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ABSTRACT 

In space robotics, a wide range of sensor data fusion 

methods are required to accomplish challenging 

objectives for exploration, science and commercial 

purposes. This includes navigation for planetary and 

guidance for orbital robotics, scientific prospecting, and 

on-orbit servicing. InFuse provides a comprehensive data 

fusion framework or toolset to fuse and interpret sensor 

data from multiple sensors. This project represents an 

optimal approach to develop software for robotics: a 

standardized and comprehensive development 

environment for industrial applications, with   particular 

focus on space applications  where  components  can  be 

connected,  tested  offline,  evaluated  and  deployed  in  

any preferred  robotic  framework,  including  those  

devised  for space or terrestrial applications. This paper 

discusses the results of verification and validation of data 

fusion methods for robots deployed in orbital and 

planetary scenarios using data sets collected in 

simulation and outdoor analogue campaigns. 

 

1. OBJECTIVE 

 
Figure 3. Illustration of reference scenarios addressed 

by InFuse. 

 

In the context of perception, localization and mapping in 

space robotics, common evaluation and deployment 

frameworks are crucial for efficiently developing reliable 

robotics solutions. Qualification of software for space 

follows a complex approach that is challenging. Methods 

and tools that make it easier to develop software for space 

and evaluate it as early as the prototype stages are highly 

valuable [1]. InFuse addresses perception and data fusion 

within the context of two reference scenarios of space 

robotic: planetary exploration and on-orbit servicing [2], 

as depicted in Fig. 1. 

 

Perception and data fusion capabilities are selected for 

answering the need to perceive, analyse and interpret the 

environment as well as satisfying constraints related to 

reliability, memory footprint and computation 

complexity, inherent to space vehicles. InFuse [3] 

represents “Sensor Fusion”, and provides a Common 

Data Fusion Framework (CDFF) containing the 

following features:  

1. Library of reusable Data Fusion Nodes (DFNs) 

implementing sensor fusion algorithms and 

validated for critical applications 

2. An easy   method to quickly and reliably combine 

DFNs into software modules (Data Fusion 

Processing Compounds (DFPCs) meant for 

processing sensor data  

3. Tools for data collection and offline testing of 

DFPCs 

4. Suitable convertors between different 

representations of sensor data  

5. Convenient integration with robotic control 

frameworks such as ROS, ROCK or GenoM. 

This paper describes the background and reference space 

mission scenarios, for which data fusion solutions were 

developed. It also presents approaches and scope for 

innovation in novel data fusion approaches to achieve 

perception, mapping and localization for specific 

applications. The paper aims to demonstrate the 

developments, results and usability of the CDFF software 

components that can be composed to create functional 

and re-usable sensor fusion solutions that can be 

deployed on robotic agents.  

 
2. CDFF OVERVIEW AND ARCHITECTURE 

InFuse provides navigation and perception 

functionalities. Navigation pertains to positioning in 

general: of a rover, of particular elements in the 
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environment, of a servicing satellite with respect to an 

object in space to service. Perception pertains on the one 

hand to the detection and modelling of the environment 

(be it the whole environment surrounding the rover or 

some specific elements in the environment), and on the 

other hand to track specific environment features during 

motions. Mature state of the art perception and 

localization libraries are integrated into the framework 

(Fig. 1) to cover these objectives, as well as more 

commonly used libraries within the robotics domain. 

 

Figure 1. CDFF Data Fusion framework overview 

 

The CDFF primarily supports sensory input from the 

standard suite of sensors [6] currently used in orbital and 

planetary applications (Tab. 1). The possibility to further 

extend the CDFF to include support of other types of 

sensors in the future is available by design.  

Table 1. Sensor data and associated sensors types 

Type of Data Name of Sensor 

Image Data Close-up High-Resolution 

Camera 

Extended Image Data Hyper / Multispectral Camera 

Depth Image Data TOF Camera 

Depth Image Data Structured Light Vision 

Depth Image Data Visible Stereo Camera 

Depth Image Data IR Stereo Camera 

Depth Data 3D LIDAR 

Planar Depth Data 2D LIDAR 

Force Data Contact Sensor 

Torque Data Force/Torque Sensor 

Angular Data Joint Position Encoder 

Angular Magnetic Data Magnetic Field Sensor 

(Magnetometer) 

Angular Velocity Data Angular Velocity Sensor 

(Gyroscope) 

Angle of Acceleration 

Data 

Linear Acceleration Sensor 

(Accelerometer) 

 
2.1. CDFF-Core  

The CDFF-Core [4] provides the “core” data fusion set 

of state of the art algorithms and techniques currently in 

use and applicable to the Planetary and Orbital RIs within 

the scope of Infuse, as a collection of ready-to-use 

libraries or packages. These libraries represent the 

CDFF’s processing methods necessary to fuse sensory 

data. The CDFF-Core is implemented in a modular 

fashion with a common interface to allow high flexibility 

in configuration as well as in operation as a distributed 

system on multiple platforms. The core libraries are to be 

deployed on the target system (robotic platform) as well 

as on the designer’s environment. 

 

Examples of core libraries include low-level functions 

such as feature detection, registration and recognition, 

data association, state estimation, outlier removal, and 

filtering which can be assembled into building 

environmental representations, achieving 3D object 

reconstruction or SLAM. The preliminary set of 

algorithms CDFF core libraries are shown in Tab. 2. 

 

2.2. CDFF-Support 

The CDFF-Support [4] provides the necessary tools for 

the instantiation and execution of Data Fusion Processing 

Compounds. Under the CDFF-Support functionalities 

can be found the DFPC, the Orchestrator, and the Data 

Product Management Tool (DPM) as shown in Fig. 2. 

 

 
Figure 2. Interaction among CDFF-Support 

components and interfaces with OG2 and OG4 

 

The Data Fusion Processing Compound (DFPC) is a 

combination of DFNs designed to provide a certain data 

product (e.g. pose estimation, map...). DFPCs defines 

connections between input and output ports of DFNs. 

1. The Orchestrator is the component that deals with 

the activation and deactivation of DFPCs. It is also 

the component that receives and answers the 

requests from the Autonomy Module – Operational 

Grant (OG2). The selection of one or another DFPC 

is done based on availability and quality of data 

sources and on the data product required. 

2. The Data Product Management (DPM) Tool acts as 

a long-term memory [5] for data fusion products 

generated by the DFPCs to be used by planners. 

Along with the CDFF-Core entities, all components of 

CDFF-Support will be deployed in the Target System. 

They will also be available for programming and testing 

in the Developer Environment. Some of the data fusion 

methods (DFPCs) developed for the planetary and orbital 

tracks are as follows: visual odometry, visual SLAM, 

visual Map-based Localisation, 3D model detection and 

tracking, 3D reconstruction of objects, Lidar based 

tracking, point cloud model-based localization, haptic 

scanning, absolute localization, DEM (Digital Elevation 

Model) generation, Lidar pose graph SLAM, generation 

of navigation maps. 



 

3. SCENARIOS 

InFuse addresses perception and data fusion within the 

context of two reference scenarios of space robotic: 

planetary exploration and on-orbit servicing, as depicted 

in Fig. 1. Perception and data fusion capabilities are 

selected for answering the need to perceive, analyse and 

interpret the environment as well as satisfying constraints 

related to reliability, memory footprint and computation 

complexity, inherent to space vehicles. 

 

The planetary track focuses on surface exploration, 

autonomous navigation [2] and science, and rendezvous. 

A nominal sequence of tasks done by a rover is : a) 

Creation of an initial panorama, b) Production of 

navigation maps, c) Path planning, d) Path execution and 

hazard detection / avoidance, e) Rover self-localization 

(odometry / SLAM), f) Updating of navigation maps, g) 

Back to d. or detection of a point of interest - POI, h) 

Visual servoing towards the POI i) Soil sample 

acquisition, j) Global localisation using orbiter data, k) 

Going back to lander, l) Visual servoing towards the 

lander, m) Visual servoing of the robotics arm for sample 

transfer.  

  

The orbital track focuses on rendezvous for on-orbit 

servicing operations such as refueling, re-configuration 

of hardware modules and repair of parts. A nominal 

sequence of tasks performed by a chaser spacecraft is: a) 

Detection of a target satellite far away (it might be done 

manually by ground observation to determine its orbit), 

b) Bearing tracking, c) Initial approach, d) 3D modeling 

of the satellite, e) 3D tracking, f) Final approach, g) 

Visual servoing of the robotics arm, h) Docking and 

berthing. 

  

Within these scenarios, InFuse deals with perception and 

data fusion. This translates into data production for the 

Autonomy Framework. Three data classes are identified: 

localization (self or w.r.t a target), landmark / object 

management (detection and tracking), environment 

modeling (DEM, navigation maps, structured 3D 

models). From this point of view, we identify a few data 

production use cases covering both reference scenarios: 

 

Planetary exploration [7]:  

a) Rover localization in its environment  

b) Relative localization of or w.r.t a fixed or moving 

asset 

c) Production of DEM and navigation maps 

 

One possible illustration of the use case “Rover 

localization in its environment” is provided in Fig. 4. 

 

On-orbit servicing: 

a) Bearing only localization for approach (target 

position and direction estimation w.r.t. chaser / Long 

range) 

b) Localization w.r.t satellite for rendezvous and orbital 

parameter estimation (target pose estimation w.r.t. 

chaser close perception) 

c) Target pose estimation w.r.t. chaser / Docking 

(Visual servoing) 

d) 3D reconstruction of a target. 

 

 
Figure 4. Functional description of a set of DFPCs 

within the use case for Rover localization  

 

4. TESTING AND VALIDATION APPROACH 

These DFPCs were validated using a rich data set from 

DLR OOS-Sim [10] for Orbital Track (OT) scenarios. 

The Planetary Track (PT) scenarios involved the use of 

mobile robots - Mana & Minnie from LAAS-CNRS, 

ExoMars BB2 from DLR and Sherpa from DFKI in 

indoor and outdoor Martian analogs [11]. Some of the 

verification and validation results are presented in this 

paper. Additionally, an offline validation tool using data 

sets were used to test the functional aspects of DFPCs 

using these data sets, profile the algorithms and visualize 

the results. A continuous integration solution has been 

deployed for remote testing of DFNs and DFPCs, 

analysis of memory leaks and performance metrics of 

unit tests to maintain a desired quality of developed 

software. 

 

4.1. CONTINUOUS INTEGRATION SUPPORT 

Integrating many contributions into a solid framework 

requires good software practices. In order to improve the 

Technology readiness level of Infuse, a continuous 

integration approach was used. The full source code and 

CI pipeline (Fig. 5) are available at this address. 

https://gitlab.com/h2020src/OG3.  

 

 



 

 

 

 
 

Figure 5. The CI pipeline used during Infuse. 

 

Before accepting code into the main stable branch, a 

series of automatic checks and rules are applied to the 

code. Code is accepted once the requirements are 

satisfied. The CI includes MISRA C and MISRA C++ 

coding guidelines, CPPCheck as static analyser, Valgrind 

as dynamic analyser, Catch as testing framework and 

Gitlab-CI as CI/CD framework.  

 

In addition to the integration testing, deployment testing 

is conducted in order to verify that Infuse will work on a 

variety of environments and improve the solidity of the 

whole framework. For this purpose, four different docker 

images are used to simulate different levels of 

dependencies installations (required, optional and closed 

sources).  

 

5. DFPC VALIDATION RESULTS 

5.1. Model-based visual tracking – OT 

This DFPC implements a model-based tracker developed 

specifically for the Orbital Track. The validation was 

performed by DLR using DLR’s OOS-Sim dataset, 

consisting on close-range recordings of a target and 

servicer satellites performing manoeuvres in various 

lighting conditions.  

 

The lighting conditions explored in the dataset are the 

following:  

 Eclipse condition: no sun simulator, using target 

illumination unit 

 Suboptimal lighting condition: sun simulator at 90 

deg wrt the optical axis of the camera 

 Optimal lighting condition: sun simulator at 45 deg 

wrt optical axis of the camera 

 

 
Figure 6. Visualization of the algorithm output. 

 

The test cases in the dataset in terms of motion profiles 

are the following:  

 Predominant translational motion along z-axis of the 

servicer 

 Predominant rotational motion about either x 

(lateral) or y axis (longitudinal) of the servicer 

 Roto-translation motion with angular and linear 

velocity of 1 deg/s and 1cm/s respectively 

 

The complete pose of both target and servicing satellites 

are known and used as ground truth for the tracker results 

comparison. The validation criteria used in these tests is 

the following:  

 Position error < 0.05m 

 Orientation error < 5 degrees 

 Update frequency > 0.1Hz 

 

Table 2: Test results summary per scenario 

Scenarios Result 

10 different tests with different conditions:  

Target: stationary, rotation or translation 

Servicer: stationary, translation 

Lighting: eclipse condition, 90 degrees 

(suboptimal condition) & 45 degrees (optimal 

condition) 

Passed 

Target: 60 deg rotation about y-axis 

Servicer: stationary 

Lighting: eclipse condition 

 

Target: stationary 

Servicer:   70   cm   translation   along   x   -axis, 

with a velocity 1 cm/s. 

Lighting: eclipse condition 

 

Target:   rotation   of   60   deg   about   x-axis, 

with angular velocity 1 deg/s 

Servicer:   70   cm   translation   along   x-axis, 

with a velocity 1 cm/s. 

Lighting: eclipse condition 

Partially 

passed 

Target: stationary 

Servicer:   70   cm   translation   along   x   -axis, 

with a velocity 1 cm/s. 

Lighting: 90 degree, suboptimal condition 

Not 

passed 



 

5.2. Mid-Range 3D Model Tracking – OT 

This DPFC implements a model-based tracker developed 

by Magellium for the Orbital Track. As the previous one, 

the validation was performed using DLR’s OOS-Sim 

dataset. Two motion profiles have been analysed, each of 

them in the three lightning conditions that are contained 

in the dataset, namely eclipse, suboptimal lighting and 

optimal lightning conditions.  

 

 
Figure 7. Visualization of the algorithm output. 

 

The validation criteria for these tests is the following:  

 Position error < 10 cm at 10 m range 

 Angular accuracy < 10 degrees 

 

Table 3: Test results summary per scenario 

Scenarios Result 

Lighting condition: eclipse / suboptimal / optimal 

Target: stationary 

Servicer: 70 cm translational motion in +x 

direction (1 cm/s) 

Passed 

Input data are left images from a stereo-camera 

pair. 

Lighting condition: eclipse / suboptimal / optimal 

Target: 60 deg rotation about the x-axis 

Servicer: 70 cm translational motion in +x 

direction 

Passed 

 

5.3. Model Based Tracking – PT 

This DFPC implements a model based tracker [9] 

developed by Space Applications Services for the 

Planetary Track and specialized in detecting wheeled 

rovers. The validation of this DFPC was performed on 

two different types of datasets: 

 Dataset 1 [DS1] – Mana & Minnie: In this dataset, 

the target was the Mana robot and the Minnie robot 

is static and gathering the data through its stereo 

camera. The pose of both robots was obtained using 

a DGPS system coupled with IMU information. This 

information was used as the ground truth for the 

experiments. 

 Dataset 2 [DS2] – Sherpa + HCRU: This dataset was 

performed using DLR’s Handheld Central Rover 

Unit (HCRU), developed as part of the InFuse 

project, and DFKI’s SherpaTT rover. The SherpaTT 

rover had another HCRU unit integrated inside it that 

recorded the output of the sensors mounted on of 

both the robot and the HCRU. The pose of the 

SherpaTT rover was obtained using a DGPS system 

coupled with IMU information. This information 

was used as the ground truth for the experiments. 

    
Figure 8. Visualization of the algorithm output for DS1- 

Mana & Minnie (left) and DS2 - Sherpa (right). 

 

Given the specific characteristics of the two datasets, the 

validation criteria vary from one to the other.  
The validation criteria for DS1 are the following:  

 Position error 

o x axis < 15 cm 

o y axis < 30 cm 

o z axis < 15 cm  

 Orientation error  

o x axis < 20 degrees 

o y axis < 20 degrees  

o z axis < 10 degrees 

The validation criteria for DS2 are the following: 

 Position error 

o x axis < 45 cm 

o y axis < 30 cm 

o z axis < 15 cm  

 Orientation error  

o x axis < 30 degrees 

o y axis < 30 degrees  

o z axis < 20 degrees 

 

Table 4: Test results summary per dataset, specifying 

the range distance in which the target is moving 

DS Scenario Distance Result 

DS1 Straight lines (3 passes) [4.6, 6.7] 

m 

Passed 

Slanted path, from left to 

right and front to back 

[7.9, 13] 

m 

Partially 

passed 

Slanted path, from right ot 

left and back to front. Sun 

to the left of the camera, 

shadowing the wheels of 

the robot 

[6, 12] m Not 

passed 

DS2 Straight path, from right to 

left 

[5.2, 5.4] 

m 

Passed 

Slanted path, from left to 

right and back to front 

[7.7, 6.8] 

m 

Partially 

passed 

Straight path, from right 

to left 

[10.1, 

11.55] m 

Not 

passed 

5.4. Reconstruction 3D – PT 

The validation of this DFPC was performed by 

University of Strathclyde using different datasets, all of 

them recording an object that is constantly in the field of 



 

view of the camera while said camera moves in a circle 

around the object. The datasets used for validation are the 

following:  

 Dataset 1 [DS1]: undistorted and rectified images of 

a crawler robot in DLR’s PEL facility. Recorded 

with diffused light condition. The object is colourful, 

has many 3D features and doesn’t have reflecting 

surfaces. 

 Dataset 2 [DS2]: undistorted and rectified 

monochrome images of a boulder in the desert of 

Morocco. Recorded with sun illumination in the 

early morning, which adds long shadows to the 

dataset. The object has many 3D features and no 

reflecting surfaces. 

 

 
Figure 9. Boulder input from DS2 dataset (left) and 

visualization of the algorithm output (right). 

 

The validation procedure includes the computing of the 

following metrics: 

 Percentage of outliers = (Number of outliers) * 100 

/ (Number of points) 

 Position Estimation Error (PEE) = ABS (measured 

camera distance - ground truth camera distance) 

*100/ (camera operational distance) 

 Shape Similarity (SS)= 100*(1 - (average of absolute 

difference of dimensions) / (maximum dimension)) 

 Maximum dimensional analysis error (MDE) = 100 

* maximum of ((difference of dimensions) / (ground 

truth dimension)) 

 

The validation criteria for these tests is the following:  

 Outliers < 10% 

 PEE < 1% of camera operational distance 

 SS >= 90%  

 MDE < 10% 

 

Table 5: Test results summary per dataset. All 

numerical values are represented as percentage.  

DS Outliers PEE SS MDE Result 

DS1 0.26 0.46 95 22.96 Not 

passed 

DS2 0.00 2.53 97.98 7.34 Passed 

 

5.5. DEM Building – PT 

This DFPC implementation of a DEM building algorithm 

was developed by LAAS-CNRS for the Planetary Track. 

The validation was performed using the following 

datasets: 

 Dataset 1 [DS1]: indoors test in DLR’s PEL facility, 

using a robot moving towards a cube at a 15 degrees’ 

slope.  

 Dataset 2 [DS2]: Merzouga site 1km trajectory 

during Morocco trials. The rover has a linear speed 

of 40 cm/s and the laser scans are acquired at 1Hz.  

 Dataset 3 [DS3]: Mummy site 800m trajectory 

during Morocco trials. The rover has a linear speed 

of 40 cm/s and the laser scans are acquired at 1Hz. 

 

 
Figure 10. Resulting DEM from DS2 superposed on top 

of the ground truth map of the area. 

 

Table 6: Test results summary per dataset 

DS DEM size Resolution Result 

DS1 10x10 m 4 cm Passed 

DS2 30x30 m 10 cm Passed 

DS3 30x30 m 10 cm Passed 

 

There is no quantitative assessment of the precision of the 

DEM built, as it would not only require a ground truth of 

the terrain, but also an absolute precision of the DEM 

localization with respect to the ground truth with a 

precision below the DEM pixels. Also, the uncertainties 

in the estimation of the elevation come mainly from the 

precision of the acquired data and of the robot 

localization at the time of the data acquisition, not from 

the DEM building process itself. 
 

5.6. Visual Odometry – PT 

The validation of this DFPC was performed by 

Magellium [8] using different datasets:  

 

 Dataset 1 [DS1]: Undistorted and rectified images 

captured by the HCRU in DLR’s PEL facility while 

moving back and forth at ~2cm/s, with 2x 180° turn 

in place. The rectified images have a resolution of 

1032x772 pixels, and are received at a rate of ~4Hz. 

The surface is flat with very few rocks. Full intensity 

lab lightning is used. 

 Dataset 2 [DS2]: Raw images captured by Minnie’s 

NavCam while performing a 1km long trajectory in 

Merzouga site during the Morocco field trials. The 

rover has a linear speed of 30cm/s. The input images 

are acquired at ~4Hz and have a resolution of 

1920x1080, but are degraded by a factor of 3 in both 

height and width before processing by the visual 

odometry. 



 

 Dataset 3 [DS3]: Raw images captured by Minnie 

while performing a 650m long trajectory in the Kess-

kess site during the Morocco field trials. The rover 

has a linear speed of 30cm/s. The input images are 

acquired at ~2Hz and have a resolution of 

1920x1080, but are degraded by a factor of 3 before 

processing by the visual odometry 

 

The acceptance criteria for these tests is that the relative 

localisation error shall be less than 2% of the total 

travelled distance. 

 

Table 7: Test results summary per dataset 

DS Error [%] Result 

DS1 1 Passed 

DS2 2 Passed 

DS3 2.61 Not passed 

 

5.7. Visual Map-based Localisation – PT 

This DFPC implementation by Magellium a Visual 

SLAM algorithm that uses maps of the traversed paths 

that were recorded previously. The validation of this 

DFPC was performed using a dataset containing raw 

images captured by Minnie while performing a 650m 

long trajectory in the Kess-kess site during the Morocco 

field trials. For the purpose of this test, we only replayed 

half of the trajectory. The rover has a linear speed of 

30cm/s. The input images are acquired at ~2Hz and have 

a resolution of 1920x1080.  

 

The map was obtained using another dataset capturing 

the same path in the Kess-kess site. Similar to the 

previous test results, the acceptance criteria for these tests 

is that the relative localisation error shall be less than 2% 

of the total travelled distance. The test was passed, with 

a final relative position accuracy is ~1.5%. The 

localisation was less sensitive to perturbations in rover 

pitch than other SLAM implementations. This could be 

explained by the fact that the second dataset contains 

stereo images acquired at 4Hz, but also by the pre-

existing SLAM map which acts as a support, preventing 

diverging estimations. 

 

5.8. Pose-Graph SLAM – PT 

The validation was performed by LAAS-CNRS by 

analysing the error on the rover position, using the 

rover’s DGPS position as ground truth. More 

specifically, the following parameters were analysed:  

- Growth of the robot position error as a function of 

distance in the absence of loop closures 

- Reduction of the error after a loop closure is detected 

and integrated in the robot pose estimation  

The validation of this DFPC was performed using the 

different datasets. The following paragraphs present the 

scenarios and the results obtained per scenario.  

   

Scenario 1: This dataset consists on lidar scans acquired 

by the Mana rover while traversing a 200m long 

trajectory on the Merzouga site. Fig. 11 and Fig. 12 show 

the result of the PG SLAM algorithm, comparing the 

estimated poses with the ground truth coming from the 

DGPS for the X and Y axis as well as the Z (elevation) 

axis.  

 
Figure 11: PGSLAM results compared with the ground 

truth for the x and y axis. 

 

While the approach has shown good time performances, 

the errors in the estimation of the robot pitch angle yields 

a significant drift in the estimation of the robot elevation. 

The solution would be to adapt the core algorithm of PG-

SLAM (Iterative Closest Point algorithm) so that the 

estimated position is constrained by the robot attitude 

angles estimated by the odometry/IMU position estimate. 

 
Figure 12: PGSLAM results compared with the ground 

truth for the z axis. 

 

Scenario 2: This dataset consists on lidar scans acquired 

by the Mana rover while traversing a 1000m long 

trajectory on the Mummy site. Fig. 13 and Fig. 14 show 

the result of the PG SLAM algorithm, comparing the 

estimated poses with the ground truth coming from the 

DGPS for the X and Y axis as well as the Z (elevation) 

axis. The errors in the estimation of the robot pitch angle 

yields a significant drift in the estimation of the robot 

elevation, and a gross heading estimation error made the 

trajectory estimate totally wrong after about 200 m of 

motions. While some loop closures have been properly 

detected and yielded a spatially consistent estimate of the 

trajectory in its northest part, no loop closure could be 

detected when the robot came back to the position where 

the gross angular estimation has been made. 



 

Figure 13: PGSLAM results compared with the ground 

truth for the x and y axis. 

 
Figure 14: PGSLAM results compared with the ground 

truth for the z axis. 

 

5.9. Performance evaluation 

This section offers a brief performance evaluation of the 

presented DFPCs. The aim of this evaluation is to give an 

idea as to what the execution time and maximum memory 

usage is for some of these algorithms. 

 

Table 8: Test results summary per dataset 

DFPC Executio

n time [s] 

Max 

memory 

Model based visual tracking 0.001848 491.3 MB 

Mid-Range 3D Model 

Tracking 

0.1311 391.6 MB 

Model Based Tracking 0.0587 1.152 GB 

3D reconstruction  1.0006 778.7 MB 

DEM building  0.0058 361.9 MB 

Visual Map-based 

Localisation 

0.0287 847.8 MB 

 

The performance evaluation was performed analysing the 

unit tests. All binaries were profiled using the same 

machine, in order to produce comparable results. The 

user time obtained when executing the binaries was used 

to create the final numbers, being this the actual CPU 

time used in the process, without taking into account 

other processes or time the process gets blocked. The user 

time is then multiplied with the processing percentage per 

function obtained using callgrind, and the maximum 

memory consumed by the process is extracted using 

massif, both of them Valgrind tools [12]. 

 

6. CONCLUSION 

InFuse provides a comprehensive, modular data fusion 

system for future space robotic missions. InFuse consists 

of optimized perception techniques to estimate 

localization and model the surroundings of a robotic 

platform in order to support the planning and execution. 

The results of the validation and verification tests with 

data sets provide an overview of the current performance. 

In addition, InFuse aims to increase the overall 

performances of the offered DFPCs by providing tools to 

perform fast prototyping with core data fusion libraries 

before their final integration on the target platform. 

Ideally, this approach will bring improvements in the 

parameterisation of DFNs and will enable a rapid and 

probably an autonomous reconfiguration of DFPCs.  
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