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a b s t r a c t 

Existing multi-person reconstruction methods require the human bodies in the input image to occupy a consid- 
erable portion of the picture. However, low-resolution human objects are ubiquitous due to trade-off between 
the field of view and target distance given a limited camera resolution. In this paper, we propose an end-to-end 
multi-task framework for multi-person inference from a low-resolution image (MILI). To perceive more informa- 
tion from a low-resolution image, we use pair-wise images at high resolution and low resolution for training, and 
design a restoration network with a simple loss for better feature extraction from the low-resolution image. To 
address the occlusion problem in multi-person scenes, we propose an occlusion-aware mask prediction network 
to estimate the mask of each person during 3D mesh regression. Experimental results on both small-scale scenes 
and large-scale scenes demonstrate that our method outperforms the state-of-the-art methods both quantitatively 
and qualitatively. The code is available at http://cic.tju.edu.cn/faculty/likun/projects/MILI . 

1. Introduction 

Multi-person reconstruction from a single image is of great impor- 
tance in computer vision and computer graphics, which aims at esti- 
mating the 3D poses and shapes of all the people in an image. Exist- 
ing methods [1,3–6] perform well in constrained experimental settings. 
However, these methods ignore some challenging situations, especially 
for low-resolution images, which are ubiquitous in the real world due to 
the limitations of cameras and transmission bandwidth. Existing meth- 
ods tend to produce severely degraded results on low-resolution images, 
as shown in Fig. 1 . 

There are two challenges to achieve accurate and robust multi- 
person reconstruction from a low-resolution image: the first challenge is 
how to model the occlusions in multi-person scenes; the other challenge 
is how to deal with low-resolution images with limited information. 

In this work, we propose MILI (Multi-person Inference from a Low- 
resolution Image), a two-stage framework for multi-person inference 
from a low-resolution image. To alleviate the occlusion problem in 
crowded scenes, we propose an occlusion-aware mask prediction net- 
work to estimate the mask of each person. With this multi-task learn- 
ing setting, MILI can estimate more reasonable 3D meshes by lever- 
aging the occlusion information guided by our mask prediction net- 
work. To exploit the limited information in the low-resolution image, 
we propose a restoration network by introducing the constraint of high- 
resolution images during training, which helps to extract richer infor- 
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mation. With the restoration network, our model can learn how to 
predict high-resolution information from low-resolution images, in fa- 
vor of regressing more accurate 3D meshes. The code is available at 
http://cic.tju.edu.cn/faculty/likun/projects/MILI . 

To summarize, our main contributions are as follows: 
∙We propose MILI, an end-to-end framework for multi-person recon- 

struction from a low-resolution image. To the best of our knowledge, 
MILI is the first framework that can regress accurate multi-person 3D 
meshes from a low-resolution image. 

∙ We propose an occlusion-aware mask prediction network to esti- 
mate the mask of each person during 3D mesh regression, which helps 
alleviate the occlusion problem existing in crowded scenes. With this 
multi-task learning setting, our model can cope well with the occlusion 
problem. 

∙ We design a restoration network for better training the low- 
resolution branch with the guidance of high-resolution images. We de- 
sign a simple but effective loss to help perceive richer information from 

a low-resolution image and generate more accurate results. 

2. Related work 

Multi-person 3D Pose Estimation. Existing work on 3D pose es- 
timation can be categorized into two classes: top-down methods and 
bottom-up methods. Many approaches adopt the top-down framework 
due to the generality of Faster-RCNN [7] , such as LCR Net [8] , LCR 
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Fig. 1. Given a low-resolution image, our method can achieve more accurate multi-person reconstruction compared with state-of-the-art method (SOTA) 
[1] . The inputs are captured by a mobile phone and downsampled from the PANDA dataset [2] , respectively. 

Net++ [9] and 3DMPPE [10] . These methods directly regress the 3D 
pose from the feature of anchor-based proposals. To alleviate the am- 
biguity of directly estimating the 3D pose from a single image, Dabral 
et al. [11] decouple the reconstruction by regressing the 2D joints from 

the image and recovering 3D pose by 2D-to-3D lifting. Different from 

multi-stage methods, bottom-up methods are one-stage methods that 
estimate the poses of all persons in the image. Mehta et al. [12] propose 
occlusion-robust pose-maps to achieve better pose estimation results for 
the inputs with serious partial occlusions. To handle the ambiguity of 
absolute depth and scale in the scene, Zhen et al. [13] propose a depth- 
aware part association algorithm that regresses absolute 3D pose based 
on 2.5D representations. Considering many applications that require 3D 
pose estimation for a large number of people in the real world, Ben- 
zine et al. [14] present a novel method that handles different scales of 
people in an image. However, none of the above methods can regress 
the shapes of persons, which are important for many downstream 

applications. 
Multi-person 3D Pose and Shape Estimation. Multi-person recon- 

struction from a single image is challenging, and related work on this 
topic is rather limited. Existing methods adopt a parametric model SMPL 
[15] , a low-dimensional vector, as the representation of the human 
mesh. Zanfir et al. [3] propose the first framework to estimate multiple 
persons by using 3D pose estimation as an intermediate result. Follow- 
up work [4] adds scene constraints to optimize the results. To ensure the 
depth consistency of all the people in the scene, CRMH [5] applies the 
interpenetration and depth ordering-aware loss to deal with the occlu- 
sion problem. Different from the top-down methods, BMP [6] proposes 
a one-stage approach to estimate more accurate depths by represent- 
ing multiple persons as points in 3D space, which is suitable for dealing 
with occlusion situations. ROMP [1] adopts the body center heatmap 
and a mesh parameter map, and achieves state-of-the-art performance 

compared with previous work. However, all these methods use high- 
resolution images as inputs, and cannot adapt well to low-resolution 
inputs. 
Low-Resolution Image Reconstruction. Since low-resolution images 

are ubiquitous in the real world, many researchers focus on different 
tasks using low-resolution images, e.g. , 2D pose estimation [16] and 
single-person reconstruction [17] . Neumann and Vedaldi [16] enhance 
2D pose estimation from low-resolution images with probability maps 
of Gaussian models, which is hard to apply to 3D pose estimation. Xu 
et al. [17] propose the first method to regress a single-person mesh from 

a low-resolution image, which improves the accuracy of human recon- 
struction by applying self-supervision and contrastive learning in the 
feature domain. However, due to the occlusion in multi-person scenes, 
it is difficult to use the single-person reconstruction method to obtain 
reasonable multi-person reconstruction results, especially for crowded 
scenes. 

In this paper, we propose an end-to-end multi-task framework, which 
regresses 3D poses and shapes of multiple persons from a real-world 
low-resolution image. Different from existing multi-person reconstruc- 
tion methods [1,3–6] , we design an occlusion-aware mask prediction 
network to alleviate the occlusion problem in multi-person scenes. With 
this multi-task setting, our model can cope well with the occlusion prob- 
lem. Besides, to make up for lack of information, we propose a restora- 
tion network to improve the feature extraction by introducing the con- 
straint of high-resolution images during training. 

3. Method 

We design MILI, an end-to-end multi-person inference framework 
from a low-resolution image, as shown in Fig. 2 . MILI is trained with 
pair-wise low-resolution and high-resolution images, which detects all 
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Fig. 2. Overview of the proposed MILI, a two-stage multi-person reconstruction method. MILI is trained using pair-wise images at high resolution and low 

resolution from the same scene. Most of the two-branch network shares the parameters to better achieve the feature guidance from the high-resolution images, except 
for the occlusion-aware mask prediction network and the restoration network. 

Fig. 3. The details of the restoration network. The input is the feature from the top-level of FPN [24] and the output is compared with high resolution feature to 
calculate the loss. 

the persons with the proposed restoration network and regresses 3D 
poses and shapes of the detected persons under the multi-task set- 
ting of the proposed occlusion-aware mask prediction network (only 
for the low-resolution branch) and the SMPL estimation network [5] . 
Different from the existing work [1,5,6] , MILI, as an end-to-end net- 
work, encourages the multi-person reconstruction from low-resolution 
images and significantly improves the robustness to occlusions with 
the occlusion-aware mask prediction network by refining the detection 
stage with segmentation. Meanwhile, to perceive more information from 

low-resolution images, the restoration network is proposed to guide the 
feature extraction of low-resolution images with the constraint of high- 
resolution images during training. 

MILI consists of three aspects: a basic model ( Section 3.1 ), an 
occlusion-aware mask prediction network ( Section 3.2 ), and a restora- 
tion network ( Section 3.3 ). To achieve a preliminary reconstruction 
from a low-resolution image, we use a two-branch architecture [17] to 
feed pair-wise images of high and low resolutions and then apply spa- 
tial attention, contrastive learning, and MSE (Mean Squared Error) loss 
to the network during training. To alleviate the occlusion problem, we 
design an occlusion-aware mask prediction network to improve the de- 
tection stage on the low-resolution image. The proposed restoration 
network generates effective features from low-resolution images under 
high-resolution guidance. 

3.1. Basic model 

Resolution-aware Network. Existing multi-person reconstruction 
methods [1,5,6] usually fail to perform well on low-resolution images 
due to the limited information, as shown in Fig. 1 . To perceive more in- 
formation from low-resolution images, we design a two-branch network 

so that both low- and high-resolution images of the same scene are fed 
into the network during training, as shown in Fig. 2 . To distinguish the 
features of images from different resolutions, we use an attention mech- 
anism to extract the information from two branches respectively before 
the backbone, encouraging each branch to focus on the corresponding 
image features sufficiently. Since the main difference of two-resolution 
features is caused by spatial pixels, we employ the attention module on 
space. The model is formulated as follows: 

𝑦 𝑖 = 𝑅 ( 𝜙( 𝑥 𝑖 ) × 𝑥 𝑖 ) , 𝑖 ∈ {0 , 1} , (1) 

where 𝑅 represents the backbone of ResNet50 network [18] , 𝜙 repre- 
sents the spatial attention module [19] , 𝑥 𝑖 represents the input, 𝑦 𝑖 rep- 
resents the feature representation after backbone, and 𝑖 is the branch 
index: “0 ” for the high-resolution branch and “1 ” for the low-resolution 
branch. 
Contrastive Learning. Considering contrastive learning is widely 

used in image recognition [17,20–23] to encourage the consistency of 
features from the same scene, we use it to enforce the consistency of fea- 
tures encoded by the network across the different resolutions. As shown 
in Fig. 2 , while there are many intermediate features, we adopt the top- 
level feature of the FPN (Feature Pyramid Network) [24] that consists of 
the most concentrated information with minimum computational com- 
plexity. 
Constraint for Region of Interest (RoI). Through FPN [24] , the sam- 

plings and bounding boxes are obtained, and thus each human mesh can 
be regressed via an SMPL estimation network. The most straightforward 
way is to restrain the features fed into the SMPL estimation network. 
However, the features consisting of multi-person samplings are hard to 
compare because of the complexity of person-person mapping between 
two resolutions. Observing that the bounding boxes directly affect the 
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Fig. 4. Qualitative results on low-resolution images of PANDA [2] , com- 
pared with CRMH [5] and ROMP [1] . 

final parameter regression of human poses and shapes, we simply im- 
plement the MSE constraint on the bounding boxes that are in the form 

of RoI as a substitute, as shown in Fig. 2 . 

3.2. Occlusion-aware mask prediction network 

Although we can get a preliminary prediction of human meshes by 
the basic model, the occlusion problems are still severe in multi-person 
situations at low resolution. Compared with high-resolution images, 
low-resolution ones are a little blurry and lack high-frequency details, 
which is more difficult to estimate occluded persons. For example, the 
samplings of low-resolution images during the detection stage are in- 
accurate. To improve the accuracy of human detection, we design an 
occlusion-aware mask prediction network on the low-resolution branch. 
As shown in Fig. 2 , the features obtained via the RoI module are fed 
into two networks: one is a 3D human reconstruction branch [5] to re- 
construct the 3D model with multi-person losses, and the other is our 
proposed network to predict the image mask via human instance seg- 
mentation. 

Different from Jiang et al. [5] , the features from the detection stage 
are better predicted with the human instance segmentation instead of 
the only 3D human reconstruction branch. Fig. 2 illustrates the net- 

Fig. 5. Qualitative results of CRMH [5] , ROMP [1] and ours on COCO 
[30] and MuPoTS-3D [12] . 

Fig. 6. Qualitative results on COCO [30] and MuPoTS-3D [12] . We visualize 
the meshes with front and top viewpoints. 

work details. With the predicted bounding boxes from the RoI module, 
the occlusion-aware mask network finally obtains the masks of all the 
people. 

3.3. Restoration network 

Although better features are obtained under the influence of high- 
resolution images in the basic network by the MSE constraint, further 
improvement can be achieved to get a more accurate human mesh by ex- 
ploiting the high-resolution images during training. As the two branches 
of high resolution and low resolution share the parameters, and the 
high-resolution branch is fixed ( i.e. , not back-propagated) during the 
training of the low-resolution branch, the network tends to focus on the 
low-resolution images gradually. Thus the prior features from the high- 
resolution branch are increasingly limited. The lack of feature informa- 
tion caused by the fewer pixels in low-resolution images finally leads to 
poor reconstruction. Inspired by the image restoration work [25] that in- 
troduces the guidance of high-resolution images with a skip connection 
network, we design a restoration network to improve feature extraction 
from low-resolution images. To reduce the computational complexity of 
the whole network, we restrain the top-level feature of FPN [24] com- 
pared to other levels. Fig. 3 illustrates the architecture of the restoration 
network, which is an encoder-decoder-like module. Through the convo- 
lution and pooling network, the low-resolution features are effectively 

4 
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guided by the high-resolution features, which greatly improves the per- 
formance and is demonstrated in the experiments ( Section 4.4 ). 

3.4. Loss functions 

In summary, the overall loss of the proposed network consists of 
three parts: 𝐿 𝑏𝑎𝑠𝑒 , 𝐿 𝑜𝑐𝑐 and 𝐿 𝑟𝑒𝑠 , which are the losses of the basic model, 
the occlusion-aware mask prediction network and the restoration net- 
work, respectively. 
Basic Loss. With the basic loss, the model achieves the preliminary 

reconstruction at low resolution. Given the general loss 𝐿 𝑚𝑢𝑙 of multi- 
person reconstruction at high resolution [5] , contrastive learning loss 
𝐿 𝑐𝑠 , and MSE constraint for RoI 𝐿 𝑅𝑜𝐼 , 𝐿 𝑏𝑎𝑠𝑒 is derived as: 

𝐿 𝑏𝑎𝑠𝑒 = 𝐿 𝑚𝑢𝑙 + 𝜆𝑐𝑠 × 𝐿 𝑐𝑠 + 𝜆𝑅𝑜𝐼 × 𝐿 𝑅𝑜𝐼 , (2) 

where 𝜆𝑐𝑠 and 𝜆𝑅𝑜𝐼 are the weights that balance the contributions of 
individual losses. Similar to Xu et al. [17] , we define the contrastive 
learning loss as: 

𝐿 𝑐𝑠 = − log 
exp ( cos ( 𝑥 ℎ , 𝑥 𝑙 )∕ 𝛾) 

exp ( cos ( 𝑥 ℎ , 𝑥 𝑙 ∕) 𝛾) + 
∑

𝑞∈𝑄 exp ( cos ( 𝑞, 𝑥 𝑙 )∕ 𝛾) 
, (3) 

where 𝑥 represents the feature of the top level, and the subscripts ℎ and 𝑙
represent the high-resolution and low-resolution branches, respectively. 
The distance between the high-resolution and low-resolution image fea- 
tures is measured by cosine of the angle between two vectors instead 
of MSE, which is more suitable for low-level features. Inspired by Xu 
et al. [17] , 𝑥 ℎ represents the fixed features of high resolution, and the 
gradients of the high-resolution branch are not back-propagated. Only 
low-resolution features 𝑥 𝑙 are encouraged to be more similar to high- 
resolution features 𝑥 ℎ . 𝛾 is a temperature hyperparameter and 𝑄 is a 
queue of features of low-resolution images from other scenes, which are 
updated during training gradually. The main idea of this loss is to re- 
duce the distance between the images from different scenes and make 
the low-resolution features closer to the high-resolution features. With 
the same features 𝑥 ℎ and 𝑥 𝑙 , 𝐿 𝑅𝑜𝐼 is formulated as: 

𝐿 𝑅𝑜𝐼 = ‖‖𝑥 ℎ − 𝑥 𝑙 
‖‖
2 
2 . (4) 

Loss of Occlusion-aware Mask Prediction Network. Occlusion- 
aware mask prediction network is designed to address the serious oc- 
clusion problems in low-resolution images, which is formulated as: 

𝐿 𝑜𝑐𝑐 = 

𝑃 ∑

𝑝 =1 

‖‖‖
𝜈( 𝑥 𝑝 ) − 𝜏𝑝 

‖‖‖
2 

2 
, (5) 

where 𝑃 represents the number of detection boxes, 𝜈( ⋅) represents the 
occlusion-aware mask prediction network, and 𝑥 𝑝 is the feature at low 

resolution. The instance segmentation of each person is predicted by 
𝜈( 𝑥 ) , and we restrain the final mask with the ground truth via MSE. By 
restricting the segmentation of the recognized person, the accuracy of 
the detection stage can be improved to obtain a better human recon- 
struction result finally. 
Loss of Restoration Network. To compensate for the limited infor- 

mation at low resolution, the guidance of high resolution is defined as: 

𝐿 𝑟𝑒𝑠 = ‖‖𝑥 ℎ − 𝜑 ( 𝑥 𝑙 ) 
‖‖
2 
2 , (6) 

where 𝜙( ⋅) represents the basic convolutional modules, and 𝑥 ℎ represents 
the fixed feature of high-resolution branch that is not back-propagated, 
consistent with our basic model. 

4. Experiments 

In this section, we first introduce the datasets and implement de- 
tails in Sections 4.1 and 4.2 , respectively, and then compare our 
method with state-of-the-art methods quantitatively and qualitatively 
in Section 4.3 and perform ablation studies to analyze the effects of dif- 
ferent components of our approach in Section 4.4 . Finally, we discuss 
the failure cases of our method in Section 4.5 . 

4.1. Datasets 

PANDA [2] : It is the only large-scale human-centric dataset which 
provides bounding boxes for the detection stage. Besides, we annotate 
2D joints of human poses. We use 02 OCT Habour , 05 Basketball Court 
and 07 University Campus as training set, and 10 Huaqiangbei as test set. 
Because the original images have a gigapixel-level resolution, we crop 
the images into blocks with adaptively different sizes as input. 

Human3.6M [26] : It is an indoor dataset with a single person in 
each frame, which provides 3D pose annotations. Following Protocol 1 
of [27] , we use S1 , S5 , S6 , S7 and S8 for training. 

PII [28] : It is an in-the-wild dataset of multiple persons with 2D pose 
annotations. We use the training set for training. 

MPI-INF-3DHP [29] : It is a single person dataset with 3D pose anno- 
tations. We use S1 to S8 for training. 

COCO [30] : It is an in-the-wild dataset with 2D pose and instance 
segmentation annotations. We use the 2D poses for training. Meanwhile, 
the segmentation masks are adopted for the occlusion-aware prediction 
and SMPL estimation networks. We use the training set for training and 
the evaluation set for evaluation. 

MuPoTS-3D [12] : It is a multi-person dataset with 3D joint annota- 
tions for all the people in the scene. We use this dataset for evaluation. 

Panoptic [31] : It is a dataset with multiple people captured in a 
panoptic studio. We use this dataset for evaluation. 

4.2. Implement details 

Since PANDA [2] is the only large-scale dataset that is closer to real- 
world outdoor scenes with a large number of people but without 3D 
joint annotations, we divide the datasets into two groups: the large-scale 
dataset ( PANDA [2] ) and the small-scale datasets ( Human3.6M [26] , 
MPII [28] , MPI-INF-3DHP [29] , COCO [30] ). Our MILI is trained on two 
types of datasets, respectively. Because PANDA [2] has no segmenta- 
tion labels, we add COCO [30] when training the SMPL estimation net- 
work. The high-resolution branch is adopted to guide the low-resolution 
branch during training, while the multi-person meshes are recovered 
from the low-resolution image only through the low-resolution branch 
during evaluation. 
Setting Details. Since existing datasets are all high-resolution im- 

ages, we downsample the inputs to low resolution, following [17] . 
Specifically, we set the low-resolution size at 286 × 176 and 208 ×
128 for large-scale and small-scale datasets, respectively. Then, we uni- 
formly resize the inputs to 832 × 512 by interpolation, keeping the 
same aspect ratio and padding with zero. For weight settings, 𝛾 is set 
to 0.01, and 𝑄 is set to of length 400. Due to the large RoI value, 𝜆𝑅𝑜𝐼 
is set to 1 𝑒 − 8 to balance the final result affected by the loss. Similar to 
[13] , we first fine-tune the model at 832 × 512 as a result of the high- 
resolution branch, and it is not back-propagated when guiding the low- 
resolution branch during training. The final reconstruction is achieved 
by an SMPL estimation network [5] . The model is trained on a desktop 
with an NVIDIA RTX 3090 GPU with a batch size of 6 images. 
Evaluation Metrics. To evaluate the reconstruction accuracy, we 

adopt mean per joint position error (MPJPE) and percentage of correct 
keypoints (PCK) on 3D poses. 

4.3. Comparison 

To demonstrate the effectiveness of the proposed model, we com- 
pare MILI with four state-of-the-art multi-person reconstruction meth- 
ods: Zanfir et al. [3] , CRMH [5] , BMP [6] and ROMP [1] . For a fair 
comparison, we fine-tune both CRMH [5] and ROMP [1] on PANDA 
[2] and small-scale datasets, respectively. Note that the codes of Zanfir 
et al. [3] and BMP [6] are not publicly available, and all the results of 
them in the tables are from the original papers. 
Results on Large-scale Dataset. Fig. 1 illustrates our reconstruction 

on an image from 10 Huaqiangbei of PANDA [2] , which demonstrates 
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Fig. 7. Qualitative results of the models without and with the occlusion-aware mask prediction network on COCO [30] , MuPoTS-3D [12] and Panoptic 
[31] datasets (from top to bottom). 

Table 1 
Results on Panoptic [31] . We use MPJPE (Mean Per Joint Position Error) as 
metric. 

Method Haggling Mafia Ultim. Pizza Mean 

Zanfir et al. [3] 141.4 152.3 145.0 162.5 150.3 
CRMH [5] 127.38 136.02 154.47 156.37 143.56 
BMP [6] 120.4 132.7 140.9 147.5 135.4 
ROMP [1] 134.47 161.51 157.67 164.05 154.43 
Ours 116.26 123.52 141.24 143.71 131.18 

Table 2 
Results on MuPoTS-3D [12] . 

Method CRMH [5] BMP [6] Ours 

3DPCK 66.34 73.83 75.42 

that our model can recognize the persons of different scales and recover 
reasonable human meshes. To illustrate more details of the results, we 
visualize the meshes generated from different scales of blocks in Fig. 4 . 
Compared with CRMH [5] and ROMP [1] , our model achieves more ac- 
curate reconstructions from the low-resolution images with appropriate 
bounding boxes in different scales. Due to the lack of 3D annotations, 
no quantitative results are given on PANDA [2] . 
Results on Small-scale Datasets. Fig. 5 shows the qualitative results 

compared with the state-of-the-art methods on small-scale datasets. MILI 
performs better in complex in-the-wild scenes. Especially for very low- 
resolution images where people are very blurry, our model can detect 
the humans and predict the human poses and shapes that are more con- 
sistent with real situations. As shown in Tables 1 and 2 , our method 

Table 3 
Ablation results on Panoptic [31] . Occ. is short for occlusion-aware mask pre- 
diction network, and Res. is short for restoration network, respectively. 

Method w/o Occ. w/o Res. Full Model 

MPJPE 133.13 142.01 131.18 

achieves the state-of-the-art performance on Panoptic [31] and MuPoTS- 
3D [12] . For a fair comparison, we only compare with CRMH [5] and 
BMP [6] on MuPoTS-3D [12] since ROMP [1] uses this dataset as the 
training dataset. Table 2 illustrates that our method improves recon- 
struction accuracy by 14% and 2%, respectively. 

We also visualize some meshes with bounding boxes estimated from 

low-resolution images of COCO [30] and MuPoTS-3D [12] in Fig. 6 . The 
results suggest that our model can recover accurate human meshes even 
in blurry images with a large variation of person scales. 

4.4. Ablation study 

To verify the validity of the proposed model, we conduct ablation 
experiments on COCO [30] and MuPoTS-3D datasets [12] qualitatively, 
and on Panoptic [31] qualitatively and quantitatively. 
Occlusion-aware Mask Prediction Network. As shown in Fig. 7 , 

our full model can detect the humans of different scales. Without the 
occlusion-aware mask prediction network, the model tends to predict 
the bounding boxes with poor accuracy, resulting in wrong detection 
results. Quantitative results on Panoptic [31] are illustrated in Table 3 . 
The full model achieves better performance, which demonstrates the 
effectiveness of our occlusion-aware mask prediction network. 
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Fig. 8. Qualitative results of the models without and with restoration network on COCO [30] , MuPoTS-3D [12] and Panoptic [31] datasets (from top to 
bottom). 

Fig. 9. Failure cases on PANDA [2] . The left is an example with an extra 
person, and the right is a wrongly estimated pose caused by large occlusion. 

Restoration Network. As shown in Fig. 8 , the model without high- 
resolution feature guidance generates much less accurate poses and 
shapes,. Compared with that, the full model can regress the meshes with 
more appropriate scales by the restoration network with adequate access 
to feature information. As shown in Table 3 , The full model obtains more 
accurate results, which demonstrates the effectiveness of our restoration 
network. 

4.5. Failure cases 

Although our model achieves promising reconstruction results, there 
are still two types of failure cases during evaluation: false detection and 
wrong unified pose for occlusion. As shown in Fig. 9 (left), MILI recog- 
nizes the human-like area as a human but there are actually no people. 
One possible reason is that the distribution of features without people is 
similar to that of areas containing people. As for occlusions, MILI tends 
to directly predict the reconstruction in a unified pose among all recon- 
structions, resulting a wrong sit-down pose, as shown in Fig. 9 (right). 
These problems will be further solved in future work. 

5. Conclusion 

In this paper, we design an end-to-end multi-person inference frame- 
work from a low-resolution image. Firstly, we propose a basic model to 
achieve a better reconstruction on low-resolution images. Then, we im- 
prove the model via an occlusion-aware mask prediction network and a 
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restoration network. Our method achieves state-of-the-art performance 
on multiple benchmarks. Specifically, the bounding box results are sig- 
nificantly improved with the occlusion-aware mask prediction network. 
The low-resolution branch can get more effective features to reconstruct 
an accurate mesh by the restoration network, which encourages the fea- 
tures of low-resolution images to be generated under the effective guid- 
ance of a high-resolution branch during training. Comparison results on 
the large-scale and small-scale datasets demonstrate that our method 
is superior to the existing multi-person reconstruction methods in both 
detection and reconstruction. 
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