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Abstract

Diabetes is an established risk factor for colorectal cancer. However, colorectal

cancer is a heterogeneous disease and it is not well understood whether diabetes is

more strongly associated with some tumor molecular subtypes than others. A better

understanding of the association between diabetes and colorectal cancer according

to molecular subtypes could provide important insights into the biology of this associ-

ation. We used data on lifestyle and clinical characteristics from the Colorectal Can-

cer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer

Consortium (GECCO), including 9756 colorectal cancer cases (with tumor marker

data) and 9985 controls, to evaluate associations between reported diabetes and risk

of colorectal cancer according to molecular subtypes. Tumor markers included BRAF

and KRAS mutations, microsatellite instability and CpG island methylator phenotype.

In the multinomial logistic regression model, comparing colorectal cancer cases to

cancer-free controls, diabetes was positively associated with colorectal cancer regardless

of subtype. The highest OR estimate was found for BRAF-mutated colorectal cancer,

n = 1086 (ORfully adj: 1.67, 95% confidence intervals [CI]: 1.36-2.05), with an attenuated

association observed between diabetes and colorectal cancer without BRAF-mutations,

n = 7959 (ORfully adj: 1.33, 95% CI: 1.19-1.48). In the case only analysis, BRAF-mutation

was differentially associated with diabetes (Pdifference = .03). For the other markers, asso-

ciations with diabetes were similar across tumor subtypes. In conclusion, our study con-

firms the established association between diabetes and colorectal cancer risk, and

suggests that it particularly increases the risk of BRAF-mutated tumors.

K E YWORD S

colorectal cancer, diabetes, subtype

What's new?

Diabetes is a well-known risk factor for colorectal cancer, but colorectal cancer varies widely

among patients. To better understand the association between diabetes and particular molecular

subtypes of colorectal cancer, these authors analyzed data from 9,756 colorectal cancer cases

and 9,985 controls. They found that diabetes appears to increase the risk of tumors with BRAF

mutations, which generally have poorer outcomes. The large pooled dataset allowed detection

of even small variations among subtypes, but the study also was not able to account for some

potentially relevant factors, such as metformin use.

1 | INTRODUCTION

Metabolic health, and excess body fat in particular, are involved in the

development of colorectal cancer.1-3 Individuals with diabetes

mellitus, especially those with type 2 diabetes, have an increased risk

of developing colorectal cancer.4 This connection is likely independent

of shared risk factors between diabetes and colorectal cancer.5

Instead, the association between diabetes and colorectal cancer

may depend on other mechanisms such as alterations to the gut

microbiome, increased inflammation in the gut, hyperinsulinemia in

early stage type 2 diabetes and activation of cancer promoting

pathways.6

350 HARLID ET AL.

mailto:sophia.harlid@umu.se


Colorectal cancer is a heterogeneous disease, displaying consider-

able differences in molecular markers, which correlate with anatomical

tumor location and other clinical and patient characteristics.

For example, BRAF-mutations are more common in proximal colon

cancer, older patients and women and often co-occur with high-

level microsatellite instability (MSI).7 This raises the question of

whether the risk factors for colorectal cancer also vary by tumor

molecular markers. Investigations into potentially variable associa-

tions of metabolic factors and molecular subtypes of colorectal

cancer have been inconsistent, but some reports suggest a possible

association between adiponectin and lower risk of KRAS-mutated

colorectal cancer.8,9 Adiponectin is known to have anti-inflammatory

effects and has been suggested as a potential treatment for obesity and

type 2 diabetes.10 Although studies have examined associations

between body mass index (BMI) and different colorectal cancer

phenotypes,11,12 to our knowledge, no studies have investigated diabe-

tes in relation to the risk of molecular subtypes of colorectal cancer,

despite the fact that high BMI is one of the strongest known predictors

of type 2 diabetes risk.13

The aim of the present study was to investigate self-reported dia-

betes status in relation to molecular tumor traits in colorectal cancer

(BRAF and KRAS mutations, MSI status and CpG island methylator

phenotype [CIMP]). To achieve this, we used pooled data and tissue

samples from the Colorectal Cancer Family Registry (CCFR) and the

Genetics and Epidemiology of Colorectal Cancer Consortium

(GECCO), comprising a total of 9756 colorectal cases, with tumor

marker data, and 9985 colorectal cancer free controls, all with infor-

mation about self-reported diabetes status.

2 | METHODS

2.1 | Study participants

The study population consisted of individuals diagnosed with colorec-

tal cancer and controls from observational studies within GECCO and

the CCFR, with available tumor marker data and self-reported infor-

mation about diabetes status (not distinguishing between type 1 and

type 2) (Supplementary Materials and Table S1). Specifically, 9756

CRC cases had characterization of MSI status, BRAF and KRAS muta-

tions, and CIMP status.

Studies with MSI, BRAF, KRAS and CIMP data included the

Seattle, Ontario, Australia and Mayo Clinic sites from the Colon

Cancer Family Registry (CCFR), the Cancer Prevention Study-II

(CPS-II), the German Darmkrebs: Chancen der Verhütung durch

Screening Study (DACHS), the Swedish centers of the European

Prospective Investigation into Cancer and Nutrition study (EPIC-

Sweden), the Health Professionals Follow-up Study (HPFS), the

Melbourne Collaborative Cohort Study (MCCS), the Newfound-

land Colorectal Cancer Registry (NFCCR), the Nurses' Health

Study (NHS) and the Northern Sweden Health and Disease Study

(NSHDS, an EPIC partner but with no overlap with EPIC-Sweden

in our study).

2.2 | Tumor marker data

2.2.1 | Collection and harmonization of MSI status
CIMP status and BRAF and KRAS mutations

Data collection and harmonization of GECCO and CCFR tumor

marker data have been described elsewhere.14,15 Details on the ana-

lytical approach are described in the Supplementary Materials.

Briefly, MSI testing was primarily conducted using polymerase chain

reaction (PCR) following the guidelines of the National Cancer Institute

Bethesda Consensus Panel (CCFR, CPS-II, MCCS, NHS)16 with ≥4 inter-

pretable markers typically required to classify tumors (Table S2). DACHS

used a mononucleotide panel of four markers. Tumors were classified as

MSI-high if at least 30% of the markers showed instability and non-MSI-

high if less than 30% of the makers showed instability. Other studies

used immunohistochemistry (NSHDS, EPIC-Sweden and subsets of

CCFR and MCCS).

CIMP status was determined using methylation analyses as

described in the Supplementary Materials and Table S3. Briefly, the

CCFR, CPS-II, HPFS, MCCS, NSHDS, EPIC Sweden and NHS used

MethyLight to determine CIMP status. CPS-II, HPFS, NSHDS, EPIC

Sweden and NHS used an 8-gene panel; CCFR and MCCS used a

5-gene panel. DACHS determined CIMP status using a different

5-gene panel and methods described by Warth et al.17 We created

two CIMP categories for this analysis: CIMP-high and CIMP-low/neg-

ative. In instances in which studies categorized tumors as CIMP-high,

CIMP-low and CIMP-negative, we combined CIMP-low and CIMP-

negative into the CIMP-low/negative category.

Studies assessed BRAF and KRAS mutations using PCR, sequenc-

ing and immunohistochemistry (Supplementary Materials). Most stud-

ies evaluated BRAF via c.1799T>A (V600E) mutations in exon 15 and

KRAS via mutations in codons 12 and 13, although any mutation iden-

tified by one of the studies in BRAF and KRAS genes was included.

We further defined five combined colorectal tumor subtypes consis-

tent with previously suggested classifications18-20: Type 1 (MSI-high,

CIMP-high, BRAF-mutated, KRAS-wildtype), Type 2 (non MSI-high, CIMP-

high, BRAF-mutated, KRAS-wildtype), Type 3 (non MSI-high, CIMP-low/

negative, BRAF-wildtype, KRAS-mutated), Type 4 (non MSI-high, CIMP-

low/negative, BRAF-wildtype, KRAS-wildtype) and Type 5 (MSI-high,

CIMP-low/negative, BRAF-wildtype, KRAS-wildtype. Given our large

sample size, we grouped additional marker combinations together into

11 additional types including: Type 6 (nonMSI-high, CIMP-low/negative,

BRAF-mutated, KRAS-wildtype), Type 8 (non MSI-high, CIMP-

high, BRAF-wildtype, KRAS-mutated), Type 9 (MSI-high, CIMP-low/neg-

ative, BRAF-wildtype, KRAS-mutated), Type 11 (non MSI-high, CIMP-

low/negative, BRAF-wild type, KRAS-mutated) and Type 14 (MSI-high,

CIMP-high, BRAF-wild type, KRAS-wild type). Subtypes with fewer than

50 cases were dropped from analyses orwere grouped together with the

other marker combinations. These included: Type 7 (non MSI-high,

CIMP-high, BRAF-wildtype, KRAS-wildtype), Type 10 (MSI-high, CIMP-

high, BRAF-wildtype, KRAS-wildtype), Type 12 (MSI-high, CIMP-low/

negative, BRAF-mutated, KRAS-wildtype), Type 13 (MSI-high, CIMP-

low/negative, BRAF-mutated, KRAS-mutated), Type 15 (MSI-high,
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CIMP-high, BRAF-wildtype, KRAS-mutated) and Type 16 (MSI-high,

CIMP-high, BRAF-mutated, KRAS-mutated). A summary of the com-

binedmarker classifications can be found in Figure 1 and Table S4.

2.3 | Exposure data

Data collection and harmonization of GECCO and CCFR epidemio-

logic data have been described elsewhere.14,15,21 Briefly, demographic

and environmental risk factor data were self-reported at in-person

interviews or via structured self-administered questionnaires. Data

were collected at study entry, or 1 to 2 years prior to sample ascer-

tainment. A multistep iterative data-harmonization procedure was

applied, reconciling each study's unique protocols and data collection

instruments. Multiple quality-control checks were performed, and out-

lying values of variables were truncated to the minimum or maximum

value of an established range for each variable. Variables were com-

bined into a single dataset with common definition, standardized cod-

ing and standardized permissible values.

Diabetes status was obtained through self-reported answers to

questions about diabetes diagnoses (summarized in Table S1) and

includes, but does not distinguish between, both type 1 and type

2. We defined age at the time of a colorectal cancer diagnosis for

cases and time of enrolment for controls. Missing covariate data were

assumed to be missing at random, conditional on observed data and

were imputed using mean imputation.

2.4 | Statistical analyses

We used multinomial models to estimate odds ratios (OR) and 95%

confidence intervals (CIs) for the association between diabetes and the

risk of each molecular tumor marker among colorectal cancer cases,

defined as MSI-high vs non-MSI-high, CIMP-high vs low/negative and

BRAF or KRAS mutated vs nonmutated. To test for differences related

to subtype within the case-only analysis we used unconditional logistic

regression. In the combined marker analysis, Type 4 (non-MSI-high,

CIMP-low/negative, BRAF-wildtype, KRAS-wildtype) was used as a

reference group in the case-only analysis, whereas in the polytomous

analysis, cancer-free controls were used as the reference group. Both

analyses used multinomial logistic regression to compare each molecular

pathological subtype to the reference group. We also used multinomial

logistic regression to estimate the association between diabetes and risk

of colorectal cancer stratified by tumor location (colon, rectum, proximal

colon, distal colon) and sex (male and female), and compared case-

combinations of marker and tumor site with controls. For case-only ana-

lyses, we compared marker combinations stratified by tumor site.

Minimally adjusted models (presented in the Supplementary Mate-

rials) included study, age and sex as covariates, and fully adjusted models

additionally included energy intake, family history of colorectal cancer,

BMI, red and processed meat consumption, vegetable consumption, fruit

consumption, alcohol use, smoking status, exercise and aspirin/NSAID

use. Variables were first selected based on their theoretical relevance as

potential confounders of an association between diabetes and colorectal

All cases

MSI-high

Non 
MSI-high

BRAF-mut

CIMP-
high

CIMP-
high

CIMP–
low/neg.

BRAF-wt

BRAF-mut

BRAF-wt

BRAF-mut

BRAF-wt

BRAF-mut

BRAF-wt

KRAS-mut

KRAS-wt

KRAS-wt

KRAS-wt

KRAS-wt

KRAS-mut

KRAS-mut

KRAS-mut

KRAS-mut

KRAS-wt

KRAS-mut

KRAS-wt

KRAS-mut

KRAS-wt

KRAS-mut

KRAS-wt

Diabetes
Jass-type No Yes OR (95% CI) P-value1 P-difference2

16 6 2

1 360 56 1.49 (1.09-2.03) .01 .46

15 26 4

14 110 13 1.07 (0.60-1.93) .81 .41

13 2 1

12 36 4

11 105 10 0.95 (0.48-1.87) .89 .41

5 176 22 1.65 (1.03-2.65) .04 .36

10 4 0

2 157 18 1.10 (0.64-1.88) .73 .69

9 179 28 1.57 (1.03-2.39) .04 .65

8 157 16 0.84 (0.49-1.46) .54 .11

7 16 8

6 162 19 1.31 (0.79-2.17) .30 .78

3 1552 206 1.28 (1.07-1.53) 5.79 x 10–3 .41

4 2606 351 1.29 (1.12-1.49) 4.18 x 10–4 Ref.
1 2 3 4

CIMP–
low/neg.

Odds Ratio

F IGURE 1 Case-control associations between individuals reporting diabetes and individuals not reporting diabetes with risk of colorectal
cancer subtypes defined by combined marker status. Error bars represent 95% confidence intervals. Adjusted for: study, sex, age at crc diagnosis,
energy intake, family history, BMI, red meat, processed meat, vegetables, fruit, alcohol, smoking, exercise and aspirin/NSAID use. 1P-values were
calculated using multinomial logistic regression, comparing colorectal cancer cases to cancer free controls separately for each defined Jass-type
with more than 50 cases included. 2Pdifference was calculated using multinomial logistic regression, comparing cases of each Jass-type to all
additional cases not belonging to that type
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cancer risk. We then performed a forward direction selection of suitable

covariates resulting in fiber intake being dropped from the analysis. For

polytomous and case-only analyses of the primary subtypes (MSI, BRAF,

KRAS and CIMP-status), we considered a two sided P-value of <.05 to be

significant (in both minimally and fully adjusted models). However, when

testing associations between diabetes and combined marker subtypes,

we used the alpha of 0.5% as recommended by Benjamin et al.22 All ana-

lyses were performed using R version 4.0.0 (R Foundation for Statistical

Computing, Vienna).

3 | RESULTS

The main characteristics of the study participants are described in

Table 1. Individuals reporting a diabetes diagnosis were generally

more likely than those not reporting diabetes to be male (P < .01) and

to use aspirin regularly (P < .01), and less likely to have a reported

family history of colorectal cancer, especially among colorectal cancer

cases (P < .01). Participants with diabetes were also more often non-

drinkers (P < .01), were more likely to exercise (P < .01), had a history

of smoking (P < .01) and were more often obese (P < .01). These rela-

tionships were consistent among both colorectal cancer cases and

controls.

In the case-control analysis, we observed an association

between diabetes and colorectal cancer (ORall crc[fully adj.] = 1.34,

95% CI: 1.21-1.48). This relationship was consistent across all molec-

ular subtypes as shown in Table 2. However, it was stronger in cases

with BRAF-mutated tumors (ORfully adj. = 1.67, 95% CI: 1.36-2.05) as

compared to tumors without BRAF mutations (ORfully adj. = 1.33,

95% CI: 1.19-1.48) (Pdifference = .03) (Tables 2 and S5). For additional

comparisons of subtype-specific associations, differences were not

significant.

Analyses were then further stratified by tumor subsite and sex

(Table S6).

We observed significant differences between the association of

diabetes and colorectal cancer by BRAF-mutation status for colon

(Pdifference = .04) and proximal colon cancers (Pdifference = .02). The dif-

ference between BRAF-mutated and wild-type OR point estimates

was also retained for rectal tumors (but not for distal tumors) and

among both men and women, but without reaching significance (Table

S6). However, the number of BRAF-mutated tumors in the rectum

was much lower than in the colon, which may explain why the

observed difference in the association between diabetes and colorec-

tal cancer risk by BRAF-mutation status was not statistically signifi-

cant. The association between diabetes and colorectal cancer risk did

not differ by other tumor markers in any of the stratified analyses.

Results from analyses of combined marker subtypes are pres-

ented in Figure 1 and Table S7. Among the 10 subtype combinations

tested, diabetes was statistically significantly associated with risk of

five different types (1, 3-5, and 9) in case-control analyses, but only

type 4 remained significant after adjustments for multiple compari-

sons. No significant differences in subtype-specific associations were

noted in case-only analyses.T
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4 | DISCUSSION

This large collaborative effort is the first study to investigate the

impact of diabetes on subtypes of colorectal cancer, while also consid-

ering both distinct molecular markers and tumor subtypes based on

marker combinations. Our primary finding was a statistically signifi-

cant difference in the strength of the association between reported

diabetes status and colorectal cancer by BRAF status, with a stronger

association for BRAF-mutated than nonmutated tumors. This was con-

sistent in both our minimally and fully adjusted models. Reporting a

diabetes diagnosis was more strongly associated with BRAF-mutated

tumors in both the proximal colon and rectum indicating that tumor

location does not explain this result.

BRAF mutations, found in 8% to 12% of colorectal cancers, are

generally associated with a poor prognosis and are more common in

proximal tumors.23-25 BRAF is a serine-threonine kinase activated by

KRAS as part of the MAPK signaling cascade.26 Both BRAF and KRAS

are oncogenes that are commonly mutated in colorectal cancer, and

mutations in these genes are often considered mutually exclusive.

Previous studies have found some evidence that medical drugs can

differentially affect the risk of different molecular subtypes. For exam-

ple, a study from 201327 found that aspirin use (which has consis-

tently been shown to decrease colorectal cancer risk28) seemed to

specifically lower the risk of BRAF-nonmutated colorectal cancer but

not BRAF-mutated colorectal cancer. More related to diabetes, a study

from 201229 found that metformin, an antidiabetic drug previously

shown to have antitumor activity in several different cancers,30 did

not affect BRAF-mutated melanoma cells, but instead seemed to

accelerate their growth in a xenograft mice model of melanoma. The

authors suggested that the accelerated growth of the BRAF-mutated

tumors could be attributed to improved angiogenesis. Although this is

in line with our own results, where individuals reporting diabetes had

a higher incidence of BRAF-mutated tumors compared to other molec-

ular markers, later studies have been unable to replicate the find-

ings.31 In addition, at least one study32 specifically examining the

association between metformin and colon or colorectal cancer, but

not by subtype, did not report any evidence of metformin acting dif-

ferently depending on tumor site. It should also be noted that

although metformin is commonly prescribed to individuals with type

2 diabetes mellitus, we lacked information about metformin use

among our participants.

Colorectal cancer is known to often develop through a specific

number of events along the so-called conventional pathway, which is

a multistep process initiated by mutations in APC, KRAS or BRAF

genes. It is also well known that other important pathways exist, such

as the serrated pathway and the alternate pathway, which have other

characteristics as well as distinct risk factors.33 For example, the ser-

rated pathway is associated with older age at onset, female sex and

smoking and is also characterized primarily by BRAF mutations and

CIMP-high status.34,35 Previous studies originating from the GECCO

consortia have investigated whether other established risk factors for

colorectal cancer are associated with specific molecular subtypes,

sometimes supporting development through distinct pathways. One

recent study focused on dietary factors did show some evidence of

heterogeneity related to fruit and especially fiber intake.15 In poly-

tomous analyses, higher fruit intake was associated with a decreased

risk of developing BRAF-mutated tumors. High fiber intake, on the

other hand, was associated with decreased risk of non-MSI-high,

TABLE 2 Associations between diabetes and risk of different molecular subtypes of colorectal cancer

Tumor marker 
and status Cases, n OR (95% CI)a Forest plotb Pc Pdifferenced

BRAF
Wildtype 7959 1.33 (1.19-1.48) 2.64 x 10–7

Mutated 1086 1.67 (1.36-2.05) 8.36 x 10–7 .03
KRAS

Wildtype 5278 1.29 (1.14-1.46) 4.33 x 10–5

Mutated 2621 1.41 (1.21-1.63) 8.95 x 10–6 .26
MSI

Non msi-high 7720 1.32 (1.18 - 1.47) 5.23 x 10–7

Msi-high 1301 1.40 (1.15 - 1.71) 9.87 x 10–4 .50
CIMP

Low/negative 6478 1.31 (1.16-1.46) 5.85 x 10–6

High 1321 1.30 (1.07-1.58) 9.42 x 10–3 .65
1.0 1.5 2.0

OR

aAdjusted for: study, sex, age at CRC diagnosis, energy intake, family history, BMI, red meat, processed meat, vegetables, fruit, alcohol, smoking, exercise

and aspirin/NSAID use.
bError bars represent 95% confidence intervals.
cMultinomial logistic regression was used to compare colorectal cancer cases to cancer free controls separately for each molecular pathological subtype

(polytomous analysis, P).
dMultinomial logistic regression was used to compare cases of each molecular pathological subtype to all additional cases not belonging to that subtype

(case only analysis, Pdifference).
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CIMP-low/negative, BRAF-wildtype and KRAS-wildtype subtypes,

although none of these associations retained significance in case-only

analyses. In another study, it was found that smoking was strongly

associated with subtype combinations that included CIMP-high and

MSI-high tumors.36 As a result of these findings, the authors suggest

that smoking might specifically increase the risk of tumors developing

through the serrated pathway. Our study however, despite showing

an increased risk of developing BRAF-mutated tumors, did not find

any evidence of diabetes resulting in any pathway specific develop-

ment. Both previous studies and ours underline the importance of

using large enough sample sets to be able to adequately assess pat-

terns of associations that differ depending on molecular subtype.

Metabolic dysfunction, often defined as the presence of three or

more of the criteria for metabolic syndrome (central obesity, hyper-

tension, dysglycemia and dyslipidemia), is associated with an increased

risk of developing both diabetes (type 2) and colorectal cancer. Sev-

eral studies have aimed to assess the relationship between metabolic

abnormalities (such as high BMI, hypertension and dysglycemia) and

colorectal cancer, focusing on metabolic syndrome, inflammation and

specific colorectal cancer subtypes.37-39 One of several plausible links

between diabetes and colorectal cancer could be related to insulin

resistance and hyperinsulinemia, a state of heightened insulin levels

and a hallmark of untreated type 2 diabetes in its earlier natural his-

tory. High insulin levels have been linked to an increased risk of multi-

ple cancers, including colorectal cancer.40 This may relate to its

growth promoting effects as well as its ability to increase circulating

IGF1 levels.41 Several studies have also identified a link between

markers of heightened insulin levels (eg, C-peptide) and colorectal

cancer risk,42,43 but without finding any evidence of heterogeneity.44

However, the most important metabolic factor likely to affect both

diabetes and colorectal cancer risk is obesity and the relationship

between BMI and colorectal cancer has also shown consistent

directions of associations across studies, although just as for

hyperglycemia, evidence of heterogeneity between subtypes has

been somewhat inconsistent.11,45-51 In the current study however,

we find some evidence of diabetes increasing the risk of specifi-

cally BRAF-mutated tumors, but taking into account previous

studies, this subtype-specific risk difference is probably not related

to the shared metabolic risk factors connecting diabetes and colo-

rectal cancer.

An important strength of our study is the ability to pool data from

multiple observational studies with readily available information on

diabetes status. This pooling of datasets enabled us to detect even

modestly differential associations between diabetes status and risk of

colorectal cancer by molecular subtypes. However, there are also limi-

tations that have to be taken into account when interpreting the

study results. First, we were not able to distinguish between type

1 and type 2 diabetes, or to take into account use of specific medica-

tions such as metformin. Time and duration of diabetes diagnosis was

also lacking. These are all factors that can have important implications

and result in misclassification bias. However, the size of our study,

and the fact that type 2 diabetes makes up more than 90% of all dia-

betes cases,52 makes it less likely that these have substantially

distorted our results. There may also be selection bias related to the

cases included in the pooled analysis or to tissue availability poten-

tially depending on tumor stage and size,53 a limitation that has been

previously described.15 Finally, we did not apply any formal adjust-

ment for multiple comparisons to our primary analyses. Although

adding such adjustments would not affect the associations of risk, as

they are all highly significant, the reported difference in OR estimates

between BRAF-mutated and nonmutated tumors would fall slightly

below the significance threshold (accounting for tests of four different

subtypes). This should be considered when interpreting the findings. It

is worth noting that individuals reporting diabetes had a higher risk of

all subtypes of colorectal cancer and the difference related to BRAF-

mutated tumors only affected the magnitude of the risk, but the direc-

tion remained the same.

In summary, our study confirms the established association

between diabetes and colorectal cancer risk and suggests that it espe-

cially increases the risk of BRAF-mutated tumors. Additional studies to

confirm our finding, and possibly determine if the subtype specific

association could be attributed to any particular component (such as

metformin treatment), are needed before further conclusions can be

drawn.
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