_i(n ) as described above, using the vector 
of the outputs of the previous layer, y i_i(n ) =  [lj//-i,i(n )M -i,2 (n) • • ]T - 

The function of the MLP description of the system is defined as a 
relation between its inputs and its desired output rather than by the 
behaviour of its individual elements, which was the basis of the ear-
lier system. This is specified as a set of examples, consisting of pairs 
[x(n),d (n)j, the training set, where d(n) is the desired output vector. 
An optimal weight vector may be found by minimizing the mean-squared 
error between the desired and the actual output vectors of the output 
layer £ =  £ ’{[d(n) — yz,(«)]2} according to the well-known generalized 
delta rule (backpropagation algorithm)[15]. Many variants of the basic 
algorithm exist[10, 7]. The one used in this application has a momentum 
term and updates the weight vector on every sample, according to the 
following recursive relation, where for notational convenience, yo(n) has 
been used to denote the input vector:

Wifc(n + 1) = crxvik(n) + (1 -  a)w;fc(n -  1) + 2//<5ifc(n)y/_i (n) (4)

where

f dk(n) -  yik(n) if l = L
\ <r'[fik(n)}YljSi+ij(n)wi+\,j,k(n) otherwise ( 5 )

where a’ ( / )  =  y( 1 — y) is the derivative of the non-linear logistic function 
y =  sigma(f) = t , a is a filtering factor defining the “momentum” 
and /i is the learning rate of the algorithm.

5 Implementation and other issues
Although the structure and the learning algorithm for the MLP are well- 
defined several details and problems in the implementation needed to be 
resolved. The main ones are discussed here.

5.1 Form ing a training set
A training set consisting of input-output examples needed to be defined. 
This is not directly possible from the real EEG records available, because 
spikes and other transients considered are fairly rare and the exact lo-
cation of their occurrence unknown. Some spikes that were identified 
by an earlier system were used but the training set consisted mainly of 
artificial data, generated according to the described model (section 2.1). 
For these the location of the excitation functions for the various tran-
sients is known exactly. These were used to derive the desired output 
signals indicating the points of application of the excitation impulses for 
spikes, 2 s(n) and the other type of transients, zt(n), as well as a separate 
indication for the occurrence of spikes z0 (n) (Figure 3). The real EEG 
training patterns were used as well, but their effect on the final weights 
was not visible.
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5.2 Im plem entation o f  the M LP
One of the problems encountered during the implementation was the fact 
that the MLP is embedded in the rest of the system and that its spike 
detection output depends indirectly on the spike excitation signal, which 
is also an output. In other words, there is feedback. Hence training 
the network cannot be done independently and as a result it was not 
possible to use many of the available tools for developing and training 
the network.

It was therefore necessary to develop a library of functions that deal 
with the construction of networks of different configurations as well as the 
implementation of the backpropagation algorithm. The library, which 
was realized in the C programming language, like the rest of the system, 
also provides the means to read a network configuration and learning 
parameters from a file and save them in a format that is easily read by 
computers and humans alike.

5.3 Preprocessing o f  the inputs to the M LP
An important issue when using neural networks with natural signals like 
the EEG is the format of the inputs to the network. Although it is 
sometimes claimed that there is no need for preprocessing, it is obvious 
that performance may be affected by changes in the dynamic range of the 
inputs. To ensure that the input levels to the network are not affected 
much by such fluctuations, they were normalized in a way similar to 
the one described for the earlier system (equation 2). All inputs to the 
network were divided by the RMS value of r(n). This is a convenient 
measure, because it is also representative of r'(n) and is not affected by 
modifications to the system by the extension or restriction of the number 
of transients considered.

Preprocessing of the inputs using other operations to assist the net-
work to learn or to simplify its structure were also considered. The latter 
is important if the system is to be implemented on a small portable mi-
crocomputer with limited processing capabilities and resources.

Two types of preprocessing were considered. The first consists of 
simply scaling all the elements in the input vector by err, as already ex-
plained in the previous paragraph. The inputs to the network, x,(n) are 
related to the corresponding “raw” inputs, z,(n) by the simple relation 
¿i(n) =  Xiy 1' . No information is lost during this operation, but the size 
of the network may be larger than other alternatives.

Squaring the elements of the input vector prior to their application to 
x 2/n \

the MLP, so that x,(n) =  ' was another simple form of processing.
This resembles the operation performed by equation 2, which has an 
intuitive interpretation (section 3).

5.4 Initial conditions o f the learning algorithm
When training the MLP using the backpropagation algorithm the weights 
of the processing elements are usually initialized to small random val-
ues. In this application the weights of the intuitive system of section 3
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for which the performance was not perfect, but not unreasonable, were 
considered as a possible alternative, as they may be closer to an optimal 
solution than a random weight vector. Strictly speaking, these are only 
valid if the inputs are squared and normalized.

The elements on the first (hidden) layer were made to detect whether 
a sample at a specific position in the sequences of the input signals, 
{r (n )}, {r '(n )}, (y (n )} and {t/i(n)} has an atypically large amplitude 
compared to the ones in its neighbourhood. The result was then fed into 
one more (hidden) layer, implementing logical AND operations between 
the outputs of the first layer, before they are combined by the logical 
OR elements of the output layer for the producton of zs(n), zt(n) and 
Zo(n).

6 Results
The system was tested for a number of combinations of input preprocess-
ing and weight initialization methods. Training was primarily carried out 
using synthetic data, because the available EEG signals did not contain 
substantial numbers of other transients. Tests, however, were carried 
out on real EEG records as well.

Different MLP configurations were tested, either with normalized 
or with normalized-squared inputs, as explained in section 5.3. The 
convergence of the backpropagation algorithm for random and preset 
initial weight vectors (section 5.4) was also investigated.

Tests were carried out on a simulated EEG record containing 25 
spikes and 20 other transients and a real EEG record containing 52 
spikes. The number of successful spike detections was noted for every 
network configuration, as well as the number of iterations required for 
the network performance to stop improving. Some networks were also 
tested with a different number of elements in the first hidden layer. The 
results are shown in Table 1.

Net Iterations Detections
Config. to Simulated EEG Real EEG

Converge Spikes Transients Spikes
(25) (20) (52)

1 60000 25 (0) 20 (0) 51 (5)
2 80000 25 (0) 20 (0) 51 (5)
3 60000 25 (2) 20 (0) 50 (5)
4 10000 25 (2) 20 (0) 50( 5)
5 ♦ * ♦ *
6 30000 25 (2) 20 (0) SO (12)

Note: * indicates complete failure of the system
Table 1: Results

All tested configurations had 49 inputs (11 samples from each input 
signal, 16 from r'(n)) and 3 outputs. The first four had two hidden 
layers with 12 and 6 elements respectively, and the other two had two 
hidden layers with 6 elements each. Configurations 1, 2 and 5 were for 
normalized inputs and 3, 4 and 6 for squared and normalized inputs.
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1, 3, 5 and 6 had random initial weights, whereas 2 and 4 had preset 
weights.

Figure 4 shows a typical set of waveforms from the simulated EEG 
data records. The indications of spike detections under the input signal 
show the proper operation of the system, whereas the estimated spikes 
and transients in the third set demonstrate that z,(n) and zt(n) are 
generated correctly as well.

7 Comments, observations and conclusions
All but one of the configurations presented in Table 1 performed reason-
ably well with both simulated and real EEG data. In spite of training the 
network mainly with synthetic data, its behaviour with real EEG signals 
was still quite good. Although the number of data records considered 
in this study was limited, results show that the MLP-based system is 
capable of performing well even when its inputs deviate from those used 
for its training.

The number of iterations to obtain a satisfactory performance was 
considerably smaller for squared-normalized inputs, when the weights 
were initialized to those of the earlier system than when random ini-
tial values were used. This indicated that the former were closer to an 
optimal, which was also apparent from the small distance between the 
initial and the final weight vectors. The final weight sets for the two dif-
ferent initialization procedures were different, but this is not surprising, 
as there are many combinations of weights that give an optimal per-
formance for a given network architecture[8]. For the normalized only 
input vector, this was not the case. It appears that starting from random 
weights produces faster convergence than when the weights of the earlier 
system were used. This is not surprising, because the latter corresponds 
to the weights for squared inputs, which is a completely different case 
with the preset initialization being perhaps far from the optimal.

The loss of the polarity of the input signal with squaring as prepro-
cessing was evidenced in the form of the two false spike detections, in-
dicated in brackets for the simulated EEG record. These corresponded 
to spikes with negative polarity which were intentionally introduced. 
Real epileptic spikes always have positive polarity. These have not been 
detected by the systems 1 and 2, which maintain the polarity of their 
inputs.

Finally, for configuration 6 with a reduced number of elements and 
the inputs squared, the system was still quite successful. This structure 
required a simpler network to produce a satisfactory output, because 
some of the burden of preprocessing was shifted to the the input. This 
was not the case in configuration 5, where the lack of an adequate num-
ber of elements led to a poor performance of the MLP leading to the 
degradation of the performance of the system.

The main advantage in using the MLP in this application lies in 
its ability to learn by example. This permits the inclusion of medical 
expertise which cannot be expressed in a set of rules. Hence the EEG 
analysis system presented may be trained by an individual expert to 
reflect his/her experience or by a group of analysts to act like a less
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subjective analysis tool combining both medical experience and formal 
engineering methodology.

References
[1] J. H . B arlow : C om puterized  C linical E lectroencephalography in P ersp ec -

tive, IE E E  Trans. Biomed. Eng., vol. B M E -26 , No. 7, pp. 377-391 (Ju l. 
1979).

[2] C. D. B innie: W ha t’s the use o f  E E G  in ep ilep sy ? B ritish  Journa l of 
H osp ita l Medicine, February 1988, p. 98, 1978, pp. 575-585.

[3] W . P. B irkem eier, et al.: P attern  R ecogn ition  Techniques f o r  the D ete c tio n  
o f  E pilep tic  Transients in the E E G , IE E E  Trans. Biom ed. Eng., vol. 
B M E -25 , No. 3, pp. 213-216 (Ju l. 1978).

[4] G. Bodenstein and M . Praetorius: Feature E xtraction  from  the E E G  by 
A dap tive S egm entation , Proc. IE E E , vol. 65, No. 5, pp. 642-657 (M ay. 
1977).

[5] G. E . C h a tria n  et al.: (IFS E C N  In te rn a tio n a l Assem bly) A G lossa ry  o f  
Term s M ost C om m only Used B y  Clinical E lectroencephalographers Elec- 
troenceph. C lin . Neurophysiol., 37, (1974), pp. 538-548.

[6] R. A . Com ley and J. E. B rignell: R ea l-T im e D ete c tio n  o f  the E pileptic  
P recu rsor, J. Phys. E: Sri. Ins trum ., vol. 14, pp. 963-967 (1981).

[7] R. Hecht-Nielsen: N eurocom puting, Addison-W esley (1990).
[8] A . M . Chen and R. Hecht-Nielsen: On the G eom etry  o f  Feedforw ard N eu -

ral N etw ork  W eight Spaces, Proceedings, Second In te rn a tion a l C onfer-
ence on A r t if ic ia l Neural Networks, Bournem outh , (Nov. 1992), pp. 1-4.

[9] A . Isaksson, et al.: C om puter A nalysis  o f  E E G  Signals with P aram etric  
M odels, Proc. IE E E , vol. 69, No. 4, pp. 4151-4161 (A p r. 1981).

[10] R. P. L ippm ann: A n Introduction  to C om puting with N eural N ets, IE E E  
ASSP magazine, A p r. 1987, pp. 4-22.

[11] F . H . Lopes D a Silva, et al.: A u tom a tic  D ete c tio n  and Localization o f  
E pilep tic  Foci, Electroenceph. C lin . Neurophys., No. 43, pp. 1-13 (1977).

[12] S. A . M ylonas and R. A . Com ley: D etectio n  o f  E pileptic  Spikes in the 
E E G  Using A daptive Filters, I F orum  N acional de Ciencia e Tecnologia 
em Saude -  X I I I  Congresso Brasile iro de Engenharia Biom edica, Cax- 
am bu (M G ), B raz il (Nov. 1992)

[13] S. A . M ylonas and R. A . Com ley: A dap tive P red ictive  M odelling  f o r  the 
A nalysis  o f  the E pileptic E E G , Singapore IC C S /IS IT A ’92, vol. 3, pp. 
1214-1218 (Nov. 1992)

[14] S. A . M ylonas and R. A . Comley: L inear P red iction , N eural N etw orks and  
the A na lysis  o f  E E G  Signals, C yprus, In t. Conf. on D S P /II  In t. Conf. on 
C om pu t. A pp l. to Eng. Sys. (Ju l. 1993)

[15] D. E. R u m elh art et al.: Learning in terna l rep resen ta tion s by error  p rop -
agation, in  D. E. Rum elhart and J. L. M cC Le lland  (Eds.) P arallel D is-
tributed  P rocessin g : E xplorations  in  the m icrostru ctu re  o f  C ogn ition , 1, 
pp. 318-362, (1986), M IT  Press.

[16] A . L. Stelle and R. A . Comley: Portable A n a ly ser  f o r  R ea l-T im e D etection  
o f  the E pileptic  P recursor, P roc., X I B raz ilian  Conf. in  Biom ed. Eng., 
pp. 101-107 (Sep. 1989).

[17] J. N . W alton: Brain D iseases o f  the N ervou s S ystem  (8th  E d .): C hapter  
22, pp . 1 0 93 -113 2 , O xford M edical Pub lica tions.

[18] B. W id ro w , e ta l.:  Stationary and N on sta tion a ry  L earning C h aracteristics  
o f  the L M S A dap tive filter, Proc. IE E E , vol. 64, No. 8, pp. 1151-1162 
(A ug . 1976).

[19] B. W id ro w  and S. D. Steams: A daptive Signal P rocessing, P ren tice-H a ll 
Inc., NJ (1985).



413

r(n) r’ (n) y(n) y l(n )
w h ile  n o is e .  u (n ) im p u ls e s ,  d (n ) im p u ls e s  n o i s e ,  v ( n )

s p ik e  in d ic a t i o n s  e s t im a t e d  e s t im a t e d  
b a c k g r o u n d  E E C  s p ik e  a c t iv it y

Figure 1: EEG modelling pro-
cesses for synthesis and analysis

Figure 3: The MLP decision unit

ba ck jrn a d  eMimMci 

indicai in »  EEG

3 0 0 .0Q_| 
200.00. 
lOO.OQ.

o .o a  c

(a) Input EEC signal a

3 0 0 .OQ. 
200.00. 
lo o .o a  — 

o .o a  g. 
-to o .o a  
-2 0 0 .o a  — 
- 3 0 0 .o a 3 C

d transient a cn i cry

Figure 2: Block diagram of the 
proposed system

Figure 4: Waveforms at the vari-
ous stages of the system

10



4 1 4 Appendix Id. Publications



Bibliography

[ 1 ] A C C O R N E R O , N.; ( 1 9 8 1 ) :  A c t i v e  S u r f a c e  E M G  P r o b e  a n d  C o n t o u r  F o l l o w e r ,  E l e c t r o -

e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 51, p p .  3 3 1 - 3 3 2 .

[ 2 ]  A i c a r d i , J . ;  ( 1 9 8 8 ) :  C l i n i c a l  A p p r o a c h  t o  t h e  M a n a g e m e n t  o f  I n t r a c t a b l e  E p i l e p s y ,

D e v e l o p m e n t a l  M e d i c i n e  A n d  C h i l d  N e u r o l o g y ,  Vol. 30, p p .  4 2 9 - 4 4 0 .

[3] A p a k , A .  G .  S . ;  Qa l i§k a n , A . ;  (1986): E l e c t r i c a l  S t a t u s  E p i l e p t i c u s  L a s t i n g  F o r  17 
M o n t h s  W i t h o u t  B e h a v i o u r a l  C h a n g e s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o -

p h y s i o l o g y ,  Vol. 63, p p .  32-34.

[ 4 ]  A r a k a w a , K . ;  F e n d e r , D .  H . ;  H a r a s h i m a , H . ;  M i y a k a w a , H . ;  S a i t o h , Y . ;  ( 1 9 8 6 ) :  A  

N o n - L i n e a r  D i g i t a l  F i l t e r  f o r  S e p a r a t i n g  N o n - S t a t i o n a r y  W a v e s  f r o m  S t a t i o n a r y  

W a v e s  i n  T h e  E E G ,  P r o c e e d i n g s ,  I E E E  I n t e r n a t i o n a l  C o n f e r e n c e  o n  A c o u s t i c s ,  S p e e c h  

a n d  S i g n a l  P r o c e s s i n g ,  T o k y o ,  p p .  1 8 0 9 - 1 8 1 2

[ 5 ]  A T T IN G E R , E .  O . ;  ( D e c e m b e r  1 9 8 4 ) :  I m p a c t s  o f  T e c h n o l o g i c a l  R e v o l u t i o n  o n  H e a l t h  

C a r e ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-31, N o .  1 2 ,  p p .  7 3 6 - 7 4 3 .

[6 ]  A T K IN SO N , K .  E . ;  ( 1 9 8 9 ) :  A n  I n t r o d u c t i o n  t o  N u m e r i c a l  A n a l y s i s ,  ( 2nd edition), 

I S B N  0 - 4 7 - 1 5 0 0 2 3 - 2 ,  W i l e y .

[ 7 ]  B a r l o w , J . ;  ( J u l y  1 9 7 9 ) :  C o m p u t e r i z e d  C l i n i c a l  E l e c t r o e n c e p h a l o g r a p h y  I n  P e r -

s p e c t i v e ,  , I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-26, N o .  7, p p .  

3 7 7 - 3 9 1 .

[8 ]  B a r l o w , J .  S . ;  ( 1 9 8 3 ) :  M u s c l e  S p i k e  A r t i f a c t  M i n i m i z a t i o n  I n  E E G s  B y  T i m e -  

D o m a i n  F i l t e r i n g , ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 55, p p .  

4 8 7 - 4 9 1 .

[ 9 ]  B a r l o w , J .  S . ;  ( 1 9 8 4 ) :  E M G  A r t i f a c t  M i n i m i z a t i o n  D u r i n g  C l i n i c a l  E E G  R e c o r d -

i n g s  B y  S p e c i a l  A n a l o g u e  F i l t e r i n g , ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s -

i o l o g y ,  Vol. 58, p p .  1 6 1 - 1 7 4 .

415



416 BIBLIOGRAPHY

[ 1 0 ]  B a r l o w , J . ;  ( 1 9 8 4 ) :  A n a l y s i s  o f  E E G  C h a n g e s  W i t h  C a r o t i d  C l a m p i n g  b y  S e -

l e c t i v e  A n a l o g u e  F i l t e r i n g ,  M a t c h e d  I n v e r s e  D i g i t a l  F i l t e r i n g  a n d  A u t o m a t i c  

A d a p t i v e  S e g m e n t a t i o n :  A  C o m p a r a t i v e  S t u d y ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  

N e u r o p h y s i o l o g y ,  Vol. 58, p p .  1 9 3 - 2 0 4 .

[ 1 1 ]  B a r l o w , J .  S . ;  ( M a y  1 9 8 6 ) :  A u t o m a t i c  E l i m i n a t i o n  o f  E l e c t r o d e - P o p  A r t i f a c t s  i n  

E E G ’ s , ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-33, N o .  5 ,  p p .  5 1 7 - 5 2 1 .

[ 1 2 ]  B E A U C H A M P , K .  G . ;  ( 1 9 8 7 ) :  T r a n s f o r m s  F o r  E n g i n e e r s — A  G u i d e  t o  S i g n a l  P r o -

c e s s i n g ,  I S B N  0 - 1 9 - 8 5 6 1 7 4 - 1 ,  C l a r e d o n  P r e s s ,  O x f o r d .

[ 1 3 ]  B e g h i , E . ;  B o l l i n i , P . ;  D i  M a s c h i o , R . ;  C e r i s o l a , N . ;  M e r l o n i , T . ;  M a n g h i , E . ;  

( 1 9 8 7 ) :  E f f e c t s  o n  R a t i o n a l i z i n g  D r u g  T r e a t m e n t  o f  P a t i e n t s  W i t h  E p i l e p s y  a n d  

M e n t a l  R e t a r d a t i o n ,  D e v e l o p m e n t a l  M e d i c i n e  a n d  C h i l d  N e u r o l o g y ,  Vol. 29, p p .  3 6 3 - 3 6 9 .

[ 1 4 ]  B E L L A N G E R , M .  G . ;  ( 1 9 8 7 ) :  A d a p t i v e  D i g i t a l  F i l t e r s  a n d  S i g n a l  A n a l y s i s ,  I S B N  0 -  

8 2 4 7 - 7 7 8 4 - 0 ,  M a r c e l  D e k k e r ,  N e w  Y o r k .

[ 1 5 ]  B E L L A N G E R , M . ;  ( 1 9 8 9 ) :  D i g i t a l  P r o c e s s i n g  o f  S i g n a l s — T h e o r y  a n d  P r a c t i c e ,  ( 2nd 

edition), I S B N  0 - 4 7 1 - 0 2 1 0 1 - 7 ,  W i l e y - I n t e r s c i e n c e .

[ 1 6 ]  B e s a g , F .  M .  C . ;  M i l l s , M . ;  W a r d a l e , F . ;  A n d r e w , C .  M . ;  C r a g g s , M .  D . ;  ( 1 9 8 9 ) :  

T h e  V a l i d a t i o n  o f  a  N e w  A m b u l a t o r y  S p i k e  A n d  W a v e  M o n i t o r ,  E l e c t r o e n c e p h a l o -

g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 73, p p .  1 5 7 - 1 6 1 .

[ 1 7 ]  B i r k e m e i e r , W .  P . ;  F o n t a i n e , A .  B . ;  C e l e s i a , G .  G . ;  M a , K .  M . ;  ( M a y  1 9 7 8 ) :  

P a t t e r n  R e c o g n i t i o n  T e c h n i q u e s  f o r  t h e  D e t e c t i o n  o f  E p i l e p t i c  T r a n s i e n t s  i n  t h e  

E E G ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-25, N o .  3 ,  p p .  2 1 3 - 2 1 7 .

[ 1 8 ]  B i n n i e , C .  D . ;  B a t c h e l o r , B .  G . ;  B o w r i n g , P .  A . ;  D a r b y , C .  E . ;  H e r b e r t , L . ;  

L l o y d , D .  S .  L . ;  S m i t h , D .  M . ;  S m i t h , G .  F . ;  S m i t h , M . ;  ( 1 9 7 8 ) :  C o m p u t e r - A s s i s t e d  

I n t e r p r e t a t i o n  o f  C l i n i c a l  E E G s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  

Vol. 44, p p .  5 7 5 - 5 8 5 .

[ 1 9 ]  B lN N IE ,  C .  D . ;  ( F e b r u a r y  1 9 8 8 ) :  W h a t ’ s  t h e  u s e  o f  E E G  i n  e p i l e p s y ? ,  B r i t i s h  J o u r n a l  

o f  H o s p i t a l  M e d i c i n e ,  p p .  9 8 .

[ 2 0 ]  B i n n i e , C .  D . ;  A a r t s , J .  H .  P . ;  H o u t k o o p e r , M .  A . ;  L a x m i n a r a y a n , R . ;  D a  S i l v a  

M a r t i n s , A . ;  M e i n a r d i , H . ;  N a g e l k e r k e , N . ;  O v e r w e g , J . ;  ( 1 9 8 4 ) :  T e m p o r a l  C h a r -

a c t e r i s t i c s  o f  S e i z u r e s  a n d  E p i l e p t i f o r m  D i s c h a r g e s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  

C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 58, p p .  4 9 8 - 5 0 5 .



BIBLIOGRAPHY 417

[ 2 1 ]  B l i n o w s k a , K .  J . ;  F r a n a s z c z u k , P .  J . ;  M i t r a s z e w s k i , P . ;  ( 1 9 8 8 ) :  A  N e w  M e t o d  

o f  P r e s e n t a t i o n  o f  t h e  A v e r a g e  P r o p e r t i e s  o f  t h e  E E G  T i m e  S e r i e s ,  I n t e r n a t i o n a l  

J o u r n a l  o f  B i o m e d i c a l  C o m p u t i n g ,  Vol. 2 2 ,  p p .  9 7 - 1 0 6 .

[ 2 2 ]  B l u m e , W .  T . ;  Y o u n g , G .  B . ;  L e m i e u x , J ,  F ;  ( 1 9 8 4 ) :  E E G  M o r p h o l o g y  o f  P a r t i a l  

E p i l e p t i c  S e i z u r e s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 57, p p .  

2 9 5 - 3 0 2 .  •

[23] Bo a s h a s h , B.; Bl a c k , P .  J.; ( N o v e m b e r  1987): A n  E f f i c i e n t  R e a l - T i m e  I m p l e m e n -

t a t i o n  o f  t h e  W i g n e r - V i l l e  D i s t r i b u t i o n ,  I E E E  T r a n s a c t i o n s  o n  A c o u s t i c s ,  S p e e c h  a n d  

S i g n a l  P r o c e s s i n g ,  Vol. ASSP-35, N o .  1 1 ,  p p .  1611-1618.

[ 2 4 ]  B o a s h a s h , B . ;  ( S e p t e m b e r  1 9 8 8 ) :  N o t e  o n  t h e  U s e  o f  t h e  W i g n e r  D i s t r i b u t i o n  f o r  

T i m e - F r e q y e n c y  S i g n a l  A n a l y s i s ,  I E E E  T r a n s a c t i o n s  o n  A c o u s t i c s ,  S p e e c h  a n d  S i g n a l  

P r o c e s s i n g ,  Vol. ASSP-36, N o .  9 ,  p p .  1 5 1 8 - 1 5 2 1 .

[ 2 5 ]  B o d e n s t e i n , G . ;  P r a e t o r i u s , H .  M . ;  ( M a y  1 9 7 7 ) :  F e a t u r e  E x t r a c t i o n  f r o m  t h e  

E l e c t r o e n c e p h a l o g r a m  b y  A d a p t i v e  S e g m e n t a t i o n ,  I E E E  P r o c e e d i n g s ,  Vol. 65, N o .  

5, p p .  6 4 2 - 6 5 7 .

[ 2 6 ]  B o u d r e a u x - B a r t e l s , G .  F . ;  ( 1 9 8 5 ) :  T i m e  V a r y i n g  S i g n a l  P r o c e s s i n g  U s i n g  t h e  

W i g n e r - D i s t r i b u t i o n  T i m e - F r e q u e n c y  S i g n a l  R e p r e s e n t a t i o n ,  A d v a n c e s  i n  G e o -

p h y s i c a l  D a t a  P r o c e s s i n g ,  Vol. 2, p p .  3 3 - 7 9 .

[27] B razier, M. A. B.; (1961): A  H i s t o r y  o f  t h e  E l e c t r i c a l  A c t i v i t y  o f  t h e  B r a i n ,  

P i t m a n  M e d i c a l  P u b l i s h i n g  C o m p a n y ,  L t d .

[ 2 8 ]  B r a z i e r , M .  A .  B . ;  W a l t e r , D .  0 . ;  S c h n e i d e r , D .  ( e d i t o r s ) ;  ( 1 9 7 3 ) :  N e u r a l  M o d -

e l i n g ,  B r a i n  I n f o r m a t i o n  S e r v i c e ,  R e s e a r c h  R e p o r t ,  N o .  1 ,  U n i v e r s i t y  o f  C a l i f o r n i a ,  L o s  

A n g e l e s .

[ 2 9 ]  B r e n n e r , R .  P . ;  U l r i c h , R .  F . ;  S p i k e r , D .  G . ;  S c l a b a s s i , R .  J . ;  R e y n o l d s , C .  F .  

I l l ;  M a r i n , R .  S . ;  B o l l e r , F . ;  ( 1 9 8 6 ) :  C o m p u t e r i z e d  E E G  S p e c t r a l  A n a l y s i s  i n  

E l d e r l y  N o r m a l ,  D e m e n t e d  a n d  D e p r e s s e d  S u b j e c t s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  

C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 64, p p .  4 8 3 - 4 9 2 .

[ 3 0 ]  B r o w n , K.; ( 1 9 8 8 ) :  ‘ E p i l e p s y ’ — A  N e w  D i s e a s e ? ,  D e v e l o p m e n t a l  M e d i c i n e  A n d  C h i l d  

N e u r o l o g y ,  Vol. 30, p p .  4 2 7 - 4 2 8 .

[ 3 1 ]  B r o w n , R .  G . ;  ( 1 9 8 3 )  I n t r o d u c t i o n  t o  R a n d o m  S i g n a l  A n a l y s i s  a n d  K a l m a n  F i l -

t e r i n g ,  I S B N  0 - 4 7 1 - 0 8 7 3 2 - 7 ,  W i l e y  &  S o n s  I n c .



418 BIBLIOGRAPHY

[ 3 2 ]  C a b e l l o , D . ;  B a r r o , S . ;  S a l c e d a , J .  M . ;  R u i z , R . ;  M i r a , J . ;  ( 1 9 9 1 ) :  F u z z y  K -  

N e a r e s t  N e i g h b o r  C l a s s i f i e r s  F o r  V e n t r i c u l a r  A r r h y t h m i a  D e t e c t i o n ,  I n t e r n a t i o n a l  

J o u r n a l  o f  B i o m e d i c a l  C o m p u t i n g ,  Vol. 27, p p .  7 7 - 9 3 .

[ 3 3 ]  C a r a y a n n i s , G ;  M a n o l a k i s , D .  G . ;  K a l o u p t s i d i s , N ;  ( D e c e m b e r  1 9 8 3 ) :  A  F A s t  S e -

q u e n t i a l  A l g o r i t h m  f o r  L e a s t - S q u a r e s  F i l t e r i n g  a n d  P r e d i c t i o n ,  I E E E  T r a n s a c t i o n s  

o n  A c o u s t i c s ,  S p e e c h  a n d  S i g n a l  P r o c e s i n g ,  Vol. ASSP-31, N o .  6 ,  p p .  1 3 9 4 - 1 4 0 2 .

[ 3 4 ]  C A R R IE ,  J .  R .  G . ;  ( 1 9 7 2 ) :  A  T e c h n i q u e  f o r  A n a l y z i n g  T r a n s i e n t  E E G  A b n o r m a l i -

t i e s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 32, p p .  1 9 9 - 2 0 1 .

[ 3 5 ]  C A R R IE ,  J .  R .  G . ;  ( 1 9 7 2 ) :  A  H y b r i d  C o m p u t e r  T e c h n i q u e  F o r  D e t e c t i n g  S h a r p  

E E G  T r a n s i e n t s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 33, p p .  

3 3 6 - 3 3 8 .

[ 3 6 ]  C a r r i e , J .  R .  G . ;  ( 1 9 7 2 ) :  A  H y b r i d  C o m p u t e r  S y s t e m  f o r  D e t e c t i n g  a n d  Q u a n -

t i f y i n g  S p i k e  a n d  W a v e  E E G  P a t t e r n s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o -

p h y s i o l o g y ,  Vol. 33, p p .  3 3 9 - 3 4 1 .

[ 3 7 ]  C a r r i e , J .  R .  G . ;  F r o s t  J .  D . ,  J r .; ( 1 9 7 7 ) :  C l i n i c a l  E v a l u a t i o n  o f  a  M e t h o d  f o r  

Q u a l i f i c a t i o n  o f  G e n e r a l i z e d  S p i k e - W a v e  E E G  P a t t e r n s  b y  C o m p u t e r  D u r i n g  

P r o l o n g e d  R e c o r d i n g s ,  C o m p u t e r s  a n d  B i o m e d i c a l  R e s e a r c h ,  Vol. 10, p p .  4 4 9 - 4 5 7 .

[ 3 8 ]  C e r u t t i , S . ;  B e r s a n i , V . ;  C a r r a r a , A . ;  L i b e r a t i , D . ;  ( J a n u a r y  1 9 8 7 ) :  A n a l y s i s  o f  

V i s u a l  E v o k e d  P o t e n t i a l s  T h r o u g h  W i e n e r  F i l t e r i n g  A p p l i e d  t o  a  S m a l l  N u m b e r  

o f  S w e e p s ,  J o u r n a l  o f  B i o m e d i c a l  E n g i n e e r i n g ,  Vol. 9, p p .  3 - 1 2 .

[ 3 9 ]  C h a d w i c k , D . ;  ( F e b r u a r y  1 9 8 8 ) :  M o d e r n  T r e a t m e n t  o f  E p i l e p s y ,  B r i t i s h  J o u r n a l  o f  

H o s p i t a l  M e d i c i n e ,  p p .  1 0 4 - 1 1 1 .

[ 4 0 ]  C h a r a l a m b o u s , C ;  ( J u l y  1 9 9 1 ) :  O p t i m i z a t i o n  a n d  N e u r a l  N e t w o r k s ,  P r o c e e d i n g s ,  

F i r s t  C y p r u s  I n t e r a n t i o n a l  C o n f e r e n c e  o n  C o m p u t e r  A p p l i c a t i o n s  t o  E n g i n e e r i n g  S y s t e m s ,  

pp. 1 5 4 - 1 5 9 .

[ 4 1 ]  C h a t r i a n , G .  E . ;  B e r g a m i n i , L . ;  D o n d e y , M . ;  K l a s s , D .  W . ;  L e n n o x - B u c h t h a l , 

M . ;  P E T E R S , N .  I . ;  ( 1 9 7 4 ) :  A  G l o s s a r y  o f  T e r m s  M o s t  C o m m o n l y  U s e d  B y  C l i n i c a l  

E l e c t r o e n c e p h a l o g r a p h e r s ,  ( I F S E C N  I n t e r n a t i o n a l  A s s e m b l y ) ,  E l e c t r o e n c e p h a l o g r a p h y  

a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 37, p p .  5 3 8 - 5 4 8 .

[ 4 2 ]  C h e n , A .  M . ;  H e c h t - N i e l s e n , R . ;  ( N o v e m b e r  1 9 9 1 ) :  O n  t h e  G e o m e t r y  o f  F e e d f o r -

w a r d  N e u r a l  N e t w o r k  W e i g h t  S p a c e s ,  P r o c e e d i n g s ,  S e c o n d  I n t e r n a t i o n a l  C o n f e r e n c e  

o n  A r t i f i c i a l  N e u r a l  N e t w o r k s ,  B o u r n e m o u t h ,  p p .  1 - 4 .



BIBLIOGRAPHY 419

[ 4 3 ]  C h i l d e r s , D .  G . ;  ( 1 9 8 9 ) :  B i o m e d i c a l  S i g n a l  p r o c e s s i n g ,  i n  S e l e c t e d  T o p i c s  i n  S i g n a l  

P r o c e s s i n g ,  H a y k i n , S .  S .  ( e d i t o r ) p p .  1 9 4 - 2 5 0  P r e n t i c e  Hall.

[ 4 4 ]  C l a a s e n , T .  A .  C .  M . ;  M e c k l e n b r a u k e r , W .  F .  G . ;  ( J u n e  1 9 8 1 ) :  C o m p a r i s o n  o f  

t h e  C o n v e r g e n c e  o f  T w o  A l g o r i t h m s  f o r  A d a p t i v e  F I R  D i g i t a l  F i l t e r s ,  I E E E  

T r a n s a c t i o n s  o n  A c o u s t i c s ,  S p e e c h  a n d  S i g n a l  P r o c e s s i n g ,  Vol. ASSP-29, N o .  3 ,  p p .  6 7 0 -  

6 7 8

[ 4 5 ]  C o m l e y , R .  A . ;  B r i g n e l l , J .  E . ;  ( 1 9 8 1 ) :  R e a l - t i m e  D e t e c t i o n  o f  t h e  E p i l e p t i c  

P r e c u r s o r ,  J o u r n a l  o f  P h y s .  E :  S c i .  I n s t r u m . ,  Vol. 14, p p .  9 6 3 - 9 6 7 .

[ 4 6 ]  C o o l e y , J .  N . ; T u k e y , J . ;  ( 1 9 6 5 ) :  A n  A l g o r i t h m  F o r  T h e  M a c h i n e  C a l c u l a t i o n  O f  

C o m p l e x  F o u r i e r  S e r i e s ,  J o u r n a l  o f  M a t h e m e t i c a l  C o m p u t i n g ,  Vol. 19, p p .  2 9 7 - 3 0 1 .

[ 4 7 ]  C o o p e r , R . ;  O s s e l t o n , J .  W . ;  S h a w , J .  C . ;  ( 1 9 8 0 ) :  E E G  T e c h n o l o g y ,  ( 3rd Edition 

edition), I S B N  0 - 4 0 7 - 1 6 0 0 2 - 7 ,  B u t t e r w o r t h s  &  C o  ( P u b l i s h e r s )  L t d .

[ 4 8 ]  C o w e n , A . ;  H a r t l e y , P . ;  W o r k m a n , A . ;  ( A u t u m n  1 9 8 9 ) :  M e d i c a l  A r c h i v i n g :  A  

p i c t u r e  o f  H e a l t h ,  I m a g e  P r o c e s s i n g ,  p p .  4 4 - 4 6 .

[ 4 9 ]  C o x ,  J .  R . ,  J r . ;  N o l l e , F .  M . ;  A r t h u r , R .  M . ;  ( O c t o b e r  1 9 7 2 ) :  D i g i t a l  A n a l y s i s  o f  

t h e  E l e c t r o e n c e p h a l o g r a m ,  t h e  B l o o d  P r e s s u r e  W a v e  a n d  t h e  E l e c t r o c a r d i o g r a m ,  

I E E E  P r o c e e d i n g s ,  Vol. 60, N o .  1 0 ,  p p .  1 1 3 7 - 1 1 6 4 .

[ 5 0 ]  C r o w e l l , D .  H . ;  J o n e s , R .  H . ;  K a p u n i a i , L .  E . ;  L e u n g , P . ;  ( 1 9 7 7 ) :  A u t o r e g r e s s i v e  

R e p r e s e n t a t i o n  o f  I n f a n t  E E G  f o r  t h e  P u r p o s e  o f  H y p o t h e s i s  T e s t i n g  a n d  C l a s -

s i f i c a t i o n ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 43, p p .  3 1 7 - 3 2 4 .

[ 5 1 ]  D a r c e y , T .  M . ;  W i l l i a m s o n , P .  D . ;  ( 1 9 8 5 ) :  S p a t i o t e m p o r a l  E E G  M e a s u r e s  a n d  

t h e i r  A p p l i c a t i o n  t o  H u m a n  I n t r a c r a n i a l l y  R e c o r d e d  E p i l e p t i c  S e i z u r e s ,  E l e c t r o -

e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 61, p p .  5 7 3 - 5 8 7 .

[ 5 2 ]  D a s k a l o v a , M .  I . ;  ( J u l y  1 9 8 8 ) :  W a v e  A n a l y s i s  o f  t h e  E l e c t r o e n c e p h a l o g r a m ,  M e d -

i c a l  &  B i o l o g i c a l  E n g i n e e r i n g  &  C o m p u t i n g ,  Vol. 26, p p .  4 2 5 - 4 2 8 .

[ 5 3 ]  D a v i d , R .  A . ;  ( 1 9 8 2 ) :  A  C a s c a d e  S t r u c t u r e  f o r  E q u a t i o n  E r r o r  M i n i m i z a t i o n ,

P r o c e e d i n g s ,  I E E E  I n t e r n a t i o n a l  S i g n a l  P r o c e s s i n g  C o n f e r e n c e ,  p p .  1 8 2 - 1 8 6 .

[ 5 4 ]  D a v e y , B .  L .  K . ;  F r i g h t , W .  R . ;  C a r r o l l , G .  J . ;  ( J u l y  1 9 8 9 ) :  E x p e r t  S y s t e m s  

A p p r o a c h  t o  D e t e c t i o n  o f  E p i l e p t i f o r m  A c t i v i t y  i n  t h e  E E G ,  M e d i c a l  &  B i o l o g i c a l  

E n g i n e e r i n g  & ; C o m p u t i n g ,  Vol. 27, p p .  3 6 5 - 3 7 0 .

[ 5 5 ]  D ’ A z z o ,  J .  J . ;  H o u p i s , C .  H . ;  ( 1 9 8 9 ) :  L i n e a r  C o n t r o l  S y s t e m  A n a l y s i s  a n d  D e s i g n ,  

{2nd edition), I S B N  0 - 0 7 - 0 1 6 1 8 3 - 6 ,  M c G r a w - H i l l .



420 BIBLIOGRAPHY

[ 5 6 ]  E h r e n b e r g , B .  L . ;  P e n r y , J .  K . ;  ( 1 9 7 6 ) :  C o m p u t e r  R e c o g n i t i o n  o f  G e n e r a l i z e d  

S p i k e - W a v e  D i s c h a r g e s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 41, 

p p .  2 5 - 3 6 .

[ 5 7 ]  F i t c h , Y .  P . ;  W i l l i s o n , R .  G . ;  ( 1 9 8 0 ) :  H i g h - S p e e d  A u t o m a t i c  A n a l y s i s  o f  E E G  

S p i k e  a n d  W a v e  A c t i v i t y  U s i n g  a n  A n a l o g u e  D e t e c t i o n  a n d  M i c r o c o m p u t i n g  

P l o t t i n g  S y s t e m ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 49, p p .  

1 8 7 - 1 8 9 .

[ 5 8 ]  F i t z g e r a l d , K . ;  ( J a n u a r y  1 9 9 0 ) :  M e d i c a l  E l e c t r o n i c s :  3 - D  I m a g i n g  B e n e f i t s  f r o m  

F a s t e r  P r o c e s s i n g ,  I E E E  S p e c t r u m ,  p p .  5 2 - 5 4 .

[ 5 9 ]  F o r t g e n s , C . ;  D e  B r u i n , M .  P . ;  ( 1 9 8 3 ) :  R e m o v a l  o f  E y e  M o v e m e n t  a n d  E C G  

a r t i f a c t s  f r o m  t h e  N o n - C e p h a l i c  R e f e r e n c e  E E G ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  

N e u r o p h y s i o l o g y ,  Vol. 56, p p .  9 0 - 9 6 .

[ 6 0 ]  F r e u d , J .  E . ;  W a l p o l e , R .  E .  ( 1 9 8 0 ) :  M a t h e m a t i c a l  S t a t i s t i c s ,  I S B N  0 - 1 3 - 5 6 2 0 8 2 - 1 ,  

P r e n t i c e - H a l l ,  I n c .

[ 6 1 ]  F r i d m a n , J . ;  J o h n , E .  R . ;  B e r g e l s o n , M . ;  K a i s e r , J .  B . ;  B a i r d , H .  W . ;  ( 1 9 8 2 ) :  

A p p l i c a t i o n  o f  D i g i t a l  F i l t e r i n g  a n d  A u t o m a t i c  P e a k  D e t e c t i o n  t o  B r a i n  S t e m  

A u d i t o r y  E v o k e d  P o t e n t i a l ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 

53, p p .  4 0 5 - 4 1 6 .

[ 6 2 ]  F r o s t , J .  D . ,  J r ; ( 1 9 7 0 ) :  A n  A u t o m a t i c  S l e e p  A n a l y z e r ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  

C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 29, p p .  8 8 - 9 2 .

[ 6 3 ]  G a n o n g , W .  F . ;  ( 1 9 7 9 ) :  T h e  N e r v o u s  S y s t e m ,  ( 2nd edition), I S B N  0 - 8 7 0 4 1 - 2 4 1 - 8 ,  

L a n g e  M e d i c a l  P u b l i c a t i o n s .

[ 6 4 ]  G E R S C H , W . ;  F o u t c h , D .  A . ;  ( D e c e m b e r  1 9 7 4 ) :  L e a s t  S q u a r e s  E s t i m a t e s  o f  S t r u c -

t u r a l  S y s t e m  P a r a m e t e r s  U s i n g  C o v a r i a n c e  F u n c t i o n  D a t a ,  I E E E  T r a n s a c t i o n s  o n  

A u t o m a t i c  C o n t r o l ,  Vol. AC-19, N o .  6 ,  p p .  8 9 8 - 9 0 3 .

[ 6 5 ]  G e v i n s , A .  S . ;  Y e a g e r , C .  L . ;  D i a m o n d , S .  L . ;  S p i r e , J .  P . ;  Z e i t l i n , G .  M . ;  G e v i n s , 

A .  H . ;  ( O c t o b e r  1 9 7 5 ) :  A u t o m a t e d  A n a l y s i s  o f  t h e  E l e c t r i c a l  A c t i v i t y  o f  t h e  H u m a n  

B r a i n  ( E E G ) :  A  P r o g r e s s  R e p o r t ,  I E E E  P r o c e e d i n g s ,  Vol. 63, N o .  1 0 ,  p p .  1 3 8 2 - 1 3 9 9 .

[ 6 6 ]  G e v i n s , A .  S . ;  Y e a g e r , C .  L . ;  Z e i t l i n , G .  M . ;  A n c o l i , S . ;  D e d o n , M .  F . ;  ( 1 9 7 7 ) :  

O n - L i n e  C o m p u t e r  R e j e c t i o n  o f  E E G  A r t e f a c t s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  

N e u r o p h y s i o l o g y ,  Vol. 42, p p .  2 6 7 - 2 7 4 .



BIBLIOGRAPHY 421

[ 6 7 ]  G e v i n s , A .  S . ;  Z e i t l i n , G .  M . ;  A n c o l i , S . ;  Y e a g e r , C .  L . ;  ( 1 9 7 7 ) :  C o m p u t e r  R e -

j e c t i o n  o f  E E G  A r t i f a c t ,  I I .  C o n t a m i n a t i o n  b y  D r o w s i n e s s ,  E l e c t r o e n c e p h a l o g r a p h y  

a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 42, p p .  3 1 - 4 2 .

[ 6 8 ]  G e v i n s , A .  S . ;  ( D e c e m b e r  1 9 8 4 ) :  A n a l y s i s  o f  t h e  E l e c t r o m a g n e t i c  S i g n a l s  o f  t h e  

H u m a n  B r a i n :  M i l e s t o n e s ,  O b s t a c l e s  a n d  G o a l s ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  

E n g i n e e r i n g ,  Vol. BME-31, N o .  1 2 ,  p p .  8 3 3 - 8 5 0 .

[ 6 9 ]  G l o o r , P .  ( e d i t o r ) ;  ( 1 9 6 9 ) :  H a n s  B e r g e r  o n  t h e  E l e c t r o e n c e p h a l o g r a m  o f  M a n ,  

S u p p l e m e n t  2 8 ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  I S B N  4 4 4 - 4 0 7 3 9 - 1 ,  

E l s e v i e r  P u b l i s h i n g  C o m p a n y .

[70] G l o o r , P . ;  Fa r i e l l o , R .  G . ;  ( 1 9 8 8 ) :  G e n e r a l i z e d  E p i l e p s y :  S o m e  o f  I t s  C e l l u l a r  

M e c h a n i s m s  D i f f e r  F r o m  T h o s e  o f  F o c a l  E p i l e p s y ,  T r e n d s  I n  N e u r o s c i e n c e s ,  Vol. 11, 
N o .  2 ,  p p .  6 3 - 6 8 .

[ 7 1 ]  G l o v e r , J .  R . ,  J r . ;  K t o n a s , P .  Y . ;  R a g h a v a n , N . ;  U r u n u e l a , J .  M . ;  V e l a m u r i , 

S .  S . ;  R e i l l y , E .  L . ;  ( D e c e m b e r  1 9 8 6 ) :  A  M u l t i c h a n n e l  S i g n a l  P r o c e s s o r  F o r  t h e  

D e t e c t i o n  o f  E p i l e p t o g e n i c  S h a r p  T r a n s i e n t s  i n  t h e  E E G ,  I E E E  T r a n s a c t i o n s  o n  

B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-33, N o .  1 2 ,  p p .  1 1 2 1 - 1 1 2 8 .

[ 7 2 ]  G l o v e r , J .  R . ,  J r . ;  R a g h a v a n , N . ;  K t o n a s , P .  Y . ;  F r o s t , J .  D . ,  J r . ;  ( M a y  1 9 8 9 ) :  

C o n t e x t - B a s e d  A u t o m a t e d  D e t e c t i o n  o f  E p i l e p t o g e n i c  S h a r p  T r a n s i e n t s  i n  t h e  

E E G :  E l i m i n a t i o n  o f  F a l s e  P o s i t i v e s ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  

Vol. BME-36, N o .  5 ,  p p .  5 1 9 - 5 2 7 .

[73] G o r d o n , N . ;  ( 1 9 8 8 ) :  I n t r a c t a b l e  E p i l e p s y ,  L e t t e r ,  D e v e l o p m e n t a l  M e d i c i n e  A n d  C h i l d  

N e u r o l o g y ,  Vol. 30, p p .  8 3 0 .

[ 7 4 ]  G o t m a n , J . ;  S k u c e , D .  R . ;  T h o m p s o n , C .  J . ;  G l o o r , P . ;  Iv e s , J .  R . ;  R a y , W .  F . ;  

( 1 9 7 3 ) :  C l i n i c a l  A p p l i c a t i o n s  o f  S p e c t r a l  A n a l y s i s  a n d  E x t r a c t i o n  o f  F e a t u r e s  f r o m  

E l e c t r o e n c e p h a l o g r a m s  w i t h  S l o w  W a v e s  i n  A d u l t  P a t i e n t s ,  E l e c t r o e n c e p h a l o g r a p h y  

a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 35, p p .  2 2 5 - 2 3 5 .

[ 7 5 ]  G o t m a n , J . ;  G l o o r , P . ;  ( 1 9 7 6 ) :  A u t o m a t i c  R e c o g n i t i o n  a n d  Q u a n t i f i c a t i o n  o f  

i n t e r i c t a l  E p i l e p t i c  A c t i v i t y  i n  t h e  H u m a n  S c a l p  E E G ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  

C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 41, p p .  5 1 3 - 5 2 9 .

[ 7 6 ]  G o t m a n , J . ;  G l o o r , P . ;  S c h a u l , N . ;  ( 1 9 7 8 ) :  C o m p a r i s o n  o f  T r a d i t i o n a l  R e a d i n g  

o f  t h e  E E G  a n d  A u t o m a t i c  R e c o g n i t i o n  o f  I n t e r i c t a l  E p i l e p t i c  A c t i v i t y ,  E l e c t r o -

e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 44, p p .  4 8 - 6 0 .



422 BIBLIOGRAPHY

[ 7 7 ]  Go t ma n , J . ;  ( 1 9 8 0 ) :  Q u a n t i t a t i v e  M e a s u r e m e n t s  o f  E p i l e p t i c  S p i k e  M o r p h o l o g y

i n  t h e  H u m a n  E E G ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 48, p p .  

5 5 1 - 5 5 7 .

[ 7 8 ]  Go t ma n , J . ;  Iv e s , J .  R . ;  Gl o o r , P . ;  ( 1 9 8 1 ) :  F r e q u e n c y  C o n t e n t  o f  E E G  a n d  E M G  

a t  S e i z u r e  O n s e t :  P o s s i b i l i t y  o f  R e m o v a l  o f  E M G  A r t e f a c t  b y  D i g i t a l  F i l t e r i n g ,

E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 52, p p .  6 2 6 - 6 3 9 .

[ 7 9 ]  Go t ma n , J . ;  ( 1 9 8 9 ) :  A u t o m a t e d  A n a l y s i s  o f  A m b u l a t o r y  E E G  R e c o r d i n g s ,  in  

A m b u l a t o r y  E E G  M o n i t o r i n g ,  Eb e r s o l e , S  (e d it o r ) pp. i 9 7 —1 1 0  R a v e n  P r e s s .

[ 8 0 ]  Gr a t t o n , G . ;  Co l e s , M .  G .  H . ;  Do n c h in , E . ;  ( 1 9 8 3 ) :  A  N e w  M e t h o d  F o r  O f f - L i n e  

R e m o v a l  O f  O c u l a r  A r t i f a c t ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  

Vol. 55, p p .  4 6 8 - 4 8 4

[ 8 1 ]  Gr o c h u l s k i , W . ;  Pe n c z e k , P.; Po s ie l s k i, J . ;  ( 1 9 8 6 ) :  S e g m e n t a t i o n  o f  t h e  E E G  by 
M e a n s  o f  a  F i n i t e  S t a t e  A u t o m a t o n ,  I n t e r n a t i o n a l  J o u r n a l  o f  B i o m e d i c a l  C o m p u t i n g ,  

Vol. 18, p p .  3 5 - 4 4 .

[ 8 2 ]  Gr o s s ma n n , S .  I . ;  De r r ic k , W .  R . ;  ( 1 9 8 8 ) :  A d v a n c e d  E n g i n e e r i n g  M a t h e m a t i c s ,  

I S B N  0 - 0 6 - 0 4 2 5 3 4 - 2 ,  H a r p e r  &  R o w .

[ 8 3 ]  Ha r r ig a n , E . ;  Kr o h , J .  R . ;  Sa n d h a m , W .  A . ;  Du r r a n i , T .  S . ;  ( N o v e m b e r  1 9 9 2 ) :  

S e i s m i c  W a v e l e t  E x t r a c t i o n  U s i n g  A r t i f i c i a l  N e u r a l  N e t w o r k s ,  O n  t h e  G e o m e t r y  

o f  F e e d f o r w a r d  N e u r a l  N e t w o r k  W e i g h t  S p a c e s ,  P r o c e e d i n g s ,  S e c o n d  I n t e r n a t i o n a l  

C o n f e r e n c e  o n  A r t i f i c i a l  N e u r a l  N e t w o r k s ,  B o u r n e m o u t h ,  p p .  9 5 - 9 9 .

[ 8 4 ]  Ha u s t e in , W.; P il c h e r , J.; Kl in k , J.; Sc h u l t z , H.; ( 1 9 8 6 ) :  A u t o m a t i c  A n a l y s i s  

O v e r c o m e s  S l e e p  S t a g e  S c o r i n g ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  

Vol. 64, p p .  3 6 4 - 3 7 4 .

[ 8 5 ]  He n r ic i , P . ;  ( 1 9 7 4 ) :  A p p l i e d  a n d  C o m p u t a t i o n a l  C o m p l e x  A n a l y s i s ,  Vol. 1, I S B N  0 -  

4 7 1 - 3 7 2 4 4 - 7 ,  W i l e y - I n t e r s c i e n c e .

[ 8 6 ]  H i l l , A .  G . ;  T o w n s e n d , H .  R .  A . ;  ( 1 9 7 3 ) :  T h e  A u t o m a t i c  E s t i m a t i o n  o f  E p i l e p t i c  

S p i k e  A c t i v i t y ,  B i o m e d i c a l  C o m p u t i n g ,  Vol. 4, p p .  1 4 9 - 1 5 6 .

[ 8 7 ]  Hj o r t h , B . ;  1 9 7 0  E E G  A n a l y s i s  B a s e d  o n  T i m e - D o m a i n  P r o p e r t i e s ,  E l e c t r o -

e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 29, p p .  3 0 6 - 3 1 0 .

[ 8 8 ]  Hj o r t h , B . ;  1 9 7 3  T h e  P h y s i c a l  S i g n i f i c a n c e  o f  T i m e  D o m a i n  D e s c r i p t o r s  i n  E E G  

A n a l y s i s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 34, p p .  3 2 1 - 3 2 5 .



BIBLIOGRAPHY 423

[ 8 9 ]  Hu l t q u is t , P .  F . ;  ( 1 9 8 8 ) :  N u m e r i c a l  M e t h o d s  f o r  E n g i n e e r s  a n d  C o m p u t e r  S c i e n -

t i s t s ,  I S B N  0 - 8 0 5 3 4 - 6 5 2 - X ,  T h e  B e n j a m i n / C u m m i n g s  P u b l i s h i n g  C o m p a n y ,  I n c .

[ 9 0 ]  If e a c h o r , E .  C . ;  Je r v is , B .  W . ;  Mo r r is , E .  L . ;  A ll en , E .  M . ;  Hu d s o n , N .  R . ;  ( 1 9 8 6 ) :  

N e w  O n l i n e  M e t h o d  F o r  R e m o v i n g  O c u l a r  A r t e f a c t s  F r o m  E E G  S i g n a l s ,  M e d i c a l  

&  B i o l o g i c a l  E n g i n e e r i n g  &  C o m p u t i n g ,  Vol. 24, p p .  3 5 6 - 3 6 4

[ 9 1 ]  If e a c h o r , E .  C . ;  Jer vi s , B .  W . ;  A llen , E . M . ;  Mo r r is , E .  L . ;  W r ig h t , D .  E . ;  Hu d -
s o n , N .  R . ;  ( 1 9 8 8 ) :  I n v e s t i g a t i o n  a n d  C o m p a r i s o n  o f  S o m e  M o d e l s  f o r  R e m o v i n g  

O c u l a r  A r t e f a c t s  f r o m  E E G  s i g n a l s — p a r t  1 :  R e v i e w  o f  m o d e l s  a n d  d a t a  a n a l y s i s ,  

M e d i c a l  &  B i o l o g i c a l  E n g i n e e r i n g  &  C o m p u t i n g ,  Vol. 26, p p .  5 8 4 - 5 9 0 .

[ 9 2 ]  If e a c h o r , E .  C . ;  Jer vi s , B .  W . ;  A ll en , E .  M . ;  Mo r r is , E .  L . ;  W r ig h t , D .  E . ;  

Hu d s o n , N .  R . ;  ( 1 9 8 8 ) :  I n v e s t i g a t i o n  a n d  C o m p a r i s o n  o f  S o m e  M o d e l s  f o r  R e -

m o v i n g  O c u l a r  A r t e f a c t s  f r o m  E E G  s i g n a l s — p a r t  2 :  Q u a n t i t a t i v e  a n d  p i c t o r i a l  

c o m p a r i s o n  o f  m o d e l s ,  M e d i c a l  &  B i o l o g i c a l  E n g i n e e r i n g  &  C o m p u t i n g ,  Vol. 26, p p .  

5 9 1 - 5 9 8 .

[ 9 3 ]  Is a k s s o n , A . ;  W e n n b e r g , A . ;  Ze t t e r b e r g , L .  H . ;  ( A p r i l  1 9 8 1 ) :  C o m p u t e r  A n a l y s i s  

o f  E E G  S i g n a l s  w i t h  P a r a m e t r i c  M o d e l s ,  I E E E  P r o c e e d i n g s ,  Vol. 69, N o .  4 ,  p p .  

4 5 1 - 4 6 1 .

[ 9 4 ]  Ja c k s o n , L .  B . ;  W o o d , S .  L . ;  ( D e c e m b e r  1 9 7 8 ) :  L i n e a r  P r e d i c t i o n  i n  C a s c a d e  F o r m ,  

I E E E  T r a n s a c t i o n s  o n  A c o u s t i c s ,  S p e e c h  a n d  S i g n a l  P r o c e s s i n g ,  Vol. ASSP-26, N o .  6 ,  p p .  

5 1 8 - 5 2 8 .

[ 9 5 ]  Ja n s e n , B .  H . ;  ( 1 9 9 1 ) :  Q u a n t i t a t i v e  A n a l y s i s  o f  E l e c t r o e n c e p h a l o g r a m s :  I s  T h e r e  

C h a o s  I n  T h e  F u t u r e ? ,  I n t e r n a t i o n a l  J o u r n a l  o f  B i o m e d i c a l  C o m p u t i n g ,  Vol. 27, p p .  

9 5 - 1 2 3 .

[ 9 6 ]  Jer vi s , B .  W . ;  If e a c h o r , E .  C . ;  A ll en , E .  M . ;  ( J a n u a r y  1 9 8 8 ) :  T h e  R e m o v a l  o f  

O c u l a r  A r t e f a c t s  f r o m  t h e  E l e c t r o e n c e p h a l o g r a m :  A  R e v i e w ,  M e d i c a l  &  B i o l o g i c a l  

E n g i n e e r i n g  &  C o m p u t i n g ,  Vol. 26, p p .  2 - 1 2 .

[ 9 7 ]  Jer vi s , B .  W . ;  Co h e l l o , M . ;  Mo r g a n , G .  W . ;  ( M a y  1 9 8 9 ) :  S p e c t r a l  A n a l y s i s  o f  

E E G  R e s p o n s e s ,  M e d i c a l  &  B i o l o g i c a l  E n g i n e e r i n g  &  C o m p u t i n g ,  Vol. 27, p p .  2 3 0 - 2 3 8 .

[ 9 8 ]  Jo h n s o n , T .  L . ;  W r ig h t , S .  C . ;  Se g a l l , A . ;  ( O c t o b e r  1 9 7 9 ) :  F i l t e r i n g  o f  M u s c l e  A r -

t i f a c t  f r o m  t h e  E l e c t r o e n c e p h a l o g r a m ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  

Vol. BME-26, N o .  1 0 ,  p p .  5 5 6 - 5 6 3 .

[ 9 9 ]  Jo n e s , R .  H . ;  ( D e c e m b e r  1 9 7 4 ) :  I d e n t i f i c a t i o n  a n d  A u t o r e g r e s s i v e  S p e c t r u m  E s t i -

m a t i o n ,  I E E E  T r a n s a c t i o n s  o n  A u t o m a t i c  C o n t r o l ,  Vol. AC-19, N o .  6 ,  p p .  8 9 4 - 8 9 7 .



424 BIBLIOGRAPHY

[100] Jo n e s , W . B .; St e in h a r d t , A . O .; (October 1985): F i n d i n g  t h e  P o l e s  o f  t h e  L a t t i c e  

F i l t e r ,  IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-33, N o .  

4, pp. 1329-1331.

[ 1 0 1 ]  Ka i l a t h , T . (e d it o r ); ( 1 9 7 7 ) :  L i n e a r  L e a s t - S q u a r e s  E s t i m a t i o n ,  ISBN 0 - 8 7 9 3 3 - 0 9 8 - 8 ,  

Dowden, Hutchinson & Ross Inc.

[ 1 0 2 ]  K a t z , M . K . ;  ( 1 9 8 8 ) :  F r a c t a l s  a n d  t h e  A n a l y s i s  o f  W a v e f o r m s ,  Computers in Biology 

and Medicine, Vol. 18, N o .  3 ,  pp. 1 4 5 - 1 5 6 .

[ 1 0 3 ]  Kil o h , L .  G . ;  Mc Co ma s , A .  J . ;  Os s el to n , J .  W ;  ( 1 9 7 2 ) :  C l i n i c a l  E l e c t r o e n c e p h a l o -

g r a p h y ,  ( 3rd edition), ISBN 0 - 4 0 7 - 1 3 6 0 2 - 9 ,  Butterworth &  Co (Publishers) Ltd.

[ 1 0 4 ]  K L E IN E R , B . ;  ( 1 9 7 3 ) :  S o m e  C o m m e n t s  o n  t h e  U s e  o f  a n  E E G  A u t o r e g r e s s i v e  M o d e l  

f o r  t h e  T i m e - S a v i n g  C a l c u l a t i o n  o f  S p e c t r a l  P o w e r  D e n s i t y  D i s t r i b u t i o n s  w i t h  a  

D i g i t a l  C o m p u t e r ,  Electroencephalography and Clinical Neurophysiology, Vol. 35, pp. 

3 3 1 - 3 3 2 .

[105] Ko f f l e r , D . J . ;  Go t m a n , J . ;  (1985): A u t o m a t i c  D e t e c t i o n  o f  S p i k e - a n d - W a v e  

B u r s t s  i n  A m b u l a t o r y  E E G  R e c o r d i n g s ,  Electroencephalography and Clinical Neu-

rophysiology, Vol. 61, pp. 165-180.

[106] Ko h n , A . F .; (March 1987): P h a s e  D i s t o r t i o n  i n  B i o l o g i c a l  S i g n a l  A n a l y s i s  C a u s e d  

b y  L i n e a r  P h a s e  F I R  F i l t e r s ,  Medical &  Biological Engineering &  Computing, Vol. 25, 

pp. 231-238.

[ 1 0 7 ]  K T O N A S , P .  Y.; S M IT H , J .  R . ;  ( 1 9 7 4 ) :  Q u a n t i f i c a t i o n  o f  A b n o r m a l  E E G  S p i k e  C h a r -

a c t e r i s t i c s ,  Computers in Biology and Medicine, Vol. 4, pp. 1 5 7 - 1 6 3 .

[108] Kt o n a s , P . Y .;  Lu o h , W . M .; Ke j a r iw a l , M . L.; Re il ly , E. L.; Se w a r d , M . A .; 

(1981): C o m p u t e r - A i d e d  Q u a n t i f i c a t i o n  o f  E E G  S p i k e  a n d  S h a r p  W a v e  C h a r a c -

t e r i s t i c s ,  Electroencephalography and Clinical Neurophysiology, Vol. 51, pp. 2 3 7 - 2 4 3 .

[ 1 0 9 ]  Le a d e r , H. S.; Co h n , R .; W e ih r e r , A . L.; Ca c e r e s , C. A .; ( 1 9 6 7 ) :  P a t t e r n  R e a d i n g  

o f  t h e  C l i n i c a l  E l e c t r o e n c e p h a l o g r a m  w i t h  a  D i g i t a l  C o m p u t e r ,  Electroencephalo-

graphy and Clinical Neurophysiology, Vol. 23, pp. 5 6 6 - 5 7 0 .

[110] L i m , A . J .; W in t e r s , W . D .; (April 1980): A  P r a c t i c a l  M e t h o d  f o r  A u t o m a t i c  R e a l -  

T i m e  E E G  S l e e p  S t a g e  A n a l y s i s ,  IEEE Transactions on Biomedical Engineering, Vol. 

BME-27, N o .  5 ,  pp. 212-220.

[111] LJUNG, S; Lj u n g , L; ( 1 9 8 5 ) :  E r r o r  P r o p a g a t i o n  P r o p e r t i e s  o f  R e c u r s i v e  L e a s t -  

S q u a r e s  A d a p t a t i o n  A l g o r i t h m s ,  Autom atica, Vol. 21, N o .  2 ,  pp. 2 3 6 - 2 4 6 .



BIBLIOGRAPHY 425

[ 1 1 2 ]  Lipp ma n , R .  P . ;  ( A p r i l  1 9 8 7 ) :  A n  I n t r o d u c t i o n  t o  C o m p u t i n g  w i t h  N e u r a l  N e t s ,  

I E E E  A c o u s t i c s  S p e e c h  a n d  S i g n a l  P r o c e s s i n g  M a g a z i n e ,  p p .  4 - 2 2 .

[ 1 1 3 ]  Ly n c h , M .  R . ;  Ho l d e n , S .  B . ;  Ra y n e r , P .  J . ;  ( N o v e m b e r  1 9 9 1 ) :  C o m p l e x i t y -  

r e d u c t i o n  i n  V o l t e r r a  C o n n e c t i o n i s t  N e t w o r k s  U s i n g  a  S e l f - S t r u c t u r i n g  L M S  

A l g o r i t h m ,  P r o c e e d i n g s ,  I I  I n t e r n a t i o n a l  C o n f e r e n c e  o n  A r t i f i c i a l  N e u r a l  N e t w o r k s ,  

B o u r n e m o u t h ,  U . K . ,  p p .  4 4 - 4 8 .

[ 1 1 4 ]  Ly n n , P .  A . ;  ( S e p t e m b e r  1 9 7 7 ) :  O n l i n e  D i g i t a l  F i l t e r s  f o r  B i o l o g i c a l  S i g n a l s :  S o m e  

F a s t  D e s i g n s  f o r  a  S m a l l  C o m p u t e r ,  M e d i c a l  &  B i o l o g i c a l  E n g i n e e r i n g  &  C o m p u t i n g ,  

Vol. 15, p p .  5 3 4 - 5 4 0 .

[ 1 1 5 ]  L y n n , P .  A . ;  ( 1 9 8 2 ) :  A n  I n t r o d u c t i o n  t o  t h e  A n a l y s i s  a n d  P r o c e s s i n g  o f  S i g n a l s ,

( 2nd edition), p p .  1 9 6 - 2 0 7  I S B N  0 - 3 3 3 - 3 4 0 3 0 - 2 ,  M a c M i l l a n  E d u c a t i o n .

[ 1 1 6 ]  Ma k h o u l , J . ;  ( A p r i l  1 9 7 5 ) :  L i n e a r  P r e d i c t i o n :  A  T u t o r i a l  R e v i e w ,  I E E E  P r o c e e d i n g s ,  

Vol. 63, N o .  4 ,  p p .  5 6 1 - 5 8 0 .

[ 1 1 7 ]  Ma n d e l b r o t , B .  B . ;  ( 1 9 8 3 ) :  T h e  F r a c t a l  G e o m e t r y  o f  N a t u r e ,  I S B N  0 - 7 1 6 7 - 1 1 8 6 - 9 ,  

F r e e m a n  &  C o . ,  N Y .

[ 1 1 8 ]  Ma r ie b , E .  N ;  ( 1 9 8 9 ) :  H u m a n  A n a t o m y  a n d  P h y s i o l o g y ,  I S B N  0 - 8 0 5 3 - 0 1 2 2 - 4 ,  T h e  

B e n j a m i n / C u m m i n g s  P u b l i s h i n g  C o m p a n y ,  I n c .

[ 1 1 9 ]  Ma t o u s e k , M . ;  Pe t e r s e n , I . ;  ( 1 9 7 3 ) :  A u t o m a t i c  E v a l u a t i o n  o f  E E G  B a c k g r o u n d  

A c t i v i t y  b y  M e a n s  o f  A g e - D e p e n d e n t  E E G  Q u o t i e n t s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  

C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 35, p p .  6 0 3 - 6 1 2 .

[ 1 2 0 ]  Ma t t h e w s , W .  B . ;  ( 1 2  S e p t e m b e r  1 9 6 4 ) :  T h e  U s e  a n d  A b u s e  o f  E l e c t r o e n c e p h a l o -

g r a p h y ,  T h e  L a n c e t ,  p p .  5 7 7 - 5 7 9 .

[ 1 2 1 ]  Mc G il l e m, C .  D . ;  Co o p e r , G .  R . ;  ( 1 9 8 6 ) :  C o n t i n u o u s  a n d  D i s c r e t e  S i g n a l  a n d  

S y s t e m  A n a l y s i s ,  ( 2nd edition), I S B N  0 - 0 3 - 9 1 0 7 7 0 - 1 ,  C B S  C o l l e g e  P u b l i s h i n g .

[ 1 2 2 ]  Mc Le o d , J .  G . ;  La n c e , J .  W . ;  ( 1 9 8 9 ) :  I n t r o d u c t o r y  N e u r o l o g y ,  ( 2nd edition), 

I S B N  0 - 8 6 7 - 9 3 0 1 7 9 ,  B l a c k w e l l  S c i e n t i f i c  P u b l i c a t i o n s  L t d .

[ 1 2 3 ]  Mc Lo c h l in , C . ;  Pr in c ipe , J .  P . ;  Smit h , J .  R . ;  ( 1 9 8 8 ) :  A  D a t a  C o m p r e s s i o n  A l g o -

r i t h m  f o r  t h e  E l e c t r o e n c e p h a l o g r a m ,  I n t e r n a t i o n a l  J o u r n a l  o f  B i o m e d i c a l  C o m p u t i n g ,  

Vol. 22, p p .  8 3 - 8 6 .

[124] M in s k y , M ;  P a p e r t , S ;  ( 1 9 6 9 ) :  P e r c e p t r o n s ,  M I T  P re ss .



426 BIBLIOGRAPHY

[125] Mo s e r , J. M.; A u n o n , J. I.; (December 1986): Classification and Detection of Sin-
gle Evoked Brain Potentials Using Time-Frequency Amplitude Features, IEEE 
Transactions on Biomedical Engineering, Vol. BME-33, No. 12, pp. 1096-1106.

[126] My l o n a s , S. A.; Co ml e y , R. A.; (July, 1991): On-Line Detection of the Epileptic 
Precursor, Proceedings, First Cyprus International Conference on Computer Applications 
to Engineering Systems, pp. 178-183.

[127] Oma r o u a y a c h e , S.; My l o n a s , S. A.; Elli s , T. J.; Co ml e y , R. A.; (1992): Trans-
puter Implementation of Adaptive Noise Cancelling In Digital Images, Proceed-
ings, PACTA ’92, Barcelona, Spain, pp. 964-974.

[128] My l o n a s , S. A.; Co ml e y , R. A.; (November 1992): Detection of Epileptic Spikes in 
the EEG Using Adaptive Filters, Proceedings, I Forum Nacional de Ciencia e Tecnologia 
em Saude—XIII Congresso Brasileiro de Engenharia Biomedica, Caxambu (MG), Brazil, .

[129] My l o n a s , S. A.; Co ml e y , R. A.; (December 1992): Adaptive Predictive Modelling 
for the Analysis of the Epileptic EEG, Proceedings, ICCS/ISITA ’92, Singapore, Vol. 
3, pp. 1214-1218.

[130] My l o n a s , S. A.; Co ml e y , R. A.; (July 1993): Linear Prediction, Neural Networks 
and the Analysis of EEG signals, Proceedings, International Conference on DSP and 
Second Cyprus International Conf. on Computer Appl. to Eng. Sys., pp. 286-291.

[131] My l o n a s , S. A.; Co ml e y , R. A.; (September 1994): EEG Analysis Using a Multi- 
Layer Perceptron With Linear Preprocessing, Proceedings, IV IEEE Workshop on 
Artificial Neural Networks In Signal Processing, pp. 671-680.

[132] My l o n a s , S. A.; (1993): The The nervous system, Internal Report, Centre for Infor-
mation Engineering, City University.

[133] My l o n a s , S. A.; (1993): The electroencephalogram, Internal Report, Centre for In-
formation Engineering, City University.

[134] My l o n a s , S. A.; (1994): Epilepsy and the EEG, Internal Report, Centre for Information 
Engineering, City University.

[135] My l o n a s , S. A.; (1994): Internal Report, Review of Automatic EEG Quantifica-
tion and Monitoring, Centre for Information Engineering, City University.

[136] He c h t -N ie ls en , R.: (1990): Neurocomputing,, ISBN 0-201-09355-1, Addison-Wesley.



BIBLIOGRAPHY 427

[ 1 3 7 ]  Of f n e r , F .  F . ;  ( D e c e m b e r  1 9 8 4 ) :  B i o e l e c t r i c  P o t e n t i a l s — T h e i r  S o u r c e ,  R e c o r d i n g  

a n d  S i g n i f i c a n c e ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-31, N o .  1 2 ,  

p p .  5 6 3 - 5 6 8 .

[ 1 3 8 ]  Ok e n , B .  S . ;  Ch ia ppa , K. H.; ( 1 9 8 8 ) :  S h o r t - T e r m  V a r i a b i l i t y  i n  E E G  F r e q u e n c y  

A n a l y s i s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 69, p p .  1 9 7 - 1 9 8 .

[ 1 3 9 ]  De  Ol iv ie r a , P .  G . ;  Qu e ir o z , C.; Lope s  Da  Sil va , F . ;  ( 1 9 8 3 ) :  S p i k e  D e t e c t i o n  B a s e d  

o n  a  P a t t e r n  R e c o g n i t i o n  A p p r o a c h  U s i n g  a  M i c r o c o m p u t e r ,  E l e c t r o e n c e p h a l o -

g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 56, p p .  9 7 - 1 0 3 .

[ 1 4 0 ]  Or fa n id is , S .  J . ;  ( 1 9 9 0 ) :  O p t i m u m  S i g n a l  P r o c e s s i n g — A n  I n t r o d u c t i o n ,  (2nd edi-

tion), I S B N  0 - 0 7 - 1 0 0 8 3 4 - 9 ,  M c G r a w - H i l l ,  N e w  Y o r k .

[ 1 4 1 ]  Pa n y c h , L .  P . ;  Wa d a , J .  A . ;  Be d d o e s , M .  P . ;  ( 1 9 8 5 ) :  A u t o m a t i o n  o f  t h e  S e i z u r e  

I n v e s t i g a t i o n  U n i t  a t  t h e  U n i v e r s i t y  o f  B r i t i s h  C o l u m b i a  H e a l t h  S c i e n c e s  C e n t r e  

H o s p i t a l ,  ( s h o r t  C o m m u n i c a t i o n ) ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  

Vol. 61, p p .  5 8 8 - 5 9 1 .

[ 1 4 2 ]  Pa n y c h , L .  P . ;  Wa d a , J .  A . ;  Be d d o e s , M .  P . ;  ( 1 9 8 9 ) :  P r a c t i c a l  D i g i t a l  F i l t e r s  f o r  

R e d u c i n g  E M G  a r t e f a c t  i n  E E G  S e i z u r e  R e c o r d i n g s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  

C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 72, p p .  2 6 8 - 2 7 6 .

[ 1 4 3 ]  Pa p p , Z . ;  Pe c e l i , G . ;  Ba g o , B . ;  Pa t a k i , B . ;  ( J u n e  1 9 8 8 ) :  I n t e l l i g e n t  M e d i c a l  I n s t r u -

m e n t s ,  I E E E  E n g i n e e r i n g  i n  M e d i c i n e  M a g a z i n e ,  p p .  1 8 - 2 3 .

[ 1 4 4 ]  Pe n c z e k , P . ;  Gr o c h u l s k i, W . ;  Gr y z b , J . ;  Ko w a l c z y k , M . ;  ( 1 9 8 7 ) :  T h e  U s e  o f  

M u l t i c h a n n e l  K a l m a n  F i l t e r  A l g o r i t h m  i n  S t r u c t u r a l  A n a l y s i s  o f  t h e  E p i l e p t i c  

E E G ,  I n t e r n a t i o n a l  J o u r n a l  o f  B i o m e d i c a l  C o m p u t i n g ,  Vol. 20, p p .  1 3 5 - 1 5 1 .

[ 1 4 5 ]  Pe n c z e k , P . ;  Gr o c h u l s k i, W . ;  ( 1 9 8 9 ) :  A n a l y s i s  o f  M u l t i - C h a n n e l  E p i l e p t i f o r m  

E E G  U s i n g  t h e  M a r k o v  C h a i n s  F o r m a l i s m ,  M e t h o d s  o f  I n f o r m a t i o n  i n  M e d i c i n e ,  Vol. 

28, p p .  1 6 0 - 1 6 7 .

[ 1 4 6 ]  Pe p e r , A . ;  Gr imb e r g e n , C .  A . ;  ( A p r i l  1 9 8 3 ) :  E E G  M e a s u r e m e n t  D u r i n g  E l e c t r i c a l  

S t i m u l a t i o n ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-30, N o .  4 ,  p p .  

2 3 1 - 2 3 3 .

[ 1 4 7 ]  P fu r t s c h e l l e r , G.; Ha r in g , G . ;  ( 1 9 7 2 ) :  T h e  U s e  o f  a n  E E G  A u t o r e g r e s s i v e  m o d e l  

f o r  t h e  T i m e - S a v i n g  C a l c u l a t i o n  o f  S p e c t r a l  P o w e r  D e n s i t y  D i s t r i b u t i o n s  W i t h  

a  D i g i t a l  C o m p u t e r ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 33, p p .  

1 1 3 - 1 1 5 .



428 BIBLIOGRAPHY

[ 1 4 8 ]  P f u r t s c h e l l e r , G . ;  Fis c h e r , G . ;  A  N e w  A p p r o a c h  t o  S p i k e  D e t e c t i o n  U s i n g  a  

C o m b i n a t i o n  o f  I n v e r s e  a n d  M a t c h e d  F i l t e r  T e c h n i q u e s ,  E l e c t r o e n c e p h a l o g r a p h y  

a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  V b i .  44, ( 1 9 7 8 ) :  p p .  2 4 3 - 2 4 7 .

[149] P o l a , P . ;  R o m a g n o l i , 0 . ;  ( 1 9 7 9 ) :  A u t o m a t i c  A n a l y s i s  o f  I n t e r i c t a l  E p i l e p t i c  A c -

t i v i t y  R e l a t e d  t o  i t s  M o r p h o l o g i c a l  A s p e c t s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  

N e u r o p h y s i o l o g y ,  Vol. 46, p p .  2 2 7 - 2 3 1 .

[ 1 5 0 ]  Po u l a r ik a s , A .  D . ;  Se e l y , S . ;  ( 1 9 8 5 ) :  S i g n a l s  a n d  S y s t e m s ,  I S B N  0 - 5 3 4 - 0 3 4 0 2 - 0 ,  

P W S - E n g i n e e r i n g

[ 1 5 1 ]  Pr o a k is , J .  G . ;  Ma n o l a k is , D .  G . ;  ( 1 9 8 9 ) :  A n  I n t r o d u c t i o n  t o  D i g i t a l  S i g n a l  P r o -

c e s s i n g ,  I S B N  0 - 0 2 - 9 4 6 2 5 3 - 3 ,  M a c m i l l a n  I n t e r n a t i o n a l .

[ 1 5 2 ]  Pr o a k is , J .  G . ;  Ra d e r , C .  M . ;  Lin g , F.; Nik ia s , C .  L . ;  ( 1 9 9 2 ) :  A d v a n c e d  D i g i t a l  

S i g n a l  P r o c e s s i n g ,  I S B N  0 - 0 2 - 3 9 6 8 4 1 - 9 ,  M a c m i l l a n  I n t e r n a t i o n a l .

[ 1 5 3 ]  Pr a e t o r iu s , H .  M . ;  Bo d e n s t e in , G . ;  Cr e u t z f e l d t , O .  D . ;  ( 1 9 7 7 ) :  A d a p t i v e  S e g -

m e n t a t i o n  o f  E E G  r e c o r d s :  A  N e w  A p p r o a c h  t o  A u t o m a t i c  E E G  a n a l y s i s ,  E l e c t r o -

e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 42, p p .  8 4 - 9 4 .

[ 1 5 4 ]  Pr in c ipe , J .  C . ;  Smit h , J .  R . ;  Ba l a k r is h n a n , S .  K . ;  Pa ig e , A . ;  ( D e c e m b e r  1 9 7 9 ) :  

M i c r o c o m p u t e r - B a s e d  D i g i t a l  F i l t e r s  f o r  E E G  P r o c e s s i n g ,  I E E E  T r a n s a c t i o n s  o n  

A c o u s t i c s ,  S p e e c h  a n d  S i g n a l  P r o c e s s i n g ,  Vol. ASSP-27, N o .  6 ,  p p .  6 9 7 - 7 0 5 .

[ 1 5 5 ]  P R IN C IP E , J .  C . ;  Smit h , J .  R . ;  ( 1 9 8 2 ) :  M i c r o c o m p u t e r - B a s e d  S y s t e m  f o r  t h e  D e t e c -

t i o n  a n d  Q u a n t i f i c a t i o n  o f  P e t i t  M a i  E p i l e p s y ,  C o m p u t e r s  I n  B i o l o g y  a n d  M e d i c i n e ,  

Vol. 12, N o .  2 ,  p p .  8 7 - 9 5 .

[ 1 5 6 ]  P r in c ipe , J .  C . ;  Smit h , J .  R . ;  ( J u n e  1 9 8 6 ) :  D e s i g n  a n d  I m p l e m e n t a t i o n  o f  L i n e a r  

P h a s e  F I R  F i l t e r s  f o r  B i o l o g i c a l  S i g n a l  P r o c e s s i n g ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  

E n g i n e e r i n g ,  Vol. BME-33, N o .  6 ,  p p .  5 5 0 - 5 5 9 .

[ 1 5 7 ]  Qu ia n , J . ;  Ba r l o w , J .  S . ;  Be d d o e s , M .  P . ;  ( J a n u a r y  1 9 8 8 ) :  A  S i m p l i f i e d  A r i t h m e t i c  

D e t e c t o r  F o r  E E G  S h a r p  T r a n s i e n t s — P r e l i m i n a r y  R e s u l t s ,  I E E E  T r a n s a c t i o n s  o n  

B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-35, N o .  1 ,  p p .  1 1 - 1 7 .

[ 1 5 8 ]  Ra b in e r , L .  R . ;  Go l d , B . ;  ( 1 9 7 5 ) :  T h e o r y  a n d  A p p l i c a t i o n  o f  D i g i t a l  S i g n a l  P r o -

c e s s i n g ,  I S B N  0 - 1 3 - 9 1 4 1 0 1 - 4 ,  P r e n t i c e - H a l l /  E n g l e w o o d  C l i f f s .

[ 1 5 9 ]  R i c c i ,  D . ;  Fi o r e , L . ;  Co l o mb e t t i , G . ;  ( J u l y  1 9 8 8 ) :  T i m e - D o m a i n  C r o s s - C o r r e l a t i o n  

A s s e m b l y  L a n g u a g e  R o u t i n e  f o r  t h e  I B M  P C  a n d  a n  A p p l i c a t i o n  i n  N e u r a l  S i g n a l  

A n a l y s i s ,  M e d i c a l  k. B i o l o g i c a l  E n g i n e e r i n g  &  C o m p u t i n g ,  Vol. 26, p p .  4 5 4 - 4 5 6 .



BIBLIOGRAPHY 429

[ 1 6 0 ]  Ric h en s , A . ;  ( F e b r u a r y  1 9 8 8 ) :  F r a m e w o r k  o f  M e d i c a l  C a r e  F o r  E p i l e p s y ,  B r i t i s h  

J o u r n a l  o f  H o s p i t a l  M e d i c i n e ,  p p .  9 7 .

[ 1 6 1 ]  Ro b e r t s , S . ;  Ta r r a s s e n c o , L . ;  ( J a n u a r y  1 9 9 1 ) :  A  N e w  M e t h o d  o f  A u t o m a t e d  S l e e p  

Q u a n t i f i c a t i o n ,  R e p o r t  N o .  O U E L  1 8 7 5 / 9 1 ,  U n i v e r s i t y  o f  O x f o r d ,  D e p a r t m e n t  o f  E n g i -

n e e r i n g  S c i e n c e .

[ 1 6 2 ]  Ro b e r t s , S . ;  Ta r r a s s e n c o , L . ;  ( N o v e m b e r  1 9 9 1 ) :  A  N e w  M e t h o d  o f  A u t o m a t e d  

S l e e p  Q u a n t i f i c a t i o n ,  P r o c e e d i n g s :  I I  I n t e r n a t i o n a l  C o n f e r e n c e  o n  A r t i f i c i a l  N e u r a l  N e t -

w o r k s ,  p p .  2 1 0 - 2 1 3 .

[163] R o m a n o , J .  M .  T . ;  B e l l a n g e r , M . ;  ( 1 9 8 8 ) :  F a s t  A d a p t i v e  N o t c h  F i l t e r i n g  i n  C a s -

c a d e  F o r m ,  i n  S i g n a l  P r o c e s s i n g  I V :  T h e o r i e s  A n d  A p p l i c a t i o n s  , L a c o u m e , J .  L . ;  

C h e h i c k i a n , A . ;  M a r t i n  N . ;  M a l b o s , J .  ( e d i t o r s ) E U R A S I P ,  p p .  5 6 7 - 5 7 0  E l e s e v i e r  

S c i e n c e  P u b l i s h e r s .

[ 1 6 4 ]  Ro ma n o , J .  M .  T . ;  BELLANGER, M . ;  Co r a d in e , L .  C . ;  ( 1 9 9 0 ) :  L e a s t  S q u a r e s  A d a p -

t i v e  F i l t e r  i n  C a s c a d e  F o r m  f o r  L i n e  P a i r  S p e c t r u m  M o d e l l i n g ,  P r o c e e d i n g s ,  

E U R A S I P  C o n f e r e n c e ,  p p .  1 2 0 - 1 2 2 .

[ 1 6 5 ]  Ro w l a n d , L .  P .  (e d it o r ); ( 1 9 7 9 ) :  M e r r i t t ’ s  T e x t b o o k  o f  N e u r o l o g y ,  (8th edition), 

I S B N  0 - 8 1 2 1 - 1 1 4 8 - 6 ,  L e a  &  F e b i g e r  P u b l i s h e r s .

[ 1 6 6 ]  Ru me l h a r t , D .  E ;  Hin t o n , G .  E . ;  W i l l ia ms , R .  J . ;  ( 1 9 8 6 ) :  L e a r n i n g  i n t e r n a l  r e p r e -

s e n t a t i o n s  b y  e r r o r  p r o p a g a t i o n ,  i n  P a r a l l e l  D i s t r i b u t e d  P r o c e s s i n g :  E x p l o r a t i o n s  

i n  t h e  m i c r o s t r u c t u r e  o f  C o g n i t i o n , ,  Ru me l h a r t , D .  E . ;  Mc Le l l a n d , J .  L .  (e d i-
t o r s ); Vol. 1, p p .  3 1 8 - 3 6 2  I S B N  0 - 2 6 2 - 1 8 1 2 0 - 7 ,  M I T  P r e s s .

[ 1 6 7 ]  Sa l t z b e r g , B . ;  Bu r c h , N .  R . ;  ( 1 9 7 1 ) :  P e r i o d  A n a l y t i c  E s t i m a t e s  o f  M o m e n t s  o f  t h e  

P o w e r  S p e c t r u m :  A  S i m p l i f i e d  T i m e  D o m a i n  P r o c e d u r e ,  E l e c t r o e n c e p h a l o g r a p h y  

a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 30, p p .  5 6 8 - 5 7 0 .

[168] Sa l t z b e r g , B . ;  ( J u l y  1 9 7 6 ) :  A  M o d e l  f o r  R e l a t i n g  R i p p l e s  i n  t h e  E E G  P o w e r  

S p e c t r a l  D e n s i t y  t o  T r a n s i e n t  P a t t e r n s  o f  B r a i n  E l e c t r i c a l  A c t i v i t y  I n d u c e d  b y  

S u b c o r t i c a l  S p i k i n g ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-23, N o .  

7 , p p .  3 5 5 - 3 5 6 .

[ 1 6 9 ]  Sa l t z b e r g , B . ;  Bu r t o n , W .  D . ,  Jr .; Ba r l o w , J .  S . ;  Bu r c h , N .  R . ;  ( 1 9 8 5 ) :  M o m e n t s  

o f  t h e  P o w e r  S p e c t r a l  D e n s i t y  E s t i m a t e d  f r o m  S a m p l e s  o f  t h e  A u t o c o r r e l a t i o n  

F u n c t i o n  ( A  R o b u s t  P r o c e d u r e  f o r  M o n i t o r i n g  C h a n g e s  i n  t h e  S t a t i s t i c a l  P r o p e r -

t i e s  o f  L e n g t h y  N o n - S t a t i o n a r y  T i m e - S e r i e s  S u c h  a s  t h e  E E G ) ,  E l e c t r o e n c e p h a l o -

g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 61, p p .  8 9 - 9 3 .



430 BIBLIOGRAPHY

[ 1 7 0 ]  S A L T Z B E R G , B . ;  ( D e c e m b e r  1 9 8 6 ) :  A n  E f f i c i e n t  F o r m u l a  f o r  E s t i m a t i n g  G e n e r a l i z e d  

M o m e n t s  o f  T h e  P o w e r  S p e c t a l  D e n s i t y  ( P S D )  w i t h o u t  C o m p u t i n g  t h e  F o u r i e r  

T r a n s f o r m ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-33, N o .  12, p p .  

1 1 3 4 - 1 1 3 6 .

[ 1 7 1 ]  Sa n d ma n , A . ;  Sa p i r , B . ;  ( 1 9 8 8 ) :  T h i r d  O r d e r  P o l y n o m i a l — I t s  U s e  i n  D a t a  C o m -

p r e s s i o n ,  S i g n a l  p r o c e s s i n g ,  N o .  1 5 ,  p p .  4 0 5 - 4 1 8 .

[ 1 7 2 ]  S c A M B L E R , G . ;  ( 1 9 8 9 ) :  E p i l e p s y — T h e  E x p e r i e n c e  o f  I l l n e s s  S e r i e s ,  I S B N  0 - 4 1 5 0 1 7 5 8 -  

0 ,  T a v i s t o c k / R o u t l e d g e .

[ 1 7 3 ]  ( 1 9 8 0 ) :  T h e  V o l t e r r a  a n d  W i e n e r  T h e o r i e s  o f  N o n - L i n e a r  S y s t e m s ,  I S B N  0 - 4 7 1 -  

4 4 5 5 - 5 ,  W i l e y .

[ 1 7 4 ]  Sc h w a n n , H .  P . ;  ( D e c e m b e r  1 9 8 4 ) :  T h e  D e v e l o p m e n t  o f  B i o m e d i c a l  E n g i n e e r i n g :  

H i s t o r i c a l  C o m m e n t s  a n d  P e r s o n a l  O b s e r v a t i o n s ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  

E n g i n e e r i n g ,  V b 7 . BME-31, N o .  1 2 ,  p p .  7 3 0 - 7 3 6 .

[ 1 7 5 ]  Sc h w a r t z , M . ;  Sh a w , L . ;  ( 1 9 7 6 ) :  S i g n a l  P r o c e s s i n g ,  I S B N  0 - 0 7 - 0 5 5 6 6 2 - 8 ,  M c G r a w - H i l l  

I n c .

[ 1 7 6 ]  Sc h w a r t z , M .  D . ;  ( D e c e m b e r  1 9 8 4 ) :  T h e  E m e r g i n g  F i e l d  o f  C l i n i c a l  E n g i n e e r i n g  

a n d  i t s  A c c o m p l i s h m e n t s ,  I E E E  T r a n s a c t i o n s  o n  B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-31, 
N o .  12, p p .  7 4 3 - 7 4 7 .

[ 1 7 7 ]  S C O T T , D . ;  ( 1 9 7 6 ) :  U n d e r s t a n d i n g  E E G — A n  I n t r o d u c t i o n  t o  E l e c t r o e n c e p h a l o -

g r a p h y ,  I S B N  0 - 7 1 5 6 - 0 9 3 9 - 4 ,  G e r a l d  D u c k w o r t h  &  C o .  L t d .

[ 1 7 8 ]  Sc o t t , D .  F . ;  ( J u l y  1 9 8 7 ) :  I n d i c a t i o n s  F o r  T h e  E E G ,  e d i t o r i a l ,  B r i t i s h  J o u r n a l  o f  

H o s p i t a l  M e d i c i n e ,  p p .  1 1 1 .

[ 1 7 9 ]  Lope s  Da  Silva , F .  H . ;  Va n  Hu l t e n , K . ;  Lo mme n , J .  G . ;  St o r m  Van  Le e u w e n , 
W . ;  Va n  V e e l e n , C .  W .  M . ;  V i l ie g e n t h a r t , W . ;  ( 1 9 7 7 ) :  A u t o m a t i c  D e t e c t i o n  a n d  

L o c a l i z a t i o n  o f  E p i l e p t i c  F o c i ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  

Vol. 43, p p .  1 - 1 3 .

[ 1 8 0 ]  S i u ,  S.jCo w a n ; C .  F .  N ;  ( N o v e m b e r  1 9 9 1 ) :  A d a p t i v e  E q u a l i z a t i o n  U s i n g  t h e  lv B a c k  

P r o p a g a t i o n  A l g o r i t h m ,  P r o c e e d i n g s ,  S e c o n d  I n t e r n a t i o n a l  C o n f e r e n c e  o n  A r t i f i c i a l  N e u -

r a l  N e t w o r k s ,  B o u r n e m o u t h ,  U . K . ,  p p .  1 0 - 1 3 .

[ 1 8 1 ]  Smit h , J .  R . ;  ( J a n u a r y  1 9 7 4 ) :  A u t o m a t i c  A n a l y s i s  a n d  D e t e c t i o n  o f  E E G  S p i k e s ,  

I E E E  T r a n s a c t i o n s  o n  b i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-21, N o .  1 ,  p p .  1 - 7 .



BIBLIOGRAPHY 431

[ 1 8 2 ]  SMITH, W. D.; La g e r , D. L.; ( M a r c h  1 9 8 6 ) :  E v a l u a t i o n  o f  S i m p l e  A l g o r i t h m s  f o r  

S p e c t r a l  P a r a m e t e r  A n a l y s i s  o f  t h e  E l e c t r o e n c e p h a l o g r a m ,  I E E E  T r a n s a c t i o n s  o n  

B i o m e d i c a l  E n g i n e e r i n g ,  Vol. BME-33, N o .  4 ,  p p .  3 5 2 - 3 5 8 .

[ 1 8 3 ]  St e l l e , A .  L . ;  Co ml e y , R .  A . ;  ( S e p t e m b e r  1 9 8 9 ) :  P o r t a b l e  A n a l y s e r  f o r  R e a l -  

T i m e  D e t e c t i o n  o f  t h e  E p i l e p t i c  P r e c u r s o r ,  P r o c e e d i n g s ,  X I  B r a z i l i a n  C o n f e r e n c e  

F o r  B i o m e d i c a l  E n g i n e e r i n g ,  p p .  1 0 1 - 1 0 7 .

[ 1 8 4 ]  St e l l e , A .  L . ;  Co ml e y , R .  A . ;  ( O c t o b e r  1 9 9 0 ) :  T h e  U s e  o f  t h e  W i g n e r  D i s t r i b u t i o n  

i n  t h e  a n a l y s i s  o f  E E G  s i g n a l s ,  P r o c e e d i n g s ,  X I I  B r a z i l i a n  C o n f e r e n c e  F o r  B i o m e d i c a l  

E n g i n e e r i n g ,  .

[ 1 8 5 ]  S T E L L E , A .  L . ;  ( 1 9 9 1 ) :  O n - l i n e  A n a l y s i s  o f  t h e  E E G :  A  T w o - D i m e n s i o n a l  A p p r o a c h ,

P h D  T h e s i s ,  C e n t r e  f o r  I n f o r m a t i o n  E n g i n e e r i n g ,  C i t y  U n i v e r s i t y .

[ 1 8 6 ]  Su n , M . ;  L i , C .  C . ;  Se k h a r , L .  N . ;  Sc l a b a s s i , R .  J . ;  ( N o v e m b e r  1 9 8 9 ) :  E f f i c i e n t  

C o m p u t a t i o n  o f  t h e  D i s c r e t e  P s e u d o - W i g n e r  D i s t r i b u t i o n ,  I E E E  T r a n s a c t i o n s  o n  

A c o u s t i c s ,  S p e e c h  a n d  S i g n a l  P r o c e s s i n g ,  Vol. ASSP-37, N o .  1 1 ,  p p .  1 7 3 5 - 1 7 4 1 .

[ 1 8 7 ]  T h a k o r , N .  V . ;  W e b s t e r , J .  G . ;  T o mpk in s , W .  J . ;  D e s i g n ,  I m p l e m e n t a t i o n  a n d  

E v a l u a t i o n  o f  a  M i c r o c o m p u t e r - B a s e d  A r r h y t h m i a  M o n i t o r ,  M e d i c a l  &  B i o l o g i c a l  

E n g i n e e r i n g  &  C o m p u t i n g ,  Vol. 2 2 ,  ( M a r c h  1 9 8 4 ) :  p p .  1 5 1 - 1 5 9 .

[ 1 8 8 ]  T u r i n , G . L. ( J u m e  1 9 6 0 ) :  A n  I n t r o d u c t i o n  t o  M a t c h e d  F i l t e r s ,  I R E  T r a n s a c t i o n s  

o n  I n f o r m a t i o n  T h e o r y ,  Vol. IT-6, p p .  3 1 1 - 3 2 9

[ 1 8 9 ]  Va n  De n  Be r g -Lenssen , M .  M .  C . ;  Br u n ia , C .  H .  M . ;  B l o m , J .  A . ;  ( 1 9 8 9 ) :  C o r r e c -

t i o n  o f  O c u l a r  A r t i f a c t s  i n  E E G s  U s i n g  a n  A u t o r e g r e s s i v e  m o d e l  t o  d e s c r i b e  t h e  

E E G ;  a  p i l o t  S t u d y ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 73, p p .  

7 2 - 8 3 .

[ 1 9 0 ]  V id a l , J .  J . ;  ( M a y  1 9 7 7 ) :  R e a l - T i m e  D e t e c t i o n  o f  B r a i n  E v e n t s  i n  t h e  E E G ,  I E E E  

Proceedings, Vol. 65, N o .  5, pp. 633-641.

[191] De  V r ie s , J.; W is ma n , T.; Binn ie , C. D.; (1981): E v a l u a t i o n  o f  a  S i m p l e  S p i k e -  

W a v e  R e c o g n i t i o n  S y s t e m ,  Electroencephalography and Clinical Neurophysiology, Vol. 

51, pp. 328-330.

[192] W a l t e r , D. O .; M u l l e r , H. F.; Je l l , R. M .; (January 1973): S e m i a u t o m a t i c  Q u a n -

t i f i c a t i o n  o f  S h a r p n e s s  o f  E E G  P h e n o m e n a ,  IEEE Transactions on Biomedical Engi-

neering, Vol. BME-20, N o .  1 , pp. 53-55.



432 BIBLIOGRAPHY

[ 1 9 3 ]  WALTON, J .  N . ;  ( 1 9 8 1 ) :  B r a i n ’ s  D i s e a s e s  o f  t h e  N e r v o u s  S y s t e m ,  [ C h a p t e r  2 2 :  P a r o x -

y s m a l  a n d  C o n v u l s i v e  D i s o r d e r s — E p i l e p s y ,  ] ,  (8th edition), I S B N  0 - 1 9 - 2 6 1 3 0 9 - X ,  

O x f o r d  M e d i c a l  P u b l i c a t i o n s .

[ 1 9 4 ]  Wa x , M . ;  KAILATH, T . ;  ( 1 9 8 5 ) :  D e t e c t i o n  o f  S i g n a l s  b y  I n f o r m a t i o n - T h e o r e t i c  

C r i t e r i a ,  I E E E  T r a n s a c t i o n s  o n  A c o u s t i c s ,  S p e e c h  a n d  S i g n a l  P r o c e s s i n g ,  Vol. ASSP-33, 

N o .  4 ,  p p .  3 8 7 - 3 9 2 .

[ 1 9 5 ]  W e id e , B .  W.; A n d r e w s , L. T.; Ia n n o n e , A. M . ;  ( 1 9 7 8 ) :  R e a l - T i m e  A n a l y s i s  o f  

E E G  u s i n g  W a l s h  T r a n s f o r m s ,  C o m p u t e r s  i n  B i o l o g y  a n d  M e d i c i n e ,  Vol. 8, p p .  2 5 5 -  

2 6 3 .

[ 1 9 6 ]  W e in b e r g , H . ;  Co o p e r , R . ;  ( A u g u s t  1 9 7 2 ) :  T h e  U s e  o f  C o r r e l a t i o n a l  A n a l y s i s  f o r  

P a t t e r n  R e c o g n i t i o n ,  N a t u r e ,  Vol. 238, p p .  2 9 2 .

[ 1 9 7 ]  WEINBERG, H . ;  COOPER, R.; ( 1 9 7 2 ) :  T h e  R e c o g n i t i o n  I n d e x :  A  P a t t e r n  R e c o g n i t i o n  

T e c h n i q u e  f o r  N o i s y  S i g n a l s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 

33, p p .  6 0 8 - 6 1 3 .

[ 1 9 8 ]  W e n n b e r g , A . ;  Ze t t e r b e r g , L .  H . ;  ( 1 9 7 1 ) :  A p p l i c a t i o n  o f  a  C o m p u t e r - B a s e d  

M o d e l  f o r  E E G  a n a l y s i s ,  E l e c t r o e n c e p h a l o g r a p h y  a n d  C l i n i c a l  N e u r o p h y s i o l o g y ,  Vol. 

31, p p .  4 5 7 - 4 6 8 .

[ 1 9 9 ]  W h e e l e r , B .  C . ;  Va l e s a n o , W .  R . ;  ( 1 9 8 5 ) :  R e a l - T i m e  D i g i t a l - F i l t e r - B a s e d  D a t a -  

A c q u i s i t i o n  S y s t e m  f o r  t h e  D e t e c t i o n  o f  N e u r a l  S i g n a l s ,  M e d i c a l  & : B i o l o g i c a l  E n g i -

n e e r i n g  &  C o m p u t i n g ,  Vol. 23, p p .  2 4 3 - 2 4 8 .

[200] W i d r o w , B .; G l o v e r , J. R . ,  Jr .; M c C o o l , J. M .; K a u n i t z , J.; W i l l ia m s , C. S . ;  

He a r n , R .  H.; Ze id l e n , J. R . ;  Do n g , E .  Jr .; G o o d l in , R .  C .; (December 1975): 

A d a p t i v e  N o i s e  C a n c e l l i n g :  P r i n c i p l e s  a n d  A p p l i c a t i o n s ,  I E E E  Proceedings, Vol. 

63, N o .  1 2 ,  pp. 1692-1716.

[ 2 0 1 ]  W id r o w , B . ;  Mc Co o l , J. M.; La r imo r e , M. G .; Jo h n s o n , C. R., Jr .; (August 1 9 7 6 ) :  

S t a t i o n a r y  a n d  N o n s t a t i o n a r y  L e a r n i n g  C h a r a c t e r i s t i c s  o f  t h e  L M S  A d a p t i v e  

F i l t e r ,  I E E E  Proceedings, Vol. 64, N o .  8 ,  p p .  1 1 5 1 - 1 1 6 2 .

[ 2 0 2 ]  W id r o w , B . ;  St e a r n s , S .  D . ;  ( 1 9 8 5 ) :  A d a p t i v e  S i g n a l  P r o c e s s i n g ,  I S B N  0 - 1 3 - 0 0 4 0 2 9 -  

0 3 ,  P r e n t i c e - H a l l  I n c . ,  N J .

[ 2 0 3 ]  WITTE, H . ;  G l a s e r , S . ;  Ro t h e r , M . ;  ( M a r c h  1 9 8 7 ) :  N e w  S p e c t r a l  D e t e c t i o n  a n d  

E l i m i n a t i o n  T e s t  A l g o r i t h m s  o f  E C G  a n d  E O G  A r t e f a c t s  i n  N e o n a t a l  E E G  

R e c o r d i n g s ,  M e d i c a l  & ; B i o l o g i c a l  E n g i n e e r i n g  &  C o m p u t i n g ,  Vol. 25, p p .  1 2 7 - 1 3 0 .



BIBLIOGRAPHY 433

[ 2 0 4 ]  Zh u , Y .  M . ;  Pe y r in , F . ;  Go u t t e , R . ;  ( O c t o b e r  1 9 8 9 ) :  E q u i v a l e n c e  B e t w e e n  T w o -  

D i m e n s i o n a l  A n a l y t i c  a n d  R e a l  S i g n a l  W i g n e r  D i s t r i b u t i o n s ,  I E E E  T r a n s a c t i o n s  

o n  A c o u s t i c s ,  S p e e c h  a n d  S i g n a l  P r o c e s s i n g ,  Vol. ASSP-37, N o .  1 0 ,  p p .  1 6 3 1 - 1 6 3 3



Index

acetylcholine 13 
action potential 13 
adaptive filters 206

cascade realization 252 

lattice 231, 254

administration of specific drugs 30 
aggregate field view 16 
alpha (a) rhythm 31 
amplitude 186 
analysis filter 198 
analytic signal 106 
anoxia 41 
arachnoid 20 

villi 20 
artifacts 35

correction 275 
association fibres 16 
associative networks 292, 361 

astrocytes 10 
attenuation 23 
autoregressive (AR), 169 

axon 9
collaterals 10

background activity 33, 159
backpropagation neural network 292, 361

bandwidth 130
barbiturates 50

basal nuclei 15

beta (/3) activity 31
bilinear transformation 113

brain 14
injuries 41 

stem 14, 18 
ventricles 14 

breath-holding spells 50 

carbamazepine 50 
cardiac centre 18 
caudate nucleus 17 
cerebellum 14, 18 

cerebral cortex 16 
cerebral hemispheres 14 
cerebrospinal fluid 20 
clonazepam 50 
clonic phase 46 
comb filter 99 

commissural fibres 16 
Computed Axial Tomography (CAT) 40 
conceptual model 4 

congenital abnormalities 41 
convulsive status 49 

corpus callosum 15 
corpus striatum 17 

cortical lateralization 16 

cost function 194 
covariance matrix 144 

cubic splines 92 
cytoplasm 11 

déjà vu 45 
definite forms 162 
delta (Æ) brain activity 31

434



INDEX 435

dendrites 9 
derivations 28

average reference 29 

bipolar derivations 29 

common reference derivations 29 

source 29

desired response 193 

diencephalon 14 

disordered metabolism 41 

disorders 39 

d-plot 136 

dura mater 20 

dural sinuses 20 

ear lobe 27 

EEG technician 30 

eigenvalue spread 208 

electrical dipole 25 

electrical polarization 11 

electrocorticogram 23 

electrocorticographic 25 

electrodes

metal disk 25 

pad 24

plastic cup 25 

platinum needle 26 

sphenoidal 25 

stick-on 25

electrode montages 31 

endocrine disorders 41 

ependymal cells 10 

epilepsy 1, 34, 39

constitutional (idiopathic) 1, 42 

epileptic focus 43, 47 

epileptic threshold 42 

epithalamus 17

ethosuximide 50

event related potentials 35, 72

evoked potentials 162

excitatory postsynaptic potential 13

extracellular fluid 11

febrile convulsions 46

feedback 190

finality of coefficients 89

fissures 15

forward prediction 201 

frequency sampling 102 

frequency sampling technique 116 

7-aminobutyric acid 13 

gated channels 12 

generalized delta rule 296 

globus pallidus 17

Gram-Schmidt orthogonalization method 259 

gyri 15

hereditary factors 41 

hierarchical networks 292, 361 

Hjôrth parameters 77 

hyperventilation 30 

hypophysis cerebri 17 

hypothalamus 17 

hypsarrhythmia 49 

impulse invariant transform 112 

inion 29

inner boundary 141 

innovations process 202 

input layer 295 

input sequence 197 

intermediate mass 17

International Federation of Societies for Electro-
encephalography and Clinical Neu-
rophysiology (IFSECN) 24



436 INDEX

intracerebral 27 

intracranial lesions 41 

inverse model 165 

jacksonian epilepsy 48 

jamais vu 46 

kappa (k ) waves 33 
k-complex 33 

lambda (A) waves 32, 33 

Laurent series 117 

learning curve 208 

learning rate 207 

Least-Mean-Squares 210 

limbic system 14, 18 

linear prediction 197 

lobes 15

logistic function 295 

low frequency filter 27 

Magnetic Resonance Imaging 38 

Mahalanobis distance 145 

mapping 294, 363 

maximum absolute error 95 

mean squared error 95, 195 
medulla oblongata 18 

meningeal dura mater 20 

microglia 10 

midbrain 18 

misadjustment 208 

mu (//) rhythm 32 

mu (/j,) waves 34 

Multi-Layer Perceptron 291 

muscle potential artifacts 39 

myoclonous epilepsy 49 

nasion 26 

nasopharyngeal 25 

negative variation 24

nerve impulse 14 

neuroglia 10 

neurons 292 

afferent 10 

association 10 

bipolar 10 

efferent 10 

epileptic 43 

multipolar 10 

unipolar 10 

neurotransmitters 12 

neurotransmitters 12 

nodes 292

nodes of Ranvier 10

non-specific thalamic nuclei 22

notch filter 27

occipital 15, 27

ocular artifacts 36

oligodendrocytes 10

orthogonality 91

output layer 293

parietal 15, 26

partial correlation 254

periosteum 20

perturbation 208

petit mal epilepsy 46

phenylketonuria 59

phenytoin 50

photic stimulation 30

pia mater 20

piecewise polynomial approximation 117 

plasma membrane 11 

polynomial splines 91 

pons 18

postcentral gyri 16



INDEX 437

post-convulsive phase 46 

postsynaptic potential 12 

preauricular points 26 

precentral 15 

prediction-error 198 
processing elements 292 

projection fibres 17 

putamen 17 

pyramids 18

recurrent backpropagation network 361 

Recursive Least Squares 246 

reflection coefficients 230, 254 
reflex causes 41

regional specialization theory 16 
respiratory centre 18 

reticular activation system 19 

reticular formation 15, 19 

root coalescence 254 

satellite 10

Schvir-Cohn stability test 230 
Schwann cells 10 

self organizing map 361 

sensitivity to initial conditions 97 

sensory epilepsy 48 

Sequential Regression 247 

sharp wave 32, 34 

sharp-and-slow-wave complex 34 

sleep

rapid eye movement (REM) 33 

stage 1 32 

stage 2 32 

stage 3 32 

stage 4 32 

sleep recordings 30 

sleep spindle (s-wave) 32, 34

slow wave 34

sodium amylobarbitone 48 

sodium valproate 50 

sodium valproate 50 

sodium-potassium ion pump 11 
spatial averaging 23 

spatiotemporal 292, 361 

specific nuclei 17 

spike 34, 159

spike-and-slow-wave complex 34 

multiple 35 

polyspike 35 
spiking filter 206 

spinal cord 14 

spontaneous activity 24 

square root algorithm 248 

state-space 132 

steepest descent 207 

stochastic 292, 361 
stroboscope 28 

subarachnoid space 20 

successive difference 115 

sulci 15 

synapses 12 

syncopal attacks 49 

telemetry 25 

telephone lines 25 

temporal 15, 26 

thalamus 17

theta (6) brain activity 31 
threshold 130 

tonic fits 46, 49 

trace of a matrix 210 

training set 295 

transient 34, 159, 177



438 INDEX

triangular waveforms 88 
validation set 312 
vascular disorders 41 
vasomotor centre 18 
vertex sharp transient (V-wave) 34 
Warburg impedance 25 

weights 194 
white matter 15 
whitening filter 198 
Wiener filter 193 

constrained 199 
Wiener-Hopf equation 196 

window 114, 130 
Wold representation 199


