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ABSTRACT

Remote sensing applications are nowadays widely spread in various industrial fields, such as mineral and water ex-
ploration, geo-structural mapping, and natural hazards analysis. These applications require that the performance
of image processing tasks, such as segmentation, object detection, and classification, to be of high accuracy. This
can be achieved with relative ease if the given image has high spatial resolution as well as high spectral resolu-
tion. However, due to sensor limitations, spatial and spectral resolutions have an inherently inverse relationship
and cannot be achieved simultaneously. Hyperspectral Images (HSI) have high spectral resolution, but suffer
from low spatial resolution, which hinders utilizing them to their full potential. One of the most widely used
approaches to enhance spatial resolution is Single Image Super Resolution (SISR) techniques. In the recent years,
Deep Convolutional Neural Networks (DCNNs) have been widely used for HSI enhancement, as they have shown
superiority over other traditional methods. Nonetheless, researches still aspire to enhance HSI quality further
while overcoming common challenges, such as spectral distortions. Research has shown that properties of natural
images can be easily captured using complex numbers. However, this has not been thoroughly investigated from
the perspective of HSI SISR. In this paper, we propose a variation of a Complex Valued Neural Network (CVNN)
architecture for HSI spatial enhancement. The benefits of approaching the problem from a frequency domain
perspective will be answered and the proposed network will be compared to its real counterpart and other state-
of-the-art approaches. The evaluation and comparison will be recorded qualitatively by visual comparison, and
quantitatively using Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Spectral Angle
Mapper (SAM). The project can be accessed at: https://github.com/Nour093/3D_CCVNN_Hyperspectral
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1. INTRODUCTION

Enhancing images in general and remote sensing imagery in particular has been a popular problem in the
literature ever since the 1980s. Efforts have been exerted to enhance Panchromatic (PAN), RGB, and other
Multispectral Images (MSI).* This problem is even more interesting when it comes to Hyperspectral Images
(HSI) because their spatial resolution is considerably lower than MSI. In the literature, spatial enhancement
of HSI methods are split into two categories; Fusion and Single Image Super Resolution (SISR). Fusion is the
process of combining two or more images, such that the product reveals more information than each individual
image. In this case, the combined images are HSI with MSI, RGB, or PAN, such that the resulting image has
high spectral resolution and high spatial resolution simultaneously. Fusion methods have been widely used since
the late 1990s.> Their success has been demonstrated in several studies that can be grouped into: Component
Substitution,® Multi-resolution Analysis,” Matrix Factorization,® Tenosr-based,” ! Bayesian-based,'? and Deep
Convolutional Neural Networks (DCNNs).!3718 The main advantage of Fusion methods is the ability to enhance
the spatial quality of HSI beyond a scale factor of 8 with minimal spectral distortions. On the other hand, the
main disadvantages include high computational complexity and impracticality when auxiliary information are
unavailable. For instance, capturing MSI and HSI of the same scene with precise co-registration is considered as
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an impractical assumption. Additionally, most methods require knowledge about the sensor, such as its Point
Spread Function (PSF), which makes them inapplicable in scenarios where such information is unattainable.
As for the other category, SISR, it is the process of constructing a High Resolution (HR) image from a single
Low Resolution (LR) counterpart. SISR research studies can be grouped into: interpolation, regularization,
Super Resolution Mapping (SRM), and DCNNs. SISR methods do not require an auxiliary image, which offers
flexibility and convenience with regards to implementation. However, this is a double-edged sword, as it makes
SISR a highly ill-posed problem, and it is challenging to upscale an image beyond a scale factor of 8.

In both Fusion and SISR fields of research, DCNN approaches show superiority against other traditional
approaches thanks to their ability to overcome certain challenges, such as spectral distortions and co-registration
requirement. Nonetheless, DCNNs present a new set of problems. For instance, models that follow supervised
learning scheme exhibit poor performance when the size of the training dataset is limited. Additionally, DCNN
models usually perform well on datasets captured by certain sensors, but not necessarily on others. Therefore,
scientists constantly strive to boost the performance of existing HSI-SR, approaches while overcoming spectral
distortions. Evidence suggests that processing images in the frequency domain offers direct access to high and
low frequency components, allowing direct manipulation of these parameters and, in turn, easier construction
of intrinsic image details, such as sharp edges. The branch of neural networks that is capable of manipulating
complex inputs is referred to as Complex-Valued Neural Networks (CVNNs). Using this type of network for the
purpose of HSI SISR has not been attempted thus far.

In this paper, a preliminary study on the effectiveness of CVNNs at enhancing the spatial quality of HSI
through SISR is conducted. In particular, a 3D Convolutional CVNN (3D-CCVNN) is implemented, trained,
and tested using the publicly available HSI datasets, Botswana'® and Pavia University (PU).!” The performance
of the network is evaluated and compared against other state-of-the-art approaches using Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measurement (SSIM), and Spectral Angle Mapper (SAM). The quality
of the enhanced images is also compared qualitatively by visual inspection and by plotting spectral signature.
The rest of the paper is organized as follows: Section 2 discusses the related work, Section 3 demonstrates the
mathematical background behind the problem and the proposed methodology, Section 4 illustrates and analyzes
the results, and finally, Section 5 summarizes the paper and states the future direction of this research.

2. RELATED WORK

The approach presented in this paper is related to SISR. Therefore, only SISR, background will be discussed in
this section, as Fusion approaches are out of this scope. SISR is considered as a mapping problem between an
HR-HST and its corresponding LR-HSI. Due to the non-linear nature of DCNNs and their capability to extract
features automatically without the need for hand-crafted features, they can facilitate an end-to-end mapping
between both images. DCNNs operations, such as convolution and pooling, can be two-dimensional (2D) or
three-dimensional (3D). In 2017,% it has been demonstrated that 3D operations are better suited for processing
HSI, as they preserve the spectral signature by processing the HSI cube as a whole rather than processing it
band-by-band. 3D Full Convolutional Neural Network (3D-FCNN) follows this principle and inspired a lot of
studies afterwords to follow suit. For example, the authors in?! expanded the traditional 2D Super Resolution
CNN (SRCNN) to 3D and adjusted its filter sizes to enhance HSI. They show that by unifying filter sizes, the
network produces less artifacts around the edges. Additionally, the network does not need large computational
resources and performs better than its 2D counterpart as well as 3D-FCNN. In another study, an encoder-decoder
architecture design inspired by 2D-UNET? was also utilized to enhance HSI spatially.?? The proposed network
exhibits two symmetrical sides, where the encoder extracts features through a series of 3D convolution and
pooling, and the decoder side reconstructs the target enhanced HSI by inverting these operations in 3D as well.
Furthermore, there are internal residual connections between encoder units and decoder units, as well as external
residual connections across encoders and decoders to improve information exchange between the layers. This
network is dubbed 3D Residual UNET (3D-RUNET).?? The literature is rich with other similar examples.?* 2

All the aforementioned DCNNs process HSI in the spatial domain. Enhancing HSI using CVNNs is an
approach that has not been explored thus far, and it has the potential to further boost the performance of
HSI enhancement techniques. The next section explains the mathematical framework of the problem and the
proposed approach, which will make the advantage of CVNNs more apparent.
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3. MATHEMATICAL FRAMEWORK
3.1 Problem Statement

The mapping between a real-valued LR-HSI denoted X, and a real-valued, ground truth HR-HSI denoted Y,
can be mathematically formulated using Equation 1.

X, = DGY, + &, (1)

where D is the downsampling operation, G is the blurring filter, and &£ is the additive noise. The goal is
to find Y., such that the Error between X, and DGY,. is miminal. This error can be estimated using various
functions. This study utilizes the standard Mean Squared Error (MSE).

In order to generate X, nearest neighbor interpolation is used as a downsampling operation, and Gaussian
blur is used as a blurring filter. To simplify the study, the additive noise is considered negligible. This is a
commonly accepted approach in the literature for generating LR-HSI.?*

3.2 Proposed Methodology (3D-CCVNN)

The interest in CVNNs has been increasing due to the natural statistical correlation that occurs between the
real and imaginary parts of complex numbers in signals. This correlation applies to HSI as well.2” As mentioned
in Section 2, 3D convolution operations are more suited for processing HSI than 2D. To implement the complex
domain counterpart of a conventional real-valued 3D convolution, each band of the HSI cube must be converted
to the complex domain and convolved with a complex filter. In this study, Band-wise Fast Fourier Transform
(FFT) is used for this purpose. For a complex HSI cube denoted X = [X, + iX;;,], and a Kernel denoted
K = [K, 4+ iK;n], where X, X, K, Kipy € R, a 3D Complex Convolutional (CC) layer is defined using the
following equation:

M M C

Flay) = iReLU Z Z Z KiijmXarigrjoik) 0| (2)
i=1 j=1k=1

where iReLU, which stands for imaginary Rectified Linear activation Unit, is a complex activation function
defined as max(0, z) for some z € C, and b is the complex bias. The output F' is then passed to a similar
CC layer, which is in turn passed to another similar layer, and then finally the last CC layer that gives the
final output. At this stage, F' is converted back to a real signal using band-wise Inverse FFT (IFFT). The loss
function used in this research is a standard MSE loss function. Hence, the loss function is real-valued, but the
weights are complex. The overall architecture of the proposed 3D-CCVNN model is illustrated in Figure 1. The
number of filters and kernel sizes are indicated in the figure, and they have been chosen in a way that imitates
the 3D-SRCNN, since its filter and kernel sizes have already proven efficiency in removing artifacts around the
borders of the image. Since the 3D-CCVNN is not very deep, pooling and batch normalization layers have been
avoided. Additionally, a residual connection was added to boost the performance, as it has been proven that
residual connection enhance SISR training.?®

4. EXPERIMENTAL RESULTS
4.1 Datasets

The first dataset used in this study is Botswana.!? It was captured using Hyperion sensor onboard the NASA
EO-1 satellite over the Okavango Delta, Botswana. The spatial resolution is 30m, with 242 bands that cover
400-2500nm portion of the spectrum in 10nm intervals. Some bands were corrupted due to water absorption and
were thus removed. The remaining number of bands is 145. THe total number of pixels in Botswana scene is
1467 x 256.

The second dataset used in this study is PU.'® This dataset was captured using Reflective Optics System
Imaging Spectrometer (ROSIS) sensor over Pavia, Italy. it consists of 115 bands, and the number goes down
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Figure 1. Overall architecture of the proposed 3D-CCVNN.
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to 103 after removing the corrupted ones. It covers the spectrum from 430-960nm in 10nm interval. The total
number of pixels is 610 x 340.

Each dataset was divided into patches of 64 x 64. Approximately 83% of the patches were used for training,
and the remaining were used for testing and validation. Table 1 summarizes the characteristics of each dataset
and the resulting number of patches.

Table 1. Characteristics of the datasets used in this study; Botswana and PU.

Spectral Spatial # of patches
Dataset Sensor | 7 of bands range (nm) | resolution (m) | Training | Testing | Validation
Botswana'® | Hyperion 145 400-2500 30 76 8 8
PU ROSIS 103 430-960 1.3 37 4 4

4.2 Evaluation and Analysis

The proposed 3D-CCVNN was built, trained, and tested using Tensorflow library. The training parameters
indicate 100 epochs and MSE as a loss function. The networks used for comparison, namely 3D-FCNN, 3D-
SRCNN, and 3D-RUNET were all trained using the same environment and parameters to ensure fairness.

The quantitative results of Botswana dataset are shown in Table 2 for scale factors x2 and x4. The results
indicate that the 3D-CCVNN prevails over every other method in terms of PSNR and SAM. Despite the clear
improvement in PSNR and SAM, it appears that this is not the case for SSIM, as 3D-CCVNN sometimes achieves
only slightly better SSIM than other methods, or slightly worse. This could be attributed to the simplicity of
the network. Since 3D-CCVNN is not deep and it consisted of only 3D CC layers, this might have impacted
the reconstruction of grayscale levels in each band. Figure 2 shows the predictions of HR-HSI from each method
using Botswana dataset. 3D-CVNN shows the closest visual quality to the ground truth. Although 3D-CCVNN
and 3D-RUNET appear visually similar, their MSE map shows that 3D-CCVNN exhibits less errors and less
blurriness compared to 3D-RUNET. The spectral signature plotted in Figure 3 reveals that 3D-CCVNN follows
the spectral signature of the ground truth more closely compared to other methods, which is consistent with
SAM results in Table 2.

PU dataset results are shown in Table 3. Since the dataset size of PU is smaller than that of Botswana,
the results for the former are overall inferior to the latter. This is true for all methodologies demonstrated.
In this dataset’s case, 3D-CCVNN prevails in terms of PSNR and SSIM. The SAM produced by 3D-CCVNN
is superior to that of bicubic interpolation and 3D-FCNN, but it falls behind 3D-SRCNN and 3D-RUNET.
Figure 4 shows visual results of the estimated HR-HSI as predicted by each method. It can be observed that
the 3D-CCVNN is the closest to the ground truth, especially when comparing the error map produced by each
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Table 2. Botswana results summary show that 3D-CCVNN prevails over other algorithms.

n | Metric | Bicubic | 3D-FCNN? [ 3D-SRCNN?! [ 3D-RUNET?? | 3D-CCVNN
PSNR | 32.83 32.95 33.14 33.34 34.88

x2 | SSIM 0.873 0.905 0.912 0.914 0.918
SAM 3.07 3.02 2.85 2.66 2.38
PSNR | 29.60 29.86 30.19 30.22 31.20

x4 | SSIM 0.743 0.772 0.798 0.811 0.802
SAM 4.74 4.70 4.45 4.43 4.35

Ground Truth Bicubic Interpolation 3D-FCNN 3D-SRCNN 3D-RUNET 3D-CCVNN

Figure 2. Qualitative results of Bicubic interpolation, 3D-FCNN, 3D-SRCNN, 3D-RUNET, and 3D-CVNN compared to
the ground truth for scale factor x2 using Botswana dataset. The top row shows the predicted HR-HSI, and the bottom
row shows a visualization of MSE between each predicted result and the ground truth.

Spectral Signature of pixel (38, 13)
0.351 . —— groundtruth
. e 3D-CCVNN
---- 3D-RUNET
* ¢ 3D-SRCNN
N 3D-FCNN
\ + Bicubic

Reflectance
°
N
(-]

=
=
w

0.10

0.05

10 20 30 40 50 60 70
Band#

Figure 3. Spectral signature of a pixel taken at position (38,13) from Botswana dataset.

method. Furthermore, Figure 5 shows the spectral signature of the pixel at location (1,54) as predicted by each
method. This plot further reveals that 3D-SRCNN and 3D-RUNET follow the ground truth more closely than
3D-CCVNN, although the difference seems marginal and the general pattern of the signature is similar.
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Table 3. PU results summary.

n | Metric | Bicubic | 3D-FCNN?° | 3D-SRCNN?! | 3D-RUNET?? | 3D-CCVNN
PSNR 29.12 29.88 30.18 30.06 31.77

x2 | SSIM 0.869 0.875 0.905 0.879 0.912
SAM 6.38 5.94 5.40 5.45 5.56
PSNR 25.23 26.44 27.56 27.14 28.69

x4 | SSIM 0.712 0.723 0.756 0.744 0.768
SAM 9.94 6.68 6.54 6.62 6.65

i N
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Ground Truth Bicubic Interpolation 3D-FCNN 3D-SRCNN 3D-RUNET 3D-CCVNN

Figure 4. Qualitative results of Bicubic interpolation, 3D-FCNN, 3D-SRCNN, 3D-RUNET, and 3D-CVNN compared to
the ground truth for scale factor x2 using PU dataset. The top row shows the predicted HR-HSI, and the bottom row
shows a visualization of MSE between each predicted result and the ground truth.
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Figure 5. Spectral signature of a pixel taken at position (1, 54) from PU dataset.

5. CONCLUSION AND FUTURE DIRECTION

In this paper, a study on enhancing the spatial quality of HSI using 3D-CCVNN was conducted. The proposed
network is analogous to the traditional 3D-SRCNN, which is known to perform well, with an additional residual
connection and complex weights, operations, and activation function. FFT is used to transfer the HSI to the
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complex domain, and the estimated HR-HSI is transferred back to the spatial domain using IFFT. The network is
trained, tested, and evaluated using Botswana and PU datasets, and compared to other state-of-the-art methods.
The results reveal that 3D-CCVNN can achieve a decent performance given a dataset of sufficient size. Most
datasets available in the literature, such as PU, are of small size, which causes problems when training. The
future direction of this research will tackle these problems. For example, the network may benefit from a complex
loss function, as the one used in this paper is the standard MSE. Even though there are various cases in the
literature where complex weights have been used with a real loss function, the benefit of a complex loss function
is yet to be investigated. The degradation in SSIM, albeit slight, proves that the spatial context is important for
the construction of the HR-HSI depending on the end purpose of the enhancement. Thus, mixing 2D and 3D
layers within the complex network architecture may boost the performance. Finally, augmentation methods for
HSI can be explored to increase the size of the dataset artificially.
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