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Robustness of quantum operations or controls is important to build reliable quantum devices. The robustness-

infidelity measure (RIMp) is introduced to statistically quantify in a single measure the robustness and fidelity

of a controller as the pth order Wasserstein distance between the fidelity distribution of the controller under any

uncertainty and an ideal fidelity distribution. The RIMp is the pth root of the pth raw moment of the infidelity

distribution. Using a metrization argument, we justify why RIM1 (the average infidelity) is a good practical

robustness measure. Based on the RIMp, an algorithmic robustness-infidelity measure (ARIM) is developed

to quantify the expected robustness and fidelity of controllers found by a control algorithm. The utility of the

RIM and ARIM is demonstrated on energy landscape controllers of spin- 1

2
networks subject to Hamiltonian

uncertainty. The robustness and fidelity of individual controllers as well as the expected robustness and fidelity of

controllers found by different popular quantum control algorithms are characterized. For algorithm comparisons,

stochastic and nonstochastic optimization objectives are considered. Although high fidelity and robustness are

often conflicting objectives, some high-fidelity, robust controllers can usually be found, irrespective of the choice

of the quantum control algorithm. However, for noisy or stochastic optimization objectives, adaptive sequential

decision-making approaches, such as reinforcement learning, have a cost advantage compared to standard control

algorithms and, in contrast, the high infidelities obtained are more consistent with high RIM values for low noise

levels.

DOI: 10.1103/PhysRevA.107.032606

I. INTRODUCTION

Fault tolerance is crucial for quantum technology and

presents a particular challenge for noisy intermediate-scale

quantum (NISQ) devices [1]. Broadly, there are three pro-

posed ways to deal with noise and errors and achieve fault

tolerance: (1) via error correction protocols, e.g., Shor codes

[2–4] or syndrome measurements [5]; (2) using error miti-

gation schemes, e.g., reversing noisy dynamics [6–9], active

variational noise minimization [10], or parametric model-

ing of architecture defects in trapped qubits [11,12]; (3)

robust solutions engineering, e.g., landscape shaping of the

quantum control optimization problem in search of noise-

free regions [13–15], decoherence-free subspaces [16,17],
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or noise spectral density based filter functions [18,19]. Un-

certainties that require fault-tolerance in quantum devices

have two flavors: (a) interactions with the environment that

lead to nonunitary dynamics and (b) inaccuracies in the

control model representing a specific physical implementa-

tion that affect the evolution but do not cause nonunitary

evolution.

Standard quantum control methods for steering quantum

devices mostly focus on finding controls that have high fi-

delity using mathematical models [20–22]. However, if the

operation of quantum devices is subject to noise, high fidelity

itself is insufficient to gauge performance of a control scheme

and extra effort is required to systematically search for solu-

tions that are both robust against noise and have high fidelity

[23,24]. This requires a notion of robustness and ideally a sin-

gle measure that can capture robustness and fidelity, enabling

the identification and construction of more efficient methods

to find controls that satisfy both properties.

In this paper, we introduce a general statistical diagnostic

based on the Wasserstein distance of order p [25] to evalu-

ate the robustness and fidelity of quantum control solutions

and the algorithms used to find them. This is applicable to

any quantum control problem where the fidelity is a ran-

dom variable with a probability distribution over [0,1]. The

Wasserstein distance between probability distributions is a

2469-9926/2023/107(3)/032606(22) 032606-1 Published by the American Physical Society
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measure of the minimal costs of probability mass transport

between two distributions. In Sec. II, the pth order robustness-

infidelity measure (RIMp) is defined to quantify the robustness

and fidelity of a quantum controller. It is the pth-order Wasser-

stein distance between the probability distribution for the

fidelity induced by noise and the ideal distribution for a per-

fectly robust controller, described by a Dirac delta function at

fidelity 1. We show that the RIMp is the pth root of the pth

raw moment of the infidelity distribution—a nonparametric

measure independent of any particular assumption for the

distribution.

Using measure-theoretic norm scaling relations between

RIMs of different orders, we argue that RIM1, the average

infidelity, is sufficient as a practical measure of robustness and

fidelity. As such, it meshes with the average infidelity, already

used in robust [26,27] and stochastic or adaptive quantum

control settings [28,29]. More generally, the RIMp is related

to the risk-tunable fidelity measure using a utility function, as

introduced in Ref. [30].

The RIM has practical utility by allowing us to choose

among similar, high-fidelity controllers, acting as a postse-

lector for robust controllers, agnostic of the algorithm used

to find them. This may be computationally more efficient than

optimizing the RIM directly, as we see in Sec. IV C. Moreover,

it can also be adapted to compare the performance of control

algorithms in finding not only high-fidelity but also robust

controllers. To that end, we introduce an algorithmic RIM

(ARIM), averaging RIMs over multiple controllers, in Sec. II.

In Sec. IV, we illustrate the RIM and draw useful in-

sights for robust quantum control by generating controllers

for static energy landscape control of the XX Heisenberg

model, exploiting the degree of freedom afforded by the

existence of multiple optima in quantum control [31]. We

analyze their robustness properties and the performance of

algorithms in finding effective controllers using four optimiza-

tion algorithms representing different commonly employed

approaches: (1) L-BFGS: a second-order gradient-based op-

timization using an ordinary differential equation model of

the quantum system to compute the fidelity under perfect

conditions [32]; (2) proximal policy optimization (PPO):

a model-free reinforcement learning algorithm, having no

prior knowledge of the system [33]; (3) Nelder-Mead: a

derivative-free simplex-based heuristic search method [34];

and (4) stable noisy optimization by branch and fit (SNOB-

Fit): another derivative-free method that performs model-free

learning by using regression to estimate gradients via a branch

and fit method [35]. Here, (1) serves as a baseline for opti-

mization over a noise-free fidelity objective functional under

ideal conditions. (2) represents a machine-learning approach

with minimal knowledge. (3) and (4) are derivative-free meth-

ods to handle stochastic objective functionals. A detailed

motivation for the choice of these algorithms is presented in

Sec. III B. These choices are not exhaustive but serve as a di-

verse set of algorithms to which we apply the RIM and ARIM,

illustrating their utility and giving some indication of the

performance of common control algorithms for the specific

robust control problem. The algorithms were implemented in

Python. Specifically, we used the SciPy library for (1) and (3)

[36], and (4) is obtained from Ref. [37]. Our code and data are

available at Ref. [38].

Our experimental motivation is fourfold: (A) By com-

paring the robustness of controllers without regard to the

optimization algorithm, we wish to answer whether high fi-

delity implies high robustness using the RIM of the individual

controllers (Sec. IV A). (B) By conducting a distributional

comparison of controllers, we wish to understand how likely it

is that a given algorithm produces controllers in an ideal (no-

noise) setting that are robust in noisy conditions (Sec. IV A 2).

(C) To study the effect of training noise of the same nature

as the robustness noise model applied during optimization

on an algorithm’s ability to find robust controllers using the

ARIM (Sec. IV B). For a fair comparison, we conduct (B) and

(C) with a fixed number of objective function calls allotted

to each algorithm. (D) In Sec. IV C, we try to understand an

algorithm’s asymptotic ability to find robust controllers using

the ARIM through optimizing the RIM by allowing unlim-

ited objective function calls. We consider two settings in this

scenario: stochastic and nonstochastic fidelity optimization. In

the latter case, we optimize over a fixed set of Hamiltonians

sampled once according to a noise model, while in the for-

mer case the Hamiltonians are stochastically chosen at each

objective function evaluation using the same noise model.

Our main numerical findings are:

(1) High fidelity controllers are not always robust, but the

nonrobust controllers can be filtered out using the RIM.

(2) Using a consistency statistic, we show that PPO con-

troller infidelities (RIM at no noise) are more correlated with

RIM values at low noise levels compared to the other al-

gorithms. More generally, a strong signal in the consistency

statistic predicts RIM robustness while avoiding its explicit

evaluation.

(3) For constrained objective function calls, there appear

to be problem-dependent optimal levels of noise that pro-

duce more robust controllers for PPO in contrast to L-BFGS,

SNOBFit, and Nelder-Mead.

(4) Robust controllers with respect to certain noise models

in the optimization objective are obtained by all algorithms

for the nonstochastic optimization objective when there are

no constraints on resources.

(5) However, if the optimization objective is stochastic,

the ARIM improves asymptotically only for PPO. In either

case, PPO requires fewer function calls compared to the other

algorithms, which highlights the potential of adaptive sequen-

tial decision-making strategies like reinforcement learning for

NISQ optimization problems, where not all uncertainty can

be captured by nonstochastic objective functionals (e.g., shot

noise).

Lastly, from the perspective of classical control [39], it is

well-known that accuracy conflicts with robustness through

the S + T = I formula, where S is related to tracking error

and T to sensitivity of the tracking error to uncertainties.

This restriction does not map directly to quantifying fidelity

versus robustness in the quantum domain [24,40], although

it is recovered in some cases [41]. One reason for the dis-

crepancy is that the frequency-domain limitations of classical

feedback control have limited applicability in quantifying the

performance in the time domain. The RIM combines the two

figures of merit into one single measure: small RIM means

high fidelity and high robustness, while large RIM means poor

fidelity and poor robustness.
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II. MEASURING ROBUSTNESS AND FIDELITY

OF QUANTUM CONTROLS

A. The general quantum control problem

The physical system we wish to control is represented by a

Hamiltonian

H (t, u) = H0 + Hu(t ), (1)

where the time-independent drift Hamiltonian H0 describes

the natural dynamics of the system and the control Hamil-

tonian Hu(t ) describes the time-dependent control with the

tunable, usually piecewise constant, control parameters u.

The closed-system dynamics are governed by the Schrödinger

equation, which can be written in terms of the unitary evolu-

tion operator from time t0 to time t1,

U (t0, t1, u) = T exp

(
−

ı

h̄

∫ t1

t0

H (t, u) dt

)
, (2)

where T denotes time ordering and h̄ is the reduced Planck’s

constant.

In general, the control problem is formulated as optimiz-

ing a fidelity F over a set of admissible controls. A notion

of fidelity that reflects most definitions used in practice is

given by F := |〈G|K〉|2, which measures the similarity be-

tween normalized objects G and K . If we wish to prepare

a state G = |ψ f 〉 from an initial state |ψ0〉 at time t0, then

K = U (t0, t1, u) |ψ0〉 and the optimization problem is given

by

topt, uopt = arg max(t1,u)∈X | 〈ψ f |U (t0, t1, u) |ψ0〉 |2︸ ︷︷ ︸
=F (t1,u)

, (3)

where X is the domain of allowed controls, here including the

final time t1. A variant, up to normalization, of the state fidelity

is the Hilbert-Schmidt inner product F = Tr(W †V ) between

a desired unitary transformation W and a gate achieved by

control, V = U (t0, t1, u). In general, we assume the fidelity is

bounded, and without loss of generality we assume it lies in

[0,1], where F = 1 if and only if we have G = eıφK , up to a

global phase φ (and equivalently for the Hilbert-Schmidt inner

product).

B. Robustness-infidelity measure

Uncertain dynamics turn the fidelity F into a random vari-

able with a probability distribution P(F ). Intuitively, we call a

controller robust if this distribution has a low spread. While a

low spread alone may indicate robustness, low fidelity means

the controller does not realize the target operation well. So

we also expect a fidelity close to 1. That means the perfect

distribution under any uncertainties is δ1—the Dirac delta

distribution at maximum fidelity 1. In particular, we consider

the delta function δx to be defined by an indicator cumulative

distribution function (CDF):

C(a) =
{

1 if a � 0

0 if a < 0.
(4)

This permits the familiar delta function property for integra-

tion with respect to a basic (rapidly diminishing) function:
∫ ∞

−∞
g(x)δx−a dx =

∫ ∞

−∞
g(x) dC(x − a) = g(a). (5)

Our goal is to define a distance between probability distri-

butions that measures closeness between the ideal and the

achieved probability distribution to combine high fidelity and

its robustness into a single measure.

For this, we take the Wasserstein or Earth mover’s distance

W [25,42] due to the fact that: (1) it allows us to compare two

probability distributions that do not share a common support,

and, in particular, compare discrete and continuous distri-

butions; (2) its easy geometric interpretation helps with its

optimization; and (3) a simplification allows it to be calculated

easily, as shown next.

The dual formulation of the pth order Wasserstein distance

[43] between two distributions μ, ν is given by

Wp(μ, ν) = sup h,g

[∫
h(x) dμ(x) −

∫
g(y) dν(y)

] 1
p

, (6)

where h(x) − g(y) � ‖x − y‖p. Even though this form seems

abstract, for one-dimensional distributions, we can analyti-

cally compute the optimal maps h, g with

Theorem 1 (Prop. 1 in Ref. [43]). The pth Wasserstein dis-

tance Wp(μ, ν) for one-dimensional probability distributions

μ and ν with finite p moments can be rewritten as

Wp(μ, ν) =
(∫ 1

0

|Qμ(z) − Qν (z)|p dz

) 1
p

,

where Qμ(z) = inf{x ∈ R : Cμ(x) � z} denotes the quantile

function and Cμ is the cumulative probability function of μ

and likewise for Qν .

Remarkably, the optimal transport distance between one-

dimensional distributions μ, ν over all possible transportation

plans can be computed in terms of their quantile functions Qμ,

Qν . From here, following Theorem 1, it is straightforward to

define the pth RIM:

RIMp := Wp(P(F ), δ1) =
(∫ 1

0

|QP(F )(z) − 1|p dz

) 1
p

. (7)

It can be written in terms of the raw moments (see Ap-

pendix A 1),

RIMp = E f ∼P(F )[(1 − f )p]
1
p , (8)

where f is a fidelity sample drawn from the distribution P(F )

and 1 − f is the corresponding infidelity sample. We use the

expectation operator defined as E f ∼P(F )[(·)] :=
∫

(·)P(F =
f ) df . For p = 1, we recover the average infidelity:

RIM1 = E f ∼P(F )[1 − f ] = 1 − E f ∼P(F )[ f ]. (9)

To compute the RIMp, we estimate P(F ) using n fi-

delity samples f1, f2, . . . , fn. Such samples may be obtained

in practice via Monte Carlo simulation or physical experi-

ments [44]. Hence, barring the computational or experimental

expense of obtaining these samples, the RIMp is easy to

compute. In case the dynamics of the system are certain, i.e.,

P(F ) = δ f for some constant fidelity value f , the RIM1 is

032606-3
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equal to the infidelity 1 − f . Moreover, the RIM1 is small

if and only if the controller is robust (in the sense of the

fidelity distribution having a low spread) and is also close to

the maximum fidelity.

C. The average fidelity is sufficient for robustness comparisons

We motivate why the RIM1 is sufficient for comparing

robustness and fidelity of controllers by making use of the fact

that the RIMs of different orders computed on the estimated

fidelity distribution are in agreement. We obtain the following

bounds between the lower and higher order RIMs (see Ap-

pendix A 3):

RIMp′ � n
( 1

p
− 1

p′ )
RIMp, (10a)

RIMp � RIMp′ (10b)

for p < p′, where n is the number of samples used to estimate

the RIM. Equation (10b) is stronger and states that RIMp is

less sensitive to outliers than RIMp′ while Eq. (10a) states that

for fixed n and p, RIMp′ growth is sublinear [∝ exp(−1/p′)].
This can be made tighter by adding additional assumptions on

the nature of P(F ), but these depend on the specific control

problem. The upper bound becomes loose with increasing n,

but highlights the constraining nature of deviation of higher-

order RIMs from RIM1.

This means that the higher-order RIMs do not capture more

useful robustness information for comparisons, with the base

case in Eq. (10b) being decided by the RIM1. RIM1 has low

sensitivity to outliers (see Appendix A 3), which makes it

easier to estimate than higher-order RIMs, which, like the

worst-case fidelity, are harder to accurately practically obtain

(as more samples are required, which also explains the pres-

ence of n in the inequality).

The bound in Eq. (10b) gets tighter for large n but also

for decreasing infidelities, so in this regime, the RIMs are

in agreement. Another way to see this is to note that the

Wasserstein distance provides a structure-preserving geodesic

between any fidelity distribution to the ideal δ1: the dis-

tributions converge together with their RIMs of any order.

So, especially when approaching the ideal distribution δ1,

i.e., in case RIM1 is small for the high-fidelity, robust

controller, there is strong agreement between RIMs of all

orders. For example, the variance of distributions decreases as

∼(1 − minF )2 as minF → 1 in [0,1].

However, the fact that outliers are more influential for

higher RIM orders proves useful for optimization [30] where

such behavior is sought after, while our goal here is robustness

and fidelity comparison. For this goal, in general, outliers are

obstructive as they would hide the general distributional trend.

From now on we will refer to the RIM1 without the subscript.

D. Perturbations

Next, we define the noise in the system as perturbations

of its uncertain dynamics that give rise to P(F ). A perturba-

tion to the full Hamiltonian in Eq. (1) can be expressed as

H̃ (t, u) = H (t, u) + γ S ∈ C
n×n, where γ ∈ R describes the

strength of a perturbation and S ∈ C
n×n its structure, usually

normalized using some matrix norm. To induce an uncertainty

into the dynamics, we treat γ and S as random variables

drawn from some probability distributions. This give us a

general way to represent any physically relevant uncertainties

in Hamiltonian parameters.

The structure S may be fixed, e.g., describing the un-

certainty in some coupling parameter for the Hamiltonian,

while γ is drawn from a normal distribution. This would

be consistent with a (linear) structured perturbation in clas-

sical robust control theory [45]. Instead, S may also be

drawn from a probability distribution, describing uncertainties

across multiple Hamiltonian parameters. While this general-

izes structured perturbations, note that they do remain linear

with respect to the strength. If S is sampled uniformly on the

unit sphere, according to its normalization, we have an un-

structured perturbation, with (uncertain) strength determined

by γ . Conceptually, if γ is drawn from a normal distribution

with zero mean and standard deviation σ , γ S describes a

“fuzzy” ball Bσ around H (t, u). In this paper, we consider

unstructured perturbations that are less idealized, in some

sense, than the structured perturbations (usually considered in

classical control [46]), allowing the robustness results to be

interpreted generically without the need to consider specific

sources of uncertainties arising from specific quantum device

designs. For simplicity, we write Pσ (F ) for a fidelity distribu-

tion obtained by unstructured perturbations drawn from Bσ .

Our quantification of robustness is dependent on the choice

of γ S and the uncertainties in these quantities. Note that

neither the choice of the noise model nor the magnitude of the

noise level is restricted, as our approach is not perturbative

around the optimum (topt, uopt), which is how noise is usu-

ally modeled in the literature [13,18,47–50]. This approach

becomes relevant when confidence in an analytical physical

model is low or there are missing terms that cannot be an-

alytically or perturbatively accounted for, e.g., complicated

noise sources. This is also in accordance with modern robust-

ness theory and the μ function in classical [51] and quantum

[45,52,53] settings.

To further motivate the RIM, we study how it compares

with other statistical measures of robustness. The RIM gen-

erally correlates with worst-case or minimum sample fidelity,

variance or higher moments, and the yield function Y (FTh),

which is the fraction of fidelities greater than a threshold fi-

delity FTh. Figure 1 shows a scatter plot of RIM values versus

Y (0.95), Y (0.98) and the worst-case fidelity for an example

problem using Eq. (13) discussed in Sec. III A. The RIM has

an advantage over Y in that it does not depend on an arbitrary

choice of FTh.

E. Measuring the performance of control algorithms

We can also apply the previous arguments to derive a

measure to compare the ability of control algorithms to find

high-fidelity, robust controllers. Let P(RIM) be a distribu-

tion of RIM values of controllers obtained by a particular

algorithm and a particular control problem with specific un-

certainties. This can be estimated by sampling L controllers

produced by the algorithm. The ideal of this distribution is δ0,

so we can define the ARIM,

ARIM := W1(P(RIM), δ0) = Er∼P(RIM)[r], (11)

032606-4
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FIG. 1. RIM values generated from P0.02(F ) with N = 100 sam-

ples for 200 controllers are plotted against the yield Y (FTh) at fidelity

thresholds FTh = 0.95, 0.98 and the worst case fidelity. Both mea-

sures are correlated, as encapsulated by the high negative Spearman

correlation coefficients [54] and p values <10−4.

following the same argument as before. The ARIM is small

if and only if the underlying RIM distribution P(RIM) has

higher density at or near RIM = 0, i.e., is close to the ideal δ0.

III. ROBUSTNESS FOR STATIC CONTROL PROBLEMS

We study the robustness of static control problems, where

the controls are time independent, instead of the usual time-

dependent controls. Previous work has shown that particularly

robust controls can be found for these systems [23,24,40,45].

While these systems are often not fully controllable, solutions

for specific operations can be found via optimization [55].

The static approach is simpler in the sense of having fewer

control parameters to optimize over, which reduces computa-

tional and experimental complexity. This makes the problem

suitable to demonstrate the practical usage of the RIM in a

concrete example and explore the robustness properties of the

control algorithms as well as the controllers they find.

A. Information transfer in the single excitation subspace

of XX spin chains

We consider a network of M spins represented by the

quantum Heisenberg model given by the Hamiltonian

HHeis

h̄
=

∑

a∈{x,y,z}

M∑

j=1

Jaσ a
j σ

a
j+1 + η

M∑

j=1

σ z
j , (12)

where σ a
j = I

⊗ j−1 ⊗ σ a ⊗ I
⊗M− j and σ a are the usual Pauli

matrices. We set Jz = 0 and Jx = Jy = J for the XX model

with uniform couplings. This model has been studied exten-

sively, starting with Ref. [56] in 1961, and a more recent

review of the system, as it relates to quantum communication,

is provided in Ref. [57]. Conditions for perfect state transfer

along XX chains were derived in Ref. [58] and applied to

NMR systems [59]. Similar experiments have been carried out

in photonic systems [60,61], and proposals for engineering

similar systems with trapped ions [62] and cold atoms [63]

exist.

The state space naturally decomposes into noninteracting

excitation subspaces as the Hamiltonian commutes with the

total excitation operator. Here we consider the first excitation

subspace, the smallest space that enables transfer of one bit

of information between the nodes in the network. Higher

excitation subspaces may be needed for other applications, but

it is desirable for information transfer to limit the space to the

smallest space that is sufficient to achieve the task. This is a

much smaller space and only grows as O(M2) as opposed to

O( exp(2M )). The Hamiltonian of the first excitation subspace

is

(HXX )l,m

h̄
= J1l,m±1 + 	l1l,m, (13)

where 1l,m is the Kronecker delta. The static controls are

local energy biases 	l on spin |l〉 in a diagonal matrix

H� = diag(	1, . . . ,	M ).

HXX allows for transfer of single bit excitations from an

initial spin state |a〉 to a final state |b〉. We define the fidelity as

F = | 〈b|U (t0, t1, HXX ) |a〉 |2 and the infidelity as I = 1 − F .

The solution to Eq. (3) is a final time topt and a single vector

of M biases �opt. The perturbations are given by

(Sσ )l,m =
M−1∑

k=1

γ J
k J1l,k1l,m±1 +

M∑

c=1

γC
c 	c1c,l1l,m, (14)

where γ J
k and γC

c are the strength of the perturbation on the

couplings and controls, respectively. We draw these strengths

from the same normal distribution N (0, σ 2) with mean 0 and

variance σ 2. A numerical example illustrating the RIM via the

empirical CDF (ECDF) for two controllers is shown in Fig. 2.

Depending on the hardware platform, it is possible to con-

sider specific practically motivated correlated noise models

with correlated structured perturbations or a power-law decay-

ing electric-field noise (1/s), e.g., in trapped atomic platforms

[11,65]. We have chosen to implement the simplest option of

equal strength random perturbations on all nonzero entries

of the Hamiltonian that is also relevant in practical settings

[59–63].

B. Algorithms for static control problems

The ARIM compares algorithm performances in finding

robust controllers. Here, we describe the algorithms used to

find the controllers for the static control problems. For select-

ing algorithms, we tried to (a) investigate the performance

of algorithms commonly used in the quantum control and

other communities, (b) consider algorithms that do and do not

require gradient information, and (c) consider reinforcement

learning, more recently also used in quantum control.

L-BFGS is a common optimization algorithm used in

quantum control as part of GRAPE [66] and performed well

on finding high-fidelity energy landscape controllers [55].

It has not been designed for noisy optimization, but there

exist smoothing modifications that attempt to address this

[67–69]. For individual controller comparisons, we use stan-

dard L-BFGS with an ordinary differential equation model to
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FIG. 2. To illustrate the RIM robustness measure, two static

controllers for an XX spin chain of length five for transferring an

excitation from spin |1〉 to |3〉 are compared. The empirical approxi-

mations to the CDFs for the two controllers, l = 1, 2, were simulated

using 100 bootstrapped perturbations with σ = 0.1, giving fidelity

distributions P0.1(Fl ) for the fidelity random variables Fl . The fi-

delity distribution P0.1(Fδ1
) for a perfectly robust controller with

Fδ1
is also shown. The ECDFs are estimated using 500 bootstrap

repetitions. The 0.95 confidence bounds on their error are obtained

using the Dvoretsky-Kiefer-Wolfowitz inequality [64]. Closeness to

the perfectly robust controller can be interpreted as having a smaller

area under the curve and is indicated by the RIM values.

compute the fidelity without perturbations during optimiza-

tion. This serves as a baseline to understand the performance

of optimizing noiseless objective functionals compared to the

noisy optimization performed by all other selected algorithms

and its impact on the robustness of the controllers found.

We have explored stochastic gradient descent methods (e.g.,

ADAM [70]) and also tested a noisy version of L-BFGS

that has been recently proposed that modifies the line search

and lengthening procedure during the gradient update step

[69] and found that our training noise scales were too large

and washed away gradient information, rendering these algo-

rithms unsuitable for our study.

Reinforcement learning has been successfully used for

tackling quantum control in challenging noisy environments,

resulting in similar or better performances compared to

standard control methods. Promising results include the stabi-

lization of a particle via feedback in an unstable potential [71],

optimizing circuit-QED, two-qubit unitary operators under

physical realization constraints [72], and optimizing multi-

qubit control landscapes suffering from control leakage and

stochastic model errors [73], among many others.

PPO is a policy gradient method in the class of reinforce-

ment learning algorithms [74]. It uses a discounted reward

signal (e.g., the fidelity) accumulated over multiple interac-

tions with the optimization landscape using nonparametric

models: the policy function, that does the interacting by per-

forming control operations, and the action value function, that

predicts the quality of each action undertaken by the policy

in terms of future payoffs in the reward signal. Both are

estimated using neural networks in a control problem agnostic

fashion. Doing this allows the incorporation of perturbations

during training which specifically has advantages in finding

robust controls for energy landscape problems [75]. Here, we

use a control problem formulation of PPO for Eq. (13) as

described in Ref. [75].

Nelder-Mead is a popular simplex-based control algorithm

using direct search. Essentially, it keeps updating a polytope

whose vertices are function evaluations toward an optimum

direction. It has successfully been used in noisy experimental

settings [76] due to its nonreliance on gradient information

[77–79], especially when obtaining such information is re-

source intensive.

SNOBFit has been chosen as it has been designed to filter

out quite large-scale noise in objective functionals [35]. It

fits local models using objective function evaluations and im-

plements a branching and splitting algorithm to partition the

parameter space into smaller boxes with one function evalua-

tion per box. The latter is a nonlocal search scheme that orders

promising subboxes by the number of bisections required to

get from the base box to that box. Subboxes with smaller

bisections are worth exploring more. Like PPO, it does not

rely on explicit gradient information and builds models of

the optimization landscape. Thus, both algorithms should be

able to cope with large amounts of noise in the form of

controller and model uncertainties, environmental effects, and

singularity during optimization. SNOBFit, however, differs

importantly from PPO in the assumption that those models

are linear. Moreover, its nonlocal optimization landscape ex-

ploration is not random and thus has comparatively a lot less

variance in performance (that may or may not be poor).

IV. NUMERICAL EXPERIMENTS

To explore the robustness of controllers and corresponding

control algorithms (see experimental motivation in Sec. I), we

perform a Monte Carlo robustness analysis using the RIM

on numerical solutions to the spin chain information transfer

problem in Sec. III A for chains of length M = 4, 5, 6, 7, 8, 9

with J = 1.

We look at transitions from the start of the chain |1〉 to

the end |M〉 and from |1〉 to the middle |⌈M
2
⌉〉. The former

transition is physically easy to control while the latter is more

challenging [55], as transitions to the middle exhibit anticore

behavior [80].

We collect the best 100 solutions, ranked by their fidelity,

obtained by all the control algorithms. Each algorithm has a

budget of 106 fidelity function evaluations. The budget cor-

relates with the run time for each algorithm. It is imposed

to allow for a fair comparison of the algorithm robustness

performance under similar resources, while being agnostic to

specific implementations and speed differences.

We initialize �, t with quasi Monte Carlo samples from

the Latin hypercube [81–83] to increase convergence rate and

decrease clustering of controllers. This permits coverage of

the parameter domain with O(1/
√

N ) samples as opposed to

O(1/N ) for random sampling, where N is the number of initial

values. Our constraints are 0 � t f � 70 and −10 � 	 � 10.

We use 100 bootstrap samples to estimate fidelity distributions

032606-6



STATISTICALLY CHARACTERIZING ROBUSTNESS AND … PHYSICAL REVIEW A 107, 032606 (2023)

FIG. 3. (a)–(d) 100 controllers found for the XX spin chain model, Eq. (13), using Nelder-Mead, SNOBFit, PPO, and L-BFGS for M = 5

and the spin transition from |1〉 to |3〉 with σtrain = 0. The controllers are ranked in increasing order of infidelity at σsim = 0 from left to

right. Each column represents a single controller’s RIM at σsim = 0, 0.01, 0.02, . . . , 0.1 from the bottom to the top on a log scale. Even if the

infidelity or RIM at σsim = 0 is close to 0, some controllers’ RIM values degrade faster than others and are hence less robust despite starting at

very low infidelities. (e) RIM as a function of σsim for the average and best controller (i.e., most dark over all σsim levels) out of the 100 shown

in (a)–(d) in terms of how much they preserve their corresponding RIM rank average across all σsim. Each algorithm is indicated by a marker

shape, and the solid and dash-dotted lines denote the best and average controller lines, respectively. All the best controllers have very high

initial fidelities and are very similar across the different control algorithms, with Nelder-Mead being only moderately worse.

throughout. The perturbation strengths γ J
j and γC

c are scaled

by J and 	, respectively, as per Eq. (14). Note, for σ = 0,

P0(F ) = δF is deterministic.

The perturbation strengths are drawn from a normal distri-

bution with standard deviation σtrain determining the strength

of the noise added for the optimization. σsim is the noise level

used in the simulations to assess the robustness of the con-

trollers found. Implementation details are in Appendix B 1.

The optimization objective is noiseless F for Sec. IV A,

stochastic F with unstructured perturbation Sσ for Sec. IV B,

and the RIM for the nonstochastic problem and a stochastic F

with Sσ in Sec. IV C.

A. Characterization of all controllers found

with constrained resources

1. Ranking individual controllers

In this section, we address our motivating question (A),

whether high fidelity implies high robustness for an individual

controller. We also numerically demonstrate the nonlinear and

nonuniform deterioration of robustness with increasing noise

which implies a trade-off between higher fidelity at no noise

and robustness at higher noise levels.

To this end, we employ control algorithms to optimize an

objective functional without noise, i.e., setting σtrain = 0 (see

Sec. II D), under the general optimization conditions outlined

at the start of Sec. IV. We rank these controllers by their

infidelity values and then compute the RIM values for various

levels of simulation noise, σsim = 0.01, 0.02, . . . , 0.1.

For example, Figs. 3(a)–3(d) show a pseudocolor plot of

the RIM values for 100 controllers found for the chosen test

control problem (chain of length M = 5, target spin transfer

|1〉 to |3〉). The lowest infidelity controllers start from the

left and are indexed by columns 1 to 100, indicating their

respective ranks according to their RIM at σsim = 0. The

RIM values, as a function of σsim, for individual controllers

grow at different rates despite starting at quite similar small

values for all algorithms. The main result that applies also

to all transitions (not explicitly shown here) is that the high

fidelity controllers do not, in general, preserve their ranks as

σsim increases, e.g., for SNOBFit [see Fig. 3(b)], the RIM for

controllers 6, 8, 9, 11 − 13 grows much more rapidly than for

controllers 24 − 33, indicated by rapid color changes from

dark (low RIM) to light (high RIM) in the vertical direction.

Interestingly, almost all controllers found by PPO have very

low RIM across σsim values compared to the other control

algorithms (color remains dark for longer). This is, however,

not reflective of PPO’s general behavior on the extended

sample of problems we examined (see Appendix B 5). It

could be limited fundamentally by the existence of robust

controllers and/or the resource budget for a particular prob-

lem (see Fig. 10 in Appendix B 4 showing results for other

transitions).

We further evaluate the best performing individual con-

troller. To this end, we seek the controller that preserves its

overall RIM rank average the most across the noise levels. It

is computed using the reshuffled RIM ranks of each controller

for all values of σsim. Likewise, we locate the controller that

has the median RIM rank average across the noise levels as

the averagely performing controller. Most of the RIM rank

sum distributions studied were symmetric, and their median

was close to their average value. So, we can try to understand

average controller RIM rank order consistency in terms of

how the median controller performs. We compare the RIM

values of the median with the best controller in Fig. 3(e) for all

algorithms, showing the RIM values for the best and median

controller as a function of σsim.

For all algorithms, the best and the average controllers

have similar infidelities (initial RIM value) in Fig. 3(e). Their

behavior as a function of σsim is different and is generally non-
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linear. Thus, the best controllers, despite being distinguishable

from the others at σsim = 0, become indistinguishable for

higher σsim and point at a trade-off between infidelity (at no

noise) and robustness that could be leveraged when selecting

a controller to be deployed for a noisy system. Moreover, the

RIM curve of the best controller among all algorithms (here

L-BFGS) suggests a fundamental limitation on RIM for this

problem. It is likely not possible to obtain curves that are

lower, but this remains theoretically unresolved.

2. Ordinal Kendall tau for RIMσsim
-rank consistency

To address the motivating question (B), how likely a given

algorithm is to produce robust controllers that were obtained

in an ideal (no-noise) setting, we are interested in how con-

sistently a controller acquisition strategy produces controllers

with low RIM.

To that end, we reduce the RIM rank consistency property

of the top-k controllers across two perturbation strengths σ
(i)
sim

and σ
( j)

sim to a prediction problem by asking the following: (Q)

How well does the RIM rank of a controller, when ordered at

strength σ
(i)
sim, predict the RIM rank of the controller at strength

σ
( j)
sim?

To answer this question, let us denote the controller RIM

σ
(i)
sim-rank order by the vector rσ

(i)
sim , and compute an ordinal

(binned or categorical) version of the Kendall-tau-B statistic τ̃

[84,85], a measure of statistical dependence between rσ
(i)
sim and

rσ
( j)

sim . The ordinals are constructed only for rσ
(i)
sim by binning

using a discrepancy parameter α that indicates the fraction

of the maximum RIM value difference within a single bin.

The binned rank order r̃σ
(i)
sim (α) minimizes the effect of small

movement in either rank due to noise. Then τ̃ is computed by

τ̃
(
σ

(i)
sim, σ

( j)

sim

)
= τ̃i, j =

∑
l<m I

+
l,m

+ I
−
l,m√(

K − t
(i)
total

)(
K − t

( j)

total

) , (15)

where

Il,m = sgn
(
r̃
σ

(i)
sim

l
− r̃

σ
(i)
sim

m

)
sgn

(
r
σ

( j)

sim

l
− r

σ
( j)

sim
m

)
(16)

are the l, mth sign products of the rank order differences at

σ
(i)
sim, σ

( j)

sim with +/− denoting the positive (negative) pair con-

tributions; K = k(k − 1)/2 is the number of total pairs being

compared; t
(i)
total =

∑
l t

σ
(i)
sim

l
(t

σ
(i)
sim

l
− 1)/2 are the total numbers

of ties where Il,m = 0 for σ
(i)
sim and likewise for t

( j)

total. For

complete positive (negative) rank order correlation τ̃ = ±1

and τ̃ = 0 for zero rank order correlation. For our hypothesis

test, we assumed a worst case p value of 10−4 as an acceptance

criterion on the numerical results that will follow and also that

the controllers generating these rank orders are independent of

each other. In this case, this constraint is satisfied by the i.i.d.

noise model for a given set of unique controllers correspond-

ing to different points in a static optimization landscape. The

independence over the choice of controllers is not necessary

as all the consistency comparisons are for this fixed choice of

controllers.

For our earlier spin chain example (M = 5 spins, transfer

from |1〉 to |3〉), we focus on τ̃ for σ
(i)
sim = 0, σ

( j)

sim pairs that

is sufficient to answer (Q). More specifically, we aim to

FIG. 4. RIM rank order consistency statistic τ̃ for the 100 con-

trollers found for the problem M = 5, |1〉 to |3〉 between the two lev-

els: no simulation noise, σ
(i)

sim = 0 and σ
( j)

sim from {0.0, 0.01, . . . , 0.1}
for (a) Nelder-Mead, (b) SNOBFit, (c) PPO, and (d) L-BFGS without

training noise. In other words, this is the correlation of infidelity rank

order with the general RIM ranks. The τ̃0, j values decline the slowest

for PPO until σ
( j)

sim = 0.04 and then SNOBFit takes over compared to

the rest. This shows, for this case, that the PPO infidelity rank order

correlates the most with RIM rank order for σsim � 0.03.

understand how well the no-noise RIM (i.e., the average

infidelity) ranks correlate with the general RIM ranks. This is

shown in Fig. 4 for each optimization algorithm for α = 0.05.

For the σ
(i)
sim � 0.03, the RIM rank order is the most consistent

with τ̃ � 0.6 for PPO excluding other algorithms. But there

is larger shuffling of the ranks of PPO controllers as σsim

increases with deteriorating τ̃ and SNOBFit takes over.

This may be due to small numerical differences in RIM

[see Fig. 3(c)] observed, and thus a stronger consistency for

σsim � 0.03 is captured. We highlight in Appendix B 2 that

the reason why PPO infidelities correlate more with RIM

values at higher σsim is because it optimizes a discounted

RIM (
∑

i γ
iRIM(i) for 0 � γ � 1) as its reward function. We

extend this analysis for σtrain > 0 in Appendix B 3 to further

corroborate that the infidelity rank order for PPO correlates

most with higher order RIMs.

The other algorithms typically have a sharper drop at

σ
j)

sim = 0, 0.01 step where the infidelity rank order for L-

BFGS and, to a lesser extent, Nelder-Mead is completely

noninformative (due to very high fidelity values without

noise) and is not consistent with the orders at larger σsim. This

is most likely because the controllers found are the result of

second order, gradient-based, or similarly successful search

methods for finding optima precisely. Since PPO and SNOB-

Fit are gradient-free, for σsim � 0.03, their controllers are

more consistent in comparison. In this case, the infidelity rank

order is more informative of the RIM rank order than, e.g.,

L-BFGS, as fidelities are not being fully maximized due to the

absence of a strong gradient direction. Note that a viable link

between the consistency statistic and a generic gradient-based
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FIG. 5. ARIM as a function of σsim for M = 5 where (a)–(c) are the end-to-middle (|1〉 to |3〉) and (d)–(f) are the end-to-end (|1〉 to |5〉)
transitions (end denoted by O). The ARIM is computed from a distribution of RIM values for 100 controllers for each σsim for SNOBFit,

Nelder-Mead, PPO, and L-BFGS. We identify each algorithm with a unique marker and/or color. Both PPO and SNOBFit are run multiple

times at σtrain = 0, 0.02, 0.05. PPO has higher variance with respect to σtrain than SNOBFit and Nelder-Mead, whose performance curves are

more in line with the L-BFGS curve for σsim � 0.05 and mostly worse for σsim � 0.05. 95% confidence intervals (shading) are computed

using nonparametric bootstrap resampling [86] with 100 resamples. (g)–(i) show individual-controller comparisons for σtrain = 0.03 ranked by

fidelity (leftmost is highest).

algorithm is hard to establish, so this does not preclude the

existence of algorithms that are τ̃ -wise better.

Finally, note that τ̃ should be thought of as a proxy of

reliability of an algorithm’s capability to generate numerical

control solutions whose infidelity values are more consistent

and predictive of their RIM values at higher σsim. If strong

correlation is obtained, this circumvents (or at least increases

confidence for circumventing the latter’s) computation.

However, high RIM rank order consistency does not imply

that the RIM values remain low at higher noise. Rather, it

indicates how much the RIM of a controller is predictive of

the controller’s relative robustness performance at a higher

noise level. The nonparametric nature of τ̃ removes infor-

mation about the fidelity value range and should be viewed

in conjunction with Figs. 3(a)–3(e). If the correlation signal

is strong, it could be used to sidestep the evaluation of the

RIM at nonzero noise in favor of using the infidelity instead,

eliminating the need for expensive sampling.

B. Comparison of control algorithms with constrained resources

We address our motivating question (C): What is the ef-

fect of training noise on a control algorithm’s ability to find

robust controllers? The overall picture is complex in terms

of algorithm rankings. We numerically confirm that there is a

problem-dependent optimal noise level that best smooths the

optimization landscape for algorithms to more consistently

find robust controllers.

We collect 100 controllers at training perturbations Sσtrain

with training noise level σtrain ∈ {0, 0.01, . . . , 0.05} for PPO,

SNOBFit, and Nelder-Mead. We do not consider any train-

ing noise for L-BFGS, since only the former algorithms are

designed to perform optimization with noisy perturbations.

This involves using a stochastic fidelity (objective) function

call evaluated under the single structured perturbation Sσtrain

(exactly analogous to Sσsim
).

We select σsim ∈ {0, 0.01, . . . , 0.1} to evaluate the RIM of

the controllers found at different noise levels with a budget of

106 objective function calls per run. Each run corresponds to

100 controllers found under this budget constraint. The ARIM

is then used to quantify an algorithm’s performance, with

respect to robustness and fidelity, based on the 100 controllers

that it found during the run.

We only show the representative end-to-middle and end-

to-end transition for the state-preparation problem for M =
5 at σtrain = 0, 0.02, 0.05 in Fig. 5. Results for other spin-

transitions and training noises are presented in Appendix B 5.

Recall from Eq. (11) that the ARIM is a measure of how

far the distribution P(RIM) is from its ideal δ0. The ARIM

curves at different training noises in Figs. 5(a)–5(f) increase at

different rates σsim, starting from similar base ARIM values at

σsim = 0 for each algorithm. Note that the base ARIM value

coincides with the average infidelity over controllers, in the

absence of training noise.

A spread in ARIM curves indicates that the probabilis-

tic distance of RIM values with respect to the ideal for all

controllers increases at different rates. So, the algorithm rep-

resented by the slowest growing curve is the best to find robust

controllers.

Overall, SNOBFit’s and Nelder-Mead’s ARIM curves at

various training noises perform similarly to L-BFGS across

all problems. However, there are distinctions in the region

of σsim � 0.05, where L-BFGS curves start at lower ARIM

values and grow more quickly compared to SNOBFit curves at

various noise levels. In the region of σsim � 0.05, the SNOB-

Fit curves comparatively grow more slowly, possibly because

the fidelity has degraded so much that further deterioration is

less likely across all 100 controllers. The Nelder-Mead curves

exhibit similar behavior to the SNOBFit curves in that there is

less variance with respect to the σtrain levels, both when overall

performance is good and when it is poor.

Compared to other algorithms, there is more variance in

the PPO ARIM curves across training noises for a particular

spin transfer problem, with some curves overlapping each

other. The best performing ARIM curve is PPO at σtrain =
0.05 for the end-to-end transition shown in Fig. 5(f) (and

for six of eight cases in Appendix B 5). This indicates that

PPO is often capable of finding robust solutions, but the
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optimal value of training noise varies across the transition

problems.

We also present an extended RIM analysis (like in

Sec. IV A) for the controllers found for the same transition

problem at training noises for the derivative-free approaches.

The RIMs at σsim ∈ 0, . . . , 0.1 are plotted in Figs. 5(g)–5(i)

for PPO, SNOBFit, and Nelder-Mead at σtrain = 0.03. On an

individual level, SNOBFit and Nelder-Mead controllers share

more algorithmic robustness and fidelity characteristics with

each other across σtrain than with PPO controllers: i.e., they

have high RIM variance within distribution per σtrain. This

performance is also comparable to the L-BFGS controllers

shown in Fig. 3(d). On the other hand, individually, the con-

trollers found by PPO differ significantly across σtrain where

notably the RIM and ARIM values stay uniformly very low

for the case σtrain = 0, 0.03 and the controllers are generally

distinctly robust compared to SNOBFit and Nelder-Mead con-

trollers.

Finally, we suggest possible explanations for these dif-

ferences in behavior between algorithms. Since SNOBFit

constructs local quadratic models to estimate gradients, it

effectively filters out the perturbations Sσtrain
. The manifes-

tation of this effect is that the controllers at one training

noise react similarly with respect to the RIM, compared to

controllers at other training noises (including the case of no

training noise) as well as controllers found by L-BFGS. For

Nelder-Mead, there are fewer noise-adaptation mechanisms

compared to PPO and SNOBFit for large noise perturba-

tions that might affect the quality of the estimated gradient

direction and hence the rate of growth of the ARIM with

respect to simulation noise at higher training noise levels is

unavoidable.

In contrast, PPO does not filter out the perturbations under

Sσtrain
and forms its policy gradient estimates from stochastic fi-

delity function evaluations, which likely differentiates it from

SNOBFit. PPO also effectively estimates the fidelity land-

scape nonlinearly using a fixed two-layer linear (100×100

dimensional) neural network, which may lead to generally

better ARIM performance.

C. Comparison of control algorithms

with unconstrained resources

We consider the behavior of the aforementioned control al-

gorithms with an unconstrained number of objective function

calls to address our motivating question (D), that is, we seek to

understand an algorithm’s ability to find robust controllers via

the ARIM—without the function call constraint. Furthermore,

we wish to ascertain what the effect of the training noise level

σtrain is on ARIM optimization.

We consider two objective function settings: (i) stochastic

objective: for each evaluation, a new Hamiltonian is drawn

according to the noise model, which corresponds to 1 Sσtrain

perturbation in F during a single evaluation and (ii) non-

stochastic objective: where the evaluation is over k perturbed,

but fixed, Hamiltonians, predrawn from the noise model such

that optimization objective is a deterministic RIM computed

from k fixed training perturbations {S(i)
σtrain

}k
1. In this case, the

function calls are counted as k as they amount to k different

fidelity function evaluations per one optimization objective

call. Furthermore, since we cannot compute the analytical

gradient of both objective functions to use L-BFGS [32] in

both settings, we use a version of L-BFGS that approximates

the Hessian using forward differences.

We fix the control problem to be the end-to-middle

M=5 transition. We consider the change in average ARIM

over σsim ∈ {0, 0.01, . . . , 0.1} for the top 100 controllers

with respect to function calls. Three training noises σtrain =
0, 0.05, 0.1 are considered. The controller rankings are main-

tained with respect to the objective function and are updated

in steps of 106 function calls up to 4×107. For the stochas-

tic setting (i), we maintain the controller ranking via the

stochastic fidelity function evaluation. For the nonstochastic

setting (ii), we maintain the ranking through the deterministic

RIM obtained using k = 100 pre-drawn training perturba-

tions {S(i)
σtrain

}100
1 . The choice of the hyperparameter k was

obtained using cross validation. Specifically, for a particular

training noise and control algorithm, we picked a k from

{10, 100, 10 000} to compute a RIM in the objective func-

tion and then compared it to a RIM computed using k′ =
10 000 different training perturbations {S(i)

σtrain
}104

1 that comprise

a large validation set during the optimization run for all 100

controllers. We found no significant empirical difference in

error between the objective function RIMs for k = 100 and

k = 10 000 . Note that the variance in the RIM decreases as

O(1/k) by the law of large numbers.

For the nonstochastic setting (ii), it can be seen from

Figs. 6(a)–6(c) (solid lines) that the average ARIM of all al-

gorithms reduces asymptotically with the number of function

calls. PPO attains the lowest final average ARIM values at

4×107 function calls for each σtrain but its final ARIM is not

markedly better than the other algorithms considered here.

However, this setting is quite expensive in terms of the total

number of function calls.

For the stochastic setting (i) [dashed lines in Figs. 6(a)–

6(c)], increasing the training noise reduces the ability of the

control algorithm to find robust controllers for all the σtrain,

and the average ARIM is not minimized to the same extent as

in setting (ii). This makes sense, since the stochastic objective

(i) is a noisy fidelity with a reduced focus on robustness. The

average ARIM is no longer reliably improved by any control

algorithm in setting (i).
Within setting (i), we note that PPO converges to the

lowest average ARIM value compared to the rest of the al-
gorithms. This is theoretically justifiable as PPO optimizes
a discounted RIM by design (see Appendix B 2). Another
thing to note is that the lowest average ARIM values ob-
tained by PPO in all three settings are similar, even though
they are not attained at the same number of function calls.
This suggests that PPO’s ARIM performance can be made
independent of the training noise levels, given an uncon-
strained number of objective function calls. However, this
might be difficult to achieve completely since, even for PPO,
there is a selection bias for low infidelity, but not low RIM.
This manifests itself in the fact that the average ARIM
starts increasing, albeit slowly, with respect to the number
of function calls after the lowest average ARIM value is
reached. Furthermore, we note that sharp transitions like the
stochastic PPO curves depicted in Fig. 6(b) are also typ-
ically reported in classical reinforcement learning contexts
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1×10
7

1×10
7

FIG. 6. Asymptotic ARIM performance when the number of objective function calls is unconstrained for the M = 5 end-to-middle spin

transfer problem. The ARIMs are averaged over the σsim set {0, 0.01, . . . , 0.1}. The stochastic objective setting (i) is shown with dashed

lines and deterministic RIM objective setting (ii) with solid lines; different algorithms correspond to different colors. An L-BFGS no-noise

benchmark is shown with a dotted line. The target RIM is computed using 100 nonstochastic fidelity evaluations. The ARIM is computed and

averaged over a σsim = 0.0, 0.01, . . . , 0.1 set. (a)–(c) correspond to training noise σtrain = 0, 0.05, 0.1, where the curves are for 100 controllers

ranked by the corresponding objective function evaluation (i), (ii) and are updated every 106 function calls. For setting (ii), all control algorithms

asymptotically reduce the average ARIM, but this is not cost competitive with the stochastic setting (i) where PPO performance reaches the

local minimum for all noise levels with fewer function calls. We see that the training noise level can help the landscape exploration process;

this positively affects PPO in (a), (c) and Nelder-Mead in (b). For setting (i), L-BFGS, then SNOBFit, then Nelder-Mead, then PPO is the most

prone to performance deterioration with respect to σtrain due to the differences in their reliance on (estimated) gradient information. In these

plots, the shading indicates 95% confidence intervals, determined by using bootstrap resampling.

and are linked to sharp improvements in the reward by the
algorithm [87].

To compare these results with the more standard noiseless

fidelity maximization as a benchmark, we also plot the av-

erage ARIM for L-BFGS with a noiseless fidelity objective

function and analytical gradient information. This version of

L-BFGS accumulates sharp peaks in the fidelity landscape

with more function calls since it is gradient based and is effec-

tively climbing to the sharpest peak in the fidelity landscape.

Hence its average ARIM flatlines quickly with respect to

function calls to a higher value compared to the other control

algorithms in setting (i), with the exception of the forward

differencing L-BFGS.

Contrasting settings (i) and (ii) for a single control

algorithm, the point at which there is an advantage for non-

stochastic optimization via setting (ii) is around 107 function

calls for the algorithms, excluding L-BFGS with noise. For

the regime below 107 function calls, setting (i) has a clear

advantage over (ii) for PPO and SNOBFit.

V. CONCLUSION

We have presented the RIMp, a statistical generalization of

the infidelity in the robustness sense, defined with respect to

perturbations of arbitrary noise level Sσ in the fidelity func-

tion. The RIMp is the pth order Wasserstein distance of the

infidelity distribution induced by Sσ from some ideal distribu-

tion that is impervious to Sσ . We show that it is the pth root

of the pth raw moment of the infidelity distribution and can

be evaluated using perturbed fidelity function evaluations in

physical experiments or Monte Carlo simulations. For p = 1,

the infidelity measure RIM1 reduces to the average infidelity.

Using a metrization argument, we justify why RIM1 is a

practical robustness measure for quantum control problems

due to the convergence of RIMp values, for all p, given highly

robust and high fidelity controllers. The RIM1 also has a nice

interpretation as the area under the curve of the cumulative

distribution of the infidelity. We leave further analyses of the

utility of the RIMp for, e.g., the optimization of robustness,

for future work.

The RIM is further generalized to define an ARIM to

compare the performance of control algorithms in terms of

their ability to find robust high-fidelity controllers. Even

though the RIM and ARIM are illustrated for static con-

trols, they can be computed in any situation that generates

a fidelity distribution over [0,1], including time-dependent

controls and open quantum systems, enabling their use and

further study for a wide range of practical quantum control

problems.

We have used the RIM under model and controller noise

to quantify the performance, in terms of the robustness and

fidelity, of individual controllers for excitation transfer in spin

chains by energy landscape shaping. The controllers were

obtained by four control algorithms (PPO, SNOBFit, Nelder-

Mead, L-BFGS) at simulation noise scales of up to 10%. Us-

ing the RIM, we found that high-fidelity controllers can vary

widely in robustness to noise across all algorithms that we

studied, although there are notable differences in algorithmic
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efficacy with respect to robustness, as indicated by the ARIM.

We also demonstrate a consistency statistic that can be used

to differentiate control algorithms by how correlated their

controller infidelities are with the RIM1. This provides a

method to predict robustness via the RIM1 without its explicit

evaluation.

To compare the control algorithms, we studied their ARIM

performance for multiple spin transfer problems. Under con-

strained function calls of a stochastic objective function

(noisy infidelity), PPO performed better than SNOBFit and

Nelder-Mead at certain, problem-specific training noise lev-

els. SNOBFit performance at different training noise levels

was similar, regardless of whether it was good or bad, sug-

gesting that it is filtering out the noise. Nelder-Mead exhibits

similarly consistent behavior across training noise levels with

less than optimal performance for all but one problem. With

unconstrained stochastic function calls, PPO showed excellent

performance compared to the other algorithms, independent

of the training noise level, since its reward accumulation strat-

egy implicitly optimizes a discounted RIM.

In contrast, when optimizing the RIM1 (average infidelity)

over a fixed ensemble of perturbations, all algorithms were

capable of asymptotically finding an optimum. However, this

approach is expensive in terms of the number of function calls

compared to the aforementioned stochastic optimization set-

ting with a noisy fidelity function as the objective. Our results

also show that for stochastic settings, e.g., shot noise, PPO

(or more generally reinforcement learning) is a promising

approach to obtain robust controllers.

A limitation of this work is that we require the computation

of multiple controllers per control problem. In simulation, this

further involves numerous time-consuming matrix exponen-

tial evaluations to generate a large number of samples per

controller to approximate the RIM measure. More work is

necessary to elucidate the fundamental limitations of the op-

timization landscape. Nevertheless, our statistical robustness

approach is a useful tool that can be applied in a wide range

of quantum control scenarios where analytic approximations

with small and/or uncorrelated noise are unsuitable.
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APPENDIX A: RIMp CALCULATIONS

1. pth order RIM

In the subsequent argument, recall that the quantile func-

tion is the inverse of the CDF function. Following Theorem 1,

we can write the RIMp as

RIMp =
(∫ 1

0

|QP(F )(z) − Qδ1
(z)|p dz

) 1
p

. (A1)

Note that both terms in the integrand are 0 at z = 0. Then, for

z ∈ (0, 1], by definition,

Qδ1
(z) = inf{x ∈ R : Cδ1

(x) � z > 0}
= inf{x ∈ R : C(x = 1) � z > 0}

using the CDF of δ1 in Eq. (4)

=1. (A2)

Another way to see this is to use the inverse property Qδ1
(·) =

C−1
δ1

(·). The CDF is 0 in the interval [−∞, 1) and 1 in [1,∞].

Next, we perform a change of variable z = CP(F )( f ). The

differential is given by dz = dCP(F )( f )

df
df = P(F = f )df as the

derivative of the CDF with respect to the random variable is

the probability distribution function. Substituting the terms,

we get

RIMp =
(∫ 1

0

|QP(F )(CP(F )( f )) − 1|pP(F = f ) df

) 1
p

.

(A3)

Now we use the fact that QP(F )(CP(F )( f )) = f (inverse prop-

erty) to obtain

RIMp =
(∫ 1

0

P(F = f )| f − 1|p df

) 1
p

. (A4)

Since the domain of integration remains invariant, for fi-

delity measures with support in [0,1], it can be extended to

[−∞,∞]. We obtain

RIMp =
(∫ ∞

−∞
P(F = f )| f − 1|p df

) 1
p

=
(∫ ∞

−∞
P(F = f )(1 − f )p df

) 1
p

as f � 1, switch the order and drop | · |
= E f ∼P(F )[(1 − f )p]. (A5)

We obtain the last line using the expectation operator

E f ∼P(F )[(·)] :=
∫

(·)P(F = f ) df . For p = 1, using Eq. (A5),

RIM1 = 1 − E f ∼P(F )[ f ].

We can further decompose the RIMp as a sum of expecta-

tions of various powers of the fidelity:

RIMp =

(
p∑

k=0

(
p

k

)
(−1)k

∫ ∞

−∞
P(F = f ) f k df

) 1
p

using the binomial theorem

=

(
p∑

k=0

(
p

k

)
(−1)k

E f ∼P(F )[ f k]

) 1
p

. (A6)

For example, using Eq. (A6) for p = 2, we obtain

RIM2 =
√

1 − 2E f ∼P(F )[ f ] + Var( f ) + E2
f ∼P(F )[ f ]

using Eq. (A6)

Var(X ) = EX∼P[X 2] − E
2
X∼P[x]

=
√

RIM1 + Var( f ) − E f ∼P(F )[ f ]RIM1

=
√

Var( f ) + RIM2
1 (A7)

expanding RIM1 and simplifying.
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Likewise, we get

RIM3 =
(
RIM3

1 + 3 Var( f ) + E
3

f ∼P(F )[ f ] − E f ∼P(F )[ f 3]
) 1

3 .

(A8)

The degree of distinguishability of the fidelity distribution

from the ideal becomes better for higher p at the cost of the

outliers becoming more influential.

2. Error bound on the RIMp and ARIMp estimators

Here we propose a probably approximately correct alterna-

tive error bound for an estimation R̂IMp of RIMp in Eq. (A5)

based on an empirical estimate P̂(F ) of its generating proba-

bility distribution P(F ). With probability at least 1 − δ/2,

|R̂IMp − RIMp|

= |E f ∼P̂(F )[(1 − f )p]
1
p − E f ∼P(F )[(1 − f )p]

1
p |

� |E f ∼P̂(F )[(1 − f )p] − E f ∼P(F )[(1 − f )p]|
1
p

= [t]

∣∣∣∣
∫ 1

0

P̂(F = f )(1 − f )p df

−
∫ 1

0

P(F = f )(1 − f )p df

∣∣∣∣

1
p

�

(∫ 1

0

|̂P(F = f ) − P(F = f )|(1 − f )p df

) 1
p

=
(∫ 1

0

∣∣̂P(F = f ) − EP̂∼D [̂P(F = f )]
∣∣(1 − f )p df

) 1
p

�
C

1
p

p + 1
=

1

p + 1

(
ln 4

δ

2n

) 1
2p

, (A9)

where the second line and the fourth line come from using the

reverse triangle inequality and in the fifth line we rewrite the

true distribution P(F ) as EP̂∼D [̂P(F )], which is true for any

unbiased empirical estimator. We use McDiarmid’s inequality

to obtain the bounding constant C using the fact that the prob-

ability distribution D generates a family of random variable

empirical distributional estimators P̂ j = 1
n

∑n
i=1 δ fi

, where we

have the differences occurring only on the kth coordinate,

∣∣̂P( f1, . . . , fk, . . . , fn) − P̂( f1, . . . , fk′ , . . . , fn)
∣∣ � 1

n
,

(A10)

where n is the number of samples. A similar bound can also be

derived for the ÂRIM estimator. This error bound is similar to

the DKW (Dvoretzky-Kiefer-Wolfowitz) bound for the ECDF

and would suffice in generating the 95% confidence intervals

for Fig. 5 without the need to do bootstrap resampling.

3. Relative order of RIMp

Using Lyapunov’s inequality, stating that E[|X |q]1/q −
E[|X |p]1/p � 0 for q � p > 0 for some E[|X |t ] < ∞, we

show that

RIMq − RIMp

= E f ∼P(F )[(1 − f )q]
1
q − E f ∼P(F )[(1 − f )p]

1
p

= E f ∼P(F )[|(1 − f )|q]
1
q − E f ∼P(F )[|(1 − f )|p]

1
p

� 0. (A11)

For any q � p � s > 0, it follows that RIMq � RIMp �

RIMs. The converse is true without the pth roots. The linearity

of expectations implies that E f ∼P(F )[(1 − f )p − (1 − f )q] �

0 ⇐⇒ 0 < p � q.

We can also derive a lower bound on RIMp. For some

p′ � p, we have

RIMp′ � RIM
p

p′
p = E f ∼P(F )[(1 − f )p]

1

p′

=
E f ∼P(F )[(1 − f )p]

1
p

E f ∼P(F )[(1 − f )p]
1
p
− 1

p′

�
RIMp

E f ∼P(F )[(1 − f )]
1− p

p′

�
RIMp

(min f (1 − f ))
1− p

p′
, (A12)

where the relation in the second to last line is obtained by

applying Jensen’s inequality and the final line is obtained from

the observation that min f (1 − f ) < E[1 − f ] ∀ f . Note that

this result still depends on the data. Higher orders p and p′ of

the RIM are related to each other in a concave sense and when

p, p′ → ∞, the RIMs become more equivalent. Conversely,

near perfect fidelity, all the RIMs are converging to 0, but the

presence of an outlier fidelity sample strongly governs how

much discrepancy there still is between a higher-order RIM

and a lower order RIM. This discrepancy is still concavely

dependent on p and p′.
We arrive at equivalence relations for RIMs of different or-

ders by noting that E f ∼P(F )[(1 − f )p] � m sup f (1 − f ) = m

for the smallest positive finite measure m > 0 on the domain

set on which we define the probability distribution P( f ). This

follows from the continuity of f and the continuity of P( f ).

If f already has an ideal distribution, then this is trivially true.

Equation (A12) yields

RIMp′ � m
( 1

p′ −
1
p

)
RIMp. (A13)

In practical settings, e.g., when using the ECDF, m�
1
n
.

Intuitively, this follows from the observation that for

any EP(X )[X
p] =

∫
P(X )X p dX ≈ 1

n

∑n
i=1 X

p

i using samples

X1, . . . , Xn. For the estimated R̂IMp:

R̂IMp′ � n
( 1

p
− 1

p′ )
R̂IMp. (A14)

This implies that RIMs of different orders are equivalent (in

the convergence sense) when the bound holds.

Instead, motivated by the convergence in the Wasserstein

distance, for fixed n, RIM1 can effectively constrain any RIMp

with p > 1, since growth in p is sublinear. This implies that

the RIMs converge when they tend to 0, as seen in Fig. 7. We

also note that the higher order RIMs increase the measure’s

sensitivity to outliers greatly, even though growth in the RIM

is sublinear in p. For most practical purposes, the first-order
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FIG. 7. RIMk scaling as a function of RIM1 for 100 controllers for M = 5 and the transition from |1〉 to |3〉 and N = 100 samples per

controller for RIM evaluation. Each subplot (a)–(h) corresponds to a noise level σsim indexing the fidelity probability distribution Pσsim
(F ).

There is convergence and thus more agreement in RIMk for small values.

RIM measure should be sufficient for performance measure-

ments, especially in the quantum technologies setting.

APPENDIX B: OPTIMIZATION ALGORITHMS

1. Implementation details of the optimization objectives

Details about the optimization objectives for the numerical

results in Sec. IV are given in Table I. In every section, for

every σsim, the RIM is evaluated using N = 100 Monte Carlo

Sσsim
perturbations to the fidelity function. The RIM itself is

only optimized in Sec. IV C for the nonstochastic case (ii)

where 100 Sσsim
are sampled at the start and are reused for

every function call. Note, however, that we count these as

100 function calls as these amount to 100 fidelity function

evaluations. Also, for better performance, in Sec. IV C for the

stochastic case (i), instead of using the analytical form for the

TABLE I. Implementation details for various optimization settings in the paper. For Sec. IV C, the asymptotic setting, (i) refers to the

stochastic scenario and (ii) refers to the nonstochastic scenario where the RIM is optimized using the same 100 fixed set of perturbations

{Sσtrain
} per function call.

Section Objective function (OF) and args. Train (OF) noise Algorithm Total OF calls Single call cost

IV A 1 F No L-BFGS 106 1

IV A 1 F No PPO 106 1

IV A 1 F No SNOBFit 106 1

IV A 1 F No Nelder-Mead 106 1

IV B F No L-BFGS 106 1

IV B F and 1 Sσtrain
Yes PPO 106 1

IV B F and 1 Sσtrain
Yes SNOBFit 106 1

IV B F and 1 Sσtrain
Yes Nelder-Mead 106 1

IV C(i) F and 1 Sσtrain
Yes L-BFGS ∞ 1

IV C(i) F and 1 Sσtrain
Yes PPO ∞ 1

IV C(i) F and 1 Sσtrain
Yes SNOBFit ∞ 1

IV C(i) F and 1 Sσtrain
Yes Nelder-Mead ∞ 1

IV C(ii) RIM and 100 fixed Sσtrain
No L-BFGS ∞ 100

IV C(ii) RIM and 100 fixed Sσtrain
No PPO ∞ 100

IV C(ii) RIM and 100 fixed Sσtrain
No SNOBFit ∞ 100

IV C(ii) RIM and 100 fixed Sσtrain
No Nelder-Mead ∞ 100
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FIG. 8. Consistency statistic τ̃0, j for all algorithms at σtrain = 0.0, . . . , 0.05 for discrepancy parameter α = 0.05 for M = 5 and the

transition from |1〉 to |3〉. Case (a) was presented in the main text. For (f), σtrain = 0.04, PPO is actually more robust in terms of ARIM growth

compared with (e) as seen from their positions in Fig. 5(b). Characteristically, most low ARIMPPO controllers show high rank consistency in

the region 0 � σsim � 0.04. Nelder-Mead is similar to L-BFGS in all plots except (e) and (f), where it shows slightly more consistency than

PPO and SNOBFit controllers.

FIG. 9. Consistency statistic τ̃0, j for all algorithms at σtrain = 0.0, . . . , 0.05 for discrepancy parameter α = 0.05 for M = 5 and the

transition from |1〉 to |4〉. Again, the PPO curves are the most consistent.
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FIG. 10. (a)–(d) 100 controllers found for the XX spin chain model, Eq. (13), using Nelder-Mead, SNOBFit, PPO (σtrain = 0), and L-BFGS

for M = 5 and the spin transition from |1〉 to |5〉. All algorithms find controllers that are not very robust as indicated by the RIM. PPO has

notably worse initial infidelities for all controller compared to Fig. 3(c) but their degradation is slow, as seen from (e). This is only the case for

this noise level and Fig. 12(r) indicates the existence of a much better controller set at σsim = 0.05 that is similar in performance to Fig. 3(c).

From (e), we can see that Nelder-Mead and L-BFGS optimize the infidelity to <10−4. However, these best controllers decay in robustness very

quickly as well.

gradient of fidelity F , we use finite differences to approximate

the gradients ∇	F (where 	 are the controls).

2. PPO optimizes a discounted RIM1

We follow the standard finite-horizon Markov decision

process formulation for the reinforcement learning setting

for states, actions and one-step state transition rewards

(st , at , rt ) that are sampled in trajectories τ = {(st , at , rt ) :

t = 1, . . . , T } stored in the buffer D. The PPO algorithm

uses a clip objective to update the policy πθ parameters θ

with first-order constraints that minimize policy distributional

divergence. The policy objective is

θk+1 ∝ arg max
θ

∑

τ∈D

T∑

at ,st ,rt ∈τ

min

[
πθ (at |st )

πθk
(at |st )

Aπθk

× (st , at ) clip
(
ǫ, Aπθk

(st , at )
)]

, (B1)

FIG. 11. Individual-controller comparison between (a)–(f) Nelder-Mead, (g)–(k) SNOBFit, and (m)–(r) PPO with σtrain =
0, 0.01, . . . , 0.05, using 100 controllers ranked by lowest infidelity (left) for the case M = 5 and the spin transition from |1〉 to |3〉. (s)

shows the L-BFGS results for the same spin transition problem.
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FIG. 12. Individual-controller comparison between (a)–(f) Nelder-Mead, (g)–(k) SNOBFit, (m)–(r) PPO with σtrain = 0, 0.01, . . . , 0.05,

using 100 controllers ranked by lowest infidelity for the case M = 5 and the spin transition from |1〉 to |5〉. (s) shows the L-BFGS result for

σtrain = 0.

where π (·) is the policy probability distribution. The advan-

tage estimates are

Aπθk
(st , at ) =

T −1∑

i=t

(γ λ)i−t
(
rt + γVφk

(st+1) − Vφk
(st )

)
, (B2)

with value function Vφ (st ) = Eπ [
∑T −1

i=0 γ irt+i+1|s = st ],

where φ are the value function parameters. The value

function is regressed onto discounted rewards sampled

according to π (·). The clip function truncates the advantages

to be between (1 ± ǫ)Aπθk
. The value function’s optimization

objective is

φk+1 ∝ arg max
φ

∑

τ∈D

T∑

t=0

(
Vφ (st ) −

T∑

i=t

γ iri

(
sτ

t

)
)2

. (B3)

The algorithm tries to maximize this expression. In the case

of flat rewards and advantages λ = γ = 1, the advantage esti-

mates are

Aπθk
(st , at )

= Vφk
(st ) −

(
Vφk

(sT ) +
T −1∑

i=t

rt

)
= Vφk

(st ) − V̂φk
(st ).

(B4)

The value function can be written in terms of an expec-

tation under the policy, as an average reward: Vφ (st ) =
TEπ [ 1

T

∑T
i=t ri|s = st ]. The optimal value function is defined

by V∗(st ) = maxπ Vφ (st ), which is maximized if the policy is

optimal, i.e., πθ = πθ∗ at θ = θ∗. Near optimality, the advan-

tages are approximately 0 as there should be no advantages

conferred to the optimal policy πθ∗ , which also has an op-

timal value function. Thus, V̂φ∗ (st ) → Vφ∗ (st ) as Aπθ∗ → 0.

The sample rewards minus the predicted rewards by the value

function go to 0 in Eq. (B1). The same argument applies

with discounts γ , λ < 1 and, hence, it can be shown that the

algorithm optimizes a discounted RIM1 estimator as its value

function. Most reinforcement learning algorithms effectively

optimize the average or cumulative reward Ĵ ∝
∑

i ri due to

the one-step heuristic application of the Bellman principle of

optimality [88].

3. More consistency statistic plots

This section expands the discussion on the consistency

statistic in the main text in Sec. IV A 2. We plot the con-

sistency statistic τ̃0, j for all algorithms for α = 0.05 for the

case M = 5 and the transition |1〉 to |3〉 in Figs. 8(a)–8(f)

[8(a) is Fig. 4] and |1〉 to |4〉 in Figs. 9(a)–9(f) for mul-

tiple training noise levels. Note that for each subplot the

L-BFGS curve is always the same at σtrain = 0. The con-

trollers found by PPO at σtrain = 0.05 are less consistent for

some noise levels than others, e.g., σsim � 0.04 compared

with the controllers found at σtrain = 0.04. This is also true

for SNOBFit and Nelder-Mead. Moreover, the decline in the

correlation values is smoothest for PPO compared to the rest

for nearly all twelve instances shown in both figures. With

more training noise, Nelder-Mead is sometimes closer in con-

sistency to the controllers found to L-BFGS, e.g., Figs. 8(a)

and 8(b). But it produces more consistent controllers with

increasing training noise likely due to diminishing returns of

the gradient direction, makes its behavior more like SNOBFit

and PPO.
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FIG. 13. Individual-controller comparison between (a)–(f) Nelder-Mead, (g)–(k) SNOBFit, (m)–(r) PPO with σtrain = 0, 0.01, . . . , 0.05,

using 100 controllers ranked by lowest infidelity for the case M = 6 and the spin transition from |1〉 to |6〉. (s) shows the L-BFGS result for

σtrain = 0.

For most PPO runs, the consistency statistic is highest for

σsim � 0.04 and thus the infidelity rank order is a good predic-

tor of RIM rank order for higher σsim, which was not observed

for any of the other algorithms. Also note that this analysis

does not reveal anything about how high the RIM values are

for the controllers (a drawback of the nonparametric test) and

FIG. 14. Individual-controller comparison between (a)–(f) Nelder-Mead, (g)–(k) SNOBFit, (m)–(r) PPO with σtrain = 0, 0.01, . . . , 0.05,

using 100 controllers ranked by lowest infidelity for the case M = 6 and the spin transition from |1〉 to |4〉. (s) shows the L-BFGS result for

σtrain = 0.
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FIG. 15. Box plots of the RIM for the 100 controllers for M = 5, |1〉 to |3〉 shown in Fig. 11 in the main text found by Nelder-Mead,

SNOBFit, and PPO for various σtrain (a)–(f). For the case σtrain = 0 in (a), we also show L-BFGS box plots as a reference. On the distributional

level, PPO controllers are generally the more robust of the three with respect to the RIM, but there is high variance across σtrain compared to

the SNOBFit and Nelder-Mead controllers. The median SNOBFit RIM value per σsim is higher than L-BFGS, so it has a longer left tail. The

Nelder-Mead controllers have the most weight on their right tails and are comparatively the worst.

should be processed as companion plots to the figures where

these explicit values are shown.

4. More individual controller plots

The results presented in Fig. 3 (M = 5 and transition

|1〉 to |3〉) are not reflective of PPO’s general behavior on

the extended sample of problems examined in Sec. IV B.

Figure 10 shows the case (M = 5 and transition |1〉 to |4〉),
where all the controllers found are not very robust. This is

likely either due to unlucky sampling of the space of possi-

ble controllers or their nonexistence. Note that SNOBFit and

PPO are similar in their RIM degradation, as observed from

Fig. 10(e). We also provide some more cases (M = 5 and tran-

sition |1〉 to |5〉 in Fig. 12) and (M = 6 and transitions: |1〉 to

|4〉 in Fig. 14, |1〉 to |6〉 in Fig. 13) for algorithm comparison of

controllers under noisy training in Sec. IV B to highlight some

of the variation of controller quality for different regimes of

noise and spin chain transitions observed in the main ARIM

comparison presented in Fig. 16. Each individual subplot is

the result of an independent run of each algorithm with a

stochastic fidelity function evaluated under the unstructured

perturbations using the same approach as earlier with σsim.

These are also plotted for a more distributional comparison

as pairwise box plots in Fig. 15. For both Figs. 11 and 15, we

also show L-BFGS results for comparison.

5. Full ARIM comparisons

For the cases M = 6, 7, both types of transitions appear

to be challenging for PPO, SNOBFit and Nelder-Mead at

most, if not all, training perturbation strengths; especially

the end-to-end M = 7 transition [Fig. 16(d)], where PPO at

σtrain = 0.05 is only marginally better than the rest of the

algorithm runs, excluding Nelder-Mead. A pertinent question

is whether this is genuinely reflective of the landscape or

if, for PPO, our budget constraint of 106 target functional

calls is insufficient for larger system sizes, as the control
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FIG. 16. ARIM as a function of σsim for M = 4, 5, 6, 7, where the left column contains end-to-middle transitions and the right column

contains end-to-end transitions. The final state is denoted by O. The ARIM is computed from a distribution of RIM values for 100 controllers

for each σsim for SNOBFit, Nelder-Mead, PPO and L-BFGS indicated by their marker shapes and line styles. Both PPO and SNOBFit are run

multiple times at σtrain = 0, 0.01, . . . , 0.05, which is indicated by the color of the ARIM curve. For all problems, PPO has higher variance with

respect to σtrain than SNOBFit and Nelder-Mead. The latter pair’s performance curves are more in line with the L-BFGS curve for σsim � 0.05

and mostly worse for σsim � 0.05. For most of the problems the best performing (lowest) curve across all problems is PPO at σtrain = 0.05

(brown) except in (a), where it is PPO at σtrain = 0.02 and in (g) where it is Nelder-Mead at σtrain � 0.04. 95% confidence intervals (shading)

are computed using nonparametric bootstrap resampling [86] with 100 resamples.

problem is exponentially dependent on the number of control

degrees of freedom. The former hypothesis might hint at a

fundamental limitation on robustness of this particular control

landscape. The fact that most noisy Nelder-Mead curves for

these problems are clustering together suggests that noise

could also help in reaching robust areas in the control land-

scape faster by regularizing or smoothing the landscape by

an appropriate degree. We investigate asymptotic algorithm

behavior with respect to the training noise in Sec. IV C to

illustrate this and show that there is convergence in PPO per-

formance for all the noise levels at sufficiently many function

calls.
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