
Linking non-binned spike train kernels to several
existing spike train metrics

Benjamin Schrauwen∗ Jan Van Campenhout
ELIS, Ghent University, Belgium
Benjamin.Schrauwen@UGent.be

Abstract. This work presents two kernels which can be applied to sets of
spike times. This allows the use of state-of-the-art classification techniques
to spike trains. The presented kernels are closely related to several recent
and often used spike train metrics. One of the main advantages is that it
does not require the spike trains to be binned. A high temporal resolution
is thus preserved which is needed when temporal coding is used. As a test
of the classification possibilities a jittered spike train template classification
problem is solved.

1 Introduction

Spike train classification is of interest to neurobiological research where spike
trains from real neurons need to be related to stimuli; and to neural network
research where spiking neurons get increasing attention due to their greater com-
putational power and their inherent ability to process temporal information [4].
Traditionally, distance metrics for spike trains use binning of the spike trains so
that a so called instantaneous firing rate is obtained on which the euclidean dis-
tance is defined. However, these metrics do not capture the underlying biological
variance of spike trains and thus perform poorly. Recent metrics [2, 5, 7, 9] take
these biological factors into account which results in better performance. This
work shows that several of these metrics are identical or closely related.

Furthermore we show that kernel functions can be constructed that are also
closely related to these metrics. Kernel methods [6] perform complex pre-
mapping of the data into a higher dimensional feature space to allow classifi-
cation using simple techniques like linear discrimination. The spike train kernels
thus allow the use of state-of-the-art classification techniques like Support Vector
Machines (SVM) or kernel Principal Component Analysis1 (kernel-PCA) [6] on
spike trains. Previous work [3, 7] already used kernel methods on spike trains,
but they require binning which results in a substantial loss of temporal informa-
tion. The proposed kernels do not require binning of the spike trains and thus
preserve the temporal resolution. When much of the information is stored in the
exact spike times (temporal coding), this is a very important feature.

As a very simple artificial benchmark application we use a jittered spike train
template classification problem. Although this application may appear simple,
complex tasks like speech recognition [8] are extensions of this simple benchmark.

∗This research is partially funded by FWO Flanders project G.0317.05.
1KPCA is used to project the input and afterwards the sign of the first PCA dimension is

used to classify the data.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55864258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Spike train kernels

A kernel is formally an inner-product operator K : X ×X → R with X an arbi-
trary vector space (the input space). A very high or even infinitely dimensional
feature space is implicitly defined by the kernel. A kernel can also be explicitly
defined by the mapping to a feature space φ : X → Y with X the initial vector
space and Y the feature space. The kernel is then defined as K(x, z) = φ(x)·φ(z).
The next section will compare kernels to distance metrics. This is possible be-
cause a kernel is an inner product and a distance metric can thus be written in
terms of kernels.

We will now present two kernels that operate on sets of spike times. De-
fine a spike train x as the set of spike times x = {t1, t2, ..., tN}. We intro-
duce two related kernel functions on two spike trains x and z, with N and
M spike times respectively. We denote the i’th spike time of x as ti and the
j’th spike time of z as t′j . The first kernel is related to the Laplacian kernel:
Klaplace (x, z) =

∑N
i

∑M
j exp

(−λ
∣∣ti − t′j

∣∣), the second is related to the Gaus-
sian kernel: Kgauss (x, z) =

∑N
i

∑M
j exp

(−λ(ti − t′j)
2
)
. All spike times of the

first spike train are compared to all spike times of the second spike train and a
weight decreasing proportionally to the distance between the two spikes is added.
The λ parameter determines the influence of the distance between the spikes of
the two spike trains. A large λ leads to a kernel relating only close-by spikes,
small λ results in a metric comparing all spikes to all other spikes. It is easy to
see that these kernels satisfy the Mercer condition2.

Note that this is not the classical approach to use kernels. Kernels normally
operate on vectors, while in our case the kernels operate on sets of spike times.
All spike times are compared to all other spike times. But because an expo-
nentially decaying weight is attributed to these comparisons, for larger values
of λ these kernels can still be implemented computationally fast because we can
truncate the exponentials.

3 Related spike train metrics

In this section we will present several metrics on spike trains and show that they
all are related or even equal to each other and to the kernels presented in the
previous section.

3.1 Spike train algebra

In [2] a vector space spanned by a base of spike trains is defined. This vector
space is closely related to the kernels presented in the previous section because
the kernels are actually inner products in this vector space. Let’s define a vector
space of ‘weighted’ spike trains3. A weighted spike train will be denoted as

2This is a necessary condition in order to apply the so-called ‘kernel trick’ which underlies
all modern applications of kernels.

3These weights need to be defined in order to construct a vector space but will be set to
one in the remainder of this work.

[w1, w2, ..., wN ; t1, t2, ..., tN] ≡ ∑N
i=1 wiδti

with δti
(t) ≡ δ (t − ti) the Dirac delta

function and wi ∈ R. Note that weighted spike trains are still a function of
time. To define a vector space we need a scalar product, a vector sum, and
an inner-product. The scalar product is defined as c [w1, ..., wN ; t1, ..., tN] =
[cw1, ..., cwN ; t1, t2, ..., tN] and the vector sum as

[w1,...,wN ;t1,...,tN]+[w′
1,...,w′

M ;t′1,...,t′M]=[w1,...,wN ,w′
1,...,w′

M ;t1,...,tN ,t′1,...,t′M].

The inner product can be defined on two unit spikes (single spikes with unit
weight) 〈[1; t1] , [1; t2]〉 = 〈δt1 , δt2〉 = exp(−λ |t1 − t2|) which can then be gener-
alized to

〈[w1,...,wN ;t1,...,tN],[w′
1,...,w′

M ;t′1,...,t′M]〉=PN
i=1

PM
j=1 wiw

′
j exp(−λ|ti−t′j|)

with λ a scaling factor. It has been proved in [2] that this is a vector space.
Note that a Gaussian version of the inner product is also possible though not
considered in [2]. For spike trains with unit weight, the inner product in this
vector space is equal to our spike train kernels. The distance in this vector space
can be defined as: DVS

λ (x, z) = |x − z| =
√〈x − z, x − z〉 which gives for spike

trains with unit weights (these are the ones we are interested in)

DVS
λ (x,z)=

qPN
i,j=1 exp(−λ|ti−tj |)+

PM
i,j=1 exp(−λ|t′i−t′j|)−2

PN
i=1

PM
j=1 exp(−λ|ti−t′j|).

The inner product, the distance metric and the presented kernels are thus closely
linked.

3.2 L2-norm of Gaussian filtered spike trains

In [5] the distance between two spike trains was defined by the L2-norm of the
difference between the Gaussian filtered spike trains. The Gaussian filtering of
spike train s(t) is equal to

∑
i exp(−λ(t − ti)2). A Laplace variant is of course

also possible. The L2-norm of the difference between the filtered versions of

the two spike trains is equal to: DL2

λ (x, z) = |x − z| =
√∫ +∞

−∞ |x(t) − z(t)|2 dt.
This distance metric can be made equal to the distance defined for the spike
train vector space of Section 3.1: 2

√
λ√
π

DL2

2λ (x, z) = DVS
λ (x, z). The analytical

derivation of this relationship is left out for brevity. We can conclude that both
metrics are directly related to each other by a constant scaling factor for the
distance and the time constant.

3.3 Spike train metric spaces

A frequently used class of biologically inspired spike train metrics was introduced
in [9] and is based on spike train alignment. The metric is defined by the min-
imisation of a cost function. There are three basic operations with their related
costs: creating a spike (cost 1), deleting a spike (cost 1) and moving a spike
in time (cost q |Δt| with q > 0 a parameter to set the cost of moving a spike).
The distance between two spike trains is defined by the minimal cost to produce

the latter spike train starting from the first. This metric is called Dspike and
emphasizes the exact location of single spikes4. It is calculated using dynamic
programming techniques. Note that the cost of moving a spike can be gener-
alised and that for example the Laplacian like cost function 2 (1 − exp(q |Δt|))
can be used.

Initially it might not be directly clear how Dspike relates to the kernels defined
in the previous section. This is why we conducted an experiment. As shown
in Section 3.1, spike train vector spaces are directly related to the proposed
spike train kernels. To be able to compare the Dspike metric to the vector
space metric, we use 2 (1 − exp(q |Δt|)) as a cost function for moving spikes.
We generated 100 000 pairs of spike trains, each containing a number of spikes
uniformly distributed in the interval [0, 50] and spike times uniformly distributed
in the interval [0, 500]. The distance between two spike trains of each pair
are calculated using Dspike and |x − z|2. The q parameter is set to 10. The
correlation coefficient is equal to 0.9989 which indicates a near-identity relation.

The original Dspike metric with q |Δt| as a cost function for moving a spike
can also be compared to the vector space metric if we use the inner product
〈[1; t1] , [1; t2]〉 = 〈δt1 , δt2〉 = max(0, 1 − q

2 |t1 − t2|). The same experiment now
gives a correlation coefficient of 0.9992 which is even better.

We can conclude that the Dspike metric is very similar to the other metrics
but not identical. But note that it is computationally more demanding (it takes
approximately twice as long to compute).

3.4 Spikernel and the alignment score kernel

The ‘spikernel’ [7] (a string kernel that is applied to the instantaneous firing rate)
and the alignment score kernel [3] (a kernel built by an explicit feature space
mapping based on an alignment score such as the one presented in Section 3.3,
but then on binned spike trains) are also kernel based methods that operate on
spike trains such as the kernels presented in this work; except they operate on
binned spike trains. With respect to our spike train kernels this introduces an
extra parameter to tune (bin size) and most importantly, throws away much of
the temporal resolution of the spike train.

The discussion of whether a spike train should be binned or not is closely
related to the question of rate versus temporal coding used for coding inside
the brain. The current view on this topic is that both are used. Some parts
of the brain mainly communicate through the average firing rate of its neurons
(like the motor neurons), while other parts are very sensitive to the exact tem-
poral position of the spikes (higher brain regions). A kernel can be viewed as
a similarity measure that can capture much of the domain ’s prior knowledge.
Our kernels preserve temporal resolution and are sensitive to the exact temporal
position of the spikes. It can thus be expected that our spike train kernels will
perform better on classification tasks where temporal coding is dominant.

4More complex metrics are defined (like Dinterval emphasizing spike interval timing and
Dmotif emphasizing temporal patterns) but they can all be related to Dspike.

10
−2

10
−1

10
00.5

0.6

0.7

0.8

0.9

1

jitter [s]

av
er

ag
e

co
rr

ec
t

Gaussian kernel

λ = 1000
λ = 100
λ = 10
λ = 1
λ = 0.1

10
−2

10
−1

10
00.5

0.6

0.7

0.8

0.9

1

jitter [s]

av
er

ag
e

co
rr

ec
t

Laplacian kernel

λ = 1000
λ = 100
λ = 10
λ = 1
λ = 0.1

Fig. 1: Classification results using SVM with Gaussian (left) and Laplacian
(right) kernels. Performance is expressed in average correct classification and
it is plotted against the added jitter. The different plots in each figure are for
different values of the λ parameter.

4 Experiments

As a benchmark test for validating the two spike train kernels we use the ar-
tificial jittered spike train classification benchmark (also used in [5] and [1]),
and perform SVM classification on it. We generate two random ‘spike train
templates’ with a duration of 1 s, an average Poisson firing rate of 10 Hz and
a refractory time of 3 ms. From these templates, 500 spike trains for training
and 200 spike trains for testing are generated, randomly drawn from the two
templates; and each spike jittered with Gaussian noise with zero mean and sev-
eral variance values. We also tested for various settings of the λ parameter. All
results are averages of 10 independent runs.

The results can be seen in Figure 1. We trained a soft-margin SVM (which
allows some misclassifications) for three values of C = {1, 10, 100} (which is a
kind of cost attributed to misclassifications) but the results were very similar.
The figures show the results for C = 10 which was the best performing setting.
The figures clearly show that we get very good classification results even with
high levels of jitter. Compared to the results in [5] and [1] we get the same levels
of recognition with almost an order of magnitude more jitter. For example the
jitter level in [1] (equivalent to a jitter of 66 ms with our setup) attained a correct
classification of 0.89. We reach a correct recognition of 0.89 at about 200 ms
jitter which is three times more jitter.

Note that for comparing the results from the kernels we should compare λ
values for both kernels that result in similar ‘widths’. These widths are approx-

imately equal if λgauss ≈ λ2
laplace

2 . Taking this into account, the kernels perform
very similarly. Smaller values of λ tend to perform better. This is expected
because small λ values result in broad spheres of influence around each spike

which gives a more global scope to the comparisons, but will lead to more com-
putations. A biologically plausible value for λ would be 100 for the Laplacian
case (being equivalent to a membrane time constant of 10 ms).

We also tested kernel-PCA on this benchmark. The first principle component
was used to classify the data and we got a 0.89 classification score for jitter of
up to 100ms which is only slightly worse than in the SVM case.

5 Conclusions and future work

In this publication we presented two kernels that can be applied to spike times,
allowing kernel methods like SVM or kernel-PCA to be applied to the classifica-
tion of spike trains, but without binning the spike trains and a loss of temporal
information. We have shown that the presented kernels are related to several
existing metrics for spike trains (and that several of these metrics are themselves
related). The performance of the presented kernels was demonstrated on a jit-
tered spike train template classification benchmark. Both SVM and kernel-PCA
give very good recognition rates, even with high levels of jitter. No clear evidence
is present that shows that one of both kernels outperforms the other.

As future work we plan to use this technique on a physiological dataset to
evaluate its performance on real life data [7]. Another more practical application
is to demonstrate its use as a Liquid State Machine post-processing spike train
classifier for solving for example a speech recognition problem [8].

References

[1] O. Booij and H. T. Nguyen. A gradient descent rule for spiking neurons emitting multiple
spikes. Information Processing Letters, 95(6):552–558, 2005.

[2] A. Carnell and D. Richardson. Linear algebra for time series of spikes. In M. Verleysen,
editor, Proc. of ESANN, pages 363–368, 2005.

[3] J. Eichhorn, A. Tolias, A. Zien, M. Kuss, C. E. Rasmussen, J. Weston, N. Logothetis, and
B. Schölkopf. Prediction on spike data using kernel algorithms. In Proc. of NIPS, pages
1367–1374, 2004.

[4] W. Maass and C. Bishop. Pulsed Neural Networks. Bradford Books/MIT Press, Cam-
bridge, MA, 2001.

[5] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states:
A new framework for neural computation based on perturbations. Neural Computation,
14(11):2531–2560, 2002.

[6] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization and Beyond. MIT Press, 2002.

[7] L. Shpigelman, Y. Singer, R. Paz, and E. Vaadia. Spikernels: Predicting arm movements
by embedding population spike rate patterns in inner-product spaces. Neural Computation,
17(3):671–690, 2005.

[8] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout. Isolated word
recognition with the liquid state machine: a case study. Information Processing Letters,
95(6):521–528, 2005.

[9] J. D. Victor and K. P. Purpura. Metric-space analysis of spike trains: theory, algorithms
and application. Network: Comput. Neural Syst., 8:127–164, 1997.

