
A Framework for parallel Event Driven Simulation
of Large Spiking Neural Networks

Michiel D’Haene

Supervisor(s): Dirk Stroobandt

Abstract— The simulation of spiking neural networks (SNNs) is still a
very time consuming task. For realtime applications, this limits simulations
to rather unrealistic and computationally weak small or medium sized net-
works. SNNs consist of neurons that communicate using discrete spikes
which makes them suitable for an event-driven approach. We can increase
the simulation speed even further by exploiting the parallel nature of SNNs
in hardware implementations. However, when using parallel processing
units, one has to ensure that events are processed in the correct time order
which introduces the need for synchronization mechanisms.Although they
are well known, they have yet to be studied for SNNs. We present a frame-
work for Parallel and Distributed Event Simulation (PDES) for SNNs. It
allows us to test different synchronization mechanisms using networks with
programmable delays and any number of processor units. Thiswill allow
us to select and optimize the best synchronization mechanisms.

Keywords—Spiking Neural Network, Event Simulation, Synchronization

I. I NTRODUCTION

S
PIKING neural networks (SNNs) consists of biologically in-
spired neurons that communicate by using spikes. Because

the exact timing of the spikes is considered, SNNs are able to
handle temporal problems more efficiently (for example speech
recognition [10]) and have more computational power than ar-
tificial neural networks [5] which model the average firing rate
of neurons as analog inputs. Furthermore, they communicate
through discrete spikes instead of analog values which signifi-
cantly reduces the communication cost. This makes them more
suitable for e.g. hardware implementations [8].

The behaviour of a spiking neuron can be represented by an
internal membrane potential function which is influenced byin-
coming spikes. When the potential of the membrane reaches a
certain value, the membrane potential will be reset to a lower
value and a spike is emitted. It is important to note that each
neuron operates independently from the other, except when a
spike is transmitted between neurons.

An obvious way of implementing SNNs is a direct placement
of the neurons into hardware, which benefits of the inherent par-
allel nature of spiking neural networks and allows extremely fast
simulations (orders of magnitude faster than realtime) [9]. How-
ever due to the typical low activity of a SNN, these implemen-
tations are very space inefficient and are limited in size by the
amount of hardware available on the chip. Therefore, in prac-
tice, large SNNs are simulated using more conventional archi-
tectures.

There are essentially two ways of simulating SNNs on con-
ventional architectures: time-step based and event based simu-
lation. The first one divides the simulation into fixed time-steps.
At each time-step, the complete network is evaluated and the

M. D’Haene is with the Electronics and Information Systems
Department, Ghent University (UGent), Gent, Belgium. E-mail:
Michiel.DHaene@UGent.be .

new state of each neuron is calculated. The precision of the
simulation depends on the time-step size, which also affects the
simulation time. Despite its simplicity, the asynchronousna-
ture of the spikes requires small time-steps (≤1ms) in order to
achieve accurate simulation results.

Usually we are only interested in the external behaviour of
a neuron (spike generation) due to incoming spikes, and not in
the internal membrane changes. Event based simulation takes
advantage of this. Instead of evaluating the whole network on
regular time intervals, the membrane potential of each neuron
is evaluated only when necessary, i.e. when a neuron receives a
spike, or when it generates a firing event. Because the frequency
of spike generation is typical much lower than the 1ms interval
of time-step driven simulations, this approach results in more
efficient simulations. Also the accuracy is much higher, in many
cases analytically correct results can be obtained. Our tests show
that a speedup of 60 or more compared to advanced time-step
driven simulators (for example CSIM) is possible [2].

An event-simulator has to keep track of all events in the sys-
tem and execute events in the correct time order. This can be
done with a queue that keeps all generated events in chrono-
logical order. The simulator takes out the event with the small-
est timestamp from this event queue, processes it and adds new
events to the queue if necessary. Then it takes the next event
with the lowest timestamp, etc.

One disadvantage of the event-driven approach is that incom-
ing and outgoing pulses must be considered as discrete events.
However, not all neural models fulfill this condition. There-
fore some biologically realistic models like the Hodgkin-Huxley
model can not be simulated in an event-driven manner. Another
difficulty is that if a neuron will fire, the simulator has to sched-
ule the fire-timestamp as a new event in the queue which often
requires some iterative calculations. As long as this timestamp
is not reached, new incoming spikes can change this timestamp
causing a recalculation of the fire-timestamp. It can turn out to
be very computationally expensive for more complex models.
Some techniques to handle this problem are discussed in [2].

II. PARALLEL EVENT BASED SIMULATION

The event driven principle described above is obviously a se-
quential process. Events are taken one by one from the event-
queue and processed. After each execution, newly generated
events are inserted into the queue before processing the next
event (Fig. 1a). Although this allows much faster simulations
than time-step based simulation, it is still far too slow to be in-
teresting for many applications. For example, realtime simula-
tions on modern architectures are limited to networks of order
of magnitude 10.000 (simple) neurons [1].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55864266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An obvious way to accelerate this sequential process is the
use of more processing units in parallel or through pipelining
as can be seen in Fig. 1b and c. This is for example used in
the SPINN Emulation Engine (SEE) [4] or in the SpikeFORCE
project [7]. Unfortunately the intense memory interactionof
event simulation creates an important memory bottleneck. Also
the inherent parallelism of SNNs remains unused: SNNs are
composed of a huge number of neurons that communicate only
through spikes. Otherwise they are independent and can thusbe
calculated in parallel.

Fig. 1. a) Single queue with 1 processing element, b) Single queue with multiple
processing units, c) Single queue with pipelining and d) Multiple queues.

Parallel discrete event simulation (PDES) refers to the exe-
cution of a single discrete event simulation program on concur-
rent processing units, often called logical processes (LPs). Each
processing unit has its own event queue and processing element
(Fig. 1d). Communication between the processing units occurs
through messages. In asynchronous applications like SNNs,the
probability that events coincide is very small. Therefore we have
to concurrently process events with a different timestamp.An
important requirement of event based simulation however isthat
if two events influence each other, they have to be executed in
the correct chronological order (to avoid causality errors). As
can be seen in Fig. 2, it is hard to determine which events can be
executed in parallel because the mutual influence of two events
depends on the input and the internal state of the neurons, which
is very unpredictable [3]. To guarantee that events are executed

Fig. 2. Data dependency: event E1 will only influence E2 when it causes neuron
1 to fire, which is dependent of the state of neuron 1.

in correct order, a synchronization mechanism must be used that
keep the different subsimulators synchronized. There exist sev-
eral techniques that deal with these synchronization problems.
They can be roughly divided in conservative, optimistic and
adaptive synchronization. Each synchronization method has its
advantages and disadvantages. The little research that hasal-
ready be done with PDES for SNNs uses conservative methods,
mainly for its simplicity. However there are some indications
that other methods might perform better, especially when the
number of LPs grows. Still these techniques have yet to be stud-
ied for SNNs.

III. T HE FRAMEWORK

To allow us to investigate different synchronization mech-
anisms under several circumstances, we have built a general
framework for PDES of SNNs. We used SystemC as the plat-
form for the concurrent simulation of several LPs. It allowsus to
control the simulated execution time of each LP, independently
from the actual execution time. We also wrote a communication
class which allows LPs to communicate with each other with a
programmable propagation delay of messages between each LP.

Another issue when distributing the network between several
LPs is the partitioning of the network. This can be done man-
ually, random or using hMETIS, a well known hypergraph par-
titioning algorithm. Different synchronization mechanisms can
be easily implemented within the framework using the well cho-
sen functions that control the simulation process. The basesim-
ulator is based on MVASpike, a general event based simulator
for SNNs by Olivier Rochel [6].

An important aspect is hardware-friendly design: in a later
stadium, the simulator will be implemented in digital hardware
(FPGA) in order to benefit optimally of the inherent parallelism
of SNNs.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that event driven simulation
can efficiently simulate a broad class of SNNs. However, the
inherent parallel nature of SNNs remains still unused. There-
fore, further speedup can be achieved with a parallel approach.
Unfortunately this involves difficult synchronisation issues. We
have built a general framework for testing synchonization mech-
anisms under different circumstances. It will teach us which
techniques are best suited for our applications, i.e. fast simula-
tion of large-scale neural networks.

REFERENCES

[1] M. D’Haene. Parallelle event-gebaseerde simulatietechnieken en hun
toepassing binnen gepulste neurale netwerken. Technical report, Univer-
siteit Gent, 2005.

[2] M. D’Haene, B. Schrauwen, and D. Stroobandt. Accelerating event based
simulation for multi-synapse spiking neural networks. InProceedings of
the 16th International Conference on Artificial Neural Networks, volume
4131, pages 760–769, Athens, 9 2006. Springer Berlin / Heidelberg.

[3] R.M. Fujimoto. Parallel discrete event simulation.Communications of the
ACM, 33(10):30–53, October 1990.

[4] H.H. Hellmich, M. Geike, P. Griep, P. Mahr, M. Rafanelli, and H. Klar.
Emulation engine for spiking neurons and adaptive synaptic weights. In
IJCNN, pages 3261–3266, 2005.

[5] W. Maass. Lower bounds for the computational power of networks of
spiking neurons.Neural Computation, 8(1):1–40, 1996.

[6] O. Rochel and D. Martinez. An event-driven framework for the simulation
of networks of spiking neurons. InProceedings of the 11th European
Symposium on Artifical Neural Networks, ESANN 2003, pages 295–300,
2003.

[7] E. Ros, E.M. Ortigosa, R. Agı́s, R. Carrillo, A. Prieto, and M. Arnold.
Spiking neurons computing platform. InProceedings of the 8th Inter-
national Work-Conference on Artificial neural Networks, IWANN 2005,
pages 471–478, 2005.

[8] B. Schrauwen. Embedded spiking neural networks. InDoctoraatssym-
posium Faculteit Toegepaste Wetenschappen, pages on CD–ROM. Univer-
siteit Gent, Gent, December 2002.

[9] Benjamin Schrauwen and Jan Van Campenhout. Parallel hardware im-
plementation of a broad class of spiking neurons using serialarithmetic.
In Proceedings of the European Symposium on Neural Networks, pages
623–628, 2006.

[10] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. VanCampenhout.
Isolated word recognition with the liquid state machine: a case study.In-
formation Processing Letters, 95(6):521–528, 2005.


