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Abstract

Countless microorganisms use slender elastic �laments to a�ect and traverse their
surroundings. From the metachronal synchronisation of tracheal cilia to transport mu-
cus, to the propulsive undulatory motion of sperm �agella, cells of all shapes and sizes
use �lament-like structures in a variety of �uid environments. The key physics in such
environments arise from the interactions between slender-body �lament-like elastic
structures comprising the organism and surrounding viscous �uid. Understanding the
coupled elastohydrodynamics of microscale propulsive mechanisms can provide in-
sights into cell ultrastructure and rheology, paving the way for experimental studies
and data interpretation, and suggesting novel diagnostics useful to researchers and
clinicians alike.

In this thesis, we present two mathematical models for describing the dynamics of
elastohydrodynamic �laments, in particular for simulating the motion of human sper-
matozoa. Both methods are accompanied by bespoke implementations in open source
MATLAB® code. The methods, dubbed the EIF and SPX methods, di�er principally in
dependent variables, which is the angle made between the �lament centreline and a
�xed axis in the EIF, and nonplanar centreline position, tension, and twist curvature
in the SPX model. Key considerations in both approaches are (a) accuracy, improving
upon many de-facto standard approaches by considering nonlocal hydrodynamic in-
teractions and nonlinear geometries, (b) generalisability, so that the proposed methods
can be applied to a variety of problems in a straightforward manner, and (c) e�ciency,
to reduce the formidable computational requirements that have historically stood as
barriers to entry for rapid and reliable simulation studies. The methods developed de-
rive from exploiting the slenderness property of the propulsive structures (i.e. cilia and
�agella); auxiliary structures such as cell bodies or heads are not required to be slender
provided the overall cell length is much longer than the width.

The EIF method is formulated and applied to simulate groups of planar active and
passive �laments in quiescent �uid, shear �ows, and sedimenting due to gravity. By
using novel discretisation techniques and exploitation of optimised MATLAB® built-in
algorithms, the resulting numerical implementation enables rapid simulations on even
modest readily-available computer hardware.

Expanding upon the EIF, the SPX method provides a model for simulating �laments
and mono�agellate cells moving in three dimensions. Maintaining accuracy and non-
local interactions in the �uid dynamics through the method of regularised stokeslets,
the elasticity model is generalised to account for arbitrary bend and twist deforma-
tions. The presented tools and methodology are applied to simulate human spermato-
zoa locomoting through a rhythmic twist and bend motion. Results indicate that the



rate of axial rolling exhibited by nonplanar swimmers is reduced in the presence of a
plane wall, with the rate of reduction dependent on the angle of approach towards the
boundary and a dimensionless parameter characterising the relative ratio of twist drag
to viscous drag in the system.
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Chapter 1

Introduction

1.1 Sperm structure and swimming behaviour

Flexible �laments are ubiquitous in the natural world. Consequently, an intimate

understanding of the mechanics and physics governing their motion is of great in-

terest in many microbiological problems. Countless numbers of organisms utilise

mechanically-driven �agella to propel themselves through their �uid environment,

be it mono�agellate spermatozoa swimming through the female reproductive tract,

or multi�agellated Escerichia coli travelling with their erratic ‘run-and-tumble’ gait.

Sheets of motile cilia lining the human trachea, bronchi, and bronchioles work together

in synchronous wavy (or metachronal) motion to transport mucus and dirt away from

the lungs, and in the uterus, generate macroscale cyclical �ows that shape the early

embryo (Montenegro-Johnson et al., 2012). Elsewhere, long elastic polymer chains

tangle and twist to form complex �uids such as cervical mucus, through which many

microorganisms themselves must navigate. The intricate connections between geome-

try, elasticity, and �uid mechanics in these scenarios is known as elastohydrodynamics.

Properties crucial to a complete physical understanding of microscale �laments,
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such as torque and drag pro�les, are often di�cult to determine due to a combination

of highly nonlinear geometry and structural complexity. Experimental imaging and

data collection can be a lengthy and expensive process, routinely requiring specialist

equipment, compounding these technical hurdles.

There is no better example of the barriers to scienti�c progress these issues create

than that of fertility research. Recent data suggests that within developed countries

around the world, around 1 in 6 couples will su�er di�culty in conceiving due to fac-

tors of fertility. Around half of these cases involve a male factor (Human Fertilisation

and Embryology Authority, 2014). Estimates for sperm count and motility, impor-

tant metrics for fertility, require trained experts to manually categorise cells through

a microscope by eye (World Health Organisation, 2010) – a costly and ine�cient pro-

cess, alleviated only by recent developments in CASA techniques and �agellar track-

ing (Gallagher et al., 2018, 2019). Mathematical modelling and numerical simulations

of swimming cells, especially in the vicinity of plane boundaries, could assist in the

development of novel microchannel designs for use in sperm selection for Assistive

Reproductive Techniques (ARTs), including IVF and ICSI. For example, understanding

the trajectory of cells over and around microchannel features such as steps or pillars

could lead to improved maze-like constructions, designed to isolate cells based on their

motility or shape.

Sperm are quintessential examples of mono�agellate cells, with their ellipsoidal

heads pushed through �uid by a single, long elastic �agellum. In the next section, we

consider the structure of human sperm, before reviewing the underlying �uid mechan-

ics and elasticity essential to understanding this rich problem in greater detail.
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Figure 1.1: Overview of the macro- and microscale structures of human sperm.
(a) Schematic of a typical idealised human spermatozoa. (b) Cross sections
along the �agellum showing the internal ultrastructure, indicating singlet mi-
crotubules (sMT) and doublet microtubules (dMT). Sketches redrawn from
Neal et al. (2020), deriving from �gures in Zabeo et al. (2019). (c) and (d) Ex-
amples of defective head morphologies and head-neck junction abnormalities,
redrawn from World Health Organisation (2010).

1.1.1 Ultrastructure of human sperm

Broadly, human sperm comprise four main elements, that are (i) the cell head (or body

– we use these terms interchangeably), an approximately prolate ellipsoidal structure

containing packaged DNA for delivery to the ovum; (ii) the midpiece, a sti� construct
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a few microns in length containing ATP-generating mitochondria which fuel the cell;

(iii) the �agellum, typically 40–60µm in length, generating periodic travelling waves

in the bending moment along the �agellum length in order to propel the cell through

viscous �uid, and (iv) the end piece, a region of reduced thickness a few microns in

length where the ordered structure present elsewhere in the �agellum degrades Neal

et al. (2020). While di�ering in size and relative length, the overall cellular structure and

presence of these features is remarkably consistent across many mammalian species

(Cummins & Woodall, 1985). A schematic of an idealised human sperm cell is given in

�gure 1.1a, redrawn from Zabeo et al. (2019).

Prototypical human sperm heads exhibit little variation in volume due to the ap-

proximately homogeneous DNA payload across cells (World Health Organisation,

2010). For cells with prescribed �agellar beat patterns, alterations to head geome-

try have been shown to be highly in�uential in cell swimming dynamics, particularly

upon approaching and swimming along surfaces (Katz & Phillips, 1986; Woolley, 2003).

Smith et al. (2009a) showed that cells with larger heads exhibited stabilised swimming

trajectories, and studies by Gillies et al. (2009) indicate that cells with elongated heads

swam faster over equal-volume alternatives; a result of decreased yawing rather than

reduced viscous drag. Deviations from conventional head dimensions can have severe

consequences for the viability of cells to fertilise, through both reduced swimming ef-

�ciency decreasing the likelihood of a successful sperm-egg rendezvous, and increased

potential for DNA damage (World Health Organisation, 2010). For instance, spherical

heads characteristic of the pathology globozoospermia are often symptomatic of steril-

ity in human sperm cells (Dam et al., 2007). Examples of abnormal body geometries,

as well as examples of body-�agellum joint defects, are displayed in �gures 1.1c and

1.1d, redrawn from World Health Organisation (2010).
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Very early �agellar imaging by Ballowitz (1888) suggested that �agella contain an

organised collection of approximately 9–11 microtubules spanning their length. This

hypothesis was con�rmed when, much later, studies using electron microscopy re-

vealed the axoneme, an internal structure comprising 9 inextensible outer microtubule

doublets, connected via passive linking elements (Manton & Clarke, 1952; Fawcett,

1954; Afzelius, 1959; Gibbons, 1981). Human sperm exhibit an additional central pair

running along the core of the �agellum, motivating the so-called “9+2” axoneme.

Asymmetry of the ultrastructure leads to preferential bending in the direction normal

to the plane of the central pair (Lindemann, 2004; Ga�ney et al., 2011). The mid piece,

reinforced by outer dense �bres and a mitochondrial sheath, in combination with the

tapering �brous sheath encasing the principal region, mean the e�ective sti�ness of

the entire �agellar structure varies along its length. Cross-sectional sketches of the

�agellum ultrastructure, redrawn from Neal et al. (2020), are displayed in �gure 1.1b.

The presence of a distal �agellum region with diminished structure was �rst hy-

pothesised by Omoto & Brokaw (1982). Recent experimental �ndings indeed indicate

that the end piece comprises an unorganised collection of single microtubules only

(Zabeo et al., 2019). Without the axonemal structure common to the rest of the �agel-

lum, Neal et al. (2020) hypothesise that this region is incapable of active bending, with

important consequences on the propulsive speed and e�ciency of the swimming cell.

1.1.2 Modelling �agellar actuation

The fundamental interaction between �uid and the bending �agellum that results in

cell propulsion was �rst derived by Gray & Hancock (1955). Their resistive force theory

(RFT) postulates that the hydrodynamic drag of a slender body (i.e. a body whereby the
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Figure 1.2: A linear section of �agellum, indicated in orange, is orientated in
Cartesian space according to the unit vectors t, n, and b, the tangent, normal
and binormal respectively. With resistive force theory, the force components f
can be written in terms of the resultant velocity u, proportional to coe�cients
c∥, c⟂.

length L is much larger than its radius a) can be decomposed into contributions acting

normal- and tangential to the body, so that

f = c∥(u ⋅ t)t + c⟂(u ⋅ n)n + c⟂(u ⋅ b)b, (1.1)

where f is the force per unit length the body exerts on the �uid, u is the body velocity,

and t, n, and b are unit vectors tangential, normal and binormal to the body respec-

tively. The dependent variable of each quantity (omitted for clarity) is the material

arclength, varying along the �agellum length 0 6 s 6 L. A schematic is provided in

�gure 1.2. The coe�cients c⟂ and c∥ are resistance coe�cients, derived from analytic ap-

proximations of the full slender body equations (to be discussed in section 1.2). Gray

& Hancock (1955) determined the tangential coe�cient and the ratio of coe�cients

suitable for a swimming slender body as

c∥ =

2��

ln(2�/a) − 1/2

,

c⟂

c∥

≈ 2, (1.2)
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where � is the wavelength of the �agellar beat and a is the �lament radius. The values

of these coe�cients were later improved by Lighthill (1976), who derived

c∥ =

2��

ln(2q/a)

, c⟂ =

4��

1/2 + ln(2q/a)

, (1.3)

where q = 0.09Λ, with Λ the beat wavelength measured along the �agellum centre-

line. Importantly for the discussions in this thesis, resistive force theory neglects the

long-range hydrodynamic interactions between the body and itself, other bodies, and

boundaries. Nonetheless, following a suitable adjustment to the resistance coe�cient

ratio c⟂/c∥, RFT has been shown repeatedly to provide accurate results for isolated

headless cells in the absence of boundary walls (Johnson & Brokaw, 1979; Dresdner &

Katz, 1981; Friedrich et al., 2010), and corrected theories can provide accurate results

for cells swimming above walls, provided the plane of beating is parallel to the surface

(Katz et al., 1975; Walker et al., 2019). By adding to the local approximation (equation

(1.1)) nonlocal integral terms, Gueron & Liron (1992) developed the so-called Lighthill-

Gueron-Liron (LGL) theory, with resistance coe�cients derived from a modi�cation of

the Lighthill coe�cients given as

c∥ =

8��

−2 + 4 ln(2q/a)

, c⟂ =

8��

1 + 2 ln(2q/a)

. (1.4)

LGL theory has been used to model elastica (Gueron & Levit-Gurevich, 2001a), mul-

ticiliary interactions (Gueron & Liron, 1992; Gueron & Levit-Gurevich, 2001b), and

human sperm near boundaries (Montenegro-Johnson et al., 2015). Detailed reviews of

other hydrodynamic models not considered in this thesis for sperm and cilia are given

in Fauci & Dillon (2006) and Simons & Olson (2018).
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Generally, RFT is inaccurate for cells with large cell bodies (Johnson & Brokaw,

1979), and when nonlinear �agellum geometry means that self-interaction e�ects be-

come large, such as for hyperactivated sperm swimming in highly viscous or non-

Newtonian �uids (Smith et al., 2009b). Despite these shortcomings, resistive force the-

ory remains a popular choice of hydrodynamic interaction model, owing to its con-

ceptual simplicity and ease of implementation. In such approaches, the relationship

between viscosity and elasticity is accounted for through the sperm number, denoted

Sp, a dimensionless parameter arising from the underlying di�erential equations, that

is dependant on the choice of resistance coe�cient. The sperm number characterises

progressively more e�ectively elastic slender bodies as its value increases.

An early study by Machin (1958) established that sperm, cilia, and other eukaryotes

generate bending throughout the length of their �agellum, as opposed to arising from

a single biomechanical motor, such as in bacteria. Subsequent experimental obser-

vations of cilia revealed that travelling waves are generated through a combination of

microtubule sliding, elasticity and cross-linking within the axoneme (Satir, 1965, 1968).

Crucially, the microtubules are inextensible, in that they do not extend or contract, so

that motion arises from the relative motion of one �lament over another. Coined sliding

�lament theory, this model has formed the basis of many mathematical studies in the

intervening decades. Describing the elastic �agellum using classical Euler–Bernoulli

theory, Brokaw (1970) investigated the relations between the bending moment for a

headless swimming cell, observing that the work done by restorative elastic forces is

not constant along the arclength – a potential consequence of the distributive e�ects

arising from a sliding �lament mechanism. A schematic of the internal sliding �lament

mechanism, recreated from Camalet & Jülicher (2000), is provided in �gure 1.3.

Since the shearing force is generated internally within the axoneme, its form de-
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Figure 1.3: Illustration of the sliding �lament model of �agellar actuation, as
described in and recreated from Camalet & Jülicher (2000). An active shear
force f (s0) with s0 ∈ [0, L] acts in opposite directions on two �laments X1
and X2 lying above and below the �lament centreline X at a �xed distance
d , producing the centreline displacement Δ resulting in the generation of a
travelling wave.

pends on the biological mechanisms that control the rates of detachment and reat-

tachment of dynein molecular motors connecting microtubules comprising the �agel-

lar structure. However, the control mechanism relating the sliding �lament apparatus

and the dynein switching rates is not yet fully understood. In the following, we brie�y

cover three popular hypotheses.

In a formidable body of work spanning nearly �ve decades, Brokaw developed

the so-called curvature control hypothesis, whereby the size of the shear force in the

�agellum produced by the active sliding �lament mechanism is informed by the local

curvature of the �agellum, that is

f (s, t) ∝ �(s, t − t0), (1.5)

where f (s, t) is the actuating force, �(s, t) is the local curvature, and the value of t0

describes the delay in switching on the dynein arms. Equation (1.5) describes motion

under the assumption that instantaneous changes in �agellum curvature, caused by

the attachment and detachment of dynein arms along the central pair, initiates bending
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forces along the length of the �agellum. This model naturally is speci�c to the very-low

Reynolds number �uid environment typical to the slender-body organisms considered

in this thesis.

Modelling the central pair as two �laments connected through internal links along

their arclength, Brokaw (1971) showed that the feedback loop arising from the curva-

ture control mechanism is indeed able to generate propulsive travelling waves prop-

agating along the �agellar arclength. Subsequent simulation studies (Brokaw, 1972,

1984, 1985, 1991, 1994, 1999, 2001, 2002, 2009) progressively highlighted the increas-

ing potential of numerical approaches in delivering important insight into the internal

dynamics of sperm �agella.

The curvature control model has been adopted in multitudinous works since its

initial proposal by Brokaw. The works of Hines & Blum (1978, 1983) expanded upon

the simple travelling wave model used in Brokaw (1971, 1972), coupling equations for

planar elasticity with Gray & Hancock (1955) RFT to account for local hydrodynamic

interactions. In the latter paper, Hines & Blum (1983) generalise to consider an elastic

�lament bending and twisting in three dimensions, concluding that the sliding �la-

ment model cannot produce twist without additional external forces causing bending

out of the plane of alignment of the central pair. Recent work by Olson & Leider-

man (2015) simulates sperm swimming in a viscous Brinkman �uid, with cells actuated

through a preferred curvature condition on the �agellar waveform. Through simula-

tions in conjunction with experiments, Sartori et al. (2016b) determined that the curva-

ture control mechanism best approximates the bending dynamics of Chlamydomonas

�agella. Other investigations into the intricate mechanical mechanisms within �agella

and their e�ects on beat propagation indicate the complexities of bend generation at

the body-�agellum join in sea urchin sperm (Brokaw, 1991), and the e�ects of dynein
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arm removal on waveform (Brokaw, 1999). Other approaches modelling the discrete

dynamics of individual dynein arms have proven e�ective in simulating cilia and sperm

in �uids of varying viscosity (Dillon & Fauci, 2000; Dillon et al., 2003, 2007).

An alternative sliding velocity control hypothesis, proposed in Camalet et al. (1999),

forms the basis of a number of studies investigating sperm �agellum dynamics. Here,

the rate of dynein detachment is proportional to the load on the arms. Increases in

the velocity of the sliding �lament mechanism decrease load, yielding a decrease in

the dynein detachment rate, and leading to an increase in the shear force generated

(Riedel-Kruse et al., 2007). Deformations to the �lament are resisted by the inherent

elastic bending properties of the �agellum, producing a positive feedback loop and gen-

erating waveforms capable of propulsion (Camalet et al., 1999). The approach was later

generalised to other internally driven �laments (Camalet & Jülicher, 2000), and used

to model symmetric and asymmetric motor-�lament pairs, �nding that such systems

can undergo a Hopf bifurcation for a critical choice of control parameter.

A third hypothesis relating the sliding �lament model to dynein detachment rates is

the geometric clutch model, proposed initially in Lindemann (1994a) and developed ex-

tensively over the following �fteen years (Lindemann, 1994b, 1996, 2002, 2004, 2009).

In this approach, dynein attachment dynamics are governed by changes in spacing

between doublet pairs. The relative sliding of neighbouring doublets causes the con-

nective nexin links to stretch, generating an elastic tensile force causing the spacing

between the doublets to decrease. The clutch hypothesis itself then postulates that

increasing proximity promotes dynein switching, increasing the shear force and ac-

tively bending the �agellum. As in the other hypotheses, motion is resisted by the

internal elastic properties of the �agellum, leading to a positive feedback loop which

forms the basis of the wave generation process for cell propulsion. A detailed analysis
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of the stable and unstable periodic modes of �agella motion arising from each of the

aforementioned actuation hypotheses is given in Bayly & Wilson (2015).

Other studies have sought to increase understanding by considering additional as-

pects and components of the �agellar model, and in particular through the interplay

between elasticity, geometry, and the sliding �lament model. Instead of employing a

local bend control hypothesis, Gadêlha et al. (2010) prescribes the internal actuating

shear force as a travelling wave of the form

f (s, t) = f0 cos(ks − !t), (1.6)

where f0 is the shear amplitude, k is the wave number, and ! is the beat angular fre-

quency. Departing from the hitherto commonly used geometrically linear beam the-

ory1, and building upon position formulation methods developed by Tornberg & Shel-

ley (2004) for passive �bres, Gadêlha et al. (2010) note the importance of nonlinear elas-

todynamic modelling on swimming cell beat pattern and trajectory. Describing the cell

�agellum as two cross-linked �laments, Gadêlha et al. (2013), and more recently Coy

& Gadêlha (2017), consider the counterbend phenomenon, whereby curvature in one

region of the �bre is countermatched elsewhere. Notably, the authors �nd that coun-

terbending dynamics induce a bimodal length dependent material response departing

from the classical Euler-Bernoulli theory of elasticity, with potential implications on

the prevailing understanding of �agellar wave propagation. Maxian et al. (2021) exam-

ine a similar problem, extended to include nonlocal hydrodynamic interactions using

slender body theory. Recent developments by Olson and coauthors have sought to ex-

amine the e�ects of calcium concentrations on �agellar hyperactuation (Olson et al.,
1We refer here to models in terms of centreline position, noting the geometrically nonlinear theories

in terms of tangent angle developed in the late 1970s by Hines & Blum (1978).
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2011; Carichino & Olson, 2019). By coupling a preferred curvature elastohydrodynamic

model with a calcium concentration response, planar swimming speed and trajectory

nonlinearity are found to both increase when accounting for the presence calcium.

1.1.3 Dynamics of sperm at surfaces

In their anticipated physiological environment, sperm must swim not only through a

variety of viscous �uids, but also navigate varied and complex geometries comprising

the female reproductive system in search of the ovum. In a lab environment, advances

in the fabrication of intricate microchannel devices have promoted novel cell selection

techniques through exploiting the behaviour of sperm as they swim near and alongside

�at and curved boundaries. To this end, understanding the dynamics of sperm near

surfaces is paramount in designing microchannel designs for use in clinical ARTs.

Historically, insights into the dynamics of sperm cells close to surfaces have been

gleaned through experimentation, or, more recently, through simulation approaches

with prescribed �agellar waveforms. Regarding the latter approach, the focus in these

models has been largely directed towards hydrodynamic modelling of the cell, the

boundary, and their interactions through the �uid environment, neglecting elasticity

by necessity and/or in the interests of simplicity.

Various studies have sought to understand the hydrodynamic ‘trapping’ e�ect ex-

perienced by some cells as they approach rigid surfaces. Experimental studies by Wool-

ley (2003) investigated single-cell dynamics upon approaching a plane wall, consider-

ing sperm driven by planar beats as well as helical beats. Cells exhibiting a helical

beat tend to roll and spin about their long axis, producing a nonlinear trajectory that

prevents hydrodynamic capture and adherence to the surface. Cells with hyperacti-
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vated �agellar beats more readily detach than those with symmetric waveforms, shown

through simulation studies in both 2D (Simons et al., 2014) and 3D (Simons et al., 2015).

Whether through suppression of a global moment (that reduces cell rolling) or in-

creased viscosity, waveforms of cells approaching surfaces have been shown to adopt

approximately planar beats (Woolley, 2003; Nosrati et al., 2015). If the plane of beat-

ing is perpendicular to the surface, hydrodynamic interactions between the wall and

�agellum can have a marked e�ect on cell trajectory (Montenegro-Johnson et al., 2015;

Walker et al., 2019). The angle of approach and geometry of the cell head have also

been shown to determine how a cell is hydrodynamically trapped near a surface in

prescribed waveform simulation studies (Fauci & McDonald, 1995; Smith et al., 2009a).

Additionally, cells with small heads but long �agella are inclined to rotate as they ap-

proach a wall, increasing their angle of approach (Spagnolie & Lauga, 2012).

A typical ejaculate can contain many millions of spermatozoa, jostling together

as they collectively traverse the reproductive tract. Rothschild (1963) was the �rst to

quantitatively assess gathering behaviour of sperm at a �uid-solid boundary, noting

the accumulation of bull sperm cells upon each surface of a microchamber formed be-

tween two glass slides. Groups of cells also have a tendency to align with one another,

aiding in rheotaxis through synchronisation of their �agellar beats. This �nding was

�rst theorised following experiments by Walton (1952), and since veri�ed in a variety

of computational models (Yang et al., 2008; Olson & Fauci, 2015) as resulting from hy-

drodynamic interactions within neighbourhoods of proximal cells. For cells in a shear

�ow, accumulation at low-shear regions near a no-slip boundary have been theorised

to promote collective cell motion (Ishimoto & Ga�ney, 2015). Indeed, �uid �ows within

the reproductive tract have been shown to be important in the successful navigation

of cells in both mice and humans (Miki & Clapham, 2013; Kantsler et al., 2014).
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With increased access to and availability of powerful computational equipment,

researchers have been able to design and solve mathematical models for cells near

boundaries of ever increasing complexity. Crucially, elastohydrodynamic models such

as those of Gueron & Levit-Gurevich (2001b); Tornberg & Shelley (2004); Gadêlha et al.

(2010) and others (reviewed in detailed in section 1.4) allow for increased physical accu-

racy in simulations by accounting for the complex interplay between viscous �uid drag

and elastic deformations of the cell �agellum. Considering a scenario where the plane

of beating is perpendicular to the surface, Montenegro-Johnson et al. (2015) illustrated

the scattering behaviour of cells as they pass over a microchannel backstep feature,

with the angle of de�ection related to the value of the sperm number. In chapter 4 of

this thesis, we expand upon the nonlinear centreline model proposed by Montenegro-

Johnson et al. by allowing for genuinely nonplanar �agellum geometry arising from

both bending and twisting elastic deformations, and nonlocal �uid interactions. In

particular, in section 4.4.2, we build on the aforementioned studies by examining the

dynamics of cells swimming with a nonplanar beat arising from active bending and

twisting as they approach an in�nite plane wall.
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1.2 Inertialess hydrodynamics: fundamental
solutions and methods

In this section, we discuss the fundamental aspects of the hydrodynamic modelling

underpinning this thesis. Section 1.11a introduces the Stokes �ow equations, forming

the basis of the �uid mechanical modelling considered throughout. The Stokes �ow

equations and their fundamental solutions, in particular the stokeslet, are discussed in

sections 1.2.1 and 1.2.2 respectively. In sections 1.2.3 and 1.2.4, we derive the boundary

integral formulation for Stokes �ow. Alterations to the solutions when considering

�ow near a wall through the method of images are detailed in section 1.2.5. In sections

1.2.6–1.2.9, we consider regularised forms of the fundamental solutions, discussing the

regularised stokeslet and regularised blakelet, which enable e�cient numerical methods

for solving Stokes �ow problems. In this thesis, we consider only studies and models

within Newtonian �uids. Comprehensive reviews of non-Newtonian swimming are

given in works by Morozov & van Saarloos (2007); Ga�ney et al. (2011); Elfring &

Lauga (2015); Goyal (2016).

1.2.1 Stokes �ow and the Reynolds number

The Navier-Stokes equations for an incompressible �uid are

�(u
∗

t
∗ + (u

∗
⋅ ∇

∗
)u

∗

) = −∇
∗
p
∗
+ �∇

∗2
u
∗
+ �F

∗
, (1.7a)

∇ ⋅ u
∗
= 0, (1.7b)

where u∗ ∶= u∗(x∗, t ∗) is the �uid velocity, p∗ ∶= p
∗
(x
∗
, t
∗
) is the pressure, t ∗ is time,

and F ∗ ∶= F ∗(x∗, t ∗) is a force acting on the �uid. Here, and in what follows, asterisks
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denote dimensional variables. The �rst argument of velocity, pressure and force (x∗) is

a material point within the domain of the �uid. The dependence of variables on space

and time is suppressed for clarity, but assumed throughout. The parameters � and �

are the �uid dynamic viscosity and density respectively, assumed here to be constant

throughout the �uid. Scaling variables as,

u = Uu
∗
, F = GF

∗
, p = (G/L

3
)p

∗
, (1.8)

where L is a characteristic length scale, U is the local �ow velocity, and G is the local

force scaling. Here and throughout, we refer by local to the region of �uid close to the

point under consideration. Conversely, far-o� regions of �uid are described as being

nonlocal to the point. With these scalings, we recover the dimensionless Navier-Stokes

equations for an incompressible �uid as

Re(ut + (u ⋅ ∇)u) = −∇p + ∇2u +
Re
Fr2F , (1.9a)

∇ ⋅ u = 0, (1.9b)

where the parameter groups

Re = �LU

�

, Fr = U

√

GL

, (1.10)

are the Reynolds number and Froude number respectively, which characterise the �uid

properties. The Reynolds number describes the ratio of inertial forces to viscous forces

in the system, and the Froude number de�nes the ratio of inertial forces to other body

forces. Typical values of the Reynolds number for various self-propelled organisms
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Re

A large whale swimming at 10m s
−1

3 × 10
8

A tuna swimming at 10m s
−1

3 × 10
7

A duck �ying at 20m s
−1

3 × 10
5

Flapping wings of a small insect 30

Invertebrate larvae, 0.3mm long moving at 1mm s
−1

3 × 10
−1

A sea urchin sperm swimming at 0.2mm s
−1

3 × 10
−2

A human sperm swimming in saline at 0.2mm s
−1

1 × 10
−2

A bacterium swimming at 0.01mm s
−1

1 × 10
−5

Table 1.1: Values of the Reynolds number characteristic to some example bio-
logical systems. Recreated from Vogel (2020).

are given in table 1.1. When the �uid viscosity is very large, inertial e�ects are negli-

gible, yielding Re ≪ 1. By choosing the force scaling as G = �U /(�L
2
), we obtain the

dimensionless Stokes �ow equations

−∇p + ∇
2
u + F = 0, (1.11a)

∇ ⋅ u = 0, (1.11b)

where p ∶= p(x, t), u ∶= u(x, t), and F ∶= F(x, t) are the dimensionless �uid pres-

sure, �uid velocity and force acting at a material point x ∈ ℝ
3. The Stokes equations

(1.11a,1.11b) form the basis of the hydrodynamical regime considered in this thesis.
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1.2.2 Fundamental solutions to the Stokes �ow equations

An important property of the Stokes �ow equations is their linearity. That is, if (u1, p1)

and (u2, p2) are both solutions, then

�∇
2
(u1 + u2) − ∇(p1 + p2) + F = (�∇

2
u1 − ∇p1) + (�∇

2
u2 − ∇p2) + F = 0 (1.12a)

∇ ⋅ (u1 + u2) = ∇ ⋅ u1 + ∇ ⋅ u2 = 0 (1.12b)

and thus (u1 + u2, p1 + p2) satis�ed the Stokes equations; indeed any �nite sum, line

or surface integral of solutions is also a solution. Exploiting linearity enables com-

plex �ows to be considered by combining solutions of the Stokes �ow equations

(1.11a,1.11b).

We continue by outlining the derivation for key fundamental solutions to the stokes

�ow equations given in (1.11a,1.11b). We consider the �uid �ow at a material point

x = (x1, x2, x3), with x ∈ ℝ
3 driven by a force per unit volume F acting at an arbi-

trary point y = (y1, y2, y3) also in the domain. Letting be g be a �nite but in�nitely-

constrained force, the driving force can be written as

F = g�(x − y), (1.13)

so that the (three dimensional) Dirac-� has dimensions of inverse volume. Taking the

divergence of equation (1.11a) and using the incompressibility condition (1.11b) allows

an equation for the �uid pressure to be derived as

∇
2
p = ∇

2

(g ⋅ ∇G(x, y)), (1.14a)

⇒ p = g ⋅ ∇G(x, y) =

1

4�
(
g ⋅

r

r
3)

. (1.14b)
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The Green’s function is G(x, y) = −1/(4�r), where r = x − y and r = √
riri , with index

summation notation used to simplify the product. By this de�nition, G(x, y) is singular

at x = y. Combining the speci�c expressions for pressure (1.14b) and force (1.13) yields

component solutions as

ui(x) =

1

8�

Sij(x, y)gj(y), p(x) =

1

8�

Pi(x, y)gj(y). (1.15)

The Green’s function G becomes S, and is speci�ed as the stokeslet, de�ned

Sij(x, y) =

�ij

r

+

rirj

r
3
, Pi(x, y) =

2ri

r
3
, (1.16)

alongside the pressure tensor Pi . Crucially, like the Green’s function before it, the

stokeslet is singular, diverging like 1/r as r → 0. If the forces are concentrated on a

two dimensional surface inℝ
3, the stokeslet solution in equation (1.15) is integrable and

the singularity may be avoided, with the �ow bounded on the surfaces. Conversely,

if forces are concentrated along curves in ℝ
3, the solution is singular, a result of great

importance in the modelling of slender bodies, which will be discussed more fully in

section 1.2.6. The stress �eld associated with the �ow is

�ik(x) =

1

8�

Tijk(x, y)gj(y), (1.17)

where the associated stress tensor is de�ned

Tijk(x, y) = −�ikPj(x, y) +

)Sij(x, y)

)xk

+

)Sjk

)xi

(x, y) = −6

rirjrk

r
5
, (1.18)

with simpli�cations possible through substituting in the expressions in equation (1.16).

20



1.2.3 Boundary integral formulation

The microbiological scenarios considered within this thesis consist wholly of moving

surfaces within Stokesian �uids. To this end, we formulate the Stokes �ow problem to

consider the �ow around a dynamic boundary, following the derivation provided by

Pozrikidis (1992).

We begin by recalling the Lorentz reciprocal identity, which states that for any

two nonsingular �ows with velocities u, u′ with corresponding stress tensors � , � ′,

evaluated at a material point x = (x1, x2, x3), we have that

)

)xk

(u
′

i
�ik − ui�

′

ik) = 0. (1.19)

If the �ow with velocity u′ is arising from a point force with vector strength g located

at x0, we can write

u
′

i
(x) =

1

8�

Gij(x, x0)gj(x0), �
′

ik
=

1

8�

Tijk(x, x0)gj(x0), (1.20)

whereG(x, x0) is the Green’s function (or fundamental solution) for the �ow and T the

corresponding stress tensor. The reciprocal identity thus yields, after dividing out the

force strength g ,
)

)xk

(Gij(x, x0)�ik − ui(x)Tijk(x, x0)) = 0. (1.21)

We consider a control volume V bounded by the closed surface )V comprising �uid

surfaces, �uid interfaces, or solid boundaries. By choosing x0 ∉ V , the argument of the

derivative in equation (1.21) is nonsingular. Thus, integrating over V and applying the
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Figure 1.4: Schematic of the boundary integral problem derivation, indicating
the control volume V and its boundary )V , and the reduced volume V� with
boundary )V� . The unit normals n point into V .

divergence theorem to obtain an expression over the boundary )V yields

∭
V

)

)xk

(Gij(x, x0)�ik − ui(x)Tijk(x, x0)) dVx

=
∬

)V

(Gij(x, x0)�ik − ui(x)Tijk(x, x0))nk(x) dSx = 0. (1.22)

where n = (n1, n2, n3) is the unit normal vector pointing into the control volume. A

schematic of the problem is provided in �gure 1.4.

Selecting a new source point y ∈ V , we de�ne by V� the spherical volume of radius

� centred about y, enclosed by the surface )V� . The argument of the derivative in

equation (1.21) remains regular in the reduced domain V − V� ; integrating over this

domain and applying the divergence theorem we obtain

∬
)V∪)V�

(Gij(x, y)�ik(x) − ui(x)Tijk(x, y))nk(x) dSx = 0. (1.23)

On the surface )V� , we have that n = (x − y)/� = r/� and dS = �
2
dΩ, where dΩ is
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the di�erential solid angle. The scaling by � in the construction of n facilitates later

simpli�cations in the integral arguments. Substituting these expressions into equation

(1.23), splitting the integral over the union, and rearranging yields

∬
)V

(Gij(x, y
′
)�ik − ui(x)Tijk(x, y

′
))nk(x) dSx

= −
∬

)V�

[(
�ij +

rirj

�
2 )

�ik(x) + 6ui(x)

rirjrk

�
4 ]

rk dΩ. (1.24)

As � → 0, the Green’s function G and stress tensor T become through de�nition

the stokeslet and associated stress tensor de�ned in equations (1.16) and (1.18) respec-

tively. Additionally, since x decreases linearly with respect to the sphere radius �, the

contribution from the stress terms in the right hand side of equation (1.24) decay (�).

Similarly, the contribution from the velocity terms decay (1). Thus, in the limit as

� → 0, we have that

∬
)V

(Sij(x, y)�ik(x) − ui(x)Tijk(x, y))nk(x) dSx

≈ −6ui(y)∬
)V�

rirjr
2

k

�
4

dΩ = −8�uj(y), (1.25)

with the integral on the right hand side being analytically integrated following an

application of the divergence theorem. Rearranging, and letting fi = −�iknk be the

force exerted by the surface )V onto the �uid, we arrive at the boundary integral

equation

uj(y) =

1

8�
∬

)V

Sij(x, y)fi(x) dSx +

1

8�
∬

)V

ui(x)Tijk(x, y)nk(x) dSx, (1.26)

valid for y ∉ )V . If y ∈ )V , the left hand side of equation (1.26) is replaced by (1/2)uj(y),
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provided the boundary is smooth. In particular, we can write

Sij(x, y) = Sji(y, x) = Sji(x, y), (1.27)

with the �rst equation as a consequence of symmetric property of Green’s functions,

and the second equality due to the choice of an in�nite �uid domain. The contribution

to the velocity from the stokeslet integral term can be thus written as

u
S

i
(x) =

1

8�
∬

)V

Sij(x, y)fj(y) dSy, (1.28)

a form which will be used later on. The contribution to the velocity from the stress

term is

u
D

i
(x) =

1

8�
∬

)V

uj(y)Tjik(y, x)nk(y) dSy. (1.29)

In what follows, we refer to the stokeslet integral contribution to the velocity in the

boundary integral equation (1.26) as the single-layer potential (SLP, equation (1.28))

and the stress tensor contribution as the double-layer potential (DLP, equation (1.29)),

terminology analogous to their use in electric potential theory. Similarly, the velocity

in (1.28) is the SLP velocity, and (1.29) is the DLP velocity.

Further simpli�cations to the boundary integral equation (1.26) are a�orded by

considering only problems involving an in�nite, or partially-in�nite �uid domain, such

as cells swimming over an in�nite plane boundary. In these problems, we choose the

control volume with boundary )D, and a large spherical volume extending to in�nity

with boundary )D∞. If the very-far �eld �ow is quiescent i.e. u∞ = 0 (as is the case

in the above formulation), then the velocity decays (1/r) and the stress and pressure

decay(1/r2), where r is the distance between x and )D (Pozrikidis, 1992). The Green’s
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function thus decays (1/r) and the stress tensor decays (1/r2), so that as the radius

of the spherical domain extends to in�nity, the contributions to the �uid �ow from

both the SLP and DLP vanish. Thus, we can let )V = )D and work with the reduced

problem.

1.2.4 Neglecting the double layer potential

The problems considered in this thesis all feature dynamic slender bodies in Stokes

�ows, which conserve volume as they interact with the �uid. In this section we il-

lustrate how this property allows the double layer potential in the boundary integral

equation (1.26) to be neglected, simplifying the modelling problem.

Consider a dynamic body with �xed and conserved volume V in a Stokes �ow. By

dynamic, we refer here to objects which are permitted to change shape but not volume,

such as a �exible swimming cells or inextensible cilia. The slip velocity normal to the

surface )V is

∬
)V

ui(x)ni(x) dSx = 0, (1.30)

a condition which implies the existence of a unique solution to the �ow in the interior

region of V . We label the solution as having velocity u
′

i
(x) and stress tensor � ′

ik
(x),

satisfying u′
i
(y) = ui(y) ∀y ∈ V . This “�ctitious solution” exists in the interior of V and

thus does not actually lie within the �uid domain. Nonetheless, the solution satis�es

the Lorentz reciprocal identity and so

)

)xk

(Sij(x, y)�
′

ik
(x) − u

′

i
(x)Tijk(x, y)) = 0. (1.31)

As in section 1.15, integration over the volume and applying the divergence theorem
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yields

∬
)V

Sij(x, y)�
′

ij
nk(x) dSx − ∬

)V

u
′

i
(x)Tijk(x, y)nk(x) dSx = 0, (1.32a)

⇒ −
∬

)V

Sij(x, y)g
′

i
(x) dSx − ∬

)V

ui(x)Tijk(x, y)nk(x) dSx = 0, (1.32b)

where we de�ne g′
i
∶= −�

′

ik
nk and note that ui = u

′

i
. Adding equations (1.32b) and

(1.26) cancels the integral contribution from the stress tensor, leaving

uj(y) =

1

8�
∬

)V

Sij(x, y)(gi(x) − g
′

i
(x)) dSx =

1

8�
∬

)V

Sij(x, y)fi(x) dSx, (1.33)

where fi = gi −g′i . As in section (1.15), equation (1.33) can be rearranged exploiting the

symmetry of the stokeslet yielding

ui(x) =

1

8�
∬

)V

Sij(x, y)fj(y) dSy, (1.34)

which is the form of the boundary integral equation which will be used throughout

the remainder of this thesis.

1.2.5 Stokes �ow near a boundary and the blakelet

In the previous sections, we considered the �uid �ow arising from the presence of a

slender body in an in�nite �uid. Upon approaching a rigid boundary, the �uid �ow will

change in a way that is not captured by the stokeslet solution, and a new fundamental

solution must be derived. Wall e�ects are not just con�ned to regions near the wall;

hydrodynamic interactions between the boundary in�uence the far-�eld �ow, limiting

further the accuracy of the stokeslet solution whenever rigid surfaces are present.
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In the most basic case, the boundary can be modelled as in�nite plane. For micro-

biological problems involving small cells near boundaries, such as sperm in the female

reproductive tract or cilia protruding from a ciliated surface, the length scale of the

bodies is much less than the radius of curvature of the boundary and so this in�nite

plane approximation is appropriate. In what follows, we assume both no-slip (u = 0)

and no-penetration (u ⋅n = 0) conditions on the surface of the wall and the cell bound-

ary.

Motivated by modelling cilia protruding from a wall, Blake (1971) developed a �ow

solution using the method of images. For a singularity located at y = (y1, y2, w + ℎ),

a perpendicular distance of ℎ above the plane x3 = w , a virtual “image” is supposed

to exist outside of the �ow below the plane at y∗ = (y1, y2, w − ℎ). If the force at the

singularity is f , the force associated with the image will be −f . Using equation (1.16),

the contribution to the solution from the image will be

S
∗

ij
(x, y

∗
) =

�ij

R

+

RiRj

R
3
+ �ij , Ri = xi − y

∗

i
, R =

√

RiRi , (1.35)

where x = (x1, x2, x3) is a point in the domain and where �ij are terms to be determined.

The fundamental �ow solution at x due to force f (y) is thus the combination of the

stokeslet solution (1.16) and the stokeslet image (1.35). Requiring a no-slip condition

on the surface of the boundary yields S∗
ij
(xw , y

∗
) = −Sij(xw , y) where xw is a point lying

in the plane of the boundary. The unknowns �ij can be determined (see Pozrikidis
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(1992) for details) to obtain the blakelet, denoted Bij(x, y), as

Bij(x, y) = Sij(x, y) − S
∗

ij
(x, y

∗
) + 2ℎ

2
G
D

ij
(x, y

∗
) − 2ℎG

SD

ij
(x, y

∗
), (1.36a)

G
D

ij
(x, y

∗
) = ±

(

�ij

R
3
− 3

RiRj

R
5 )

, (1.36b)

G
SD

ij
(x, y

∗
) = R3G

D

ij
±

�j3Ri − �i3Rj

R
3

, (1.36c)

whereGD andGSD are a potential dipole and a stokeslet doublet respectively. The signs

in equations (1.36a–1.36c) are positive for j = 1, 2 and negative for j = 3. The stokeslet

term in equation (1.36a) is as de�ned in (1.16).

The �uid �ow induced by a point force orientated perpendicular to the boundary

decays as (1/r3), whereas the �ow arising from a point force parallel but far away

to the wall decays as (1/r2). This discrepancy is crucial, for example in the case

of ciliated microorganisms, suggesting that motion parallel to the creatures surface

contributes far more to the resulting �uid motion than motion normal to its surface

(Blake & Chwang, 1974). Additionally, the motion of the cilium most distant to the

wall produces more �ow than motion close to the wall.

1.2.6 The method of regularised stokeslets

Flagella, cilia, and other slender bodies are driven by moments acting along and

throughout their length. It is convenient to describe the three dimensional geometry

of the �lament through coordinates along its centreline, parametrised by arclength. A

force distribution arises naturally from the interaction of the internally-driven slender

body with surrounding viscous �uid. Thus, following the arguments discussed in sec-

tion 1.2.2, evaluating the �ow on or near the body produces singular or near-singular
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stokeslet solutions.

The singularity issue is present in many Stokes �ow problems. By smearing the

driving force over a sphere of arbitrary radius, concentrated at the centre and decay-

ing rapidly away from it, Cortez and coauthors demonstrated that the singularity in

the stokeslet may be smoothed over and thereby regularised, �rst in two dimensions

(Cortez, 2001) and then in three dimensions (Cortez et al., 2005). Crucially, the reg-

ularisation procedure leads to solutions that are exact roots of the Stokes �ow equa-

tions but driven by a smoothed force, so that the �ow remains incompressible (i.e. the

continuity equation continues to be satis�ed). The body force density is altered by

replacing the Dirac-� distribution with a radially symmetric blob function �"(x) so that

F(x) = f�"(x − y). Crucially, the property

∭
ℝ
3

�"(x)dx = 1 (1.37)

is satis�ed, which acts to remove the force singularity. The regularisation parameter

0 < " < 1 controls the spatial spread of the force, and works to limit the volume about

x to which its in�uence extends. As discussed in sections 1.2.1–1.2.4, a classical result

of Stokes �ow in a smooth bounded domain D ∈ ℝ
3 is that the Stokes �ow equations

(1.11a) can be written as an integral over the boundary of the domain )D, and in terms

of the velocities and forces acting on )D. With the regularised choice of F , Cortez et

al. derived the dimensionless regularised stokeslet boundary integral equation

∭
D

ui(x)�"(x − y) dVx =

1

8�
∬

)D

S
"

ij
(x, y)fj(y) dSx, (1.38)

which can be numerically implemented using a chosen quadrature rule (discussed fur-

29



ther in section 1.2.7). For the speci�c choice of blob function

�"(x − y) =

15"
4

8�r
7

"

(1.39)

the kernel of the integral on the right hand side of equation (1.38) is the regularised

stokeslet, de�ned

S
"

ij
(x, y) = �ij

r
2
+ 2"

2

r
3

"

+

rirj

r
3

"

, r" =

√

r
2
+ "

2
, r

2
= riri , (1.40)

where �ij is the Kronecker-� tensor. The resulting method of regularised stokeslets ap-

proximates the �uid velocity at a point x via

ui(x) =

1

8�
∬

)D

S
"

ij
(x, y)fj(y) dSy + ("p), (1.41)

where f is the force density (that is, per unit length or per unit area) exerted by the body

onto the �uid. The error term arises from the regularisation of the force, analytically

a Dirac-� distribution in the classical theory, to a smoothed blob of radius ". For the

choice in equation (1.39), the error is ("2) for r >
√

5"/2 (i.e. in the near-�eld) and (")

in the far-�eld (Cortez et al., 2005; Smith, 2018). The varying, but rapidly decaying,

nature of the force across the blob allows the regularised stokeslet to be used in any

situation in which forces drive motion.

Research into improving the accuracy and e�ciency of regularised stokeslet meth-

ods continues through both computational and analytical avenues. By constructing

blob functions with speci�c far-�eld error properties, Nguyen & Cortez (2014) illus-

trate how the near-�eld regularisation error can be reduced by isolating and removing

the leading error term. Approaches for reducing the far-�eld regularisation error are
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provided by Zhao et al. (2019), who consider alternative power-law and compactly-

supported blobs. In particular, the authors �nd that asymmetric blobs induce force

dipole �ows proportional to " in the far �eld, linearly approaching the singular �ow

solution as " → 0. A quadratic rate of convergence to the true �ow solution is derived

for blob functions with three symmetry planes.

For the case of a point force in the presence of a plane boundary, a regularised form

of the blakelet (1.36a) can be derived (Ainley et al., 2008) as

B
"

ij
(x, y) =

�ij(r
2
+ 2"

2
) + rirj

r
3

"

−

�ij(R
2
+ 2"

2
) + RiRj

R
3

"

+ 2ℎΔjk
(

)

)Rk

{

ℎRi

R
3

"

−

�i3(R
2
+ 2"

2
) + RiR3

R
3

"

}

− 4�ℎ�ik'"(R)
)

−

6ℎ"
2

R
5

"

(�i3Rj − �ijR3), (1.42)

where r" =
√

r
2
+ "

2, R" =
√

R
2
+ "

2 and

Δjk =

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

+1 j = k = 1, 2,

−1 j = k = 3,

0 otherwise

. (1.43)

The blob function in (1.39), desirable for the regularised stokeslet, is complemented

with a ‘companion’ blob function '"(R) ∶= 3"2/(4�R5" ) for the source dipole, which de-

cays more slowly to account for the far-�eld hydrodynamic e�ects caused by the pres-

ence of the boundary, and provides convenient analytic cancellations (Ainley et al.,

2008). Choosing a blob function for the regularised blakelet distinct to the regu-

larised stokeslet necessitates the �nal term, which accounts for this di�erence. Cortez

31



& Varela (2015) generalised the method of Ainley et al. (2008), developing a system-

atic way to derive the companion blob and resulting image system for any given blob

function, and considering exponential and Gaussian blob pairings in addition to the

established algebraic choices. The ability to use general blob functions allows the reg-

ularised stokeslet method to be used in problems where, for example, speci�c decay

properties are required.

1.2.7 Numerical discretisation of the boundary integral equa-
tion

The linearity of Stokes �ow enables solutions to geometrically complicated problems

to be found by combining stokeslet solutions arising from point forces in the domain.

Moreover, the regularised stokeslet method provides a way of avoiding singular solu-

tions by assuming the point forces are instead spread over small (spherical) blobs. With

this in mind, we next consider the steps to spatially discretise the regularised stokeslet

boundary integral equation (1.41) for implementation as code for simulations.

Consider a body with surface )B immersed in viscous �uid described by the Stokes

�ow equations. Forces, measured at source points {y[1], … , y[M]}, drive the �uid �ow

at �eld points {x[1], … , x[N ]}. These sets of points comprise two general discretisa-

tions of the surface )B. Assuming a no-slip condition, by placing �eld points across

the surface so as to adequately approximate the body geometry, the �uid velocity on

the surface of the body is given by

ui(x[n]) =

1

8�

M

∑

m=1

S
"

ij
(x[n], y[m])fj(y[m]) dS(y[m]), n = 1, … , N , (1.44)

where f (y[m]) is the force density exerted by the body onto the �uid at the point
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y[m] over the surface area dS(y[m]). In this way, equation (1.44) approximates the

boundary integral equation (1.34) with a quadrature rule, with the source points being

the abscissae and corresponding weights given by the surface area associated with each

point. The particular discretisation where �eld and source points coincide (andN = M )

is referred to in this thesis as Nyström discretisation, arising from an application of the

classical method of Nyström (1930). In this case, equation (1.44) can be written

ui(x[n]) = xt[n] =

1

8�

N

∑

m=1

S
"

ij
(x[n], x[m])fj[m] dS[m], n = 1, … , N , (1.45)

where f [n] ∶= f (x[n]) and dS[n] ∶= dS(x[n]). The discrete equation (1.45) can be

expressed as a linear matrix system of the form

Az = b, (1.46)

where the 3N × 1 vectors are

z = (F1[1], … , F1[N ], F2[1], … , F2[N ], F3[1]… , F3[N ])

T

, (1.47a)

b = (x1,t[1], … , x1,t[N ], x2,t[1], … , x2,t[N ], x3,t[1], … , x3,t[N ])
T

, (1.47b)

and with Fi[n] = fi[n]dS[n] denoting the force at each node. The 3N × 3N stokeslet

matrix has block form

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (1.48)
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where

Aij{m, n} =

1

8�

N

∑

q=1

S
"

ij
(x[m], x[q]), m, n = 1, … , N . (1.49)

The unknowns of the matrix system (either position or force) are dependent on the

problem under consideration. Situations in which the body motion is prescribed, with

forces being unknown, are referred to as resistance problems. Conversely, if the to-

tal force and moment are known, the velocity and stokeslet distribution are unknown

and the problem is referred to as a mobility problem (Smith, 2018). In general, mobility

problems will require additional equations for, say, elasticity and kinematics. Apply-

ing appropriate boundary and initial conditions yields a linear system to be solved as

desired.

The Nyström discretisation of the stokeslet boundary integral is widely used due

to its simplicity and ease of implementation. The Nyström method is (ℎ2/�) accurate;

halving � to reduce the regularisation error thus necessitates reducing the grid spacing

ℎ by
√

2 to maintain the same level of quadrature error in the numerical integration.

The number of nodes N requires to cover the domain thus increases by
√

2. The as-

sembly cost scales with N 2, thus doubling the memory requirement for storing the in-

tegrand values at all nodes, and quadrupling the direct solver cost. Plainly, increasing

the accuracy of the Nyström approach rapidly necessitates increases in computational

resources.

Numerical optimisations by Gallagher & Smith (2020) reveal the computational

speed up obtainable when exploiting dedicated GPUs to build and store mobility ma-

trices. By formulating the assembly and solution of the linear system solely in terms

of matrix operations, GPU-enabled basic linear algebra subroutines can be automati-

cally exploited. This passive parallelisation technique allows problems with very large
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degrees of freedom to be considered and simulated in reasonable real world time. Al-

ternatively, recent developments by Gallagher & Smith (2021) employ a Richardson

extrapolation of the regularisation error to allow for larger choices of � without a loss

in accuracy, allowing coarser discretisations to appropriately cover a surface leading

to smaller linear system sizes.

1.2.8 The nearest-neighbour discretisation of the
regularised stokeslet method

As discussed in section 1.2.2, the stokeslet itself decays quickly (1/r) away from the

source. Capturing this rapidly-varying nature can require very �ne discretisations

(i.e. a large number of points) to accurately resolve the integral using equation (1.45),

increasing computational expense – a trade o� for the simplicity of implementation

o�ered by the Nyström approach.

Since the value of the regularisation parameter " determines the variation of the

stokeslet kernel, by choosing " smaller than the length scales characterising the ge-

ometry, the variation in the forces on the body will be comparatively slowly varying.

Smith (2018) exploited this property by considering two distinct discretisations of the

body surface, decoupling the stokeslet quadratures from the force discretisation. The

rapidly-varying kernel is treatable with a suitably high discretisation, retaining nu-

merical accuracy, whilst the slowly-varying force is captured using a much coarser

discretisation, requiring signi�cantly reduced computational resources than the Nys-

tröm discretised problem. Moreover, one does not need to compute a mesh of the body

surface, which can add signi�cantly to computational cost.

We denote by {x[1], … , x[N ]} and {y[1], … , y[Q]} the discretisations for the force
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and stokeslet respectively, withN 6 Q. These collections will be referred to as the trac-

tion and quadrature discretisations respectively. Following Smith (2018), the nearest-

neighbour mapping from the quadrature to the traction discretisations is

 ∶ {1, … , Q} → {1,… , N},  (q) = argmin

n=1,…,N

|x[n] − y[q]|, (1.50)

for each quadrature node i.e.  (q) is the index of the nearest traction point to the

quadrature point y[q]. The nearest neighbour operator is expressible as a Q ×N matrix

through

�[q, n] =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1 for n = argmin
m=1,…,N

|x[m] − y[q]|,

0 otherwise.
(1.51)

The components of the force density associated with each quadrature node can thus

be written (Gallagher & Smith, 2018) as

fi(y[q])dS(y[q]) ≈ fi(x[ (q)])dS(x[ (q)]) ≈ −

N

∑

n=1

�[q, n]gi[n]dS(x[n]), (1.52)

where gi[n] ∶= −fi(x[n]). Applying this interpolation to the regularised stokeslet

boundary integral equation (1.38) yields

ui(x[n]) = −

1

8�

N

∑

m=1

gj[m]dS(x[m])

Q

∑

q=1

S
"

ij
(x[n], y[q])�[q, m], n = 1, … , N . (1.53)

Practically there is no need to distinguish between the force densities g[n] and their

associated weights dS(x[n]), and so we write

ui(x[n]) = −

1

8�

N

∑

m=1

�j[m]

Q

∑

q=1

S
"

ij
(x[n], y[q])�[q, m], n = 1, … , N , (1.54)

36



where �[n] ∶= g[n]dS(x[n]) for each n.

To demonstrate the advantages of the nearest-neighbour discretisation over the

Nyström approach, we brie�y examine a simple test problem. Consider a spherical

body translating with velocity U and rotating with angular velocity 
 in a stationary

Stokes �ow. The geometric simplicity of the body enables an analytic solution to be

found (Acheson, 1991). For the elementary case where U = ei and 
 = ei , Stokes’ law

provides the dimensionless force and moment that the body exerts on the surrounding

�uid as

F = 6��aei , M = 8��a
3
ei , (1.55)

where a is the radius of the sphere and the collection {e1, e2, e3} form an orthonormal

three dimensional basis spanning the domain. In this section it is assumed that the

�uid viscosity is � = 1 for simplicity. The force and moment may be numerically

approximated and subsequently compared to the analytical solutions by solving the

resulting resistance problem.

To begin, we require a suitable discretisation of the surface of the sphere. With no

requirement for equispaced nodes, a straightforward way to obtain such a collection

is to enclose the sphere by a cube and project nodes from each of its faces onto the

surface. The resulting cloud of coordinates can be transformed through scalar multi-

plication and rotations to obtain discretisations of prolate or oblate spheroids. High

resolution discretisations can be obtained by increasing the number of nodes on each

face of the enclosing cube. A diagram of this discretisation technique, referred to in

this thesis as cubic projection, is given in �gure 1.5. We de�ne by Ht and Hq the number

of nodes along an edge of the enclosing cube to produce the traction/force and quadra-

ture/kernel spherical discretisations respectively. Each cubic face will have Ht × Ht or
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Figure 1.5: Distribution of nodes across the surface of a unit sphere, viewed
from the xy-axis. In all panels, red circles represent traction nodes and blue
crosses quadrature/kernel nodes. Plots indicate (a) a coarse Nyström discreti-
sation, where force and quadrature nodes coincide, generated from a cubic
projection with 3 × 3 nodes per face; (b) a re�ned Nyström discretisation, gen-
erated from a cubic projection with 6 × 6 nodes per face; and (c) a nearest-
neighbour discretisation, combining a coarse discretisation for the slowly-
varying force and a re�ned discretisation for the rapidly-varying kernel.

Hq ×Hq nodes, leading toNt = 6H
2

t
andNq = 6H

2

q
points distributed across the spherical

surface, for each case.

The accuracy a�orded by using the nearest neighbour discretisation is indicated in

�gure 1.6, which compares the relative error between the computed total force and to-

tal moment, and the exact Stokes law solutions for a translating unit sphere resistance

problem. For even relatively coarse traction discretisations of the sphere, choosing a

quadrature discretisation so that Hq = 2Ht yields relative errors of < 5% for both quan-

tities. At lowNt choices, the relative error is minimal when usingHq = 2Ht , as opposed

to Hq = 3Ht , a counterintuitive erroneous result likely caused by inadequate coverage

of the sphere’s surface, yielding a coincidentally more accurate result. When surface

coverage is improved, the expected behaviour is observed and larger Nq choices yield

improved accuracy (aside from the anomalous result recorded in �gure 1.6b).
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Figure 1.6: Error in computing (a) the total force and (b) total moment, rel-
ative to the analytic Stokes’ law solutions (1.55) on a unit sphere translating
with U = (1, 0, 0)

T . In (c), the walltime (in seconds) for each simulation. The
sphere is discretised using a cubic projection mapping, with Ht the number of
nodes per face of the cube used to obtain the traction discretisation, and Hq

the similarly de�ned variable to obtain the quadrature discretisation; Nt is the
resulting number of traction/force nodes.

The times (measured in seconds) for the resistance problem to be constructed (ex-

cluding discretisation generation) and solved for each simulation are given in 1.6c. In

general, increasing the number of nodes comprising the quadrature discretisation for

a �xed level of force discretisation increases the computational cost of the method,

evidenced by the cleanly separated lines in �gure 1.6c (excluding the �rst erroneous

point for the Hq = Ht line). Reading across �gures 1.6, to achieve a level of relative

error / 5% in the force and moment, the Nyström method requires Nt = Nq > 2100 and

takes ≈ 2.5 seconds to solve. The same level of relative error can be achieved with a

nearest-neighbour discretisation with Nt = 216, Nq = 3Nt , and solves in ≈ 0.8 seconds;

a nearly 3 times speed increase. For detailed benchmarking, refer to Smith (2018).
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1.2.9 Regularised stokeslet segments

In the section 1.2.8, we examined how nearest-neighbour discretisations of regularised

stokeslet integral equations of the form

u(x) =

1

8�
∬

)D

S
"
(x, y) ⋅ g(y) dSy (1.56)

provide solutions with improved accuracy for fewer degrees of freedom compared to

classical Nyström discretisations. For notational simplicity, in this section we will work

with the vectorised boundary integral equation (1.56) rather than its component form

in (1.41). When modelling slender bodies, it is convenient to describe their hydro-

dynamics by line integrals of stokeslets along their centreline as opposed to surface

integrals, negating the need for complex surface meshes when using ‘meshless’ ap-

proaches such as regularised stokeslet methods. Consider the regularised stokeslet

line integral

u(x) =

1

8�
∫

L

0

S
"

(x, X(s)) ⋅ f (s) ds, (1.57)

where X(s) are material points along the centreline of a �lament parametrised by ar-

clength s ∈ [0, L]. Whilst a Nyström or nearest-neighbour discretisation could be em-

ployed in order to numerically solve equation (1.57), to do so would require generation

of a re�ned discretisation, either for the force and kernel for the Nyström approach,

or for the kernel using a nearest-neighbour method. Due to the dynamic nature of

the elastic �lament, interpolating a coarse force discretisation to obtain a re�ned ker-

nel discretisation whilst preserving geometry requires care – for example, a piecewise

linear interpolation may inadequately describe the curve.

An alternate approach is to discretise the �lament into Q ∈ ℝ straight line seg-
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ments. The regularised stokeslet segments method as described in this thesis derives

from Smith (2009), with recent formalisations by Cortez (2018), though a similar ap-

proach for singular stokeslets was used by Higdon (1979a,b). Adopting a piecewise

linear geometric approximation, the line integrals become

∫

L

0

S
"

(x, X(s)) ⋅ f (s) ds ≈

Q

∑

n=1

∫

s[n+1]+�s

s[n]−�s

S
"

(x, (s̃[n] − � )X̃s[n] + X̃ [n]) ⋅ f (� ) d� , (1.58)

where variables with tildes are measured at the segment midpoints. To simplify the

analysis, we consider integration across a single segment � ∈ [s − �s, s + �s] so that the

segment midpoint is X(s). The tangent to this segment is Xs(s), so that the straight line

segment is X(� ) ≈ X(s) + (� − s)Xs(s). By assuming a constant hydrodynamic force per

unit length f on the segment, the regularised stokeslet integral can thus be approxi-

mated as

∫

s+�s

s−�s

S
"

(X(s), X(� )) ⋅ f (� ) d� ≈ ∫

s+�s

s−�s

S
"

(X(s), X(� )) d� ⋅ f (s), (1.59a)

≈
∫

s+�s

s−�s

S
"

(X(s), X(s) + (� − s)Xs(s)) d� ⋅ f (s), (1.59b)

=∶ D(X, s) ⋅ f , (1.59c)

where �s is the half length of integration. Higher order force discretisations are consid-

ered in Cortez (2018); Walker et al. (2019). Denoting by {e1, e2, e3} the basis local to the

straight line segment, the rotation matrix transforming into the local frame is given by

the sum of dyadic products through � = di ⊗ ei , where {d1, d2, d3} is the orthonormal

frame describing the orientation of the segment in the �xed Euclidean frame. After

performing the coordinate transformation x
L

i
= Θij(xj − Xj(s)), the integrals can be
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expressed in local coordinates as

D
L
(X

L
, � ) =

∫

�s

−�s

S
"

(X
L
, � e1) d� (1.60)

Note that this coordinate transformation does not change D as the regularised

stokeslets S" are not functions of X(s) and X(� ) directly, but of their di�erence

r = X(s) − X(� ) (see de�nition (1.40)). The integral expressed in the lab frame coor-

dinates is obtainable through the rank-2 tensor transformation

Dij(X , � ) = Θki D
L

kl
(X

L
, � ) Θlj . (1.61)

The diagonal entries of the integrals provide the dominant contribution of the stokeslet

in the calculation of the force per unit length. Letting " be a proxy for the cross sectional

radius of the segment and " ≪ q ≪ L, we de�ne the inde�nite integrals as

I
L
(X

L
, � ) =

∫
S
"
(X

L
, � e1) d� . (1.62)

The diagonal entries of I L are

I
L

11
= −

(

x − s

r"
)(

"
2

y
2
+ z

2
+ "

2
− 1

)
+ 2 log(s − x + r"), (1.63a)

I
L

22
= −

(

x − s

r"
)(

"
2
+ y

2

y
2
+ z

2
+ "

2)
+ log(s − x + r"), (1.63b)

I
L

33
= −

(

x − s

r"
)(

"
2
+ z

2

y
2
+ z

2
+ "

2)
+ log(s − x + r"), (1.63c)

where (x, y, z) ∶= (X L

1
, X

L

2
, X

L

3
) is a convenient shorthand, and r2

"
= (x −s)

2
+y

2
+z

2
+"

2.
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The o�-diagonal entries are more easily computable through symmetry relations as

I
L

12
= I

L

21
=

y

r"

, (1.64a)

I
L

13
= I

L

31
=

z

r"

, (1.64b)

I
L

23
= I

L

32
= −

(

x − s

r"
)(

yz

y
2
+ z

2
+ "

2)
. (1.64c)

The de�nite integrals are calculable through DL

(X
L
, � ) = [I

L
(X

L
, � )]

�s

−�s
. The diagonal

entries D11, D22, D33 are expressible directly in terms of q and ". In these cases, x = 0,

and so after applying the limits of integration only the logarithmic terms remain. Con-

sidering the �rst diagonal term, one can compute

D
L

11
= 2 log

(

�s +

√

�s
2
+ "

2

−�s +

√

�s
2
+ "

2)
, (1.65a)

= 2 log
(

�s + "

√

�s
2
/"
2
+ 1

−�s + "

√

�s
2
/�
2
+ 1)

, (1.65b)

= 2 log
(

�s (1 + ("/�s)

√

�s
2
/"
2
+ 1)

−�s (1 − ("/�s)

√

�s
2
/"
2
+ 1))

, (1.65c)

= 2 log
(
(1)

(
−

1 + ("/�s)

√

�s
2
/"
2
+ 1

1 − ("/�s)

√

�s
2
/"
2
+ 1))

, (1.65d)

= −2 log
(

1 + ("/�s)

√

�s
2
/"
2
+ 1

1 − ("/�s)

√

�s
2
/"
2
+ 1)

, (1.65e)

= −4 arctanh

(

"

�s

√

�s
2

"
2
+ 1

)

, (1.65f)

= −4 arctanh

(

√

1 +
(

"

�s
)

2

)

, (1.65g)

where we employ the inverse hyperbolic tangent identity to simplify the quotient. The

remaining diagonal entries of the local integrals can be computed in a similar fashion,
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and are

D
L

22
= D

L

33
= 2

(

√

1 +
(

"

�s
)

2

)

−1

− 2 arctanh

(

√

1 +
(

"

�s
)

2

)

. (1.66)

Scaled appropriately, the valuesDL

11
, D

L

22
= D

L

33
are analogous to the normal and tangent

drag coe�cients c⟂ and c∥ of Gray & Hancock (1955) resistive force theory, describing

the �uid drag resistance of the segment upon translation about each of its principal

axes. By modelling a continuous �lament as a connected sequence of such rods, the line

integral of stokeslets is analytically approximated, providing bene�ts in both accuracy

and numerical e�ciency, as discussed further in chapter 2 section 2.3.
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1.3 Elasticity of slender bodies

In the following section, we review the fundamentals underpinning nonlinear geo-

metric descriptions and elasticity of slender bodies deforming in three dimensions.

Throughout this thesis, the slender object under consideration may be referred to in-

terchangeably as a �bre, rod, or �lament, and when considering a �lament attached to

a rigid body (as in chapters 3–5), it will also be referred to as a �agellum or tail.

Generalised descriptions of nonlinear �lament geometry are introduced in section

1.3.1. Simpli�cations for the reduced problem of planar bending are described in sec-

tion 1.3.2, forming the basis of the EIF method introduced in chapter 2 and the extended

EIF method for human sperm used in chapter 3. Equations of motion for a �lament de-

forming in three dimensions are derived in section 1.3.3, arriving �nally at the general

Kirchho� equations, which form the core of the SPX method introduced in chapter 4.

1.3.1 Geometry of a bending, twisting �lament

To describe elastic deformations of a �lament, we �rst require a geometric description

of the body that enables the tracking of its position and rotation in space and time.

The approach to geometry presented here is an expansion of the ideas of Euler and

Bernouilli (a summary of Euler-Bernoulli beam theory can be found in Timoshenko

(1983)), and later Kirchho� and Cosserat. Indeed, the ultimate goal of this section is

to derive the Kirchho� rod model, named after the mid-19th century German physi-

cist Gustav Kirchho�, who was instrumental in formalising many of the modern ideas

and notions surrounding the elasticity of rods. The derivation here follows that of

Landau & Lifshitz (1965), which was described in detail by Gueron & Levit-Gurevich

(2001a,b); Wolgemuth et al. (2004). We adopt some of the more modern notation used
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in contemporary presentations by Bower (2009); Audoly & Pomeau (2010). Similar rep-

resentations have been used to model geometry for both open and closed rings, active

�laments, and swimming cells in elastohydrodynamic studies by Lim et al. (2008); Lim

(2010); Olson et al. (2013); Simons et al. (2015) (discussed further in section 1.4).

Consider a cylindrical �lament, that at rest forms a straight rod. At each material

point X(s) along the �lament centreline, parametrised by the arclength s ∈ [0, L], we

de�ne an orthonormal basis {d1(s), d2(s), d3(s)}. In the rest con�guration, this frame is

parallel at every point. The vectors d3(s) point along the rod axis, and d1(s) points to

an imaginary line traced along the surface of the �lament. The triad is completed by

taking d2(s) = d3(s) × d1(s). This orthonormal basis will be referred to as the director

basis or material frame of the �lament. In this work, we constrain the axial director by

d3(s) ∶= T(s) = Xs(s), (1.67)

where T is the tangent to the �lament centreline, and the subscript denotes partial

di�erentiation with respect to s, though in general this constraint is not required (Lim,

2010; Olson et al., 2013). The time dependence of all variables is suppressed for clarity.

A sketch of a �lament described in this way is presented in �gure 1.7. Integrating

equation (1.67) over the proximal curve allows the centreline to be computed through

X(s) = X0 + ∫

s

0

d3(� ) d� , (1.68)

where X0 ∶= X(0) is the coordinate of the leading point of the �lament. The derivative

of an arbitrary vector x can be expressed as (Hines & Blum, 1983)

xs = (xs)b + � × x, (1.69)
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Figure 1.7: Geometric description of a cylindrical slender body via the director
frame. At rest (left), the �lament is a line with �(s) = 0 with the frames at
each point parallel. The vector d1 points to an imaginary line drawn on the
surface of the �lament, drawn here in pink. After deformation (right), the
frame rotates according to the mechanical bending and twisting undergone
by the �lament.

where ()b denotes the representation of the vector x in body coordinates i.e. described

by basis vectors aligned with the body. Since di,b = �ijej ⟹(di,s)b = 0, equation (1.69)

gives the rate of change of the triad along the length of the �lament as

di,s = � × di ⟹

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

d1,s = �3d2 − �2d3,

d2,s = −�3d1 + �1d3,

d3,s = �2d1 − �1d2,

(1.70)

where the vector � ∶= �(s) = �i(s)di(s) is referred to in this thesis as the curvature

vector. The entries �1 and �2 are bending curvatures describing the rotation of the frame

about the d1 and d2 axes respectively along the �lament, and �3 is the twist curvature
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similarly describing the rotation of the frame about the centreline tangent d3.

By taking the scalar product of the �rst equation in (1.70) with d2, the second with

d3, and the third with d1, the curvature components can be expressed in terms of the

basis vectors as

�1 = d2,s ⋅ d3, �2 = d3,s ⋅ d1, �3 = d1,s ⋅ d2, (1.71a)

⇒ � = (d2,s ⋅ d3)d1 + (d3,s ⋅ d1)d2 + (d1,s ⋅ d2)d3 (1.71b)

recalling that by orthonormality di ⋅ dj = �ij . The time evolution of the director frame,

similar to equation (1.70), can be expressed in terms of the vector formed by the angular

velocities about each of the basis vectors, written 
 = Ωidi , as

di,t = 
 × di ⇒

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

d1,t = Ω3d2 − Ω2d3,

d2,t = −Ω3d1 + Ω1d3,

d3,t = Ω2d1 − Ω1d2,

(1.72)

with the angular velocity components expressible in terms of the basis vectors follow-

ing a similar procedure as in equation (1.71a), yielding

Ω1 = d2,t ⋅ d3, Ω2 = d3,t ⋅ d1, Ω3 = d1,t ⋅ d2, (1.73a)

⇒ 
 = (d2,t ⋅ d3)d1 + (d3,t ⋅ d1)d2 + (d1,t ⋅ d2)d3. (1.73b)

The geometric description is closed by formulating the compatibility relations between

rates of rotation of the frame in space (by �) and rotations in time (by 
). The condi-

48



tions relating the components of curvature and angular velocity are

�1,t = Ω3�2 − d2 ⋅ Xsst , (1.74a)

�2,t = −Ω3�1 + d1 ⋅ Xsst , (1.74b)

�3,t = Ω3,s + (Xs × Xss) ⋅ Xst . (1.74c)

The derivation of the compatibility conditions is detailed in appendix A. Equations

(1.70), (1.72) and (1.74a–1.74c), with appropriate boundary and initial conditions, com-

pletely describe the kinematics of the director frame aligned with a �lament bending

and twisting in three dimensions.

An alternative geometric description, widely used in the literature (Camalet et al.,

1999; Camalet & Jülicher, 2000; Gueron & Levit-Gurevich, 2001b; Gadêlha et al., 2010;

Pozrikidis, 2011), is the so-called Frenet-Serret (F-S) frame, which describes the orienta-

tion of the curve through an orthonormal basis {T(s), N(s), B(s)}, where T = Xs is the

tangent to the curve, N is a unit normal and B = T×N is a binormal. The frame rotates

along the arclength following the Frenet-Serret formulas,

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Ts = kN,

Ns = −kT + �B,

Bs = −�N,

(1.75)

where k ∶= k(s) is the geodesic curvature and � ∶= �(s) is the torsion characterising

the nonplanar deviation of the curve. In this context, the Darboux vector can be de�ned

as �D = �T+kB (Audoly & Pomeau, 2010; Oprea, 2019), though we avoid its use here to

avoid confusion with the curvature vector � introduced previously. The Frenet-Serret
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frame, de�ned through only two parameters (k, � ), contains no notion of mechanical

twist; as such the F-S frame is concerned purely with centreline dynamics, and does

not encode anything about the material twist of a slender but �nite thickness �lament.

The director curvature � and the Frenet-Serret curvature k are distinct but related

quantities, with both the geodesic curvature and torsion expressible in terms of the

director curvatures as

k =

√

�
2

1
+ �

2

2
, (1.76a)

� = −�3 −

�1�2,s − �1,s�2

k
2

. (1.76b)

The torsion equation (1.76b) highlights an important caveat of the Frenet-Serret for-

mulas: the frame is unde�ned anywhere that k = 0. For now, we assume that k ≠ 0.

By their identical construction, T = d3. The Frenet-Serret normal and binormal can

be written in terms of the director basis vectors as

N =

�2

k

d1 −

�1

k

d2, (1.77a)

B =

�1

k

d1 +

�2

k

d2. (1.77b)

Inspection of the �rst Frenet-Serret equations (1.75) yields the additional relation –

since |T| = |N| = 1, we have that k = |Ts | = |Xss | and so the geodesic curvature can be

written in terms of the material points de�ning the curve.

To qualitatively appreciate the di�erence between the director and Frenet-Serret

frames, we consider the curve and frames generated by prescribing

�1(s) = a cos(4�s), �2(s) = a sin(4�s), �3(s) = 0, (1.78)
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Figure 1.8: For prescribed director curvatures (�1(s), �2(s), �3(s)), the resulting
(a) director frame, and (b) Frenet-Serret frame o�er markedly di�erent de-
scriptions for the three dimensional curve. Here, choosing �1(s) = a cos(4�s),
�2(s) = a sin(4�s), and �3(s) = 0 for a ∈ ℝ produces an expanding spiral curve.
The projection of the the curve onto the xy-axis is indicated by the grey line
at z = 0.

for s ∈ [0, 1], where a ∈ ℝ, and choose the proximal directors di(0) = ei . The director

frame is computed through solving the system of equations in (1.70), and the corre-

sponding Frenet-Serret frame is computed using equations (1.76a)–(1.77b). The frames

are plotted in �gure 1.8. The Frenet-Serret normal (�gure 1.8b) always points towards

the centre of curvature, thereby rotating the frame along the arclength despite the lack

of mechanical twist information in the frame formulas. This potential misunderstand-

ing highlights the need for caution when identifying and using ambiguous terms such
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as ‘normal’ and ‘binormal’ without proper speci�cation of the frame by which they are

de�ned.

1.3.2 Planar geometry

As will be discussed in chapter 2, in many situations and species, �agella and cilia

exhibit approximately planar beats, making full knowledge of the director frame un-

necessary. Of course, in two dimensions twist cannot be modelled, as nonplanar �bre

shapes which can arise from twisting are not permitted. However, for an isotropic

�lament, no twisting arises from bending deformations, and so as long as no external

twisting moment is applied, a cylindrical �lament bending will not undergo sponta-

neous twisting deformations (Landau & Lifshitz, 1965). External nonplanar forces are

similarly not permitted if they promote nonplanar bending.

With the reduction in dimension, the number of independent variables needed to

describe the geometry of the �lament also reduces. In the director frame represen-

tation, choosing d1 to lie in the plane of bending allows the curve to be completely

described by �2(s), with �1(s) = �3(s) = 0, ∀s. Using equations (1.76a)–(1.77b), the

Frenet-Serret frame similarly reduces, with the torsion � (s) = 0 and the frame de-

scribed by only the geodesic curvature k(s).

The relation between k and �2 warrants a careful eye. Recalling equation (1.76a),

the F-S curvature k > 0 is strictly positive whereas �2 ∈ ℝ. The Frenet-Serret frame for

a planar curve is thus (T, N, ez) if k > 0 and (T, −N, −ez) if k < 0, where T and N are

restricted to the plane of bending. As in the 3D case, the Frenet-Serret frame is unde-

�ned when k = 0. A sinusoidal curve produced by �2(s) = a sin(4�s) (reminiscent of

a beating �agellum) will have a smoothly-varying director frame, but the correspond-
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Figure 1.9: Geometric descriptions for a planar curve. (a) The centreline can be
described using the tangent angle �(s) between the tangent t(s) and the �xed
Cartesian x-axis. (b) Nonnegativity of the geodesic curvature k(s) requires the
Frenet-Serret normal N(s) and binormal B(s) to ‘�ip’ at each local extrema of
the curve, unlike the director normal n(s), which is smoothly varying.

ing Frenet-Serret frame will ‘�ip’ at each local extrema of the curve. This behaviour is

illustrated �gure 1.9b.

Planar curves are conveniently describable in terms of the tangent angle �(s)

formed between the tangent t(s) to the curve and a Cartesian basis vector lying in

the plane of the �lament. Consider an xy-planar �lament; the tangent to the curve, by

simple trigonometry, is

t(s) = Xs(s) = cos �(s)ex + sin �(s)ey , (1.79)

where ex and ey are unit basis vectors pointing in the positive x- and y-axis directions
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respectively. The curve centreline is thus expressible in terms of a single variable �(s)

using equation (1.68) as

X(s) = X0 + ∫

s

0

( cos �(� ), sin �(� ), 0)

T

d� . (1.80)

A sketch of a planar curve described through this angle formulation is displayed in

�gure 1.9a.

The rate of change of the tangent angle along the curve (i.e �s(s)) will determine

the rotation of the tangent and normal, and thus the change in the corresponding geo-

metric frame about the out-of-plane axis (which in this case is ez). This logic motivates

the de�nition of the signed curvature,

�(s) = �s(s), (1.81)

with restrictions on � chosen so as to be suitable for a given problem. For example,

the curve in �gure 1.9b moves above and below the equilibrium (linear) state, and so

taking �(s) ∈ [−�, �) is sensible. The unit tangent and normal to the curve are

ts(s) = �s(s)n(s), ns(s) = −�s(s)t(s), (1.82)

noting that t ≡ T ≡ d3, and n ≡ d1 but n ≡ N is not guaranteed due to the additional

directionality the signed curvature has here over the Frenet-Serret curvature.

The three geometric descriptions of a planar �lament considered here (that is, the

planar director frame, the planar Frenet-Serret frame, and the angle formulation) are

equivalent up to a change in sign. A schematic highlighting the similarities and di�er-

ences of these frame models for a planar �lament is given in �gure 1.9b.
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1.3.3 Equations of equilibrium

Armed with an understanding of how to best describe the geometry of a two or three

dimensional �exible �lament, in this section we consider the elastic properties of the

�lament to derive equations describing the force and moment resulting from deforma-

tion.

Consider a continuous �lament suspended in a Stokes �uid. The �lament may be

passive, meaning that the �lament has no means of self-actuation and so any dynamics

are either purely due to elasticity or external e�ects. Alternatively, the �lament may

be active, impelled to dynamically bend or twist through an internal torque per unit

length m. Here we consider the (general) latter case.

Imagine an in�nitesimal segment of arclength �s of �lament from the interior of

the �lament (the boundary cases will be considered later on). The segment experiences

contact forces Fint and moments Mint at each of its ends where it connects to adjacent

segments. Speci�cally, Fint and Mint are the force and moment exerted by the distal

segment [s, L] onto the proximal section [0, s]. Since the rod is at equilibrium, they

must act in opposite directions. An external viscous force per unit length −f acts on

the entire segment, so that the force per unit length the �lament exerts onto the �uid

is f . A schematic of the in�nitesimal segment is given in �gure 1.10. The balance of

forces across the segment [s, s + �s] is

Fint(s + �s) − Fint(s) − �sf (s + �s/2) = 0, (1.83)

where Fint = Fidi is the elastic contact force exerted on the segment and f = fidi is

the viscous force per unit length the segment exerts onto its surroundings. The axial

component of the force F3 can be understood as the internal elastic tension of the rod.

55



Dividing by �s, and taking the limit as �s → 0, we obtain the force equilibrium equation

Fint,s(s) − f (s) = 0. (1.84)

The balance of moments about the segment reads as

Mint(s + �s) − Mint(s) + �s d3(s) × Fint(s + �s)

− �s
2
d3(s) × f (s + �s/2) + �s m(s + �s/2) = 0, (1.85)

where d3 ≡ t is the tangent to the rod, Mint = Midi is the internal elastic moment, and

m = midi is the internal active moment per unit length. Dividing by �s, in the �s → 0

limit, the higher order moment arising from to the viscous force per unit length f

vanishes yielding the moment equilibrium equation

Mint,s(s) + d3(s) × Fint(s) + m(s) = 0. (1.86)

Equations (1.84) and (1.86), complemented by suitable boundary conditions, are re-

ferred to in this thesis as the equilibrium equations, and are the most general equations

of motion for an elastic �lament deforming in three dimensions. The elastic models

developed in both chapters 2 and 4 derive from these equations.

The elastic moment may be written in terms of the director curvatures �1(s), �2(s)

and �3(s) through the constitutive equations for linear elasticity (Landau & Lifshitz,

1965; Audoly & Pomeau, 2010),

Mint(s) = Mi(s)di(s) = E(�1(s)d1(s) + �2(s)d2(s)) + C�3(s)d3(s), (1.87)
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Figure 1.10: Schematic of the the balance of forces and moments acting on an
in�nitesimal segment of a passive �lament. The orientation of the segment is
de�ned by the orthonormal director triad {d1, d2, d3}. Single-headed arrows
indicate forces, and double-headed arrows indicate moments.

where E is the �exural rigidity characterising the �laments resistance to bending, and

C is the twistingmodulus with a similar interpretation but for twist deformations. Here,

we assume that E is invariant along the arclength; in sections 2.5 and 4.2.3 we consider

the e�ect of spatially varying E. Despite the complex structure of the �agellum ax-

oneme, the linear elasticity model (1.87) has been shown to be accurate for moderate

levels of deformation (Hines & Blum, 1983); recent studies using nonlinear elasticity

models have been used to recover the counterbend phenomenon discussed in section

1.1.2 (Gadelha, 2018).

Noting that �1d1 + �2d2 = t × ts , equation (1.87) can be rewritten in terms of the rod

centreline position X(s) as

Mint(s) = EXs(s) × Xss(s) + C�3(s)Xs(s). (1.88)
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The formula in equation (1.88) is only valid for isotropic rods, whereas the axoneme

is decidedly nonhomogenous due to the presence of the central pair (see �gure 1.1).

Thus E is the e�ective bending sti�ness when (1.88) is applied to model �agella. The

twisting rigidity is a combination C = �J , where � is the shear modulus and J is the

twist rigidity. For a rod with circular cross section, J = (�/2)a
4 with a the radius

(Audoly & Pomeau, 2010).

In summary, the three dimensional bending and twisting of an elastic �lament is

completely described by

Mint = E(�1d1 + �2d2) + C�3d3 = EXs × Xss + C�3Xs , (1.89a)

Mint,s + d3 × Fint + m = 0, (1.89b)

Fint,s − f = 0, (1.89c)

di,s = � × di , i = 1, 2, 3, (1.89d)

di,t = 
 × di , i = 1, 2, 3. (1.89e)

The collection comprising the constitutive elasticity law (1.89a), equilibrium equations

(1.89b–1.89c), and director frame kinematic relations (1.89d–1.89e) is referred to as the

Kirchho� equations.

For a free �lament in Stokes �ow, inertialess dynamics means that the force and

moment at each end will be zero, thus providing the required boundary conditions as

Fint(0) = Fint(L) = 0 and Mint(0) = Mint(L) = 0. Alternatively, the �lament could be

clamped at a material domain point, or to a surface. Rotation and movement about

the point of attachment is not allowed, and so both position and tangent vector are

invariant in time, yielding the proximal boundary conditions Xt(0) = Xst(0) = 0. Fix-
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ing the connection point, but allowing for rotations leads to the pivot problem, with

boundary conditions Xt(0) = Mint(0) = 0. Other boundary conditions, accounting for

the presence of a connected cell body, are discussed later in chapters 2 and 4.
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1.4 Models for two and three dimensional
elastohydrodynamics

For the past twenty years, there has been a sustained and continuous desire within

the biomathematical community to develop elastohydrodynamic models for cilia and

�agella (Gueron & Levit-Gurevich, 2001b; Wolgemuth et al., 2004; Tornberg & Shelley,

2004; Gadêlha et al., 2010; Jayaraman et al., 2012; Olson & Fauci, 2015; Montenegro-

Johnson et al., 2015; Schoeller et al., 2021; Hall-McNair et al., 2019; Walker et al., 2019).

Interdisciplinary research into microbiological problems, particularly those involving

motile microorganisms and organelles, has led to increased interest in understanding

the fundamental interactions between �uids and elastic cellular structures. Greater

availability and access to ever-increasingly computationally-powerful consumer elec-

tronics has enabled traditionally “heavy” problems (such as those involving complex

�uid interactions and very large collections of �bres (Delmotte et al., 2015b; Schoeller

et al., 2021)) to be tackled without the need of high performance computing (HPC)

clusters (Hall-McNair et al., 2019; Walker et al., 2019; Neal et al., 2020).

Elastohydrodynamic models for microscale �laments consider the interaction be-

tween the elastic physics of the body and surrounding �uid dynamics. Developments

towards improving accuracy and applicability of such methods include advances in

the elasticity model, �uid �ow approximation, and numerical methods allowing for

e�cient simulations. In the following section, we examine the recent literature, dis-

cussing the rich variety of modelling approaches for elastohydrodynamic �laments,

within the context of microscale motion.

In what follows, we refer to a mathematical model as being local if it employs a re-

duced hydrodynamic model incapable of accounting for the hydrodynamic in�uence
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of other surrounding objects or structures. Conversely, models capturing these e�ects

are labelled nonlocal. Moreover, models which account only for two dimensional dy-

namics of �laments or �agella are referred to as planar. Approaches accounting for

three dimensional geometries and elasticity are called nonplanar or 3D. Note that a

particular hydrodynamic model does not necessitate a certain geometric description –

equations of motion that describe nonplanar nonlocal hydrodynamics whilst assum-

ing only planar elastic deformations are perfectly valid for certain problems, and vice

versa. A summary of key models discussed within this literature review is presented

in table 1.2.

1.4.1 Lagrange multipliers for tension

A key feature of the microbiological problems considered within this thesis is the

requirement of inextensibility, so that the slender body does not stretch or shrink

over time. Approaches to enforcing this geometric constraint are a signi�cant

di�erentiating feature between previously developed elastohydrodynamic models.

One frequently adopted method introduces Lagrange multipliers working to enforce

Xst ⋅ Xs = 1 (or equivalent expressions), where X are material points lying on the cen-

treline parametrised by dimensionless arclength s ∈ [0, 1]. Such approaches result in

additional unknown tensile force terms appearing in the model equations, which act

along the axis of the �lament.

We begin with a Lagrangian description of the physical problem following clas-

sical principles, outlined in detail by Goldstein & Langer (1995). The �lament is

parametrised by its arclength s ∈ [0, L] so that X and Xt are material centreline points
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and their velocities respectively. Lagrange’s equations describe the motion through

d

dt

{

)
)Xt

}

−

)
)X

= −

)
)Xt

= fvis, (1.90)

where  is the Lagrangian and  is the Rayleigh function describing the energy dissi-

pation due to viscous forces fvis acting on the �lament. The mechanical energy in the

system corresponding to the Lagrangian is

 =
∫

L

0

Xt ⋅

)
)Xt

ds − . (1.91)

At very low Reynolds number, inertial e�ects are negligible and thus  = − . Equation

(1.90) becomes

fvis = −fint =
)
)X

, (1.92)

noting that the hydrodynamic drag density and elastic force per unit length fint must

balance in the inertialess dynamics regime. Continuing, Goldstein & Langer (1995)

enforce arclength conservation by imposing a Lagrange multiplier function Λ(s) so

that

 =  e
−
∫

L

0

√

gΛds, (1.93)

where g(s) = Xs(s) ⋅Xs(s) is the metric for inextensibility, and  e is the elastic energy of

the �lament due to deformations. The Lagrange multiplier Λ(s) acts to resist extension

or compression, and is related to the physical tension within the �lament. The original

paper concludes by completing the model formulation, assuming a local hydrodynamic

model, and applying it to model the folding dynamics of closed �laments.

The energy argument outlined in equations (1.90–1.93) forms the basis of many
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elastohydrodynamic models in the literature (Camalet et al., 1999; Camalet & Jülicher,

2000; Wolgemuth et al., 2004; Lim et al., 2008; Lim, 2010; Olson & Fauci, 2015). Indeed,

subsequent work in Goldstein et al. (1998) builds upon their initial model, simplifying

the model equations by using a complex curvature parametrisation rather than one

in terms of Euclidean position. Their approach is applied to the modelling of twist-

ing �laments, observing the interplay between twisting and writhing dynamics. The

complex curvature formulation is further employed in Wiggins & Goldstein (1998),

forming the basis for an analytical study into the importance of elastohydrodynamics

in low Reynolds number propulsion. A related approach to reducing the complexity

of the equations of motion is taken by Coq et al. (2009)1, who use a spatial Fourier

transform to solve the nonlinear elastics problem coupled with resistive force theory

to investigate modes of helical wave propagation.

The generalised 3D complex curvature model, proposed by Goldstein et al. (1998),

was expanded by Wolgemuth et al. (2000) to account for nonlocal hydrodynamic in-

teractions using slender body theory. Filaments are actuated through a ‘crankshaft’

motion; the �bre is pinned in space at one end, and rotated about its centreline tan-

gent at the point through a twist injection, in a motion akin to a drive shaft in an

engine. Simulations of �laments driven in this way revealed that twist/writhe buck-

ling regimes follow a Hopf bifurcation due to the competing forces from the active

twisting (turning the �lament at its base), twist di�usion, and writhing.

Versatility of the energy functional argument, and in particular its description of

the equations of motion in terms of positions, promotes it as a natural modelling choice

for reduced planar problems. In a pair of papers from the mid 2000s, Zhu & Peskin
1Whilst the elastohydrodynamic method considered in Coq et al. (2009) features no inextensibility

constraint, we mention it here for its novel method for reducing the complexity of the model equations.
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depart from much of the literature by simulating the planar dynamics of �laments

in an incompressible two dimensional Navier-Stokes �uid, solved using the immersed

boundary integral method, considering �rst �apping in soap �lms (Zhu & Peskin, 2002)

and later �bres in shear (Zhu & Peskin, 2007), noting the e�ects of �lament length and

�exibility on beat shape and drag.

Numerical instabilities in solving for the tension equation can propagate, leading

to unwanted errors and potential violation of the inextensibility condition. By instead

enforcing inextensibility through the numerical approximation

1

2

(Xs ⋅ Xs)t = Xs ⋅ Xts = �(1 − Xs ⋅ Xs), (1.94)

errors in length are removed, with � a constant de�ning the strength of the damp-

ing (Tornberg & Shelley, 2004). Large values for � will punish even small deviations

in the �agellum length (given by Xs ⋅ Xs) from the desired unit value. The form in

equation (1.94) can be physically interpreted as arising from a linear spring, with sti�-

ness linearly proportional to �, acting instantaneously at each material point of the

�lament and working to preserve arclength. Coupling nonlocal hydrodynamics via

slender body theory with equations for 3D bending, Tornberg & Shelley (2004) simu-

late large arrays of passive �laments in shear and examine the buckling arising therein,

in a setup analogous to the macroscale structure of viscoelastic �uids comprising long,

thin, elastic �bres. Similar studies into �laments in shear have been performed by

Pozrikidis (2011); Bouzarth et al. (2011).

Gadêlha et al. (2010) highlights the di�erences in cell shape and trajectory obtained

when modelling the �agellum using either geometrically linear or nonlinear beam the-

ory. In many biophysical scenarios, such as sperm swimming in cervical mucus, �ag-
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ellum curvature is high, yielding linear beam theory inappropriate. With this in mind,

the authors derive the sperm equation,

Sp4Xt = −Xssss − (
 − 1)(Xs ⋅ Xssss)Xs + TXss + 
TsXs + fsn + 
f ns , (1.95)

a geometrically nonlinear equation for the �agellum centreline X(s, t), where 
 = c⟂/c∥

describes the ratio of normal to tangential viscous drag, T is the Lagrange multiplier of

tension, and f is a prescribed function controlling the active shear of the �agellum. The

sperm number, which indicates the relative dominance of viscous e�ects to elasticity,

is de�ned

Sp = L
(

c⟂!

E
)

1/4

, (1.96)

and derives from nondimensionalisation of the underlying linear partial di�erential

equations. Similar parameters, though not labelled as such, are used in early modern

studies by Wiggins & Goldstein (1998) and Camalet et al. (1999). Gadêlha et al. (2010)

couple a planar elastohydrodynamic �lament to a rigid three dimensional ellipsoid ap-

proximating the sperm head, with �uid interactions approximated using resistive force

theory. The model predicts the spontaneous emergence of buckling modes altering the

direction of swimming when using the nonlinear geometric model. This behaviour is

observed across a range of governing actuation and viscoelastic parameters, conclud-

ing that shape nonlinearity is essential in the rheology of motile sperm and cilia. The

model was later adopted by Montenegro-Johnson et al. (2015), extended to include non-

local hydrodynamics through a combination of L.G.L. theory (Gueron & Liron, 1992),

regularised stokeslets, and the standard boundary element method. Sperm cells swim-

ming over a microchannel backstep are de�ected in relation to the viscous and elastic

parameters of the �uid and �agellum, with important applications in microchannel
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fabrication for assisted reproduction techniques.

1.4.2 Bead models

Alongside continuum models for geometry, extensive research continues into direct

discrete models for geometrically nonlinear �laments. Such models often describe the

�bre as a sequence of connected discs (in two dimensions) or spheres (in three dimen-

sions), and so are thus referred to here as beadmodels. As a result of their versatility and

relative ease of implementation, researchers from a wide range of scienti�c disciplines

have used bead models, with particularly extensive use in polymer physics (Yamakawa,

1970; Meunier, 1994; Jian et al., 1997; Jendrejack et al., 2000, 2002; Schroeder et al., 2004;

Schlagberger & Netz, 2005; Bailey et al., 2008; Yamanoi et al., 2010; Gao et al., 2012).

Here, we consider only their applications in the mechanics of bio�uids.

A continuous elastic �lament is discretised through beads placed along its length.

For a particular bead model, one must consider three key e�ects: elasticity between

beads, hydrodynamics of individual and connected beads, and kinematic constraints

enforcing, for example, �xed bead spacing or macroscale inextensibility. Bead mod-

els generally fall into one of three variants, which address primarily the elastic and

constraint problems in di�erent ways. Hydrodynamic considerations can be consid-

ered separately provided the formulation is consistent. Following the terminology of

Delmotte et al. (2015a), these categories are spring models (SM), joint models (JM), and

gears models (GM). A diagram illustrating these constructions (redrawn from Delmotte

et al. (2015a)) is given in �gure 1.11. In what follows, we consider examples across the

literature of all three model types.

An early and comprehensive study by Yamamoto & Matsuoka (1993) used a bead
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Figure 1.11: Schematic comparing di�erent bead models. In the bead and
spring model (BSM), a linear spring works to preserve the inter particle dis-
tance. The joint model (JM) assumes bending occurs about connection points
ci exterior to beads. Choosing the outer spacing "g too small leads to overlap-
ping upon bending. Gears models (GM) enforce a no slip condition between
beads, so that the velocity of the connection point ci is vci between each pair.
Figure redrawn from Delmotte et al. (2015a).

model for three dimensional elasticity, accounting for bending, stretching, and twist-

ing. Inextensibility is enforced through a spring model, with elastic deformations in-

cluded by considering the torque generated following rotations between successive

beads, constrained by elasticity constants describing the material properties of the �l-

ament. Modelling �uid dynamic interactions through local Stokes drag laws for the

force and moment, simulations of �laments in shear �ow produced results in good

agreement with the analytic results of Je�ery (1922) (for rigid �bres) and experimental

observations of �exible �bres (Yamamoto & Matsuoka, 1993). Lowe (2003) improves

the accuracy of the local hydrodynamic model when applied to moderately slender

rods, numerically precomputing resistance coe�cients based on those for a �lament

of in�nite length (derived much earlier by Cox (1970)). By comparing their model to

experimental results at the time, Lowe highlights a disagreement in results theorised

to derive from underestimating the �agellum sti�ness.

Schlagberger & Netz (2005) employed a BSM to describe the elastohydrodynamic
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behaviour of �laments moving through gravitational and electrical �elds, with simu-

lation results matching observations of buckling in anomalous electric birefringence

experiments on viral particles. A similar approach by Jayaraman et al. (2012) couples

a nonlocal singular stokeslet hydrodynamic model to the BSM elastics to model the

buckling of an inextensible �bre in an extensional �ow. In particular, Jayaraman et

al. include a Lennard-Jones potential to prevent �lament self-intersections. To model

inextensible �laments, spring models necessitate large values for the spring constants,

contributing greatly to the numerical sti�ness of the problem and thus limiting their

use for �agellar modelling. Linear spring models can be prone to spurious oscilla-

tions leading to potential instabilities (Delmotte et al., 2015b); nonlinear springs have

proven to be e�ective in avoiding this issue (Jendrejack et al., 2000, 2002) but have thus

far been used primarily only in polymer simulations as opposed to �agella modelling.

Nonetheless, bead models remain a popular choice for modelling elastohydrodynamic

�laments, with recent work by Zuk et al. (2021) coupling the spring model for elasticity

with a general Rotne-Prager-Yamaka (RPY) tensor and multipole expansion with lubri-

cation corrections,x to further probe the buckling phenomenon of elastica in shear. In

the RPY approach, hydrodynamic velocities un and angular velocities!n of n = 1, … , N

beads are approximated by

⎛
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, (1.97)

where Fm and Mm are the force and moment exerted by the bead onto the �uid. In an
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in�nite �uid, the component subtensors are de�ned
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nm
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where I is the three dimensional identity matrix, � is the Levi-Civita tensor, a is the

bead radius, � is the �uid dynamic viscosity, and r̂nm = rnm/‖rnm‖, where rnm is the

vector separating the nth and mth beads (Schoeller et al., 2021).

An alternative approach is that of a joint model (JM), which assumes that adja-

cent beads connect at exterior contact points ci o� or close to the surface of the beads

(see �gure 1.11). These approaches have been used for simulating �bre �occulation

(Schmid et al., 2000) and �lament suspensions (Qi, 2006). Joint models, whilst alleviat-

ing sti�ness caused by spring sti�ness, feature an additional constraint on the allow-

able curvature of the macroscale �lament before beads overlap, expressible in terms of

the bead radius a and joint distance "g as

�max =
1

a

√

1 −
(

a

a + "g
)

2

. (1.99)

With this in mind, problems with, or producing, highly nonlinear geometric �lament

shapes warrant larger values of "g , leading to potential violation of the nonholonomic

requirement, making joint models undesirable for modelling, for example, hyperacti-

vated sperm cells.

Delmotte et al. (2015a) proposes the gears model (GM), geared to address the short-
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comings of other types of bead model through assumption of a no-slip nonholonomic

condition between connected beads. Kinematic constraints are enforced through an

Euler-Lagrange formalism, with elasticity in the model described through the familiar

constitutive bending laws discussed in section 1.3.3 (Landau & Lifshitz, 1965). Nonlo-

cal hydrodynamics are included through use of the RPY tensor (see equation (1.97)),

including modi�cations by Wajnryb et al. (2013) to include shear e�ects. The resulting

model is applied to a number of dynamic 2D and 3D problems, with the authors not-

ing improved stability and increased applicability of their approach opposed to spring-

and joint-type bead models.

1.4.3 Kirchho� rod models

Increases in computational power over the past two decades have allowed increasingly

complex descriptions of nonlinear geometry, elasticity, and nonlocal hydrodynamics

to be coupled and solved to comprehensively simulate problems in elastohydrodynam-

ics. As a result, methods directly coupling the Kirchho� equations (derived in section

1.3.3) for slender body elastodynamics with hydrodynamics have become increasingly

popular. We refer to such models as Kirchho� rod models. Whilst deriving from similar

continuum principles, Kirchho� rod formulations contrast to models deriving from an

energy-derived formulation in explicitly including variables describing the three di-

mensional orientation of the �lament at each material point, a detail treated implicitly

in other approaches.

A number of early studies considered three dimensional elastic �laments in the

absence of hydrodynamics. Developments in the mid-1990s by Klapper & Tabor (1994)

derived model equations for general elastic deformations through a similar but distinct
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‘ribbon’ description for twisting �bres. Later improvements in Klapper (1996) used

a modi�ed Frenet-Serret orthonormal frame to avoid singularities for cases of zero

curvature. A study by Bishop et al. (2004) considering purely elastodynamics provided

analytical solutions to many simple problems, a�orded by the reduced complexity of

the isolated setup.

Coupling with a local hydrodynamic force model, Goriely & Tabor (2000) probed

the stability of twisted rings and rods, enforcing inextensibility in the latter using a

novel perturbation scheme. Wolgemuth et al. (2004) considered the dynamics of grow-

ing elastic �laments in �uid, formulating equations with a time-varying extensibility

constraint. The authors show, through both numerical simulation and linear stability

analysis, two dynamic regimes, with small amounts of twist leading to Euler beam-

like buckling, and large amounts of twist producing writhing, plectonemic windings

comparable to common polymer con�gurations.

A distinct but heuristically similar model following classical arguments from Lan-

dau & Lifshitz (1965) was presented in Gueron & Levit-Gurevich (2001a,b), build-

ing upon previous works examining the dynamics of cilia and multicilia interactions

(Gueron & Liron, 1992, 1993; Gueron & Levit-Gurevich, 1998). The equations of mo-

tion for the �lament are given as functions of the curvatures, and coupled with a be-

spoke nonlocal hydrodynamic scheme accounting for �uid interactions with nearby

objects and boundaries. The resulting framework is extremely versatile for elastohy-

drodynamic modelling of slender bodies. A detailed study of ciliary motion demon-

strates metachronal coordination arising from nonlocal hydrodynamics (Gueron &

Levit-Gurevich, 2001b).

In a pair of publications, Lim and coauthors employed Kirchho� models to sim-

ulate elastica coupled with the incompressible Navier-Stokes equations. Considering
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�rst closed hoop shapes, Lim et al. (2008) provides insight on the buckling and sensi-

tivity of bending and twisting closed �bres to perturbations in their initial condition.

The formulation was then applied to investigate the buckling of open �laments (Lim,

2010). De�ning �bres with a nonzero intrinsic curvature leads to a distinction between

buckled helix-like shapes and stable helices.

Contemporary studies by Olson et al. (2013) incorporate the method of regularised

stokeslets to further improve the accuracy of coupled hydrodynamic interactions. Ap-

plying their framework to a range of elastohydrodynamic problems, Olson and coau-

thors note the substantial reduction in computational cost a Kirchho� rod model with

meshless hydrodynamics boasts over general boundary integral methods. This model

forms the base of Huang et al. (2018), extending the hydrodynamic model to include

wall interactions. Considering a variety of parameter-driven planar, helical, and quasi-

planar beats, they �nd that helical beats are less propulsive than planar waveforms. Re-

cent work in Carichino & Olson (2019) further extends the framework introduced in Ol-

son et al. (2013) by incorporating a calcium-curvature coupling to generate propulsive

waveforms through control of a calcium gradient, providing insights into the interplay

between microscale mechanosensing of sperm and macroscale elastohydrodynamic ef-

fects.

A recent comprehensive modelling framework, proposed by Schoeller et al. (2021),

avoids singularities in curvature and sti� partial di�erential equations by recasting the

problem using quaternions to track rotations of the director frames. For example, using

the notation of the paper, the constitutive moment equation (equivalent to equation

(1.87))

M = KB[�̂(t̂ ⋅ �̂s − ��) + �̂(�̂ ⋅ t̂s − �� )] + KT t̂[�̂ ⋅ �̂s − 
0], (1.100)
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(where {t̂, �̂, �̂} form an orthonormal basis, �� , �� and 
0 are intrinsic curvatures, and

KB and KT are bending and twisting moduli) can be rewritten in the compact form

M = R(q)D([2q
∗
∙ q

s
]ℝ3 − (
0, �� , �� )

T

), (1.101)

where q is a unit quaternion, R(q) = (t̂, �̂, �̂ ) and D = diag(KT , KB, KB). Other model

equations are similarly rewritten. Using quaternions provides the additional bene�t

of reducing algorithmic memory requirements compared to storing rotation matrices,

which can be very large, depending on the resolution and number of �laments consid-

ered. Modelling nonlocal hydrodynamics using the force coupling method, extremely

large suspensions of both active and passive �laments can be modelled, allowing for

simulations of complex experiments previously con�ned to a laboratory setting.

1.4.4 Angle formulations

Despite the generality and versatility of many of the approaches considered in this re-

view, in many cases, the resulting model equations are collections of highly-nonlinear,

highly-coupled partial di�erential equations. Such systems require careful discretisa-

tion and often yield tight restrictions on allowable time step sizes, with simulations

(even those exploiting modern parallelisation techniques) measuring on the order of

hours, if not days, of CPU time.

There has been a surge of recent interest in alternative approaches in modelling and

numerical implementation to alleviate this cost. Moreau et al. (2018) demonstrated that

by de�ning nonlinear planar �lament geometry through the evolving tangent angle,

elastohydrodynamic problems could be described with reduced degrees of freedom

with great accuracy. Employing a method of lines description of the �lament, equa-
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tion (1.80) can be discretised as

X̃ [m] = X0 +

N−1

∑

n=1

Δs( cos �[n], sin �[n], 0)

T

, m = 1, … , N − 1, (1.102)

with �xed segment length Δs, conservation of arclength is guaranteed, negating the

need for computationally-costly Lagrange multipliers of tension or sti� restorative

springs. Coupling with a local hydrodynamic model, Moreau et al. (2018) show the

versatility of this approach by simulating crosslinked �lament bundles, �bre buckling,

and magnetically actuated swimmers.

The angle formulation method was extended to included nonlocal hydrodynamic

interactions using regularised stokeslets in Hall-McNair et al. (2019), employing ad-

ditional numerical techniques such as regularised stokeslet segments (Smith, 2009;

Cortez, 2018) (see section 1.2.9 for details) to retain accuracy in coarsely-discretised

problems. This original work is discussed in detail within chapter 2 of this thesis.

Subsequent work in Walker et al. (2019); Walker & Ga�ney (2021b) improves the

force approximation on segments from piecewise constant to piecewise linear, address-

ing potential hydrodynamic errors at the �lament ends, and using regularised blakelets

to simulate elastohydrodynamics swimming close to surfaces. Simulating swimmers

perpendicular to the surface, the authors note the inaccuracy of constant-coe�cient lo-

cal hydrodynamic methods over nonlocal models. Walker & Ga�ney (2021a) extended

their formulation to model nonplanar �laments with bend and twist, using a novel

basis transformation technique to avoid singularities in the Euler angle description of

the piecewise linear �lament. The increase in complexity arising from consideration

of 3D deformations is balanced by a reduction in the hydrodynamic model, returning

to resistive force theory for ease of implementation.
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Authors & Year Elasticity Hydrodynamics

Brokaw (1971) 2D Local; RFT

Hines & Blum (1978) 2D Local; RFT

Gueron & Liron (1992) 2D Nonlocal; LGL

Yamamoto & Matsuoka (1993) 3D-B Local; Stokes law

Goldstein & Langer (1995) 3D-BT Local; RFT

Camalet & Jülicher (2000) 2D Local; RFT

Goriely & Tabor (2000) 3D-BT Local; RFT

Wolgemuth et al. (2000) 3D-BT Nonlocal; SBT

Gueron & Levit-Gurevich (2001b) 3D-BT Nonlocal; LGL

Tornberg & Shelley (2004) 3D-B Nonlocal; SBT

Gadêlha et al. (2010) 3D-B Local; RFT

Pozrikidis (2011) 3D-B Nonlocal; SBT

Bouzarth et al. (2011) 2D Nonlocal; RSM

Olson et al. (2013) 3D-BT Nonlocal; RSM

Simons et al. (2015) 2D Nonlocal; RBM

Delmotte et al. (2015a) 2D Nonlocal; RPY

Montenegro-Johnson et al. (2015) 3D-B Nonlocal; LGL, RSM

Huang et al. (2018) 3D-BT Nonlocal; RBM

Hall-McNair et al. (2019) 2D Nonlocal; RSM

Table 1.2: Summary of the key modelling features for a selection of approaches
discussed within this review. Elasticity models are divided into three cate-
gories (a) 2D, for models only allowing two dimensional bending, (b) 3D-B, for
models allowing three dimensional geometry but only bending deformations,
and (c) 3D-BT, for models accounting for both bending and twisting defor-
mations. Abbreviations are as follows: RFT: Gray & Hancock (1955) resistive
force theory; SBT: slender body theory; LGL: Lighthill–Gueron–Liron theory
(Gueron & Liron, 1992); RPY: Rotne–Prager–Yamakawa tensor method; RSM:
regularised stokeslet method (Cortez, 2001; Cortez et al., 2005); RBM: regu-
larised blakelet method (Ainley et al., 2008).



Building upon Hall-McNair et al. (2019), Neal et al. (2020) applied the nonlocal an-

gle formulation approach to human sperm cells, extending the model equations for an

isotropic �lament to account for many physiological features of the spermatozoon �ag-

ellum. Systematic simulations over a wide range of possible types of actuation reveal

that the presence of a mechanically inactive end piece (that is, a region of �agellum not

generating active bending) increases propulsive speed and swimming e�ciency. The

importance of the end piece was postulated by Omoto & Brokaw (1982), who was un-

able to verify his claim, suggesting that veri�cation would come from future numerical

simulations.
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1.5 Overview of this thesis

The rest of this thesis is structured as follows: in chapter 2, we present an angle for-

mulation model for simulating planar elastic �laments in Stokes �ows, accounting for

nonlocal hydrodynamic interactions using the method of regularised stokeslets. The

formulation, referred to as the EIF, is benchmarked against a similar angle formula-

tion using a local hydrodynamic drag law, and a nonlocal bead and spring model em-

ploying the regularised stokeslet method. We then demonstrate the applicability and

performance of the method by simulating single and multiple �laments in shear �ow,

sedimenting due to gravity, and swimming via a prescribed active moment per unit

length.

Chapter 3 investigates the e�ect of human sperm body morphology on cell swim-

ming speed and e�ciency, modelled using the EIF method augmented to model human

sperm following extensions by Neal et al. (2020). We consider three dimensional bodies

of varying axes length but �xed volume, and �xed length ratios with varying volume,

assessing the swimming speed and e�ciency of swimmers compared to a cell with an

average-shaped body.

In chapter 4, we introduce a newly-developed framework for modelling sperm

cells in three dimensions. We refer to this method throughout as the Sperm-X or SPX

method. The derivation and numerical implementation are detailed, with the method

veri�ed through comparisons to both the EIF (chapter 2) and other contemporary mod-

els. The framework is then used to investigate the dynamics of sperm swimming with

nonplanar beats in an in�nite �uid and upon approaching a rigid plane wall.

A summary of the methodology and key �ndings from across this thesis are pro-

vided in chapter 5, alongside ideas for further study. Appendices and references follow.
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Chapter 2

Integral equation formulations for
planar elastohydrodynamic
�laments via tangent angle

In this chapter, we begin by introducing the elastohydrodynamic integral equation

formulation, referred to throughout as the EIF method. The EIF is an e�cient mod-

elling framework for simulating planar elastic �laments in Stokes �ow, which accounts

for nonlocal hydrodynamic interactions, and is applicable to a multitude of problems.

In section 2.3, the EIF is benchmarked for accuracy and computational cost against

a highly re�ned bead and link method, as well as against two alternative modelling

frameworks utilising a local drag force approximation. With the model validity es-

tablished, it is applied to systems of single and multiple �laments in shear �ow, sedi-

menting under gravity, and driven by an active moment travelling wave. Results and

�ndings from these simulations are presented as they are discussed in sections 2.4.1,

2.4.2, and 2.4.3 respectively. Finally, in section 2.5, we discuss the applicability of the

EIF to modelling sperm-like cells.
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2.1 Methods for modelling the dynamics of elastic
�laments

Models for simulating the dynamics of elastic slender bodies, whilst plentiful, have

historically been mathematically complex and numerically expensive, with even sim-

ple computational experiments taking the order of hours or even days to solve – for

detailed benchmarking refer to Moreau et al. (2018). This computational cost often

arises from the need to satisfy �lament inextensibility, a property common to slender

microbiological structures such as �agella and cilia.

Numerous methods have been proposed that tackle microscale �lament problems.

Jayaraman et al. (2012) used a bead and spring method to model nonlocal buckling dy-

namics of a planar �lament in extensional �ow, a construction which forms the base of

the bead and link model introduced in section 2.3. Inextensibility in these approaches is

enforced by the prescription of large spring constants between each bead, contribut-

ing to the numerical sti�ness of the systems. In modelling the continuous �lament

as a series of discrete spheres, the bead and spring framework is similar to the gears

model used by Delmotte et al. (2015a), which satis�es inextensibility by imposing a

nonholonomic constraint to ensure nonpenetrability between adjacent beads rather

than through sti� connecting springs between each node. As a result, the gears model

necessitates large numbers of points to appropriately describe the geometry of a single

�lament. In a recent landmark study of group sperm dynamics, Delmotte et al. (2015b)

modelled large arrays of �bres, accounting for nonlocal e�ects by employing a force

coupling method, involving the computation of Lagrange multipliers of tension to en-

sure �lament inextensibility. This Lagrangian approach is also employed in methods

by Wolgemuth et al. (2000); Camalet & Jülicher (2000); Lim et al. (2008); Gadêlha et al.
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(2010); Lim (2010); Montenegro-Johnson et al. (2015).

A recent promising development via Moreau et al. (2018), referred to as coarse grain-

ing, is based on reformulating the elastohydrodynamic problem as an integral equation

with the �lament tangent angle as the dependent variable. In describing planar �la-

ments through the tangent angle, �lament extensibility is guaranteed, but nonplanar

bending and twist deformations cannot be modelled (see section 1.3.2 on the geometry

of 2d �laments). For applicable problems, the coarse-graining approach, initially de-

veloped using a local hydrodynamic drag law, provides an e�cient framework for sim-

ulating noninteracting �lament dynamics. The method builds upon the early studies

of Brokaw (1971, 1972) and Hines & Blum (1978) (discussed in section 1.1.2), and con-

trasts with Cartesian formulations such as those of Tornberg & Shelley (2004); Gadêlha

et al. (2010); Montenegro-Johnson et al. (2015).

Key to the actuation model used within the presented approach is the control mech-

anism presented by Brokaw (1971) based upon the sliding �lament model (refer to

section 1.1.2 for more details). Coupling with resistive force theory (Gray & Hancock,

1955) to model local �uid dynamics, analytical solutions to the equations for a �lament

of in�nite length indicate how bending waves can be generated through an active bend-

ing moment formulated simply in terms of the local curvature and moment per unit

length magnitude at a given material point along the arclength. Describing the �ag-

ellum shape through straight line segments and the curvature at each joint, an early

computer model by Brokaw (1972) illustrates a range of physiologically realistic wave-

forms arising from the aforementioned active moment control mechanism. Subsequent

work by Hines & Blum (1978) introduced the integral equations relating the �lament

centreline and tangent angle, later employed by Moreau et al. (2018) and the presented

formulation, laying the key foundations in the planar elasticity and geometry in terms
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of angle upon which this work is based. The focus on local interactions in Hines &

Blum (1978) allows for the numerical implementation (using a Crank-Nicolson-type

scheme) to provide fast (for the time) and accurate solutions, indicating the potential

for e�cient solution methods for elastohydrodynamic problems as early as the late

1970s.

In this chapter, we build upon this work by incorporating nonlocal hydrodynamic

interactions into the recent Moreau et al. (2018) model. Fibres may be passive or ac-

tive, and in ambient or dynamic �ows, all the while interfacing through the �uid with

themselves, others, and surrounding structures. This extension to the model is en-

abled through use of the method of regularised stokeslets (Cortez, 2001; Cortez et al.,

2005), allowing for e�cient and accurate simulations of multiple interacting dynamic

�laments. Details of the hydrodynamic model are given in section 1.2.6. Methods util-

ising regularised stokeslets have proven to be e�ective in modelling the hydrodynam-

ics in various single and multiple-�lament scenarios (Gallagher & Smith, 2020; Walker

& Ga�ney, 2021a). The framework is implemented in a numerically e�cient manner,

retaining the computational economy and low hardware requirements inherited from

the angle formulation.

The MATLAB® code for the methods described in within this chapter are provided

in an associated GitLab repository, freely accessible via Hall-McNair (2019).
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2.2 Integral equations for planar elasticity

In the following section the equations comprising the proposed EIF model are derived.

In section 2.2.1, the model equations describing the dynamics of a single passive �l-

ament are formulated, continuing from the discussions of planar �lament geometry

and elasticity in section 1.3.2. In this thesis, we refer to �laments (and later, cells) as

being passive if they are not internally actuated. Conversely, �laments which are self-

propulsive, due to internal mechanisms or otherwise, are referred to as being active or

nonpassive. The dynamics of passive �laments are dependent on their instantaneous

shape, with elastic properties acting to restore an equilibrium con�guration, assumed

throughout this thesis to be a straight line. External e�ects, such as surrounding �ows

or global forces, also contribute to deform the �lament. Equations for nonpassive �l-

aments are considered later in section 2.4. Section 2.2.2 details the nondimensionali-

sation of the model, and in section 2.2.3, we describe the semidiscretised model (that

is, the model equations discretised in space but not in time), providing additional de-

tails on the e�cient numerical implementation as MATLAB® code. Extensions to the

method to simulate multiple interacting �laments are detailed in section 2.2.4.

2.2.1 The continuous nonlinear problem

The equations comprising the EIF are derived from consideration of a planar elastic

�lament, with its dynamics modelled by constructing integral operator formulations

for the governing �uid and elastodynamic equations. In this chapter, by continuous we

refer to the nondiscretised model equations, written in terms of material variables and

integrals (rather than discrete sums). The �lament is assumed to lie in the Cartesian xy-

plane, and described using an angle formulation method as discussed in section 1.3.2.
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The �lament, parametrised by its centreline arclength s ∈ [0, L], can be constructed via

X(s, t) = X0(t) + ∫

s

0

( cos �(� , t), sin �(� , t), 0)

T

d� , (2.1)

with X0(t) ∶= X(0, t) referred to here as the leading point at a given time. The tan-

gent angle �(s, t) ∈ [−�, �) is measured between the vector tangent to the curve

t(s, t) ∶= Xs(s, t) and the �xed Cartesian basis vector ex . Here and throughout, we use

the subscript notation for di�erentiation i.e. Xs(s, t) ∶= )X(s, t)/)s. The velocity of a

point on the �lament centreline is given by di�erentiating (2.1) with respect to time t ,

yielding

Xt(s, t) = X0,t(t) + ∫

s

0

�t(� , t)( − sin �(� , t), cos �(� , t), 0)

T

d� , (2.2)

where X0,t(t) ∶= Xt(0, t). Writing the unit tangent and unit normal in terms of � as

t(s, t) = ( cos �(s, t), sin �(s, t), 0)

T

, n(s, t) = ( − sin �(s, t), cos �(s, t), 0)

T

, (2.3)

equations (2.1) and (2.2) can be written in the more condensed form as

X(s, t) = X0(t) + ∫

s

0

t(� , t) d� , Xt(s, t) = X0,t(t) + ∫

s

0

�t(� , t)n(� , t) d� , (2.4)

with s ∈ [0, L] and for t > 0.

Equations for the elastic behaviour of the �lament are given by the equilibrium

equations discussed in section 1.3.3. For a planar �lament, the orthonormal basis along

the centreline will rotate only about the out of plane axis i.e. for a �bre con�ned to the

xy-plane, the frame (t(s), n(s)) will rotate only about ez , a unit vector pointing along

the z-axis. Referencing the director frame notation from section 1.3.1, we deduce that
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�1(s, t) = �3(s, t) = 0 and the constitutive moment equation thus reduces to

M(s, t) = E�2(s, t)d2(s, t) = E�2(s, t)ez = E�s(s, t)ez =∶ M(s, t)ez . (2.5)

Letting f (s, t) denote the hydrodynamic force per unit length exerted by the �lament

on the �uid, we have that the equilibrium equations for the planar �lament are

Fs(s, t) = f (s, t), Ms(s, t) + ez ⋅ Xs(s, t) ∧ F (s, t) = 0, (2.6)

where we recall that d3 = t ∶= Xs to replace the director vector in the moment equilib-

rium equation with the unit tangent in terms of centreline position. Here and through-

out, we denote f (s, t) ∶= f (X(s, t), t) (and similarly for other variables). Integrating the

equation for the moment over the distal �lament [s, L],

∫

L

s

Ms(� , t) d� = M(L, t) − M(s, t) = −M(s, t) = − ∫

L

s

ez ⋅ X� (� , t) ∧ F (� , t) d� , (2.7)

as M(L, t) = 0 ⇒ M(L, t) = 0 at the free end. Noting that X(� , t) − X(s, t) is an

antiderivative of X� (� , t), the right hand side of (2.7) can be integrated by parts to

obtain

−
∫

L

s

ez ⋅ X� (� , t) ∧ F (� , t) d� = −ez ⋅ [(X(� , t) − X(s, t)) ∧ F(s, t)]

L

s

+ ez ⋅ ∫

L

s

(X(� , t) − X(s, t)) ∧ Fs(� , t) d� . (2.8)

Applying the force-free distal boundary conditions F(L, t) = 0 and using the force
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equilibrium equation from (2.6) yields

−
∫

L

s

ez ⋅ X� (� , t) ∧ F (� , t) d� = ez ⋅ ∫

L

s

(X(� , t) − X(s, t)) ∧ f (� , t) d� , (2.9)

which combined with the constitutive moment equation for planar bending (2.5) re-

sults in the elastodynamic equation

E�s(s, t) + ez ⋅ ∫

L

s

(X(� , t) − X(s, t)) ∧ f (� , t) d� = 0, (2.10)

where 0 6 s 6 L and t > 0.

To model the hydrodynamic interactions between the �lament and the �uid we

employ the method of regularised stokeslets as introduced in 1.2.6. Consequently, in-

teractions between the �lament and itself, as well as with other surrounding bodies

and structures are modelled. The �lament, exerting a force per unit length f (s, t) on

the surrounding �uid, moves with velocity

u(X(s, t), t) =

1

8��
∫

L

0

S
"

(X(s, t), X(� , t)) ⋅ f (� , t) d� , 0 6 s 6 L, t > 0. (2.11)

where the rank-2 tensor in the integrand S" is the regularised stokeslet, as de�ned in

section 1.2.6 equation (1.40). The constant " is the regularisation parameter. In using the

method of regularised stokeslets, ‘blob’ forces are assumed to act along the �lament

centreline, and in this sense " is given physical meaning as a proxy for the �agellar

radius. Further details of the regularised stokeslet method are given in section 1.2.6.

Assuming a no-slip condition u(X(s, t), t) = Xt(s, t) on the surface of the �lament, we
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can write the hydrodynamic velocity in terms of position as

Xt(s, t) =

1

8��
∫

L

0

S
"

(X(s, t), X(� , t)) ⋅ f (� , t) d� , 0 6 s 6 L, t > 0. (2.12)

Inertialess dynamics requires that the �lament is force and moment free at each instant,

giving the total force and total moment balance equations

∫

L

0

f (s, t) ds = 0, (2.13a)

∫

L

0

X(s, t) ∧ f (s, t) ds = 0. (2.13b)

Taking the geometric and kinematic equations (2.1, 2.2) along with the hydrodynam-

ics equations (2.12, 2.13a, 2.13b) and elastics equation (2.10) forms the dimensional

elastohydrodynamic integral formulation (abbreviated throughout to EIF) method for

simulating a passive elastic �lament.

2.2.2 Nondimensionalisation of the EIF for a passive �lament

The model is scaled spatially by the �lament length L and temporally by � . Scalings

for other variables in the model follow as

s = Lŝ, X = LX̂ , t = � t̂ , f =

�L

�

̂
f , " = L"̂ (2.14)

where the use of a hat ⋅̂ indicates a dimensionless variable. For the case of a passively

relaxing �lament in a stationary �ow, there is no natural timescale inherent to the prob-

lem; � is thus a yet-to-be-determined scaling whose form will be chosen to simplify the

dimensionless model. The geometry and kinematic velocity of the �lament are given
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by the expressions in equation (2.4) but with ŝ ∈ [0, 1] now being the dimensionless

arclength, so that

X̂ (ŝ, t̂ ) = X̂0(t̂) + ∫

ŝ

0

t(� , t̂) d� , X̂
t̂
(ŝ, t̂ ) = X̂

0,t̂
(t̂) +

∫

ŝ

0

�
t̂
(� , t̂)n(� , t̂) d� . (2.15)

Substituting the expressions for the scaled variables from (2.14) into the regularised

stokeslet integral equation yields

X̂
t̂
(ŝ, t̂ ) =

1

8�
∫

1

0

Ŝ
"̂

(X̂ (ŝ, t̂ ), X̂ (� , t̂)) ⋅
̂
f (ŝ, t̂ ) d� , (2.16)

noting that the regularised stokeslet scales as

S
"

ij(x, y) = �ij

L
2
(r̂
2
+ 2"̂

2
)

L
3
r̂
3

"̂

+

L
2
r̂i r̂j

L
3
r̂
3

"̂

=

1

L

Ŝ
"̂

ij
(x̂, ŷ), (2.17a)

where x = Lx̂, y = Lŷ, r = L(x̂ − ŷ) = Lr̂ . (2.17b)

The total force and total moment balance equations scale as

∫

1

0

̂
f (� , t̂) d� = 0, (2.18a)

∫

1

0

X̂ (� , t̂) ∧
̂
f (� , t̂) d� = 0. (2.18b)

Similarly, the elastics equation (2.10) nondimensionalises as

�ŝ(ŝ, t̂ ) + ez ⋅

�L
4

E�
∫

1

s

(X̂ (� , t̂) − X̂ (ŝ, t̂ )) ∧
̂
f (� , t̂) d� = 0. (2.19)

The time scaling � = �L
4
/E is chosen to remove the coe�cient of the integral on the

right hand side. Combining the above nondimensional equations with the nondimen-
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sionalised kinematic velocity equation, we obtain the dimensionless elastohydrody-

namic integral formulation for the evolution of a passive xy-planar �lament in sta-

tionary Stokes �ow. Removing the hats for clarity, the system of equations is

Xt(s, t) =

1

8�
∫

1

0

S
"

(X(s, t), X(� , t)) ⋅ f (s, t) d� , (2.20a)

0 =
∫

1

0

f (s, t) ds, (2.20b)

0 =
∫

1

0

X(s, t) ∧ f (s, t) ds, (2.20c)

�s(s, t) = −ez ⋅ ∫

1

s

(X(� , t) − X(s, t)) ∧ f (� , t) d� , s ∈ [0, 1], (2.20d)

where X(s, t) = X0(t) + ∫

s

0

t(� , t) d� , s ∈ [0, 1], (2.20e)

and Xt(s, t) = X0,t(t) + ∫

s

0

�t(� , t)n(� , t) d� , s ∈ [0, 1], (2.20f)

with unknowns X0(t), �(s, t) and f (s, t). Solving the EIF requires speci�cation of the

initial leading point position X0(0) and �lament shape through �(s, 0), s ∈ [0, 1].

2.2.3 Spatial semidiscretisation of the EIF

To solve the EIF, we spatially discretise the �lament to obtain a set of numerically

approximated ordinary di�erential equations which can be computationally evaluated.

In this section we consider the so-called semidiscrete problem, discretising spatially

but leaving variables continuous in time. Dividing the centreline arclength into N − 1

segments of length Δs = 1/(N −1), the positions of the resulting segment endpoints (or

joints of the piecewise linear �lament) are denoted as

X[n](t) ∶= X((n − 1)Δs, t), n = 1, … , N , t > 0. (2.21)
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Figure 2.1: Schematic of the geometric discretisation of a continuous �la-
ment used in the EIF. The centreline arclength is split into N − 1 segments
of equal length Δs which comprise a piecewise linear approximation to the
curve. The tangent angles, measured at the midpoint of each segment, are
̃
�[n] for n = 1, … , N − 1, de�ne the �lament shape at each instant.

The tangent angle to the curve at the midpoint between each pair of consecutive nodes

approximates �(s, t) and is denoted ̃
�[n](t) for each segment n = 1, … , N − 1. The

positions of the joints are given in terms of the leading point (X[1](t) = X0(t)) and

discretised tangent angle by applying the midpoint rule to equation (2.20e) to obtain

X[n + 1](t) = X[1](t) +

n

∑

m=1

Δs( cos
̃
�[m](t), sin

̃
�[m](t), 0)

T

, (2.22)

for n = 1, … , N − 1. In what follows, it will be useful to express the segment midpoints

X̃ [m](t) ∶= (X[m](t) + X[m + 1](t))/2 in terms of the discretised tangent angles, and

so we write

X̃ [n](t) = X[1](t) +

n−1

∑

m=1

Δs( cos
̃
�[m](t), sin

̃
�[m](t), 0)

T

+

Δs

2
( cos

̃
�[n](t), sin

̃
�[n](t), 0)

T

, (2.23)

for each n = 1, … , N − 1. A schematic of the discretisation described here is presented

in �gure 2.1. Di�erentiating the above with respect to t yields a kinematic equation
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for the midpoint velocities as

X̃t[n](t) = Xt[1](t) +

n−1

∑

m=1

Δs
̃
�t[m](t)( − sin

̃
�[m](t), cos

̃
�[m](t), 0)

T

+

Δs

2

̃
�t[n](t)( − sin

̃
�[n](t), cos

̃
�[n](t), 0)

T (2.24)

For the �uid dynamics (equation (2.20a)), rather than using a conventional (and po-

tentially computationally expensive) quadrature rule to evaluate the rapidly-varying

regularised stokeslet kernel, we employ the method of Smith et al. (2009b) as discussed

in section 1.2.9. By approximating the force density in equation (2.20a) as piecewise

constant along each segment, the kernel can be analytically integrated, reducing the

level of quadrature needed to evaluate the comparatively slowly-varying force density

(for higher order force discretisations see Cortez (2018); Walker & Ga�ney (2021a)).

The arclength at the midpoint of each discrete segment is denoted

s̃[m] =

1

2

(s[m] + s[m + 1]) , m = 1,… , N − 1. (2.25)

The force per unit length is then discretised based upon the value at the segment mid-

point, so that

f (s, t) ≈ f (s̃[m], t) ∶=
̃
f [m](t), for (m − 1)Δs 6 s < mΔs. (2.26)

Combined with a piecewise linear discretisation of the �lament

X(s, t) ≈ X̃ [m](t) + (s − s̃[m])t̃[m](t), (2.27a)

= X̃[m](t) + (s − s̃[m])( cos
̃
�[m](t), sin

̃
�[m](t), 0)

T

, (2.27b)
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for each m = 1,… , N − 1, we obtain the spatially discrete equation

X̃t[n](t) =

1

8�

N−1

∑

m=1

̃
f [m](t)

⋅
∫

mΔs

(m−1)Δs

S
"

(
X̃[n], X̃ [m] + (� − s̃[m])( cos

̃
�[m](t), sin

̃
�[m](t), 0)

T

)
d� . (2.28)

for n = 1, … , N −1. The integral on the right hand side of (2.28) can be calculated exactly

by transforming to a local coordinate system in which one axis is aligned with the

segment tangent (details in 1.2.9). For brevity, this integral is denoted I "[n, m](t; Δs),

allowing the regularised stokeslet integral equation 2.20a to be written as

X̃t[n](t) =

1

8�

N−1

∑

m=1

I
"
[n, m](t; Δs) ⋅

̃
f [m](t), n = 1, … , N − 1. (2.29)

The total force and total moment balance equations are discretised by employing the

midpoint rule as

N−1

∑

m=1

Δs
̃
f [m](t) = 0, (2.30a)

N−1

∑

m=1

Δs X̃[m](t) ∧
̃
f [m](t) = 0. (2.30b)

Since moments only act out of the plane of bending, the total moment balance equation

reduces to

ez ⋅

N−1

∑

m=1

Δs X̃[m](t) ∧
̃
f [m](t) = 0. (2.31)

The elastics equations (2.20d) discretise in a similar manner, with the derivative �s(s)

approximated through a backwards �nite di�erence. The semidiscrete form of the EIF
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is then

X̃t[n](t) =

1

8�

N−1

∑

m=1

I
"
[n, m](t; Δs) ⋅

̃
f [m](t), (2.32a)

0 =

N−1

∑

m=1

Δs
̃
f [m](t), (2.32b)

0 = ez ⋅

N−1

∑

m=1

ΔsX̃[m](t) ∧
̃
f [m](t), (2.32c)

̃
�[n + 1](t) −

̃
�[n](t)

Δs

= −ez ⋅

N−2

∑

m=n

Δs(X̃[m + 1](t) − X[n + 1](t)) ∧
̃
f [m + 1] (2.32d)

where X[n](t) = X[1](t) +
N−1

∑

m=1

Δs( cos
̃
�[m](t), sin

̃
�[m](t), 0)

T

, (2.32e)

X̃ [n](t) = X[n](t) +

Δs

2
( cos

̃
�[n](t), sin

̃
�[n](t), 0)

T

, (2.32f)

and X̃t[n](t) = Xt[1](t) +

n−1

∑

m=1

Δs
̃
�t[m](t) ñ[m](t) +

Δs

2

̃
�t[n](t) ñ[n](t), (2.32g)

with ñ[n](t) = ( − sin
̃
�[n](t), cos

̃
�[n](t), 0)

T

, (2.32h)

where n = 1, … , N − 1 in equations (2.32a, 2.32f, 2.32g, 2.32h), n = 1, … , N − 2 in

(2.32d) and n = 2, … , N in (2.32e). By using equations (2.32f) and (2.32g), the vari-

ables X̃ [1](t), … , X̃ [N ](t) and X[2](t), … , X[N − 1](t) can be eliminated from equa-

tions (2.32a, 2.32c, 2.32d). The resulting system is then linear in the shape unknowns

Xt[1](t),
̃
�t[1](t) … ,

̃
�t[N − 1](t) and force density unknowns ̃

f [1](t), … ,
̃
f [N − 1](t).

Hence, given the discrete con�guration X[1](t),
̃
�[1](t), … ,

̃
�[N − 1](t), the rate of

change of position and angle can be found by solving a dense (3(N −1)+2)×(3(N −1)+2)

system of linear equations. The semidiscrete system can be expressed concisely as a

nonlinear initial value problem

Zt =  (Z), Z(0) = Z0, (2.33)
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where

Z(t) ∶= (X[1](t),
̃
�[1](t), … ,

̃
�[N − 1](t))

T

, (2.34)

and Z0 is determined by the problem under consideration. By augmenting the problem

with the unknown forces per unit length, this can be written as the matrix system

A

⎛

⎜

⎜

⎜

⎝

Ż

̃
f

⎞

⎟

⎟

⎟

⎠

= b, (2.35)

where Ż ∶= Zt and with

A =

⎛

⎜

⎜

⎜

⎝

0 AE

AK AH

⎞

⎟

⎟

⎟

⎠

, (2.36a)

b =
(
0,

̃
�[2](t) −

̃
�[1](t)

Δs

, … ,

̃
�[N − 1](t) −

̃
�[N − 2](t)

Δs

, 0, … , 0
)

T

, (2.36b)

̃
f = (

̃
fx[1], … ,

̃
fx[N − 1],

̃
fy[1], … ,

̃
fy[N − 1])

T

, (2.36c)

where A is a (3(N −1)+2) × (3(N −1)+2) block matrix, b is a 3(N −1)+2 column vector,

and ̃
f is a 2(N − 1) column vector so that the concatenation (Ż , ̃f )T is a 3(N − 1) + 2 col-

umn vector. The nonzero matrix blocks ofA, AE , AK andAH encode the elastodynamic,

kinematic, and hydrodynamic equations given by equations (2.32d,2.32g,2.32a) respec-

tively. In the vector b, the �rst entry corresponds to the moment balance on the whole

�lament (via equation (2.32c)); the subsequent N − 1 rows are the moment balance

about each interior joint via equation (2.32d). The next two rows correspond to the to-

tal force balance from equation (2.32b), noting that the out-of-plane z-component will

be zeros and thus not included in the formation of the linear system. The remaining
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zero entries correspond to the equivalence between the hydrodynamic and kinematic

velocities in equations (2.32a) and (2.32g). In the special case of a passive (unactuated)

�lament, the linear system (2.33) is autonomous.

The matrix system (2.35) is solved at each time step using the MATLAB® mldivide

command for Ż and ̃
f . The resulting rates vector Ż is integrated using the built-in

variable step, variable order ODE solver ode15s (Shampine & Reichelt, 1997) to obtain

the leading point X[1](t) and tangent angles ̃
�[1](t), … ,

̃
�[N − 1](t), from which the

�lament shape can be obtained via equation (2.32e). Settings for ode15s are kept at

the MATLAB® defaults; in particular, the absolute and relative error tolerances are

10
−6 and 10−3 respectively. In using many of the built-in functions MATLAB® provides,

we ensure that the code scales across di�erent hardware con�gurations without any

additional work from the user. Moreover, the framework bene�ts from the robust and

optimised algorithms the MATLAB® functions o�er.

While this IVP exhibits some sti�ness, it is less sti� than the systems produced by

other methods, as the integral formulation avoids the need of additional Lagrange mul-

tipliers of tension to ensure �lament inextensibility. Such methods require increasing

the degrees of freedom leading to methods that are computationally costly, with addi-

tional precautions necessary to minimise numerical errors, such as damping (Tornberg

& Shelley, 2004; Montenegro-Johnson et al., 2015). For example, the position formula-

tion method by Montenegro-Johnson et al. (2015) requiresN = 160 nodes per �agellum

to ensure convergence of the nonlinear solver and enforce inextensibility, thus yield-

ing at minimum a 3N × 3N = 480 × 480 sized linear system for the geometry alone;

as we will see in section 2.3.1, the EIF requires as little as N = 21 (i.e. 20 segments)

for converged results, requiring only N equations to describe �bre shape. By discretis-

ing the �lament into segments of equal and �xed length, and by describing the curve
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centreline through the tangent angles of these segments (via equation (2.32e)), inex-

tensibility of the �bre is guaranteed by construction. The bene�ts of this are explored

in more detail in the following section 2.3.1.

The right hand side vector b of (2.35) is zero in every entry aside from those con-

taining curvature values, which is computed through a �nite di�erence of the tangent

angles about the joints of the discrete model. As a result, when the �lament is ex-

actly straight, b = 0 and the linear system is singular. For dynamic problems, this is

rarely a concern as the likelihood of the �lament becoming exactly straight is very

low. For those problems where a linear con�guration is expected (such as the relaxing

�lament problems in section 2.3.1) or desired (as the initial condition for the sedimen-

tation problems in section 2.4.2), issues can be avoided by ending the simulation upon

approaching a singular system (for the �rst example) or by presolving the problem

with reduced degrees of freedom. In the latter case, we simulate for a short amount of

small fraction (<1%) of the total time with a coarser �bre representation, then interpo-

late (using a cubic interpolating spline using the MATLAB® csaps function) to obtain

a new initial condition with the required level of discretisation for the problem. This

new initial condition then satis�es the model equations but will be su�ciently curved

so as to not yield a singular system. Both approaches are discussed further in sections

2.3.1 and 2.4.2 respectively.

2.2.4 Arrays of multiple �laments

The EIF can be used to simulate the dynamics of large groups of �laments, accounting

for the nonlocal hydrodynamic interactions between them. For each of the problems

presented in sections (2.4.1,2.4.2,2.4.3), the kinematic and elastodynamic equations ap-
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ply to each �lament in the system individually. The hydrodynamic equations are ex-

tended so that the interactions between all �laments are considered. For a collection of

M passively relaxing planar (though not necessarily coplanar) �laments, this equation

reads

X
(�)
(s, t) =

1

8�

M

∑

�=1

∫

L
(�)

0

S
"

(X
(�)
(s, t), X

(�)
(� , t)) ⋅ f

(�)
(� , t) d� , � = 1, … ,M, (2.37)

where the superscript (�) in this continuous equation refers to the arbitrarily iden-

ti�ed �
th �lament in the array. Whilst three dimensional hydrodynamic e�ects are

computed, the kinematics and elasticity of the multiple �lament problem remains two

dimensional, ensuring the planarity assumption is not violated.

Modi�cation of equation (2.37) to consider external �ows, body forces, or actu-

ation follows from the single �lament derivations presented in sections (2.4.1, 2.4.2,

2.4.3). Nondimensionalisation in each case will yield the same governing dimension-

less groups for the each problem respectively. Discretisation is similarly performed,

producing a linear system comparable in overall structure to that for a single �lament

problem.

For the (simplest) passively relaxing �lament problem, the rates of change

of leading points X̃
(1)

t
[1](t), … , X̃

(1)

t
[M](t) and rates of change of tangent an-

gles ̃
�
(1)

t
[1](t), … ,

̃
�
(1)

t
[M](t) for each �lament are obtained by solving the dense

(3M(N − 1) + 2M) × (3M(N − 1) + 2M) system of linear equations. At each time step

the matrix system is

A

⎛

⎜

⎜

⎜

⎝

Ż

F̃

⎞

⎟

⎟

⎟

⎠

= b, (2.38)
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where

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

(AE)
(1)

x
0 (AE)

(1)

y
0

⋱ ⋱

0 (AE)
(M)

x
0 (AE)

(M)

y

(AK )
(1)

x
0

⋱ (AH )xx (AH )xy

0 (AK )
(M)

x

(AK )
(1)

y
0

⋱ (AH )yx (AH )yy

0 (AK )
(M)

y

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(2.39)

and the vectors Ż , F̃ , and b are, letting Q = N − 1, written

Ż =
(
X
(1)

0,t
(t),

̃
�
(1)

t
[1](t), … ,

̃
�
(1)

t
[Q](t), … ,

X
(M)

0,t
(t),

̃
�
(M)

t
[1](t), … ,

̃
�
(M)

t
[Q](t)

)

T

, (2.40a)

F̃ =
(

̃
f
(1)

x
[1], … ,

̃
f
(1)

x
[Q], … ,

̃
f
(M)

x
[1], … ,

̃
f
(M)

x
[Q],

̃
f
(1)

y
[1], … ,

̃
f
(1)

y
[Q], … ,

̃
f
(M)

y
[1], … ,

̃
f
(M)

y
[Q]

)

T

, (2.40b)

b =
(
0,

̃
�
(1)
[2](t) −

̃
�
(1)
[1](t)

Δs

, … ,

̃
�
(1)
[Q](t) −

̃
�
(1)
[N − 2](t)

Δs

, 0, 0, … ,

0,

̃
�
(M)
[2](t) −

̃
�
(M)
[1](t)

Δs

, … ,

̃
�
(M)
[Q](t) −

̃
�
(M)
[N − 2](t)

Δs

, 0, 0, 0, … , 0
)

T

, (2.40c)

where Ż and F̃ are M(N + 1) and 2M(N − 1) column vectors respectively. The system

(2.38) is solved in the same manner as described in section 2.2.3.

97



2.3 Comparisons to similar EHD models

In the following section we examine the accuracy and e�cacy of the proposed EIF

method. In section 2.3.1, we compare results of a passively relaxing �lament simu-

lation from the EIF against those from a high resolution bead and spring model and

the Moreau et al. (2018) method. In section 2.3.2, we provide additional comparisons

between the EIF and the Schoeller et al. (2021) method in simulating a passively sed-

imenting �lament. Spatial convergence properties of the EIF are discussed on a per

scenario basis throughout.

2.3.1 Passive relaxation of a deformed �lament

To assess the accuracy and e�cacy of the EIF, we compare simulated results of a sin-

gle planarly relaxing �lament from the proposed method and from a high resolution

bead and spring model. Based upon the work of Jayaraman et al. (2012), the bead and

spring model (abbreviated here to BSM) accounts for nonlocal hydrodynamic interac-

tions through use of the method of regularised stokeslets, and when highly resolved,

provides accurate solutions (see appendix B for details).

The EIF model is tested as follows: consider an xy-planar �lament, bent into a

parabola, with initial condition Z0 constructed by sampling symmetrically from the

curve y = 0.5x2. Unit arclength is ensured (and veri�ed) through use of MATLAB®’s

csaps function to spline a high-resolution representation of the parabola at �xed-

distance arclength values. The �lament is then allowed to relax with no external forc-

ing. Motion of the �lament in this scenario is solely due to the constitutive bending

moments along the arclength given in equation (2.20d).

The experiment is simulated using each of four methods:
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• EIF-RSM: the proposed EIF method, which uses regularised stokeslets to account

for nonlocal hydrodynamic interactions, and an angle geometric formulation to

guarantee inextensibility,

• EIF-RFT : the EIF method, but with resistive force theory used in place of the

method of regularised stokeslets to model only local hydrodynamic interactions

(details in appendix D). The geometric model is unchanged from EIF-RSM.

• MGG: the original angle formulation method by Moreau et al. (2018), which uses

resistive force theory to model local hydrodynamic interactions

• BSM: the bead and spring model, which accounts for nonlocal hydrodynamic

interactions via regularised stokeslets. Inextensibility is enforced through ap-

propriately chosen spring sti�ness constants.

The EIF-RFT formulation is included to check the theoretical equivalence of the EIF

with that of Moreau et al. under the reduction to a local hydrodynamic model. In all

simulations in the following chapter, the regularisation parameter used in the method

of regularised stokeslets is chosen as " = 0.01.

The geometric con�guration of the relaxing �lament is simulated over t = [0, 0.02],

using both a high resolution (N = 201) BSM formulation and the EIF-RSM with

N = 101. The initial and �nal �lament shapes from each simulation are displayed

in �gure 2.2a. Quantitative comparison is given in �gure 2.2b, plotting the root mean

squared di�erence (RMSD) in coordinatesX between the �nal �lament shape via meth-

ods (1)–(3) and the BSM result. Here, excellent convergence is evident, with RMSD

small for even coarse discretisations (RMSD < 3 × 10
−3 for Q = N − 1 > 10). The

somewhat counterintuitive initial larger di�erence with increased N exhibited by the
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Figure 2.2: Error convergence and benchmarking of the three EIF methods
against a high resolution (N=201) bead and spring model. Note Q = N − 1 is
the number of segments comprising the discrete �bre. (a) Comparison of the
�lament shape at t = 0 and t = 0.02, where N=101 for EIF-RSM. (b) RMSD
between the Cartesian solution data in the �nal con�guration of (1) EIF-RSM,
(2) EIF-RFT and (3) MGG against the highly-resolved BSM result. (c) Total wall
time T against the level of discretisation Q = N −1 for the EIF-RSM, MGG and
BSM methods.

local hydrodynamic models is due to the drift in the centre of mass that the nonlocal

methods correctly capture. Increasing N in the local methods resolves the �lament

shape leading to convergence of this error. These comparisons highlight the change in

dynamics when considering the inclusion of nonlocal hydrodynamics for even single

�lament problems.

Moreau et al. (2018) demonstrated the signi�cant reduction in computational cost
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achieved when formulating elastohydrodynamic problems as integro-di�erential equa-

tions. Despite the added complexity of the nonlocal hydrodynamic model, EIF-RSM

still performs very well. Simulations are performed on a laptop equipped with an In-

tel i7-8750H processor with 16GB RAM. Logarithmic comparisons of the simulation

runtime for the EIF-RSM, MGG and BLM formulations are given in �gure 2.2c. Here,

the wall time recorded is the total computational time for the simulation to complete,

including setup time. For the tangent angle formulation methods, the majority of this

time is accounted for by the linear solve at each time step, with the linear systems

being comparatively quick to construct.

It is unsurprising that the local hydrodynamic formulation (MGG) outperforms

(with respect to wall time) the methods with nonlocal interactions due to the reduced

complexity of the problem. The nonlocal methods (EIF-RSM and BSM) perform on par

with each other as N increases. However, the bead and spring model requires large

numbers of beads to accurately capture the �lament geometry , whereas the EIF-RSM

achieves similar accuracy with fewer than half the degrees of freedom required by the

BLM, a bene�t reinforced by the resulting reduction in wall time obtained by decreas-

ing the level of discretisation of the �lament. Moreover, since the BSM uses a position

representation for the �lament geometry, �bre shape requires at least a 3N × 3N -sized

system, compared to the Q + 2 = N + 1 square matrix required for the EIF approaches,

reducing the memory requirements for formulating the elastohydrodynamic problem.

This enables code implementing the method to be run on even modest consumer-grade

computational hardware, such as personal laptops with only a few gigabytes of RAM.

When run on more powerful machines, the memory saved in construction and storage

can be used instead to expand the scope of the modelling, for example, by accounting

for multiple interacting �laments (as in section 2.2.4).
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Figure 2.3: Spatial convergence in the numerical simulation of a passively
relaxing �lament, measured using the root mean squared error between time-
evolving coordinate positions with successively-doubled discretisation pa-
rameter Q.

Next, the spatial convergence of the EIF method is addressed. We will not report on

the temporal convergence of the method, since we use the commercial-standard and

robust MATLAB® solver ode15s for time stepping. The passively relaxing �lament

problem is repeated multiple times, each time successively doubling the discretisation

parameter Q = N − 1. Convergence is assessed by calculated the root mean squared

di�erence (RMSD) at points common to each ‘pair’ of simulation results as

RMSD =

√

1

Nc

Nc

∑

m=1

(XQ[m] − X2Q[m])

2

, (2.41)

where Nc is the number of common points, XQ are the position vectors for the dis-

cretisation with Q segments, and X2Q are the position vectors for the doubly-re�ned

discretisation with the 2Q segments, both sampled at matching arclength values. The

�lament initial condition is chosen the same as in section 2.2.

102



In using the method of regularised stokeslets, the �uid �ow approximation su�ers

an (") regularisation on the surface of the slender body, reducing to ("2) in the

far �eld (as discussed in 1.2.6). Consistent with " = 0.01, we regard convergence as

satisfactory if RMSD 6 10
−2. As shown in �gure 2.3, the di�erence converges to less

than 10−3 for Q > 20. This result informs the choice of discretisation parameter to be

used for simulations throughout the rest of this chapter. More geometrically dynamic

problems (i.e. those in which the �agellum forms more nonlinear shapes) necessitate

require �ner discretisations to adequately capture increased nonlinearity in �lament

geometry.

2.3.2 De�ection of a sedimenting �lament

In the following section we compare the EIF to an alternative �lament modelling ap-

proach incorporating nonlocal hydrodynamics by Schoeller et al. (2021). In their for-

mulation (referred to here as the STWK method), Schoeller and coauthors combine

the constitutive bending and conservation laws outlined in section 1.3.1 with a direct

pairwise evaluation of the Rotne-Prager-Yamakawa (RPY) tensor (Wajnryb et al., 2013)

to model the dynamics of a �lament sedimenting under gravity. Details of the RPY

approach are given in section 1.4.2.

A sedimenting �lament is simulated until it has reached a steady state shape, at

which time the relative de�ection A/L is calculated, where A is the y-height of the

�nal con�guration and L is the �lament length. The onset and shape of the steady
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state shape is determined by the choice of elastogravitational parameter1

 =
�gL

2

E

, (2.42)

where �, L and E are the �lament density, length, and bending rigidity respectively,

and g is the strength of the gravitational �eld. Details on how this parameter arises

are discussed later in section 2.4.2. Schoeller et al. (2021) demonstrated that their model

closely agrees with many other formulations for modelling this experiment, such as the

gears model of Delmotte et al. (2015a) (which also employs the RPY tensor to model

nonlocal hydrodynamics), the joint model (proposed by Skjetne et al. (1997) and ex-

panded upon by Delmotte et al. (2015a)), and experimental results (Marchetti et al.,

2018). In the STWK method (recomputed via repository code associated with Schoeller

et al. (2021)), the �lament radius is a and the �lament length is L = ΔL(N − 1)a. Fil-

ament radius in the dimensionless EIF model is approximated by the regularisation

parameter a = " = 0.01, with L = 1 the dimensionless �lament length. To ensure that

the simulated �laments have the same aspect ratio, for simulations with N = 51 nodes,

we choose ΔL = 2.

In the STWK method, the �lament is initialised precisely �at with � = 0 at each

segment. Such a con�guration in the EIF yields a singular system, as described in

section 2.32. To tackle this, we initialise by symmetrically sampling from a very-low

amplitude parabola y = 10−7x2 to closely resemble a linear �lament.

The relative de�ection is calculated for choices of the elastogravitational parameter

 in the range  ∈ [10
0
, 10

4
]. A close general agreement is observed between the EIF

and STWK methods, shown in �gure 2.4. Comparatively larger ((10−1)) di�erences
1Note that this parameter is identically de�ned but labelled B in the Schoeller et al. (2021) manuscript.
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Figure 2.4: Relative de�ection of a �lament sedimenting under gravity for
varying , modelled using the EIF method and the method of Schoeller et al.
(2021), labelled here as STWK.

are observed for 102 .  . 10
3, likely due to the di�erences in the nonlocal hydro-

dynamic approximations between the formulations. Additionally, numerical stability

is key in determining the dynamics of sedimenting planar �laments. For large val-

ues of  > 3000, the �bre undergoes a shape change from an unstable ‘W’-shape to a

stable horseshoe; the onset of this transition depends on the stability of the numeri-

cal method and as such di�erences in the code implementation between the EIF and

SWTK methods will likely yield small di�erences in results. The shapes and stability

of sedimenting �bres are examined in more detail in section 2.4.2. In terms of perfor-

mance, the EIF completes the sedimenting �lament simulation ≈ 35% faster, taking on

average ≈ 7.6 seconds to solve opposed to ≈ 11.9 seconds for the equivalent STWK

simulation.
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2.4 Single and multiple �lament problems

In the following section, we apply the EIF modelling framework described in section

2.2 to problems involving single and multiple �laments in shear �ows (section 2.4.1),

in the presence of body forces (section 2.4.2), and undergoing self-powered propul-

sion (section 2.4.3). Any additional modelling considerations are detailed, including

alterations to the ‘core’ system of equations (2.32a-h) derived in section 2.2.

For each problem we present results from numerical simulations with accompany-

ing discussion. In all cases, the regularisation parameter is " = 0.01. Motivated by the

convergence results in section 2.3, we choose N = 41 unless stated otherwise.

Evidenced by the walltime results in section 2.3.1 and �gure 2.2c, the EIF is a rela-

tively computationally inexpensive method as a result of the angle formulation model,

low degrees of freedom requirement for accurate results, and e�cient numerical im-

plementation. To emphasise this, in what follows most simulations are performed on

modest, consumer-level computer hardware – in particular, a laptop equipped with an

Intel i7-8750H processor and 16GB RAM. Select simulations involving multiple �la-

ments bene�t from increased RAM, and are thus performed on the University of Birm-

ingham BlueBEAR cluster, which provides a high performance compute service to the

University’s research community (University of Birmingham, 2021).

2.4.1 Filaments in shear �ow

Consider a single passive �lament in a linear shear �ow, orientated so as to lie in the

plane of the �ow. Assuming the shear moves in the xy-plane, the dimensional �uid

velocity is

u
∗
(x
∗
, t
∗
) = 
̇x∗

2
ex , x

∗
= (x∗

1
, x∗

2
, x∗

3
)
T
, (2.43)
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where 
̇ is the dimensional shear rate with unit s−1, and ex is a unit vector in the Carte-

sian x-direction. Here, and in the following sections, we use asterisks in the superscript

to indicate a dimensional variable. Including a shear �ow in the hydrodynamic model

necessitates the addition of a velocity term on the right hand side of the regularised

stokeslet integral equation, which, following nondimensionalisation using the scalings

s
∗
= Ls, X

∗
= LX, t

∗
= 
̇

−1
t, f

∗
= �
̇Lf , (2.44)

yields an equation for the dimensionless hydrodynamic �lament velocity

Xt(s, t) =

1

8�
∫

1

0

S
"

(X(s, t), X(� , t)) ⋅ f (� , t) d� + X2(s, t)ex . (2.45)

Use of (2.44) additionally alters the nondimensionalisation of equation (2.10), yielding

a modi�ed dimensionless elastodynamic integral equation as

�s(s, t) + ez ⋅  ∫

1

s

(X(� , t) − X(s, t)) ∧ f (� , t)d� = 0, (2.46)

where the dimensionless viscous-elastic parameter group

 =

�
̇L
2

E

=

shear viscous forces
elastic forces , (2.47)

quanti�es the ratio of viscous to elastic forces on a shear timescale, with E denoting the

bending rigidity of the �lament. The apparent �exibility of the �lament is completely

characterised by  , with large values describing ‘�oppy’ �bres and small values ‘sti�’

�bres.

The elasticity equation for the �lament in shear (2.46) discretises in a similar man-
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ner to that seen previously, but for the inclusion of the dimensionless parameter  .

The hydrodynamic shear �ow equation (2.45) is semidiscretised following the steps in

section 2.2.2 to obtain

X̃ [n](t) =

1

8�

N−1

∑

m=1

I
"
[n, m](t; Δs) ⋅

̃
f [m](t) + X̃2[n](t)ex , n = 1, … , N − 1, (2.48)

where X̃2[n](t) is the y-component of the segment midpoint X̃ [n](t). The additional

terms arising from the inclusion of shear will appear on the right hand side of the

resulting system. The linear system of equations for a single passive �lament in shear

�ow is thus given as

A

⎛

⎜

⎜

⎜

⎝

Ż

̃
f

⎞

⎟

⎟

⎟

⎠

= b, (2.49)

where

A =

⎛

⎜

⎜

⎜

⎝

0 AE

AK AH

⎞

⎟

⎟

⎟

⎠

, (2.50a)

b =
(
0,

̃
�[2](t) −

̃
�[1](t)

Δs

, … ,

̃
�[N − 1](t) −

̃
�[N − 2](t)

Δs

, 0, 0,

X̃2[1](t), … , X̃2[N − 1](t), 0, … , 0
)

T

, (2.50b)

with the terms in the vector of unknowns (Ż ,
̃
f )

T unchanged from equations

(2.34,2.36c). Dynamics of a �lament in shear �ow are thus simulated by solving equa-

tion (2.35) with A and b given by equations (2.50a,2.50b) respectively.

A precisely straight �lament lying in the plane of shear will rotate through a Je�ery

orbit, with an analytical solution presented in Kim & Karrila (2013). It is well known
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that for critical values of the characteristic parameter  a �lament in shear �ow ex-

hibits shape buckling due to a stress di�erence across the �bre whilst under compres-

sion by the moving �uid (Tornberg & Shelley, 2004; Liu et al., 2018). As discussed by

Tornberg & Shelley (2004), prescribing even minor perturbations in the tangent an-

gle of the straight �lament can drastically change the dynamics and produce striking

buckling phenomena. We choose an initial condition following Young (2009), writing

the discrete angle con�guration as

̃
�[n](0) = �0 + Δ�0

(

s̃[n]
3

3

−

s̃[n]
4

2

+

s̃[n]
5

5 )
, (2.51)

where �0 is the initial tangent angle and Δ�0 ≪ 1 is the perturbation pa-

rameter. This initial condition arises from integrating the curvature initial

condition k(s) = �s(s) = Δ�0(s − s
2
)
2, and sampling at discrete segment midpoints

s̃[m], m = 1,… , N − 1. Choosing the initial condition in this way seeds a small but

signi�cant perturbation in the �lament shape which will promote the development of

buckling modes.

Figure 2.5 demonstrates how changes in the value of  a�ect the amount of buck-

ling a �lament experiences as it rotates in shear �ow. The �bre is initialised with

�0 = 0.9� and Δ�0 = 0.1. As the �lament rotates, buckling modes form, which are

directly linked to the size of  and the choice of perturbation (2.51). Large values

of  (> 3 × 10
4) produce high order buckling modes, as evidenced in �gure 2.5c,d.

Conversely, comparatively small values produce negligible buckling and the �lament

rotates following a standard Je�rey orbit. For  = 5 × 10
3, a �rst-order buckling mode

begins to form (see 2.5a). The amplitude of the buckling increases commensurate with

 until higher order modes are induced. Tornberg & Shelley (2004) examined buckling
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Figure 2.5: Dynamics of a single �lament in shear �ow. Each row displays the
evolving geometric con�guration of the �lament, characterised by di�erent
values of  . Arrows on blue lines indicate the direction of �uid �ow. In all
cases, the �lament is modelled with N = 41 and with initial shape parameters
�0 = 0.9� and Δ�0 = 0.1. For a �xed initial condition, the size of  completely
determines the level of buckling exhibited. For large values (as in (c) and (d)),
high order buckling modes appear.



Figure 2.6: E�ect of numerical discretisation parameter on (a) �lament shapes
and (b) body-frame tangent angles ̃

�body when  = 4×10
4. One of two resolved

con�gurations develop depending on the choice of Q = N − 1, improving as
Q increases.

governed by an e�ective viscosity parameter �̄ = 8� , producing �lament shapes with

a single observable buckling mode similar to those in �gure 2.5b.

The buckling problem for an elastic �lament in shear can have multiple solutions

(Becker & Shelley, 2001; Liu et al., 2018). As noted by Tornberg & Shelley (2004), the

choice of initial perturbation to the �lament shape can preferentially lead to one of

the solutions. For example, changing the sign of the perturbation in (2.51) produces

a re�ected, but not symmetric, �lament shape. When the initial condition does not

uniquely determine a speci�c solution branch (as for this problem with large ), the

buckled solution becomes sensitive to the choice of discretisation. When  6 1.6×10
4,
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the �lament exhibits a single buckling mode and a spatially converged result is pro-

duced for N > 41. Increasing to  = 4×10
4 induces higher-order modes, and the shape

approximates one of two solutions depending on the value of Q = N − 1, the number

of segments comprising the discretised �lament. This supercritical pitchfork bifurca-

tion of a �bre in shear �ow has been reported previously by Becker & Shelley (2001);

Liu et al. (2018). The nonlinear geometry in these cases requires �ner discretisations

(N > 161) to resolve accurately, as indicated by �gure 2.6

The perturbation to the �lament shape due to buckling can be investigated by con-

sidering the evolving body-frame tangent angles

̃
�body[n](t) = ̃

�[n](t) −
̄
�(t), where ̄

�(t) =

1

N − 1

N−1

∑

n=1

̃
�[n](t), (2.52)

for n = 1, … , N − 1. Using the chebfun open-source package (Driscoll et al., 2014),

Chebyshev polynomials are �tted to the body-frame tangent angles at each instant,

taking su�ciently many modes to reduce interpolation error below 5%. From this, we

assess the evolution of both the order of Chebyshev polynomials required and their

associated magnitude. In �gures 2.8a,b we show the results of this �tting process for

two choices of . An increase in requires a commensurate increase in the polynomial

order required, illustrated by examining the Chebyshev coe�cients in �gure 2.8c,d.

The ability to accurately describe the nonlinear �lament geometry using Chebyshev

polynomials suggests that spectral integration techniques, such as those of Muldowney

& Higdon (1995), may be integrated into the EIF allowing for increased quadrature

accuracy with potentially fewer degrees of freedom.
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Figure 2.7: Dynamics of two �laments separated by distance (a) ΔX0 = 0.5, (b)
ΔX0 = 1. The colour bar indicates the magnitude of the relative perturbed �uid
velocity up = (uf − ub)/uref, where uf is the �uid �ow, ub is the background
shear �ow, and uref is the �ow at an arbitrary reference �eld point constant to
each panel, chosen to be the bottom-left value of each frame. Blue lines with
arrows indicate the direction of the �ow disturbance, illustrating the �lament-
�uid interactions and the occlusionary e�ect the presence of the left-most
�lament has on the �ow reaching the right-most �lament.

We next consider the buckling of two proximal �laments in shear �ow. Motivated

by the work of Young (2009), two �laments of equal length are placed into a linear shear

�ow so that their midpoints X(s = 0.5, 0) intersect the line y = 0, and are separated by

a distance ΔX0. The geometric initial conditions are identical (di�ering only in X0(0))

and chosen following the perturbation in equation (2.51).

Characterised by the same value of  , the �laments nonetheless develop geomet-

ric dissimilarities due to nonlocal hydrodynamic interactions. The choice of  deter-

mines the level of dissimilarity, with higher values leading to larger deviations in shape

throughout the rotation. The initial separation distance also has a signi�cant in�uence

113



Figure 2.8: Analysis of the buckling modes of a �lament in shear �ow via poly-
nomial interpolation. At select time points during the �lament rotation, the
buckled �bre shape is approximated by a series of n = 1, … , Chebyshev
polynomials n( ̃�body), with  chosen so that the tangent angle curve is inter-
polated within a 5% error bound. Polynomial coe�cients are calculated using
chebfun. (a) and (b): the tangent angle of a �lament undergoing buckling is
captured relative to the body frame at four time points. Each subplot implies
�lament shape via equation (2.52). (c) and (d): the number and magnitude of
Chebyshev coe�cients for each of the polynomials, for  = 5 × 10

3 and 4 × 104
respectively.



Figure 2.9: The evolving geometric dissimilarity between two proximal �la-
ments of equal sti�ness in shear �ow, for three values of  . The shape dif-
ference is quanti�ed using the Procrustes measure, calculable using the pro-
crustes MATLAB® command. Higher values indicate a larger degree of dis-
similarity between the two �laments (Gower, 1975).

on the dynamics of each �lament. The shapes of initially close �laments evolve in tan-

dem, assuming similar geometries at any given moment (see �gure 2.7a). As separation

increases, �lament shapes become less similar, with notable di�erences in geometry

particularly towards the �lament tips (�gure 2.7b).

The geometric similarity between �laments can be assessed via their Procrustes

score (Gower, 1975), calculable using the procrustes MATLAB® command. The

MATLAB® algorithm determines a linear transformation mapping one vector of co-

ordinates onto the other, following a sum of least squares goodness-of-�t crite-

rion. We compare pairs of �laments initially separated by ΔX0 = {0.5, 1} for

 = {5 × 10
3
, 1 × 10

4
, 4 × 10

4
}. Results are presented in �gure 2.9. As  is increased, hy-

drodynamic interactions through the �uid cause larger level of asymmetry during the

period of maximum buckling, occurring when they are approximately perpendicular

to the direction of shear (t ≈ 3). Increasing the initial �lament separation returns a high
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baseline Procrustes score, but with reduced variability due to the decaying strength of

hydrodynamic interactions.

2.4.2 Filaments sedimenting under gravity

The EIF method can be extended to account for the e�ects of a body force present

within the system. Depending on the size of the �bre and the relative viscosity of

the surrounding �uid i.e. the value of the characteristic Reynolds number, this body

force may be gravity, or a global magnetic attraction due to a surrounding �eld. Fila-

ments on the scale of sperm �agella, which operate within very low Reynolds number

�uid systems, are e�ectively neutrally buoyant when observed over short-mid length

timescales (i.e. over minutes to hours). With this in mind, the �laments simulated in

this section can be assumed to be not �agella, but some other larger-scale slender body

object existing within a larger Reynolds number environment. Nonetheless, the tech-

niques described can be used to account for the e�ects of a di�erent body force which

may act upon a body on the length scale of sperm �agella. In this section, simulations

of a passive xy-planar �lament sedimenting under gravity are considered. Formula-

tions to model di�erent body forces follow in a similar manner, wherein references to

“gravity” throughout can be replaced without loss of generality to describe the body

force under consideration.

For a �lament of uniform mass per unit length � subject to a gravitational �eld

acting along the y-axis, the force per unit length due to gravity is −�gey , where

g = 9.81m/s
2 is the acceleration due to gravity. This force appears in the derivations

for the force and moment equilibrium equations (2.6) following the physical consider-

ation of forces and moments on an in�nitesimal segment of �lament. A schematic of
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Figure 2.10: Schematic of the force and moment balance about an in�nitesi-
mal segment of �lament sedimenting under gravity, from which the force and
moment equilibrium equations are derived.

this setup is given in �gure 2.10. Following the calculations presented in section 1.3.3,

the force equilibrium equation becomes

Fs(s) − f (s) − �gey = 0. (2.53)

The moment due to the gravitational force per unit length about the �lament segment

will be (�s2) and so vanishes from the moment equilibrium equation in taking the

limit �s → 0, leaving the moment equilibrium equation unaltered.

In the absence of a natural timescale characterising the system, we nondimension-

alise using the same scalings as the passive relaxing problem, given in equation (2.14).

The resulting dimensionless total force and total moment balance equations are

∫

1

0

( − f (� , t) − ey)d� = 0, (2.54a)

ez ⋅ ∫

1

0

(X(� , t) − Xc(t)) ∧ ( − f (� , t) − ey)d� = 0, (2.54b)

where Xc(t) is the centre of gravity of the �lament, f (s, t) is the force per unit length
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Figure 2.11: For a �lament sedimenting under gravity, moment balance across
the �bre must be considered about the centre of mass Xc(t) in order to capture
potential rotations to �lament geometry. In the above diagram, blue arrows
indicate the force due to gravity and orange arrows indicate resulting mo-
ments. The approximate location of the centre of mass is indicated by the blue
circle. (a) The symmetrical con�guration results in the �lament ends curling
upwards upon sedimentation. (b) The highly coiled geometry shifts the centre
of mass causing a global rotational moment, balanced by the �uid so that the
total moment is zero.

the �lament exerts onto the �uid, and the dimensionless group

 =
�gL

3

E

=

gravitational forces
elastic forces (2.55)

is an elastogravitational parameter describing the ratio of gravitational body forces and

elastic forces, with large values characterising �exible �laments, and conversely, small

values sti� �laments. In equation (2.54b), moments are taken about the the �lament

centre of mass in order to capture possible rotational e�ects during sedimentation (see

�g 2.11). In problems with a natural pivot, such as the mechanical join between cell

body and �agellum, moments should be taken about this point instead.

Following a derivation similar to that presented in section 2.2, the dimensionless

elastodynamic equation is found as

�s(s, t) + ez ⋅ ∫

1

s

(X(� , t) − X(s, t)) ∧ (f (� , t) + ey)d� = 0, (2.56)
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which, alongside equations (2.54a,2.54b), has spatially discretised form

0 =

N−1

∑

n=1

Δs( −
̃
f [n](t) − ey), (2.57a)

0 =

N−1

∑

n=1

Δs(X̃[n](t) − Xc(t)) ∧ ( −
̃
f [n](t) − ey), (2.57b)

̃
�[n + 1](t) −

̃
�[n](t)

Δs

= −ez ⋅

N−2

∑

m=n

Δs(X̃[m + 1](t) − X[n + 1](t))

∧ (
̃
f [n + 1](t) + ey), (2.57c)

for n = 1, … , N − 2 in equation (2.57c). The matrix system encoding the sedimenting

�lament problem is

Ag

⎛

⎜

⎜

⎜

⎝

Ż

̃
f

⎞

⎟

⎟

⎟

⎠

= bg , (2.58)

where the matrix Ag has the same block form as A in section 2.2.3, but with an alter-

ation in the �rst row of the elasticity block AE due to the inclusion of the centre of

gravity in the total moment balance equation (2.57b). The right hand side vector is

constructed as bg = b + b′, where b′ encodes the additional gravitational terms arising

from the expansion and rearrangement of equations (2.57a,2.57b,2.57c).

We next consider the results of simulations of both single and multiple �laments

sedimenting due to gravity for di�erent choices of elastogravitational parameter .

The �lament is initialised sampling �(s, 0) symmetrically from the very-low amplitude

parabola y = 10
−7
x
2, ensuring unit arclength and presolved across the time interval

[0, tc], tc ≪ tmax with a coarse discretisationN = 11 until the shape is su�ciently curved

i.e. when the maximum curvature exceeds a tolerance of 0.5. The low-resolution coor-

dinate solution is then closely approximated with a cubic smoothing spline generated
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Figure 2.12: Dynamics of a very �exible �lament sedimenting under gravity.
Here, for  = 3500, the �lament �rst assumes a metastable “W” pro�le, before
instability along the arclength causes a transition to the stable “U” con�gura-
tion. In each panel, axes are centred on the centre of gravity of the �lament at
the corresponding time point. The dashed line position of the centre of grav-
ity at t = 0, and blue lines with arrows indicate the disturbance in the �uid
due to the presence of the �lament.

by the MATLAB® function csaps, with smoothing parameter chosen so as to maintain

unit arclength. This curve is then sampled, again ensuring unit arclength, to obtain a

new higher-resolution initial condition for the original problem, which is then simu-

lated over t ∈ [0, tmax]. This presolve enables simulations of multiple high-resolution

�laments without needing to vary the discretisation parameters dynamically during

the simulation. In the following results, N = 41 is used for the upscaled initial condi-

tion.

We begin by examining single �lament simulations. Di�erent choices of the char-

acteristic parameter  lead to di�erent sedimentary buckling modes. For  < 3000, a

stable “U” con�guration is approached whereby the ends of the �bre bend ‘upwards’ as

the �lament moves ‘downwards’, as seen in the model comparisons in 2.3.2. For large
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Figure 2.13: Spatial error convergence for a sedimenting �lament. (a) The
choice of Q = N −1 determines the length of time spent in the metastable “W”
con�guration. For the critical value of  = 3000, the onset time of the buckling
mode transition can lead to large spatial RMSD when re�ning the �lament
discretisation. Increasing , as in (b), guarantees the buckling direction but
errors persist. (c) Biasing the initial condition resolves the metastability and
convergence results upon doubling Q are improved.



values  > 3000, a metastable “W” con�guration forms, transitioning into a stable “U”

horseshoe shape, seen in �gure 2.12. This behaviour has been previously observed

by Cosentino Lagomarsino et al. (2005) and Delmotte et al. (2015a), who witnessed

buckling at the same threshold value for their identically de�ned elastogravitational

parameter. This transition shifts the �lament’s centre of gravity to the left, creating an

asymmetry which is then partially resolved upon approach the horseshoe equilibrium

con�guration.

As observed for the �laments in shear �ow (see 2.4.1), the spatial convergence of

solutions for sedimenting problems depends signi�cantly on the choice of initial con-

dition and discretisation. In particular, the choice of N determines the length of time

the �lament remains in the metastable “W” con�guration. When in the “U” con�gura-

tion, the �lament travels faster, resulting in large spatial root mean squared di�erence

(RMSD) if the shape transition occurs at su�ciently di�erent times. This behaviour is

most evident at the critical value of  = 3000, where nonunique shape con�gurations

arise (see �gure 2.13a). Increasing to  = 3500 guarantees the direction of the buckling,

but large variability persists due to di�erences in the onset time of the transition, as

shown in �gure 2.13b.

Convergence is improved by using a slightly left/right asymmetrical �lament initial

condition. Introducing a rotational bias of �0 = 0.001� to the initial shape before the

presolve reduces the time variance in the “W-U” buckling onset, yielding smaller errors

for su�ciently �ne discretisations Q > 40 (�gure 2.13c).

We continue by examining the sedimentary dynamics of arrays of �laments. A

range of �lament systems with multiple choices of elastogravitational parameter  are

presented in �gures 2.14, 2.15, 2.16. In each case, the initial �lament shape is as those

considered above, and are uniformly separated by ΔX0 = (ΔX0, ΔY0). A stopping crite-
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Figure 2.14: Two �lament sedimenting under gravity, both characterised by
the same elastogravitational parameter . Blue lines with arrows indicate the
direction of the �uid disturbance caused by the presence of the �laments.

rion is implemented which halts the simulation when �laments intersect or otherwise

touch.

For small values of , �laments slide towards each other as they sediment due to

the anisotropy of Stokes drag. For larger values (�gures 2.14b,c), the metastable and

stable buckling modes observed in the single �lament experiments (see �gure 2.12) are

replicated. In these multi�lament systems, the hydrodynamic interactions between

�bres results in the steady state pro�les being reached sooner than in the single �l-
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Figure 2.15: The e�ect of initial �lament density on group dynamics when sed-
imenting under gravity. In both experiments, the horizontal spacing between
�laments is equal. A change in the vertical spacing from (a) 0.5 to (b) 1.5 leads
to di�erent �uid dynamics and resulting �lament con�gurations. Streamlines
indicate the direction of the �uid disturbance caused by �lament interactions.

ament experiments. Furthermore, the onset of buckling occurs for reduced  values

when multiple �laments are interacting.

As was the case for multiple �laments in shear �ow, the inter-�lament spacing

ΔX0 has a signi�cant e�ect on the resulting group dynamics, and can lead to symme-

try breaking in the �lament arrangements. Figure 2.15 considers two initial �lament

placements, with ΔX0 = 1.5 common to both and ΔY0 = {0.5, 1.5} in 2.15a,b respec-

tively. Smaller vertical spacing leads the �laments “nestling” in a horizontally mir-

rored con�guration; when placed further apart, horizontal mirroring still occurs but

the �bres do not approach each other.

In �gure 2.16 nine �laments of equal length and sti�ness are arranged in a grid with

initial spacingΔX = (1.5, 1). As with the smaller arrays, �laments group and buckle ac-
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Figure 2.16: Simulation of multiple sedimenting �laments. The EIF framework
can also accommodate larger arrays of �laments, such as the 3×3 arrangements
above. In each case, the initial �lament spacing is ΔX0 = (1.5, 1). In all cases,
vertical symmetry breaking is apparent when t > 0.001. Streamlines indicate
the direction of the �uid disturbance caused by the presence of the �laments.

cording to the choice of characteristic parameter . Despite uniformity between �bres,

nonlocal hydrodynamic interactions result in di�erent buckling behaviours depending

on location within the array.

For all choices of , vertical symmetry breaking occurs between the top-most and

middle rows of �laments, with the second and third rows of �laments on the left and

right of the frame nestling into those below them. For  = 3500, more prominent

buckling is apparent, with �laments in the central ‘column’ approaching a “W” shape,

whereas those on the �anks assume a horseshoe con�guration. Competing interac-

tions between �laments in the central column and their surrounding neighbours causes

them to remain in the metastable “W” con�guration longer than would be expected in

the single �lament experiment.
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2.4.3 Internally actuated �laments

Countless microorganisms and organelles use thin elastic bodies to interact with their

environment. In particular, �laments are often used as a means of propulsion, either

by pushing a body through a �uid, (such as for spermatozoa), pulling a body through a

�uid (in the case of Chlamydomonas reinhardtii and similar organisms), or themselves

being slender and able to move in a way that enables swimming (such as C. elegans

and other roundworm species). Extending the EIF framework to model actuated �bres

enables application to and simulation of many of the swimming problems common in

microbiology.

For the problems considered in sections (2.4.1,2.4.2), active �laments can be con-

sidered by including a time dependent moment density added to the elastodynamic

formulation in equation (2.10).

The equilibrium equations in this case are derived by considering equations (1.89b)

and (1.89c), with a planar actuating moment per unit length m(s, t), yielding

Fs(s, t) − f (s, t) = 0, (2.59a)

Ms(s, t) + ez ⋅ Xs(s, t) ∧ F (s, t) + m(s, t) = 0. (2.59b)

In the xy-planar formulation considered here, the active moment per unit length func-

tion m(s, t) acts in the same direction as the internal contact moment M(s, t) i.e. in

the z-direction, and can be thought of as a dynamic function actively rotating the

(t(s, t), n(s, t)) frame along the length of the �lament to produce planar waveforms that

will result in cell propulsion. In the following section, we will consider two choices of

actuating function, producing sperm-like and worm-like �lament waveforms. The for-

mer produces bending moments which grow in amplitude along its arclength, whereas
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the second is homogenous. We de�ne these functions as
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where k∗ is the angular wave number of the beat, !∗ is the beat frequency, L is the

�lament length, and m
0 is the beat amplitude with units of moment per unit length.

Asterisks are used to denote dimensionful variables.

De�ning the actuating moment density through either (2.60a) or (2.60b) lends a

natural timescale to the problem through the angular frequency of the active beat.

Continuing the model derivation as in section 2.2 and using the scalings

s
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where m1 = s cos(ks − t) and m2 = cos(ks − t), yields the dimensionless elastodynamic

equation for an active �lament as

�s(s, t) + e3 ⋅ 4

∫

1

s

(X(� , t) − X(s, t)) ∧ f (� , t) d� −�4

∫

1

s

m� (� , t)d� = 0, (2.62)

for � = 1, 2, determining the choice of actuation function, and where the dimensionless

parameters

 = L
(

�!

E
)

1/4

, 1 =

m
0

1

�!L
2
, 2 =

m
0

2

�!L
2

(2.63)

are the swimming parameter (comparing the ratio of viscous to elastic forces), and the

actuation parameters (comparing the ratio of active to viscous forces) for each beat
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type respectively. The swimming parameter  is similar to the commonly-used sperm

number Sp (Gadêlha et al., 2010; Montenegro-Johnson et al., 2015), which depends on

a chosen resistance coe�cient. The dimensionless total moment balance equation is

similarly altered owing to the change in equilibrium equation as

∫

1

0

X(� , t) ∧ f (� , t) d� =�4

∫

1

0

m� (� , t) d� . (2.64)

The discretised forms of equations (2.62,2.64) are

�4
M�[1](t) =

N−1

∑

m=1

ΔsX̃[m](t) ∧
̃
f [m](t), (2.65a)

̃
�[n + 1](t) −

̃
�[n](t)

Δs

−�4
M�[n](t) = −ez ⋅ 4

N−2

∑

m=n

Δs(X̃[m + 1](t)

− X[n + 1](t)) ∧
̃
f [m + 1](t), (2.65b)

for n = 1, … , N − 2 and either � = 1, 2, and where

M�[n](t) = ∫

1

s̃[n]

m� (� , t) d� , n = 1, … , N − 1 (2.66)

is the analytically integrated active moment density over the distal discrete �lament.
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Figure 2.17: Swimming speed of a �lament and its relation to parameter
choices. For �xed wave number k = 4� , the velocity along a line (VAL) is
calculated for pairs of �lament swimming number  and actuation parameter
� , with � = 1, 2 for a sperm-like beat (a), or worm-like beat (b). The dark
blue patches in the top-right of each panel correspond to failed simulations
where parameter choices yield �lament self-intersection.

The resulting linear system is
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and ba = b −�4

(M�[1](t), … ,M�[N − 1](t))

T

, (2.67c)

such that ba includes the additional terms required to the right hand side of (2.35)

owing to the inclusion of the active moment term.

For appropriate choices of swimming parameter and actuation parameter corre-
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Figure 2.18: Shape con�guration of single swimming �laments, propelled by
the moment density pro�les in equations (2.60a) ((a) and (c)) and (2.60b) ((b)
and (c)). Here, 1 = 2 = 0.03, k = 4� and N = 41. The solid black curve
traces the path of the leading point X0(t). In (a) and (c),  is approximately
optimal for the chosen actuation parameters resulting in fast, directed motion.
In �gures (b) and (d), extreme �lament curvatures lead to self intersection.

sponding to either a sperm-like or worm-like beat, a simulated �lament can be in-

duced to swim in a stationary surrounding �ow. Fixing the dimensionless wave num-

ber k = 4� , we investigate the relationship between elasticity and choice of driving

force (governed by 1 or 2) for a single isolated �lament. Swimmer performance

is qualitatively assessed by its velocity along a line (VAL), a measure of the locomotive

speed for a chosen  and � pair, calculated via

VAL = ‖X
(n)

0
− X

(n−1)

0
‖

T

, (2.68)

in which T = 2� is the period of the driving wave and X (n)

0
∶= X(0, 2�n) is the position

of the leading point of the �lament after it was travelled n wavelengths, with n chosen

such that the �lament has established a consistent periodic motion after beginning to

swim.

Swimming speed for di�erence choices of parameter pairings ( , 1,2) for both
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Figure 2.19: Two mechanically identical �laments characterised by  = 8

and 1 = 0.05, propelled by a sperm-like active moment density function,
swimming alongside each other. (a) Filaments in close proximity swim, on
average, faster than those further apart. (b) Shapes of the evolving �laments
are presented for an initial vertical separation ΔY0 = 0.1 for t ∈ [6�, 24�]. The
black curve indicates the paths of the leading points of each �lament.

sperm-like and worm-like beat types are presented in �gure 2.17. Incompatible pa-

rameter pairings result in �lament self-intersection, at which point the EIF is inap-

plicable and the simulation is terminated. Examples of �bre shapes in such cases are

given in �gures 2.18b and 2.18d. For a sperm-like swimmer (�gure 2.17a), swimming

speed increased as 1 and  are increased in tandem for �xed wave number k = 4� .

In contrast, worm-like swimmers exhibit a clear optimal choice of 2 for a given 

to induce fastest swimming. Shape pro�les for the fastest swimmers of sperm- and

worm-type are displayed in �gures 2.18a and 2.18c respectively.

As with the previously considered dynamic problems, the EIF can simulate mul-

tiple nonlocally interacting swimming �laments. To illustrate this, we consider two

�laments swimming alongside each other, in the same direction, at di�erent separa-

tion distances ΔY0. For �xed  = 8 and  = 0.05, the size of the separation e�ects the

resulting average swimming velocity (�gure 2.19). At low levels of separation, nonlocal

hydrodynamic interactions between the synchronous beats result in a higher average

VAL, which decays as the �laments are initialised further apart (�gure 2.19a).
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2.5 Modelling human spermatozoa using the EIF

An important and prominent application of the EIF is to that of human sperm �ag-

ella, the single �exible appendage of the spermatozoon which beats to propel the cell

through viscous �uid. Biological features necessitate alterations to the EIF method

presented thus far. In this section, we outline extensions to the EIF to model a human

spermatozoon, following Neal et al. (2020), building from the framework detailed in

section 2.4.3.

The largest and most obvious addition to the model is the necessary inclusion of

the cell head at the proximal end of the �lament. A discretisation for the head surface

is obtained by discretising a sphere using the method outlined in section 1.2.6 and then

scaled to the desired dimensions. The head is connected to the �agellum at the leading

point X0(t) ∶= X(0, t) and interacts with the rest of the �agellum through the �uid. In

the following section, unmarked variables denote dimensionful quantities and hats are

used to indicate dimensionless variables. Using the method of regularised stokeslets,

the velocity of points Y(t) along the �agellum (enforcing a no-slip condition) can be

written in dimensional form

Xt(s, t) =

1

8��
∫

L

0

S
"

(X(s, t), X(� , t)) ⋅ f (� , t) d�

+

1

8��
∬

)H

S
"

(X(s, t), Y (t)) ⋅ '(Y , t) dSY , (2.69)

where L is the length of the �agellum, )H is the surface of the cell head, Y(t) are

material points embedded in the head surface, and ' is the force per unit area the head

exerts on the surrounding �uid. As before, f is the force per unit length the �agellum
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exerts onto the �uid. The velocity of points on the head can be similarly written

Yt(t) =

1

8��
∫

L

0

S
"

(Y (t), X(� , t)) ⋅ f (� , t) d�

+

1

8��
∬

)H

S
"

(Y (t), y(t)) ⋅ '(y, t) dSy. (2.70)

The head, through being connected to the �agellum, translates and rotates about the

connecting point X0(t). Modelling the head as a rigid body, the velocities are

u(Y (t), t) = U (t) + 
(t) ∧ (Y (t) − X0(t)), (2.71)

where U(t) = (X0(t))t and 
(t) represent the rigid body translational velocity and

rotational velocity of the cell head respectively. For the xy-planar problem considered

in this chapter, the angular velocity can be written as


(t) = �t(t) ez , (2.72)

where �(t) is the angle formed between the head major-axis and the x-axis, referred to

here as the head angle. The unit vector ez points out of the plane of motion. Enforcing

a no-slip condition on the surface of the cell head (as on the surface of the �agellum)

and equating equations (2.70) and (2.71) yields an equation for the hydrodynamic ve-

locity of the rigid cell head, accounting for the nonlocal e�ect of the �agellum. Terms

involving the cell head necessarily appear in the total force and total moment balance
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equations, which become

∫

L

0

f (s, t) ds +
∬

)H

'(Y , t) dSY = 0 (2.73a)

∫

L

0

(X(s, t) − X0(t)) ∧ f (s, t) ds + ∬
)H

(Y (t) − X0(t)) ∧ '(Y , t) dSY = 0, (2.73b)

noting that the �agellar moments taken in (2.73b) are now taken about X0(t), a natural

pivot for the problem. After nondimensionalisation with the same scaling as in section

2.4.3, the coupling of the head to the �agellum is enforced through (see Neal et al. (2020)

for details)

E(0)�(0, t) − ez ⋅ 4

∬
)H

(Y (t) − X0(t)) ∧ '(Y , t) dSY − ∫

L

0

m(s, t) ds = 0, (2.74)

where  is the dimensionless group de�ned in equation (2.63), m is the active moment

per unit length, and E0 is the bending rigidity of the �agellum at the head-�agellum

join. The proximal curvature �(0, t) is approximated as the centred di�erence between

the head angle �(t) and the tangent angle at the proximal �lament.

Another important biological feature of the human spermatozoon (and observable

in many other mammalian sperm) is the tapering structure lending the �agellum dif-

ferent sti�ness properties along its length (Cummins & Woodall, 1985). This feature is

modelled by varying the elastic rigidity along the �agellum arclength as

E(s) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
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(E
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− E

d
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s − s
d

s
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+ E
d
, s 6 s

d
,

E
d

s > s
d

(2.75)

where Ep and Ed are the proximal and distal bending moduli of the �agellum respec-
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tively, appropriately chosen to suit the problem at hand. In the subsequent nondi-

mensionalisation, sti�ness terms are scaled by the distal bending rigidity so that

Ê(ŝ) = E
d
E(s).

In joint work with Neal et al., the extended EIF as described above is used to investi-

gate the e�ect upon propulsion of the passive end piece, a mechanically inactive region

typically 3–5% of the (human) sperm �agellum length (see section 1.1.1 for details on

human sperm structure). Simulations indicate that the presence of the end piece can

improve speed and e�ciency over cells sporting fully-actuated �agella; these results

do not form a part of the present thesis, but detailed results can be found in Neal et al.

(2020)). The end piece is modelled by multiplying the actuation function m(s, t) with

a Heaviside function so that

m(s, t) = m0 cos(ks − !t)H(L − � − s), (2.76)

where � ∈ [0, L] is the length of the inactive end piece, so that L − � is the length of

the active region of �agellum. As in section 2.4.3, m0 is the moment amplitude, k is the

wave number of actuation, and ! is the angular frequency of the actuating beat. The

dimensional elastodynamics equation is thus

E(s)�s(s, t) + ez ⋅ ∫

L

s

(X(� , t) − X(s, t)) ∧ f (� , t) d�

−
∫

L

s

m0 cos(k� − !t)H(L − � − � ) d� = 0, (2.77)

with the sti�ness coe�cient E(s) given by equation (2.75). Nondimensionalising with

the scalings in equation (2.4.3) and Ê(ŝ) = E
d
E(s), the resulting dimensionless elasto-
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dynamic equation is

Ê(ŝ)�ŝ(ŝ, t̂ ) + ez ⋅ 4

∫

1

ŝ

(X̂ (� , t̂) − X̂ (ŝ, t̂ )) ∧
̂
f (� , t̂) d�

−4

∫

1

ŝ

cos(
̂
k� − t̂)H (1 − �̂ − � ) d� = 0, (2.78)

where the dimensionless groups  and  are the same as those de�ned in equation

(2.63). In simulations, the varying sti�ness of the �agellum combined with the presence

of the cell head (and the hydrodynamic drag it exerts on the �uid) work together to

produce actuation beats that are typically more damped and less writhing (or ‘worm-

like’) in their progression than those observed for the actuated �laments considered in

section 2.4.3.
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2.6 Conclusions and future extensions

In this chapter, the elastohydrodynamic integral formulation (or EIF) framework is

formulated and applied to problems involving single and multiple �laments in shear

�ows, sedimenting under gravity, and swimming due to a prescribed internal moment

density. It is compared to the bead and spring method (or BSM) for modelling elas-

tica, which is presented and benchmarked, establishing the validity of its use to test

the EIF method. Due to numerical sti�ness arising from the requirement of a large

number of beads and su�ciently sti� spring constants to enforce inextensibility, the

BSM is unsuitable for general inextensible elastic �lament modelling. From the EIF

simulations presented in section 2.4, it is apparent how inter�lament nonlocal hydro-

dynamic interactions have an important role in governing �lament shapes and buck-

ling behaviour. In particular, these interactions seem to promote shape instabilities for

�laments which, in isolation, may not exhibit buckling, showcased by considering ar-

rays of sedimenting �laments (section 2.4.2). By examining actively driven �laments,

the relationship between the actuation forces and viscoelastic forces is revealed, with

a clear optimum pairing identi�ed.

A key bene�t to the integral formulation is that the need for computing Lagrange

multipliers of tension is removed; inextensibility of the modelled �lament is already

guaranteed by the use of the method of lines discretisation. In other methods such

as those of Gadêlha et al. (2010) and Montenegro-Johnson et al. (2015), inextensibil-

ity is ensured by coupling the elastodynamic problem with an additional high order

nonlinear PDE, which can be di�cult to implement and costly to solve. The EIF ap-

proach is thus computationally faster than many similar contemporary models. Earlier

work by Moreau et al. (2018) highlighted the reduction in computational runtime at-
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tainable when using an integral formulation applied to elastodynamics, due in part to

the reduction in the required degrees of freedom. Alleviating this numerical sti�ness

facilitates the study of geometrically nonlinear problems, such as those involving �l-

ament buckling studied in sections 2.4.1 and 2.4.2. Additional computational costs are

incurred by the introduction of nonlocal hydrodynamic modelling to the framework,

in line with the increase in the dimension and density of the matrix system solved at

each time step. The BSM and EIF (with regularised stokeslets) complete a relaxing rod

simulation in approximately equivalent wall time (as expected, since both approaches

compute three dimensional nonlocal hydrodynamic interactions), shown in �gure 2.2.

However, to ensure small pointwise error, the bead model requires a discretisation with

N > 61, whereas the EIF performs equally well with a much coarser segmentation of

the �lament N > 21. This allows for adequately accurate results to be obtained for

reduced computational cost when using the EIF with regularised stokeslets over the

bead and link model. In addition, the reduced memory requirements a�orded through

coarser �lament re�nements allow more complex problems involving multiple �la-

ments to be simulated for approximately the same computational cost.

The proposed method has the potential to quickly and accurately simulate arrange-

ments of �laments in various �ows and surroundings. The EIF method presented here

will enable the solution of more challenging problems such as planarly beating cilia

sheets, or multiple sperm swimming in a narrow channel. The modular framework

of the method allows such problems to be setup and executed in a straightforward

and consistent manner. Additionally, the EIF method �ts into the family of regularised

stokeslet methods (Cortez, 2001; Cortez et al., 2005), which are increasingly widely

used for problems in biological �uid mechanics (Smith et al., 2021; Simons & Rosen-

berger, 2021; Zhao & Koens, 2021). Crucially, the computational e�ciency exhibited in
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the single �lament experiments is retained upon consideration of multiple �laments.

The method could be extended by incorporating the treecode formulation of Wang

et al. (2019), or equivalent methods, to coarse-grain the far �eld �ow, reducing compu-

tational costs and enabling simulation of increasingly large numbers of �laments. The

inclusion of a repulsive force term to capture steric e�ects, such as the Lennard-Jones

potential employed by Jayaraman et al. (2012), or a barrier force (Wolgemuth et al.,

2004; Schoeller et al., 2021), could enable simulation of �laments in close proximity

and help avoid �lament self-intersection.

The results of section 2.4.1 concerning �laments in shear �ow suggest the shape of

a buckling �bre can be described to a high degree of accuracy by a relatively low order

Chebyshev polynomial (see �gure 2.8). These results suggest that a modi�ed discreti-

sation based on orthogonal polynomials, perhaps in concert with suitable quadrature

techniques (Muldowney & Higdon, 1995) might provide further improvements in e�-

ciency and scalability. The modularity of the EIF also enables it to be employed inside

other problem formulations; recent work by Neal et al. (2021, unpublished) models

the movement of a �lament using an extended version of the EIF, but solved using a

�nite element method to simulate swimming through non-Newtonian �uids. In ad-

dition, regularised stokeslets in the model could be replaced by regularised blakelets

(Blake, 1971; Ainley et al., 2008) (see section 1.2.5) to simulate the dynamics of �la-

ments close to domain boundaries, such as sperm cells swimming in a narrow channel

(Montenegro-Johnson et al., 2015).

Whilst the EIF method introduced in this chapter calculates hydrodynamic e�ects

using the three dimensional method of regularised stokeslets, we are limited to planar

problems by the two dimensional formulation for the �lament geometry. Extension

to three dimensions would enable simulation of many more biological problems, with
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immediate examples including nonplanar rotational beating of cilia and helical swim-

mers. Recent work by Walker et al. (2020) tackles the complex extension of the angle

formulation used by the EIF to 3D, requiring careful handling and transformation of

orientation angles to avoid ambiguities in segment orientation. In chapter 3 of this

thesis, we consider an alternative approach to modelling three dimensional �lament

geometry through a coordinate representation of the slender body centreline.

140



Chapter 3

E�ects of sperm head morphology
on propulsion and e�ciency

3.1 Overview

As discussed in section 1.1.1, human spermatozoa comprise a cell head, a sti� mid-

piece, a long elastic �agellum, and a short end piece. Typically a �attened ellipsoid in

shape, the head contains the precious genetic cargo necessary for successful fertilisa-

tion. Changes to the cell head dimensions can lead to changes in the storage of the

genetic material. In particular, changes in the volume of the cell head can mean that

the DNA carried inside is damaged or even missing. Such cells are plainly undesirable

for selection in assisted reproduction techniques (ARTs). Understanding the impact of

head morphology on cell propulsion through hydrodynamic interactions with its �ag-

ellum and the surrounding �uid could provide important insights into sperm rheology,

paving the way for improving cell selection mechanisms through a deeper understand-

ing of the elastohydrodynamic behaviour of observed cells.

Prototypical human spermatozoon dimensions are given in the World Health Or-
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Head Type Length (µm) Width (µm) Topographical Height (µm)

Normal 4.6 ± 0.26 2.6 ± 0.2 1.03 ± 0.08

Round 2.7 ± 0.03 3.2 ± 0.15 1.8 ± 0.11

Tapered 7.8 ± 0.4 2.6 ± 0.31 1.5 ± 0.06

Amorphous 6.7 ± 0.36 2.6 ± 0.44 1.9 ± 0.1

Table 3.1: Human sperm body dimensions, measured through atomic force mi-
croscopy by Sunanda et al. (2018). Table recreated from Sunanda et al. (2018).

ganisation laboratory manual for the examination and processing of human semen

(World Health Organisation, 2010), which states that healthy human spermatozoa (that

is, motile cells which are potential candidates for fertilisation of the ovum) have typical

median length 4.1µm (95% CI 3.7–4.7µm), and median width 2.8µm (95% CI 2.5–3.2µm).

No information is provided for an estimate of the third head dimension.

A recent study by Sunanda et al. (2018) has sought to address this quantitative

shortcoming by using scanning electron microscopy and atomic force microscopy to

produce detailed three-dimensional images of human sperm ultrastructure, measuring

and categorising cell types based upon WHO standards. Measurements for the cell

body dimensions of a number of phenotypes are given in table 3.1, reproduced from

Sunanda et al. (2018). Their measurements for the length and width for a normal cell

agree with those stated in the WHO manual, and additionally provide mean measure-

ments for the topographical height of the cell.

Both World Health Organisation (2010) and Sunanda et al. (2018) provide exam-

ples of common defects observed in human spermatozoa. Speci�c to the cell bodies,

deformities can include tapered heads (characterised by highly ellipsoidal shapes) and

round pinhead cells, as well as more exotic shapes such as the pyriform type, a com-
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bined hemispherical and conical frustum. Sketches of these defective head types are

given in �gure 1.1. Whilst these cells would never be candidates for arti�cial insemi-

nation, understanding the swimming dynamics of cells with defective geometries may

provide insight into the elastohydrodynamic locomotion of sperm cells, and motivate

novel new assays for cell selection from cell or �agellum capture.

In section 1.1.1, we discussed previous studies which have sought to examine the

e�ects of varying head morphology on cell swimming dynamics. To brie�y recap; in

simulations with �xed �agellar beat waveforms, Katz & Phillips (1986) and later Wool-

ley (2003) indicated the large impact head shape can have on cell swimming. Similar

�xed-waveform simulations by Smith et al. (2009a) suggests that cells with larger bod-

ies exhibit stabilised swimming trajectories, but the e�ect of this on cell speed and

propulsion is unclear. To this end, Gillies et al. (2009) noticed cells with elongated

heads swam with increased velocity, but as a result of reduced yaw rather than a re-

duction in drag pro�le. This study aims to provide further insight into the problem

by performing a rigorous simulation assay of swimming cells with systematically var-

ied head geometries. Moreover, unlike previous studies using prescribed waveform

models for �agellum actuation, we employ a full elastohydrodynamic model to more

accurately capture the �uid-body interactions of the dynamic cell, with more directly

applicable insights to the real world problem.

In this chapter, we consider the e�ects that varying sperm head morphology has

on important cell properties, such as its propulsive speed and Lighthill e�ciency. As-

suming that the cell swims with a planar beat in an in�nite �uid, we employ the EIF

(discussed in chapter 2), with extensions from Neal et al. (2020) as described in section

2.5, to model the dynamic spermatozoa. Cell heads are generated using the experimen-

tal data of Sunanda et al. (2018), reproduced in table 3.1. In section 3.2, we examine
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the e�ects on VAL (velocity along a line, de�ned in equation (2.68)) and Lighthill e�-

ciency (to be de�ned in equation 3.1) of varying cell head dimensions whilst ensuring

a �xed body volume. In section (3.3), we consider heads of varying volume of both

typical ellipsoidal shape and two common deformities, round and tapered type cells.

This chapter concludes with a summary of �ndings in section 3.4.

3.2 E�ects of head dimensions on cell swimming

We begin by considering how cell head dimensions a�ect the dynamics of a planar

swimming cell whilst retaining a �xed volume. As discussed in section 3.1, head vol-

ume is an important indicator of the health of the spermatozoa and the integrity of

its DNA payload. Here, we consider the ideal volume to be that formed by a body

described by the mean dimensions as measured by Sunanda et al. (2018), presented

in table 3.1, yielding Videal ≈ 12.9 µm3. Scaling with respect to an average �agellum

length of ≈ 54 µm (Cummins & Woodall, 1985), the ideal dimensionless volume is

V̂ideal = 7.87 × 10
−5.

We simulate a number of independent cells swimming in an in�nite �uid, with

heads generated by perturbing two of the principal axes of the ellipsoidal head, with

the other axis determined by �xing the cell volume to be that of the idealised body.

Head radii are uniformly sampled across a range of values ±10% about the mean val-

ues recorded by Sunanda et al. (2018), generating a broad range of head morphologies

for use in simulations. The semiaxes of the ellipsoid are (a1, a2, a3), such that a1 is the

long semimajor axis, a2 is the semiminor axis lying in the plane of beating, and a3 is

the semiminor axis perpendicular to the plane of beating. Noting that the topograph-

ical height recorded in table 3.1 is equivalent to the minor radius a3, the axes for a
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Figure 3.1: Sketch of a generalised sperm body, as included in the EIF model
used within chapter 3. The swimming cell is propelled by a �agellum con�ned
to the z = 0 plane, connected to the head at X0. The shape of the body is
de�ned by radii a1, a2 and a3 which describe the length of the principal axes
in the x , y and z directions respectively.

normal-type cell are (a1, a2, a3) = (2.3, 1.3, 1.03) µm. In all simulations in this section,

the relationship a1 > a2 > a3 between axes is ensured so that the aspect ratio per-

taining to a physiologically healthy cell is conserved. A sketch of this con�guration is

provided in �gure 3.1.

Each cell head is attached to a �agellum, beating in the xy-plane, described using

the extended EIF model of Neal et al. (2020), characterised by a selection of swimming

parameters  . Fixing the dimensionless passive end piece length � = 0.05 and wave

number k = 4� , actuation parameters  are chosen per  choice in order to optimise

VAL for a cell with average body axes. These values, denoted VAL, are determined

through the MATLAB® minimisation algorithm fminbnd and are given in table 3.2. In

general, these values are not the same as those which optimise the cell for e�ciency

(Neal et al., 2020). The initial shape of the cell �agellum is obtained by sampling from
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Swimming parameter, 

9 12 13 14 15 16 17 18

VAL (×10
−2
) 3.66 1.98 1.80 1.69 1.62 1.58 1.55 1.53

Table 3.2: Values of actuation parameter  optimising a swimming cell of
mean body dimensions, and with passive end piece length � = 0.05, for veloc-
ity along a line (VAL), denoted VAL.

a low-amplitude parabola y = 1 × 10
−6
x
2, ensuring unit arclength through the same

procedure as outlined in section 2.4.2. We initialise in this way (as opposed to a perfect

straight �agellum) to avoid numerical singularity issues present in angle formulation

methods (see section 2.3 for details).

Cells are simulated over 5 beats to ensure a regular periodic motion is established.

This number was chosen after repeated manual observations of simulated cells to es-

tablish regularity of motion. Following similar use in Hall-McNair et al. (2019) and Neal

et al. (2020), cell motility is quantitatively assessed through velocity along a line (VAL)

and Lighthill e�ciency. The VAL is de�ned as in (2.68), with T = 2� maintained as the

period of the actuating travelling wave. In the following results, we sample across the

j = 4
th beat. The Lighthill e�ciency (Lighthill, 1975) is de�ned

�
(j)
=

(VAL(j))2

W
(j)

, (3.1)

where W (j) is the mean work done by the cell over the jth period, calculated as

W
(j)
=
⟨

∫

1

0

u(s) ⋅ f (s) ds +
∬

)B

u(Y ) ⋅ '(Y ) dSY
⟩

. (3.2)

For each simulation, the VAL and Lighthill e�ciency of the cell over a single beat
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are calculated. relative to the speed and e�ciency of a sperm cell with a mean sized

head (i.e. of dimensions given in table 3.1). We refer to such a spermatozoon as the

mean cell in the following discussion. The mean cell is otherwise characterised by

the same dimensionless parameters as the candidate cells. Over the same beat, we

additionally calculate the range of values of �, the head tangent angle, to indicate the

yaw behaviour of the body. Simulations can be separated into three cases: (a) those

featuring cells with head axes determined by �xing a1 and a2, (b) those featuring cells

with head axes determined by �xing a1 and a3, and (c) those featuring cells with head

axes determined by �xing a2 and a3. In each case, the remaining axis is determined by

assuming the volume of the body is Videal.

A general overview of key results for each axis choice, and for each considered, is

given in �gure 3.2. These star-like diagrams plot each axis value in three-dimensional

space, with marker colour representing the percentage VAL di�erence compared to

a mean cell and marker size indicating Lighthill e�ciency. Colours corresponding to

percentage VAL di�erence are sampled from a symmetric blue-red spectrum, so that

the mean cell (reporting 0% VAL di�erence) marker is drawn white. For the latter

metric, larger markers correspond to more e�cient cells. In addition, the fastest cell is

indicated by a black ring, and the most e�cient by a black cross. The star-like shape

arises from the overlaying of three approximate parallelograms generated by each axes

sampling procedure, ensuring �xed ideal volume.

For all  values considered, alterations in head morphology yield percentage dif-

ferences in VAL over a mean cell of up to ±2%. Broadly, cell heads de�ned by large

choices of a3 (the shortest axis, pointed out of the plane of beating) swim faster and

more e�ciently than the converse case. Moreover, cells which yield increases in VAL

are in general more e�cient swimmers. In the majority of  values considered, the
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Figure 3.2: For each swimming parameter  ∈ [9, 18] considered, each point
indicates a simulation with unique cell head axes ensuring �xed ideal volume.
Marker colour represents the percentage VAL di�erence between the given
cell and an average cell. Marker size represents cell e�ciency, with larger dots
indicating more e�cient swimmers. The fastest cell is indicated with a black
ring; similarly the most e�cient is highlighted with a black cross. Average
head axes as reported by Sunanda et al. (2018) are indicated by a black dot.
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axis choices maximising e�ciency and percentage VAL di�erence coincide, with ex-

ceptions recorded only in the  = 14 and 16 cases. As swimming parameter increases,

the range of percentage VAL di�erence recorded increases. As  increases i.e. as simu-

lations consider regimes in which �uid forces are dominant, the location of the optimal

head axes for e�ciency and VAL (indicated in �gure 3.2 by a black cross and ring re-

spectively) moves clockwise around the edge of the star. This transition is examined

further in �gure 3.3, which plots the zeroline – a linear polynomial generated using

the MATLAB® fit command through the (a1, a2) values of each axis triad, correspond-

ing to cells with absolute percentage VAL di�erences of 6 0.02%. In this way, axes

formed with a1, a2 values from underneath each line yield cells which swim faster

than a mean cell. Conversely, cells with head axis values from above the zeroline pro-

duce cells slower than mean cells. The tolerance for a data point’s inclusion in the

�tting process is chosen so as to ensure a su�cient number of points are included in

the regression procedure whilst removing noise contributed by points whose percent-

age VAL di�erence is not close to 0%. Examining �gure 3.3, zerolines corresponding to

higher values of  have a steeper gradient, re�ecting the clockwise travel of optimal

head axes in �gure 3.2.

The �agellar trace across a single beat corresponding to the fastest swimmer for

each  , indicated by black rings in �gure 3.2, are displayed in �gure 3.4. The �agellum

is plotted relative to the motion of the cell head, which is drawn in black and viewed

from the xy-plane. Rotating into the body frame, lateral motion is removed from the

images so that the head-�agellum join X0 remains pinned at the origin. Cells elon-

gated in the a1 long-axis optimise for VAL when  is small, with squatter cells where

a1 ≈ a2 (yet a2 < a1) optimal at larger  values. The larger beat envelope in the high-

simulations indicates the transition in beat style exhibited by sperm cells swimming
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Figure 3.3: Change in ‘zeroline’ with swimming parameter  . The zeroline
is de�ned as the linear polynomial determined using the MATLAB® fit com-
mand, through axes values (projected onto the a1a2-axis) with percentage VAL
di�erence values less than 0.02. Data points used in each �tting are indicated
for each  case by coloured spherical markers. Cell heads containing values
below each line for each  swim faster than a mean cell, for �xed optimal
actuation parameters, corresponding to red-coloured markers in �gure 3.2.

in viscous �uids, examined comprehensively in Neal et al. (2020).

In �gures 3.5 and 3.7, the combined �ndings displayed in �gure 3.2 are separated

to examine the relationships between sampled axes values and percentage di�erence

in VAL and Lighthill e�ciency, respectively. In both �gures, sub�gure (a) displays

results from experiments where (a1, a2) are sampled; similarly sub�gures (b) and (c)

consider simulations where (a1, a3) and (a2, a3) are sampled respectively. For each case,

slices of head morphologies when moving from the bottom-left (drawn in dark blue)

to top-right (drawn in dark red) of each panel are given in �gure 3.6. When sampling

(a1, a2), heads with small values of both a1 and a2 yield the greatest uplift of ≈ 1.5% over

a mean cell (�gure 3.5a). Conversely, when sampling (a2, a3) (�gure 3.5c), the fastest

cells comprise large values of both subaxes. In both these cases, larger percentage

VAL di�erences (both uplifts and reductions) are measured in the viscous dominated

regimes (large values). For the case when (a1, a3) is sampled, the VAL values recorded
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Figure 3.4: Flagellar waveforms (drawn relative to the motion of the cell body)
across a single beat of the fastest swimmers for each  considered, corre-
sponding to those cells marked by a black ring in �gure 3.2.

are much smaller, with maximum di�erences of ≈ 0.5% for most  values. Since the

regularised stokeslet method employed in the �uid dynamic model is itself only order

" accurate, here, with " = 0.01, these subpercentile di�erences in swimming dynamics

are not large enough to de�nitively conclude that changes to head morphology arising

from sampling (a1, a3) signi�cantly a�ect VAL compared to a mean cell.

Similar trends are observed upon considering the percentage di�erence in Lighthill

e�ciency for each case, with results given in �gure 3.7. Examining �gure 3.7a, heads

generated from samples of (a1, a2) produce cells with the largest variance in � com-

pared to the mean cell, with di�erences of ≈ ±1.5%. These values are additionally

reasonably consistent across all  ∈ [9, 18] considered, in contrast to the (a1, a3) and

(a2, a3)-sampled results in �gures 3.7b and c, where, except in the very-viscous  = 18

case, di�erences in e�ciency are small (|%Δ�| 6 0.5% in most cases). These �ndings
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suggest that in all but the most viscous �uid environments, only alterations to the

head axes in the plane of beating of the cell have a signi�cant impact on swimming

e�ciency over a mean cell.

Also of interest is the amount of yawing exhibited by the cell head across the ex-

amined beat. In this study, we quantify the body yaw through the range in values

assumed by �(t), the lab frame angle de�ning the orientation of the cell body with

respect to the positive x-axis. As in previous results, we compare values to those of

an identically-actuated mean cell, with results given in �gure 3.8. In each (a,b,c) case,

percentage di�erences of up to ±15% are recorded relative to the mean cell. Across all

results, increased yawing is observed in the higher-viscosity simulations, reducing to

≈ ±6% when  = 9. When the long axis a1 is directly sampled (�gures 3.8a and b),

percentage range in � decreases inversely proportional to a1. In the remaining case

where (a2, a3) are sampled, yaw increases as both minor axes a2, a3 increase in tandem,

thereby shortening the major a1 axis (�gure 3.8c).

Considering the physics of the swimming cell, it is straightforward to imagine how,

given an identically actuated �agellum, di�erences in head shape a�ect the drag pro�le

of the body, with di�erences manifesting most directly as variations in yaw (examined

in �gure 3.8). An understanding of the drag pro�le for each cell head can be obtained by

examining the entries of the respective grand resistance matrices  (or GRMs). Resis-

tance problems for each head (of varying dimensions but ideal volume) in a reference

con�guration aligned with the Cartesian axes are formulated and solved (details in sec-

tion 1.2.8) to obtain the corresponding GRMs. The grand resistance matrix comprises

four 3 × 3 block matrices

 =

⎛

⎜

⎜

⎜

⎝

FU F


MU M


⎞

⎟

⎟

⎟

⎠

, (3.3)
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Figure 3.5: E�ect of changing head morphology on velocity along a line (VAL)
relative to a similarly characterised cell with average head dimensions, when
sampling (a) (a1, a2), (b) (a1, a3), and (c) (a2, a3) axis values from �xed intervals.
The remaining radius in each case is determined by a �xed ideal volume con-
straint.



Figure 3.6: Slices through each x, y, z plane of the cell heads used in the sim-
ulations generating the results in �gures 3.5–3.4. Blue ellipses correspond to
heads at the bottom-left, through to red ellipses corresponding to the top-
right, of the plots in �gures 3.5–3.4.

where FU describes the force-translation coupling, F
 the drag due to rotations,

MU the rotational moment arising from translations, and M
 the moment-rotation

coupling. For an arbitrarily elliptical body, all of these matrices will contain nonzero

entries. In the special case of a perfectly spherical body, F

= MU

= 0.

In �gure 3.9, we consider two ratios formed between diagonal entries of , map-

ping each to percentage VAL di�erence (on the y-axis) and percentage di�erence in
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Figure 3.7: E�ect of changing head morphology on Lighthill e�ciency � rel-
ative to a similarly characterised cell with average head dimensions, when
sampling (a) (a1, a2), (b) (a1, a3), and (c) (a2, a3) axis values from �xed intervals.
The remaining radius in each case is determined by a �xed ideal volume con-
straint.



Figure 3.8: E�ect of head morphology on head yaw, quanti�ed through the
range of head angle ran � across a single beat, relative to a similarly char-
acterised cell with average head dimensions, when sampling (a) (a1, a2), (b)
(a1, a3), and (c) (a2, a3) axis values from �xed intervals. The remaining radius
in each case is determined by a �xed ideal volume constraint.



Lighthill e�ciency, indicated by marker colour. Two ratios are considered; 11/22,

quantifying the transverse motion in the y-axis (and thus a measure indicating the

yawing of the cell), and 11/66, describing the resistance to rolling (i.e. rotations

about the long-axis of the cell body). Examination of the white markers (representing

zero or nearly-zero e�ciency improvements over a mean cell) qualitatively illustrates

the di�erences between heads producing average VAL values and those swimming

with average e�ciency. Both point clouds resemble skewed planar projections of the

star arrangements observed in �gure 3.2. As  increases, positive correlations between

the ratios 11/22, 11/66 and percentage VAL di�erence develop, with the strength

of correlation increasing with larger  . In particular, a strong positive correlation be-

tween the values 11/66 and VAL emerges in the viscous dominated regimes, with

data points collapsing onto a thin line of values (see �gures 3.9g, h). Whilst the num-

ber of data points above and below the zerolines (drawn in black) in the 11/66 plots

are roughly equal for each  , the increase in strength of correlation upon increasing

swimming parameter results in a more even spread of points above and below the ze-

roline for larger  values. In the plots in �gure 3.9, zerolines are again calculated using

the MATLAB® fit function to �nd a linear polynomial through the data points whose

absolute percentage e�ciency di�erence value is less than 0.05%. The gradient of these

lines is a quantitative measure between the resistance matrix ratios and cell e�ciency.

For each ratio, swimming parameter  is plotted against each gradient value, with re-

sults in �gure 3.10. For both measures, a clear peak in the zeroline gradient is observed

for intermediate values of  ∈ [12, 16].

Changes in cell body morphology will in�uence the shape of the elastic �agellum,

particularly in the region close the head-�agellum join, due to nonlocal �uid interac-

tions between the head and �agellum. To quantitatively assess changes in �agellar
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Figure 3.9: For each cell head considered, the ratios 11/22 and 11/66 are
plotted against the percentage VAL di�erence against a cell with an average-
sized body, for a range of swimming parameters  ∈ [9, 18]. Marker colour
indicates the percentage di�erence in e�ciency between each cell and the
average cell. The black zeroline in each panel indicates those axes triads cor-
responding to average e�ciency.



Figure 3.10: Swimming parameter  against gradients of the zerolines for per-
centage e�ciency di�erence against percentage VAL di�erence sorted by the
ratios (a) 11/22 and (b) 11/66. Each data point in the above plots corre-
sponds to the gradient of the black line drawn in each panel of �gure 3.9.

shape across variations in head axes, we compare time-averaged mean absolute cur-

vature values along the �agellum relative to a mean cell. For each pair of sampled

axes, the curves in each panel of �gure 3.11 describe the percentage di�erence (com-

pared to a mean cell) in average curvature at a given material point along the beating

�agellum across the course of a single beat. Each coloured line in �gures 3.11a,b,c

corresponds to a simulation with a cell head of matching colour from the ellipses in

�gures 3.6a,b,c respectively. Regardless of which axes are sampled to form the body

radii triad, variations in head morphology symmetrically about average values pro-

duce similarly approximately symmetric deviations in curvature below and above the

mean average absolute curvature. Whilst qualitatively similar behaviours are observed

across all head choices and all  values, head shapes generated through variations in

(a1, a2) and (a2, a3) pairs yield the largest variations in �agellar shape (�gures 3.11a and

c respectively). For values of  < 14, a single ‘envelope’ of variation is observed, with

direction (i.e. either positive or negative percentage di�erence) inversely linearly de-

pendent on axis length relative to the mean head dimensions. This variation is largest

in the region very close (s < 0.1) to X0, the head-�agellum join. As  increases, a
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second envelope of opposite polarity forms in the intermediate �agellum, roughly be-

tween 0.2 6 s 6 0.6, which grows in size as swimming parameter increases. In isolated

cases ( = 18 in �gure 3.11a, for example), a third envelope in the distal region is ob-

servable; the relatively small variations recorded are deemed not signi�cant compared

to the primary and secondary envelopes observed elsewhere. As the hydrodynamic

in�uence of the cell head dissipates with distance from X0, di�erences in curvature

reduce and all simulations have approximately similar distal curvature pro�les.
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Figure 3.11: Comparisons in the absolute curvature, averaged across a single
beat, of simulated cells with head axes linearly varying across (a) the a1a2 di-
rection, (b) the a1a3 direction, and (c) the a2a3 direction. In each case, dark blue
lines correspond to combined small value pairs of the sampled axes, through
to dark red lines corresponding to conversely large value pairs.



3.3 E�ects of head volume on cell swimming

As discussed in section 3.1, changes in volume of the cell body can have a dramatic im-

pact on the viability of the cell, with marked deviations from average head dimensions

indicative of a defective cell carrying damaged DNA. Examples of common morpho-

logical defects are round cell bodies, with the three axes of the head all being of similar

length, and tapering cell bodies, characterised by extreme elongation in the a1 direc-

tion. In section 3.2, we examined the e�ects that minor variations in each of the axes

of the cell head can have on propulsive speed, swimming e�ciency, and yaw, whilst

ensuring the volume of the body remained �xed at an ‘ideal’ value determined from

average dimensions experimentally observed in healthy cells (Sunanda et al., 2018). In

this section, we consider changes in the same metrics upon changes in volume.

Three types of cell body are considered: a normal-type, a round-type, and a tapered-

type, each de�ned in the �rst instance by the average experimentally observed dimen-

sions given in table 3.1. Identifying the volume of each variant in these cases as the

‘mean volume’, we consider a range of bodies enclosing between half and double the

mean volume for each type. The aspect ratios of each body type are consistent across

simulations. We additionally consider a range of swimming parameters  ∈ [9, 18],

with dimensionless wave number k = 4� and actuation parameter  chosen to opti-

mise the cell for swimming speed. As before, the length of the dimensionless end piece

is �xed at � = 0.05. Solution data is then sampled across a single beat, with the VAL

and e�ciency calculated using equations (2.68) and (3.1) with j = 4.

The e�ects of varying dimensionless volume upon VAL and Lighthill e�ciency �

for swimming parameters  ∈ [9, 18] are given in �gures 3.12a – 3.12h respectively.

The head volume of sperm with tapered-type bodies is typically ≈ 50% larger than those
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Figure 3.12: E�ects of changing cell body volume V on VAL and Lighthill
e�ciency �, measured across a single beat for a collection of swimming pa-
rameter choices  ∈ [9, 18]. Actuation parameters are k = 4� with  chosen
to optimise swimming speed for each  . The dimensionless end piece length
is �xed at � = 0.05. Circled points indicate cell bodies corresponding the mean
axes values indicated in table 3.1.

with standard ellipsoidal bodies or round heads. Similarly, in generating bodies from

Sunanda et al. (2018) measurements, round cell bodies are ≈ 20% more voluminous

than ellipsoidal types. Relative trends between body volume and each quantity are

similar across all choices of  considered – as cell body volume increases, speed and
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Figure 3.13: As cell body volume increases, the entries of the grand resistance
matrix, measured in a reference con�guration, commensurately increase re-
gardless of overall head morphology. Here, blue lines represent normal heads,
orange indicates round-type heads, and yellow tapered-type. Circled points
indicate bodies corresponding to the mean axes values in table 3.1.

e�ciency decrease. For smaller values of  6 15 (i.e. the relatively more elasticity-

dominated regime), all head types closely align along a concave arc. When  6 14,

normal-type heads are marginally more e�cient (despite similar VAL measurements)

than the two abnormal head types considered. In the more viscous-dominated regimes

(i.e. larger values of  > 16), divergence from this arc develops between head types.

In particular, considering cells with approximately equal volume heads, those with

round-types heads outperform normal-type cells when  > 17. Due to their increased

volume, tapered type cells consistently perform the worst of all the cell types examined.

In �gure 3.13, we examine the values of the diagonal entries of for each head type

as volume is varied. With the heads oriented pointing in along the x-axis (as indicated

in �gure 3.1), the values 11, 22 and 33 describe the resistance to translation in
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Figure 3.14: Relations between the ratio of grand resistance matrix entries
11/66 and (a) body volume (b) VAL and (c) Lighthill e�ciency �. In �gures
(b) and (c), line alpha indicates the value of  , with transparent through to
opaque curves corresponding to increasing values from the range [9, 18].

each x , y, z direction respectively. The remaining 44, 55 and 66 values similarly

describe the hydrodynamic resistance to rotations about each axis of each body. For

all cell head types considered, increases in volume are matched by increases in the

values of each diagonal entry of the corresponding grand resistance matrix. All head

types have similar drag resistance in the x-direction. Round-type and tapered-typed

heads exhibit the smallest and largest drag resistance respectively in the remaining

Cartesian directions, with normal-type cells roughly lying between the two curves.

Tapered-type cells exhibit markedly larger rotational-moment resistances 55, 66 as

a direct consequence of their elongated geometry.

As in section 3.2, describing each considered head through a ratio of grand resis-

tance matrix entries highlights additional distinctions between body shapes. In partic-

ular, the ratio 11/66 is a convenient metric that cleanly separates values of volume,

VAL and e�ciency by head type, with only minor overlap in values between normal

and round-type cells (see �gure 3.14).
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3.4 Discussion

In this chapter, we have studied the e�ects of varying body morphology on overall

sperm cell dynamics and performance, with the latter assessed by comparing the ve-

locity along a line (VAL) and Lighthill e�ciency for cells with varying-shaped heads.

We consider both the e�ects of varying dimensions whilst conserving a �xed idealised

volume, and conserving body proportions whilst linearly scaling the volume enclosed

by the cell. Di�erences in results stem from changes to the drag pro�le of the head,

a�ecting the amount of yawing exhibited during a beat, as well as from di�erences in

the �uid interactions between head and �agellum upon perturbations in body geom-

etry. We use the previously-discussed EIF model (see chapter 2) augmented by Neal

et al. (2020) (details in section 2.5) to model the nonlocal elastohydrodynamics of the

active planar cell.

In section 3.2, we consider the results of the �xed idealised volume simulations.

By de�ning an ‘ideal’ cell body volume Videal, calculated using typical experimentally

measured values for each of the cell body radii (Sunanda et al., 2018), a collection of

candidate cell heads are generated by selecting two axes, sampling for each from a

range ±10% of the mean, and computing the third dimension so as to ensure ideal

volume. Each generated cell is repeatedly simulated, varying the characteristic dimen-

sionless swimming parameter  ∈ [9, 18], and actuation parameter  chosen so as

to optimise the mean cell for VAL. These optimal VAL parameters are determined

algorithmically through a series of separate simulations. In section 3.3, a separate col-

lection of candidate cell heads are generated by scaling the head volume between 50%

and 200% of the ideal whilst conserving the average aspect ratio (i.e. the aspect ratio of

a head de�ned by average experimentally observed values). We additionally consider
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heads of varying volume with aspect ratios average to round-type and tapered-type

cells, two common pathologies.

The star plots presented in �gure 3.2 indicate the relative di�erence in speed and

e�ciency of each of the candidate cells against one de�ned with mean head axes. The

star-like shape arises from the sampling method chosen for the head morphologies.

Increased speed and e�ciency are measured for cells with heads which are longer

in the a1 and a3 axes than a mean cell. However, it should be noted that di�erences

in VAL and e�ciency are subpercentile, particularly in the low-viscosity regime for

 < 14. This is in part due to characterising the cell actuation by VAL for each 

– choosing nonoptimal  values results in larger variations in VAL and �. The star

plots (�gure 3.2) show that many head candidates yield no di�erence over a mean

cell, indicated by the band of near-white points in each panel. As e�ective viscosity

increases (through increasing ), the optimal axes appear to ‘rotate’ around the star

circumference so that cells shorter in the a1 axis but longer in a2 yield faster, more

e�cient cells. This morphological transition can be observed by examining the heads,

drawn in a stationary reference frame, in �gure 3.4. This transition is accompanied by

a rotation of the ‘zeroline’ (see �gure 3.3), a line of best �t in the a1a2-plane through

those data points in �gure 3.2 with approximately zero (< 0.05%) VAL di�erence to a

mean cell. Taken together, �gure 3.2 and 3.3 indicate that is variations in the head axes

directors coplanar to the plane of swimming that have the largest impact on swimming

speed and e�ciency.

In examining the relative change in the �agellar mean absolute curvature between

each candidate cell and the mean cell, we investigate how changes in head morphology

impact waveform, in turn e�ecting speed and e�ciency. The (approximate) horizon-

tal symmetry observed in each panel of �gure 3.11 is due to the symmetric sampling
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Figure 3.15: For a selection of swimming parameters and head axis triads, we
plot the % VAL di�erence against the maximum absolute percentage di�erence
in mean absolute curvature. Di�erences are between the candidate cell and a
mean cell, with the points on each line of each panel corresponding to head
axes taken from the diagonal pairings from each �gure 3.5a,b,c for the �gures
a,b,c here respectively.

method by which cell heads were generated. Bringing together panels in �gure 3.2 and

�gure 3.11, in �gure 3.15 we plot the percentage di�erence in VAL against the max-

imum percentage di�erence in the mean absolute curvature. In simulations where

(a1, a2) or (a2, a3) are varied, there is an approximately linear relation between the

maximum percentage curvature di�erence and the percentage VAL di�erence, with

the direction of the relation dependant on whether the selected head axes increase

or decrease VAL. This trend is much less pronounced when sampling the (a1, a3) axis

(Fig. 3.15b), which seems to support the hypothesis that changes to head morphology

in this plane do not signi�cantly a�ect cell swimming speed, compared to changes

in the two planes perpendicular. In the high-viscosity regimes ( > 15), changes in

proximal curvature are balanced by opposing di�erences in curvature further down

the �agellum, manifesting as a second ‘bubble’ between 0.2 6 s 6 0.7. As head geom-

etry changes, the body experiences more or less yaw in the plane of beating according

to the size of the long axis a1 (see �gure 3.8). The shorter the a1 radius, the greater
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the yawing of the head. With the elastic �agellum actuated by a constant values of

 for each  , the di�erences in curvature thus arise from di�ering drag pro�les of

each head. The results in �gure 3.11 indicate that even minor changes in head mor-

phology have tangible impacts on distal �agellum shape (through �uid interactions),

highlighting the importance of nonlocal hydrodynamic e�ects in elastohydrodynamic

modelling.

By solving a resistance problem (discussed in section 1.2.8) for each triad, the can-

didate heads can be characterised by ratios between entries of their respective grand

resistance matrices. In particular, the quantity 11/66, the ratio of translational re-

sistance and axial rotational resistance, follows a positive correlation with percentage

VAL di�erence, increasing in strength as swimming parameter  increases. In the

experiments considered heads of scaled volume, the ratio 11/66 is an e�ective mea-

sure for head classi�cation, with corresponding volume, VAL and e�ciency cleanly

separated when plotted against 11/66 (see �gure 3.14). With signi�cant overlap in

recorded values for volume, VAL, and �, the ability of this ratio measure to distinguish

between head type suggests its potential use as a new diagnostic measure for exper-

imentalists and clinicians. Outside of use by researchers, clinical adoption of new di-

agnostic tools is typically a slow process, often taking many years of rigorous testing

before full implementation. Nonetheless, used in conjunction with established CASA

techniques and sperm tracking software such as FAST (Gallagher et al., 2019), this ratio

could be used to e�ectively select normal-type cells from patient ejaculate samples in

IVF or ICSI assistive reproductive techniques.

In summary, the key �ndings of the presented study are as follows:

• In a relatively more elasticity-dominated regime, cells with heads that are elon-
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gated in the a1a3-plane exhibit subpercentile increases speed and e�ciency over

a cell with head of average experimentally-observed dimensions.

• Increasing the e�ects of viscosity over elasticity changes the optimal head di-

mensions so that heads short in the a1 axis and long in the a2 axis yield cells that

swim faster and more e�ciently.

• Di�erences in VAL likely stem from di�erences in �agellum shape arising from

the interactions through the �uid between the altered geometry of the head and

the proximal �agellum.

• The ratio 11/66 of grand resistance matrix diagonal entries is an e�ective met-

ric in classifying cell head phenotype, distinguishing normal, round/pin, and

tapered-type cells from measurements of volume, VAL, and e�ciency.

Beyond expanding the dataset by simulating for a larger range of swimming param-

eters  , future studies may wish to investigate the e�ects of head morphology upon

swimming when actuated by a nonplanar beat, a scenario not able to be modelled

by the EIF. To this end, we will next develop and present in chapter 4 a fully three-

dimensional framework for simulating elastohydrodynamic slender bodies and thus

nonplanarly swimming human spermatozoa.
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Chapter 4

A three-dimensional
elastohydrodynamic model for

Stokesian mono�agellate swimmers
via centreline position

4.1 Motivation

In the proceeding work of this thesis, we have only considered models for planar dy-

namics of elastohydrodynamic �laments and sperm cells. For these cases, we have

shown that the nonlocal integral equation formulation introduced in chapter 2 (re-

ferred to as the EIF method) can provide accurate solutions quickly and e�ciently.

The tangent angle formulation allows a reduction in the degrees of freedom of the

problem, whilst simultaneously guaranteeing that the �laments being modelled are

inextensible. Use of e�cient numerical algorithms such as the built-in black box ODE

solver suite within MATLAB® enables rapid solutions to be obtained, at the cost of

methodological transparency and �exibility.

The requirement for planarity in scenarios describable by the EIF method greatly
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reduces its applicability to general slender body Stokes �ow problems. Human sperm,

and many other microbiological swimmers, exhibit nonplanar beat patterns such as

helical or quasi-helical beats (Woolley, 2003; Simons et al., 2015). More broadly, planar

models are incapable of modelling the mechanical twisting of �laments, crucial to the

dynamics of micro�bres and polymers, and which could play a large role in beat modu-

lation for spermatozoa. Indeed, axonemal twist has been shown to be essential in beat

regulation in cilia (Sartori et al., 2016a). Recent approaches to extend angle formulation

descriptions of �agellum geometry have employed novel mapping techniques (Walker

et al., 2020) or quaternions (Schoeller et al., 2021) to track rotations in three dimensions.

Simpler approaches, such as Euler angle representations, are prone to gimbal lock is-

sues hampering the generality of the resulting frameworks. Methods to avoid these

problems can signi�cantly increase the complexity of the geometric model, negating

much of the simplicity and ease of applicability enjoyed in planar angle formulation

models.

In this chapter, we present a framework for elastohydrodynamic modelling of �l-

aments and mono�agellate cells in three dimensions, herein referred to as the SPX

method (“SP” indicating sperm, the central focus of the model, and “X” representing

the position formulation for geometry). The proposed model is able to simulate slender

bodies and swimming cells bending and twisting in three dimensions, accounting for

nonlocal hydrodynamic interactions through the �uid between the cell and itself, the

�uid, and with surrounding structures. Nonlinear geometry is described in terms of

the �agellum centreline X(s), avoiding the need for complex rotational bases to avoid

gimbal lock, but requiring additional constraints to enforce inextensibility. The SPX

method improves upon previous work by Gadêlha et al. (2010), which accounts for only

local hydrodynamic interactions, and by Montenegro-Johnson et al. (2015), by improv-
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ing the hydrodynamic model and fully generalising to allowing bending, twisting, and

actuation in any direction.

The remainder of this chapter is structured as follows: in section 4.2, the steps in

the derivation of the SPX model are described, with additional working presented in

appendices A, C and E. Accuracy is assessed in section 4.3 through comparisons to

the aforementioned EIF (chapter 2) and a bead and spring model (see appendix B). In

sections 4.4.1, we demonstrate the SPX model by investigating the nonplanar beating

of a human sperm cell actuated through a ‘twist and bend’ style beat pattern, both in

an in�nite �uid and in proximity of an in�nite plane wall (section 4.4.2). This chapter

concludes with a discussion and summary of the method in section 4.5.
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4.2 Derivation of the elastohydrodynamic model

In the following section we derive the proposed three-dimensional nonlocal elastohy-

drodynamic model. In section 4.2.1, the hydrodynamic model is formulated, using a

nonlocal approximation inspired by resistive force theory combined with the method

of regularised stokeslets to model nonlocal �uid interactions. Section 4.2.2 derives ex-

pressions for the internal elastic force and moment, which are subsequently combined

with the hydrodynamic model to arrive at the desired elastohydrodynamic model. Ex-

tensions to the model equations to account for nonconstant bending sti�ness along the

�agellum arclength (a feature common to many �agellated swimmers) are discussed

in section 4.2.3. Boundary conditions closing the problem are derived in section 4.2.4.

Complete summaries of the �nal dimensional and dimensionless coupled systems of

partial di�erential equations are given in sections 4.2.5 and 4.2.6 respectively. Finally,

steps in the numerical discretisation and code implementation are detailed and dis-

cussed in section 4.2.7.

4.2.1 Nonlocal hydrodynamic model

We again consider a slender body comprised of a rigid cell body connected to an elas-

tic �agellum swimming in Stokes �ow, with the aim to model human spermatozoa or

other mono�agellate swimmers. As discussed in section 1.2.2, the �uid velocity any-

where in the �uid can be described by combining fundamental stokeslet solutions. In

section 1.2.6, the method of regularised stokeslets (Cortez, 2001; Cortez et al., 2005) was

introduced as a way to conveniently avoid singularities common in problems involv-

ing slender bodies. In this manner, the �uid velocity at a material point x anywhere in
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the �uid domain is

u(x) =
∫

L

0

S
"

(x, X(s)) ⋅ f (s) ds + ∬
)B

S
"

(x, Y) ⋅ '(Y ) dSY , (4.1)

where X(s) are �agellum centreline positions, parametrised by arclength s ∈ [0, L]

and )B is the surface of the cell body (or cell head; these terms are used here inter-

changeably), described by material points Y placed across its surface. The �lament

and body exert a viscous force per unit length f (s) and force per unit area '(Y ) onto

the �uid, respectively. The kernels of the integrals are regularised stokeslets, as de-

�ned in equation (1.40). Time dependence, common to all variables, is suppressed for

conciseness. Assuming no slip conditions of the surface of the �agellum and body so

that u(X(s)) = Xt and u(Y ) = Yt , the velocity of the cell is described by the equations

Xt(s) = ∫

L

0

S
"

(X(s), X(s
′
)) ⋅ f (s

′
) ds

′
, +

∬
)B

S
"

(X(s), y) ⋅ '(y) dSy, (4.2a)

Yt = ∫

L

0

S
"

(Y , X(s)) ⋅ f (s) ds + ∬
)B

S
"

(Y , y) ⋅ '(y) dSy. (4.2b)

The cell head moves as a rigid body, allowing its velocity to be expressed as a combi-

nation of translational and rotational motion through

Yt = X0,t + 
0 ∧ (Y − X0), (4.3)

where X0,t is the translational velocity of the body, equal to the �agellar velocity at

X0 ∶= X(0), and 
0 ∶= 
(0) is the angular velocity about the head-�agellum. The

cell body is attached to the �agellum so that the tangent plane to the cell surface at X0

and the tangent to the curve at s = 0 are perpendicular. Additional equations ensuring
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compatibility between the motion of the head and the proximal �agellum at the head-

�agellum join are considered later in section 4.2.4.

The hydrodynamic velocity at a point along the �agellum centreline is decomposed

into a contribution from a local neighbourhood of curve, and from the distal curve

outside this region, and given as

Xt = ∫
|s−s

′
|6q
S
"

(X(s), X(s
′
)) ⋅ f (s

′
) ds

′
+
∫
|s−s

′
|>q

S
"

(X(s), X(s
′
)) ⋅ f (s

′
) ds

′
+ ⋯ (4.4)

where ellipses denote additional integral terms describing the interaction of the �ag-

ellum with the cell body and/or other cells and structures. The parameter 0 6 q 6 L

governs the size of the locally-treated region of curve. In previous works by Gadêlha

et al. (2010) and Montenegro-Johnson et al. (2015), the integral across the local neigh-

bourhood of curve (or inner region) i.e. across |s − s′| 6 q, s′ ∈ [0, L] for some s ∈ [0, L],

is approximated using a resistive drag law. In particular, Gadêlha et al. (2010) used re-

sistive force theory and neglected all other contributions; Montenegro-Johnson et al.

(2015) used a modi�ed theory via Gueron & Liron (1992) to account for nonlocal inter-

actions. Assuming that the force per unit length is constant across the inner region,

and denoting d3 ∶= Xs , one can write

∫
|s−s

′
|6q
S
"

(X(s), X(s
′
)) ⋅ f (s

′
) ds

′
≈
∫
|s−s

′
|6q
S
"

(X(s), X(s
′
))ds

′
⋅ f (s), (4.5a)

≈

1

c⟂

(I + (
 − 1)XsXs) ⋅ f , (4.5b)

where 
 = c⟂/c∥ and XsXs ∶= Xs ⊗ Xs . The steps taken to obtain the �nal expression

are described in appendix C. The parameters c⟂ and c∥ are referred to here as resistance

coe�cients of the hydrodynamic approximation.
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In this work, rather than using resistance parameter values from Gray & Hancock

(1955) or Gueron & Liron (1992), we derive new expressions stemming directly from

the regularised stokeslet integral equation, thereby keeping the hydrodynamic model

within the family of the regularised stokeslet methods. This contrasts with the previ-

ous approach of Montenegro-Johnson et al. (2015), which features a mixed hydrody-

namic description. Consider the inner q−region of the regularised stokeslet integral,

expanded into cases,

∫
|s−s

′
|6q
S
"

(X(s), X(s
′
))ds

′
=

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

∫

s+q

0

S
"

(X(s), X(s
′
))ds

′
s < q,

∫

s+q/2

s−q/2

S
"

(X(s), X(s
′
))ds

′
q 6 s 6 L − q,

∫

L

s−q

S
"

(X(s), X(s
′
))ds

′
s > L − q.

(4.6)

We approximate the region of curve in each integral as a linear rod and, through the

regularised stokeslet segments method (Smith, 2009; Cortez, 2018) described in section

1.2.9, obtain coe�cients analogous to those of Gray & Hancock resistive force theory

(Gray & Hancock, 1955). The regularised stokeslet integral across the q-inner region

of �agellum can be then be approximated

∫
|s−s

′
|6q
S
"

(X(s), X(s
′
)) ⋅ f (s

′
) ds

′
≈

1

�⟂

(I + (
 − 1)Xs(s)Xs(s)) ⋅ f (s), (4.7)

where �⟂ = 8��/DL

22
, �∥ = 8��/DL

11
and 
 = �⟂/�∥, with analytic expressions for DL

11
and

D
L

22
given in equations (1.65g) and (1.66) respectively. Suppressing arclength depen-

dence, the �nal equation for the hydrodynamic velocity is

Xt − V =

1

�⟂

(I + (
 − 1)XsXs) ⋅ f , (4.8)
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where the nonlocal contribution to the �agellar velocity is given by

V(s) =
∫
|s−s

′
|>q

S
"

(X(s), X(s
′
)) ⋅ f (s

′
) ds

′
+
∬

)B

S
"

(X(s), Y) ⋅ '(Y ) dSY . (4.9)

Equation 4.7 provides an approximation for the integrated inner region stokeslet through

analytical integration of a hydrodynamically exact but geometrically approximate reg-

ularised stokeslet integral. In this manner, the error arising from the inner approxi-

mation stems only from the straight line approximation and not as a result of using

resistance coe�cients derived from a less accurate hydrodynamic model. Through

nonlocal contributions encompassed by V , equation (4.8) describes the nonlocal hy-

drodynamic velocity of the �agellum centreline.

4.2.2 Elasticity model with bend and twist

The hydrodynamic model derived in section 4.2.1, and the equation for the �lament

velocity, given in equation (4.8), are coupled to the elasticity model by �nding an ex-

pression for the hydrodynamic force per unit length f in terms of the internal �lament

elasticity. In the following section, we derive an expression for f , building upon the

equations presented in section 1.3.1 for a general �lament.

The three dimensional nonlinear �agellum geometry is described using a Kirchho�

rod model, as given in section (1.3.1). The orientation of the �agellum is de�ned by a

director basis {d1, d2, d3} with d3 = Xs and d2 = d3 ∧ d1. Additionally, the d1d3-plane

at s = 0 corresponds to the plane of �attening of the cell head. The internal elastic

force Fint and moment Mint transmitted by the downstream (s0 ∈ [s, L]) �agellum on
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the upstream section (s0 ∈ [0, s)) are given by the equilibrium equations

Fint,s − f = 0, (4.10a)

Mint,s + d3 ∧ Fint + m = 0, (4.10b)

where f is the viscous force per unit length the �agellum exerts onto the �uid, and

m is an internal actuating moment per unit length. Constitutively linear elasticity

relates the internal contact moment Mint to the curvatures of the rod through (Landau

& Lifshitz, 1965)

Mint = E(�1d1 + �2d2) + C�3d3, (4.11a)

= EXs ∧ Xss + C�3Xs , (4.11b)

where E is the bending rigidity of the �agellum and C is the twist rigidity. The twist

curvature �3 describes the rate of rotation of the frame with respect to arclength and

hence the amount of twist the �lament experiences along its length. Substituting

(4.11b) into the moment equilibrium equation (4.10b), assuming for now that both E

and C are constant, we obtain

EXs ∧ Xsss + C�3,sXs + C�3Xss + Xs ∧ Fint + m = 0. (4.12)

Multiplying vectorially from the left by Xs yields

EXs ∧ (Xs ∧ Xsss) + C�3Xs ∧ Xss + Xs ∧ (Xs ∧ Fint) + Xs ∧ m = 0, (4.13)

which, simpli�ed using the triple vector product identity, yields an expression for the
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internal contact force as

Fint = −EXsss + C�3Xs ∧ Xss + TXs + Xs ∧ m, (4.14)

where T is the internal tension, introduced as a new unknown since (4.14) contains no

information on the tangential force components. Substituting equation (4.14) into the

force equilibrium equation (4.10a), provides an expression for the hydrodynamic force

per unit f length in terms of centreline elastics as

f = −EXssss + C[�3(Xs ∧ Xss)]s + [TXs]s + [Xs ∧ m]s (4.15)

The active torque term in equation (4.15) contains only terms arising from rotations

about d1 and d2. We refer to these components as the active bending components of

the actuating torque. For the general form m = midi , the scalar functions of arclength

m1, m2 and m3 describe the active rotation of the frame about the d1, d2 and d3 axes

respectively. Expressions for these functions, speci�c to a human spermatozoa, will

be given later in section 4.3.3. The elastohydrodynamic equation is thus obtained by

substituting equation (4.15) into equation (4.8), yielding

Xt − V =

1

�⟂

(I + (
 − 1)XsXs) ⋅ ( − EXssss + C[�3Xs ∧ Xss]s + [TXs]s + [Xs ∧m]s), (4.16)

Following Gadêlha et al. (2010) and Montenegro-Johnson et al. (2015), we expand (4.16)
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(details in appendix E) to obtain the nonlocal and nonplanar sperm equation as

�⟂(Xt − V ) = −EXssss − E(
 − 1)(Xs ⋅ Xssss)Xs + C�3,s(Xs ∧ Xss)

+ C�3(Xs ∧ Xsss) + TXss + 
TsXs + Xss ∧ m

+ Xs ∧ ms + (
 − 1)XsXs ⋅ (Xss ∧ m). (4.17)

Since we aim to model cells actuated by nonplanar internal moments per unit length,

we retain the vector form for m and terms arising from it, rather than expand into

components as in other centreline models (Gadêlha et al., 2010; Montenegro-Johnson

et al., 2015).

An auxiliary equation for the tension T is obtained through manipulation of the

inextensibility constraint Xs ⋅ Xs = 1. Following Tornberg & Shelley (2004) and

Montenegro-Johnson et al. (2015), the constraint is included in the model through the

approximately equivalent but numerically tractable condition

1

2

(Xs ⋅ Xs)t = (Xt)s ⋅ Xs = �(1 − Xs ⋅ Xs), (4.18)

which works to remove numerical length errors at the expense of including a numer-

ical damping parameter �, which governs the strength of the conservative restorative

action. The expression on the right hand side of (4.18) can be thought of as spring

with spring constant proportional to � remove any axial growth. Results are generally

insensitive to a broad range of � values (to be discussed in section 4.3). Rearranging
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equation (4.17) for Xt and substituting into equation (4.18) yields the tension equation

�(1 − Xs ⋅ Xs) − Vs ⋅ Xs

=

1

�⟂

[
Tss − (Xss ⋅ Xss)T + E(1 + 3
)Xss ⋅ Xssss

+ 3E
Xsss ⋅ Xsss + C�3,s(Xs ∧ Xss) ⋅ Xsss

+ 
(Xsss ∧ m) ⋅ Xs + (
 + 1)(Xss ∧ ms) ⋅ Xs]. (4.19)

Full details of the expansion are provided in appendix E.

There remains to consider the geometric coupling between curvature and angular

velocity arising from elasticity. Adopting a local approximation to the hydrodynamic

drag arising from twist (Gueron & Levit-Gurevich, 2001b; Wolgemuth et al., 2004), the

elastic and viscous twist moments balance as

�RΩ3 = C�3,s + m3, (4.20)

where �R = 4��a2 is the viscous drag coe�cient, with a the cross-sectional radius of the

�agellum. Rearranging equation (4.20) for Ω3, and substituting into the compatibility

condition equation (1.74c) yields

�3,t =

C

�R

�3,ss +

1

�R

m3,s + (Xs ∧ Xss) ⋅ Xst . (4.21)

The full derivation of the geometric compatibility equation (4.21) is provided in ap-

pendix A. Equation (4.21) is coupled to the hydrodynamic model in equation (4.8) by

noting that, upon di�erentiation with respect to arclength, the dimensional hydrody-
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namic velocity can be written

Xts =

1

�⟂

fs +


 − 1

�⟂

(Xs ⋅ f )sXs +


 − 1

�⟂

(Xs ⋅ f )Xss + Vs . (4.22)

Since the result of the vector product in equation (4.21) is by de�nition perpendicular

to both Xs and Xss , substituting (4.22) into (4.21) yields an equation for the elastohy-

drodynamic twist of the �agellum as

�3,t =

C

�R

�3,ss +

1

�R

m3,s +

1

�⟂

(Xs ∧ Xss) ⋅ fs + (Xs ∧ Xss) ⋅ Vs . (4.23)

The third term in the above equation is nonzero when the �agellum is out of elastic

equilibrium. The �nal term incorporates the nonlocal hydrodynamic e�ects of the dis-

tal �agellum on the local twist. Taken together, these terms act as sinks, restoring the

�agellum to an untwisted state. For a pure bending problem, �3 = 0 can be prescribed

without loss of generality.

4.2.3 Varying �agellar sti�ness

A key physiological feature of human spermatozoa is the tapering sheath surrounding

the 9+2 axonemal structure of the �agellum. As discussed in section 1.1.2, and repre-

sented in �gure 1.1, the tapering structure produces di�erent elastic properties along

the length of the �agellum. The varying bending sti�ness E(s) is modelled as in chapter

2, following Neal et al. (2020), and as given in equation (2.75).

Accounting for the bending sti�ness as a function of arclength requires alterations

to the elastohydrodynamic model. The internal elastic moment is de�ned through

the equilibrium equation and constitutive bending law, given in equations (4.10b) and
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(4.11b) respectively. Substituting the elastic moment expression into the equilibrium

equation yields

EXs ∧ Xsss + EsXs ∧ Xss + C[�3Xs]s + Xs ∧ Fint + m = 0. (4.24)

Following the same procedure as in section 4.2.2, the internal contact force now in-

cludes additional bending sti�ness derivative terms, and is given by

Fint = −EXsss − EsXss + C�3Xs ∧ Xss + TXs + Xs ∧ m. (4.25)

The resulting viscous force per unit length, exerted by the �agellum onto the �uid,

obtained via the force equilibrium equation (4.10a) and (4.25), is

f = −EXssss − 2EsXsss − EssXss + C[�3Xs ∧ Xss]s + [TXs]s + [Xs ∧ m]s , (4.26)

yielding the extended elastohydrodynamic equation, replacing (4.17), as

�⟂(Xt − V ) = −EXssss − 2EsXsss − EssXss

− E(
 − 1)(Xs ⋅ Xssss)Xs − 2Es(
 − 1)(Xss ⋅ Xsss)Xs

+ C�3,sXs ∧ Xss + C�3Xs ∧ Xsss

+ TXss + 
TsXs + Xss ∧ m

+ Xs ∧ ms + (
 − 1)XsXs ⋅ (Xss ∧ m). (4.27)
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Similarly, the resulting auxiliary tension equation, replacing (4.19), is

�(1 − Xs ⋅ Xs) − Vs ⋅ Xs =

1

�⟂

[
Tss + [Ess(1 + 2
) − T ]Xss ⋅ Xss

− 3Es
Xs ⋅ Xssss − 2Es(
 − 1)Xss ⋅ Xsss + C�3,s(Xs ∧ Xss) ⋅ Xsss

+ E(1 + 3
)Xss ⋅ Xssss + 3E
Xsss ⋅ Xsss

+ 
(Xsss ∧ m) ⋅ Xs + (
 + 1)(Xss ∧ ms) ⋅ Xs]. (4.28)

The hydrodynamics and kinematic equations for the model remain unchanged. The

original constant sti�ness model can be recovered from the varying sti�ness equations

by noting that terms involving derivatives of the bending sti�ness disappear when E

is constant.

4.2.4 Boundary conditions

We next consider boundary conditions for the problem. When modelling mono�agel-

late swimmers such as sperm, the proximal boundary conditions (i.e. at X0 ∶= X(0))

need to account for the presence of the cell body exerting a force and moment onto

the connected �agellum. The derivations here are similar to the steps used in chapter

3, generalised to account for full 3D elastodynamics. We begin by noting that in the

Stokes �ow regime, the total viscous force and moment on the cell are zero, so that

∫

L

0

f (s) ds +
∬

)B

'(Y ) dSY = 0, (4.29a)

∫

L

0

(X(s) − X0) ∧ f (s) ds + ∬
)B

(Y − X0) ∧ '(Y ) dSY = 0, (4.29b)
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where f and ' are the force per unit length and force per unit area the �lament and

body exert onto the �uid, respectively. Integration of the force equilibrium equation

yields

Fint,s = f ⇒ ∫

L

s

Fint,s′(s
′
) ds

′
= Fint(L) − Fint(s) = ∫

L

s

f (s
′
) ds

′
. (4.30)

Since the distal tip of �agellum is unconstrained, Fint(L) = Mint(L) = 0, and equation

(4.30) yields −Fint(0) = ∫
L

0
f (s) ds. Combining with equation (4.29a),

∫

L

0

f (s) ds +
∬

)B

'(Y ) dSY = −Fint(0) + ∬
)B

'(Y ) dSY = 0. (4.31)

Substituting for the elastic expression of the internal contact force, we obtain the prox-

imal force boundary condition as

( − EXsss − EsXss + C�3Xs ∧ Xss + TXs + Xs ∧ m)
|
|s=0

=
∬

)B

'(Y ) dSY . (4.32)

The proximal boundary condition for the tension T is obtained by writing the axial

component of equation (4.32) by projecting along the tangent at X0, yielding

(
∬

)B

'(Y ) dSY
)
⋅ Xs

|
|s=0

= (EXss ⋅ Xss)
|
|s=0

+ T (0), (4.33)

where simpli�cations are a�orded using the di�erential identities given in appendix E.

The proximal boundary condition for the moment is obtained by �rst considering the

moment equilibrium equation

Mint,s + Xs ∧ Fint + m = 0, (4.34)
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whereMint is the internal elastic contact moment andm is the active moment per unit

length. As in the derivation presented in section 2.2, integrating the above over the

distal segment [s, L], and noting that Mint(L) = 0, provides the equation

− Mint(s) − ∫

L

s

(X(s
′
) − X(s)) ∧ f (s

′
) ds

′
+
∫

L

s

m(s
′
) ds

′
= 0. (4.35)

Evaluating equation (4.35) at s = 0 and rearranging yields

∫

L

0

(X(s) − X0) ∧ f (s) ds = −Mint(0) + ∫

L

0

m(s) ds. (4.36)

Substituting this expression into the total moment balance equation (4.29b),

− Mint(0) + ∫

L

0

m(s) ds +
∬

)B

(Y − X0) ∧ '(Y ) dSY = 0. (4.37)

Using the constitutive equation for linear elasticity (equation (1.87)), we substitute and

rearrange to obtain the proximal moment boundary condition

∬
)B

(Y − X0) ∧ '(Y ) dSY = (EXs ∧ Xss + C�3Xs)
|
|s=0

−
∫

L

0

m(s) ds. (4.38)

Taking the vector product of equation (4.38) with Xs(0) from the right provides a

boundary condition for the bending moment as

(
∬

)B

(Y − X0) ∧ '(Y ) dSY
)
∧ Xs

|
|s=0

= EXss
|
|s=0

− M ∧ Xs
|
|s=0

(4.39)
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simpli�ed using triple vector product identities, where, recalling m = midi ,

M =
∫

L

0

m1(s)d1(s) + m2(s)d2(s) + m3(s)d3(s) ds. (4.40)

A boundary condition for the moment due to twist at X0 is obtained by taking the

scalar product between equation (4.38) and Xs(0), yielding

(
∬

)B

(Y − X0) ∧ '(Y ) dSY
)
⋅ Xs

|
|s=0

= C�3(0) − M ⋅ Xs
|
|s=0

. (4.41)

At the distal end, the �agellum is force and moment free. The zero force condition

provides the boundary condition

Fint(L) = ( − EXsss − EsXss + C�3Xs ∧ Xss + TXs + Xs ∧ m)
|
|s=L

= 0. (4.42)

The tangential component of equation (4.42) yields the distal tension condition to be

T (L) = 0. The zero moment condition provides a boundary condition for the centreline

as

(EXs ∧ Xss + C�3Xs)
|
|s=L

= 0. (4.43)

The condition on the bending moment is obtained by taking the cross product of equa-

tion (4.43) with Xs(L), yielding

(EXs ∧ (Xs ∧ Xss))
|
|s=L

= −EXss(L) = 0. (4.44)

Similarly, the distal boundary condition for the twist moment is

C�3(L) = 0. (4.45)
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For the reduced problem considering a headless cell i.e. a �lament, the distal conditions

(4.42–4.45) evaluated at s = 0 replace the proximal boundary conditions (4.32–4.41).

An expression for the angular velocity of the frame at s = 0, which we assume to

also be the angular velocity of the cell head, is obtained through manipulations of the

rigid body rotation formula Xst = 
 ∧ Xs . Multiplying vectorally from the left by Xs ,

and using the kinematic constraint given in equation (4.20), yields the equation


 = Xs ∧ Xst +
(

C

�R

�3,s +

1

�R

m3

)
Xs , (4.46)

where �R is the hydrodynamic twist resistance and m3 is the active twist moment per

unit length.

De�ning the director frame along the �agellum as d3 = Xs and d2 = d3 ∧ d1, the a

priori unknowns d1(s) are computable by noting �2 = d3,s ⋅d1, which requires knowledge

of d1(0) as a boundary condition for the resulting system partial di�erential equations.

Thus, we include a �nal equation for the director at s = 0 through

d1,t = 
 ∧ d1, at s = 0, (4.47)

thereby closing the problem. Physically, d1 is a material direction which rotates with

the head at s = 0, and coincides with the plane of �attening of the head. Removing

the cell head from the model (for example, to model �laments) removes the need to

include equations (4.46) and (4.47).
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4.2.5 Summary of the dimensional model

The complete dimensional model comprises equations for the elastohydrodynamics

of the �agellum, subject to the auxiliary equation which enforces inextensibility. The

elastohydrodynamic velocity matches the hydrodynamic velocity of the cell, described

by regularised stokeslet integral equations along the �lament centreline and across

the surface of the cell body. The kinematic constraints connecting the body to the

�agellum at their junction point provides additional equations for the angular velocity

of the body and the dynamics of the material normal to the plane of the cell body. The

dimensional model equations are

�⟂(Xt − V ) = − EXssss − E(
 − 1)(Xs ⋅ Xssss)Xs

− 2Es[Xsss + (
 − 1)(Xs ⋅ Xsss)Xs] − EssXss + TXss

+ 
TsXs + C�3,sXs ∧ Xss + C�3Xs ∧ Xsss

+ Xss ∧ m + Xs ∧ ms + (
 − 1)XsXs ⋅ (Xss ∧ m),

(4.48a)

�(1 − Xs ⋅ Xs) − Vs ⋅ Xs =

1

�⟂

[
Tss + [Ess(1 + 2
) − T ]Xss ⋅ Xss

− 3Es
Xs ⋅ Xssss − 2Es(
 − 1)Xss ⋅ Xsss + 3E
Xsss ⋅ Xsss

+ E(1 + 3
)Xss ⋅ Xssss + C�3,s(Xs ∧ Xss) ⋅ Xsss

+ 
(Xsss ∧ m) ⋅ Xs + (
 + 1)(Xss ∧ ms) ⋅ Xs],

(4.48b)

Xt =

1

�⟂

(I + (
 − 1)XsXs) ⋅ f

+
∫
|s−s

′
|>q

S
"

(X, X(s
′
)) ⋅ f (s

′
) ds

′

+
∬

)B

S
"

(X, Y) ⋅ '(Y ) dSY ,

(4.48c)
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X0,t + 
0 ∧ (Y − X0) = ∫

L

0

S
"

(Y , X(s)) ⋅ f (s) ds

+
∬

)B

S
"

(Y , y) ⋅ '(y) dSy,

(4.48d)

V =
∫
|s−s

′
|>q

S
"

(X, X(s
′
)) ⋅ f (s

′
) ds

′

+
∬

)B

S
"

(X, Y) ⋅ '(Y ) dSY ,

(4.48e)

�3,t =

C

�R

�3,ss +

1

�R

m3,s +

1

�⟂

(Xs ∧ Xss) ⋅ fs + (Xs ∧ Xss) ⋅ Vs , (4.48f)

for 0 < s < L and t > 0, where


 = Xs ∧ Xst +
(

C

�R

�3,s +

1

�R

m3

)
Xs , at s = 0, (4.49a)

d1,t = 
 ∧ d1, at s = 0, (4.49b)

and subject to the boundary conditions

∬
)B

'(Y ) dSY = ( − EXsss − EsXss + C�3Xs ∧ Xss

+ TXs + Xs ∧ m)
|
|s=0

,

(4.50a)

(
∬

)B

'(Y ) dSY
)
⋅ Xs

|
|s=0

= (EXss ⋅ Xss)
|
|s=0

+ T (0), (4.50b)

(
∬

)B

(Y − X0) ∧ '(Y ) dSY
)
∧ Xs

|
|s=0

= (EXss)
|
|s=0

− M ∧ Xs
|
|s=0

, (4.50c)

(
∬

)B

(Y − X0) ∧ '(Y ) dSY
)
⋅ Xs

|
|s=0

= C�3(0) − M ⋅ Xs
|
|s=0

, (4.50d)

0 = ( − EXsss − EsXss + C�3Xs ∧ Xss

+ TXs + Xs ∧ m)
|
|s=L

,

(4.50e)

0 = T (L), (4.50f)

0 = (EXss)
|
|s=L

, (4.50g)
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0 = �3(L), (4.50h)

whereM = ∫
L

0
mi(s)di(s) ds is the integrated active moment per unit length, and where

" ≪ q ≪ L and � > 0 are parameters to be chosen. For clarity, the space and time

dependency of each variable has been suppressed. The model is closed by speci�cation

of the initial �lament shapes X(s, 0), director d1(0, 0), and twist curvature �3(s, 0).

4.2.6 Nondimensionalisation and summary

The mathematical model is nondimensionsalised using the scalings

ŝ = Ls, X̂ = LX, Ŷ = LY ,
̂
f =

E
d

L
3
f , '̂ =

E
d

L
4
', T̂ =

E
d

L
2
T ,

t̂ =

1

!

t, Ê = E
d
E, "̂ = L", q̂ = Lq, V̂ =

E
d

�L
3
V , (4.51)

m̂i = m
0

i
mi , 
̂ =

1

!


, �̂ =

1

L

�,

for i = 1, 2, 3, where L is the length of the �agellum, ! is the time scale associated with

the actuation of the cell, Ed is the bending rigidity of the �agellum at the distal end, C

is the twist rigidity, and m
0

i
are the amplitudes of the active moment per unit length

functions mi(s) about each director director.

The regularised stokeslet and varying bending sti�ness function scale as discussed

previously in section 2.2.2. In what follows, hats are used to indicate dimensionless

variables, and index notation implies summation over repeated indices. The complete

dimensionless problem is then given by the following system of continuous equations,
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4
X̂
t̂
− V̂ =

�

�⟂

[ − ÊX̂ŝŝŝŝ − Ê(
 − 1)(X̂ŝ ⋅ X̂ŝŝŝŝ)X̂ŝ

− 2Êŝ[X̂ŝŝŝ + (
 − 1)(X̂ŝ ⋅ X̂ŝŝŝ)X̂ŝ] − ÊŝŝX̂ŝŝ + T̂ X̂ŝŝ

+ 
T̂ŝX̂ŝ + Γs�̂3,ŝX̂ŝ ∧ X̂ŝŝ + Γs�̂3X̂ŝ ∧ X̂ŝŝŝ

+ 4
X̂ŝŝ ∧im̂idi + 4

X̂ŝ ∧i(m̂idi)ŝ

+ 4
(
 − 1)X̂ŝX̂ŝ ⋅ (X̂ŝ ∧im̂idi)],

(4.52a)

4 ̂
�(1 − X̂ŝ ⋅ X̂ŝ) − V̂ŝ ⋅ X̂ŝ =

�

�⟂

[
 T̂ŝŝ + [Êŝŝ(1 + 2
) − T̂ ]X̂ŝŝ ⋅ X̂ŝŝ

− 3Êŝ
X̂ŝ ⋅ X̂ŝŝŝŝ − 2Êŝ(
 − 1)X̂ŝŝ ⋅ X̂ŝŝŝ

+ 3Ê
 X̂ŝŝŝ ⋅ X̂ŝŝŝ + Ê(1 + 3
)X̂ŝŝ ⋅ X̂ŝŝŝŝ

+ Γs�̂3,ŝ(X̂ŝ ∧ X̂ŝŝ) ⋅ X̂ŝŝŝ + 4

(X̂ŝŝŝ ∧im̂idi) ⋅ X̂ŝ

+ 4
(
 + 1)(X̂ŝŝ ∧im̂idi) ⋅ X̂ŝ],

(4.52b)

4
X̂
t̂
=

�

�⟂

(I + (
 − 1)X̂ŝX̂ŝ) ⋅
̂
f

+
∫
|ŝ−ŝ

′
|>q̂

Ŝ
"̂

(X̂ , X̂ (ŝ
′
)) ⋅

̂
f (ŝ

′
) dŝ

′

+
∬

)B̂

Ŝ
"̂

(X̂ , Ŷ ) ⋅ '̂(Ŷ ) dSŶ
,

(4.52c)

4

(X̂0,t̂ + 
̂0 ∧ (Ŷ − X̂0)) = ∫

1

0

Ŝ
"̂

(Ŷ , X̂ (ŝ
′
)) ⋅

̂
f (ŝ

′
) dŝ

′

+
∬

)B̂

Ŝ
"̂

(Ŷ , ŷ) ⋅ '̂(ŷ) dSŷ ,

(4.52d)

V̂ =
∫
|ŝ−ŝ

′
|>q̂

Ŝ
"̂

(X̂ , X̂ (ŝ
′
)) ⋅

̂
f (ŝ

′
) dŝ

′

+
∬

)B̂

Ŝ
"̂

(X̂ , Ŷ ) ⋅ '̂(Ŷ ) dSŶ
,

(4.52e)

4
�̂
3,t̂
= ΓdΓs�̂3,ŝŝ + 43Γdm̂3,ŝ

+

�

�⟂

(X̂ŝ ∧ X̂ŝŝ) ⋅
̂
fŝ + (X̂ŝ ∧ X̂ŝŝ) ⋅ V̂ŝ

(4.52f)
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where 0 < ŝ < 1 and t̂ > 0, and with

4

̂ = 4

X̂ŝ ∧ X̂ŝt̂
+ Γd (Γs�̂3,ŝ + 43m̂3)X̂ŝ , at ŝ = 0, (4.53a)

d
1,t̂
= 
̂ ∧ d1, at ŝ = 0, (4.53b)

subject to the boundary conditions

∬
)B̂

'̂(Ŷ ) dS
Ŷ
= ( − ÊX̂ŝŝŝ − ÊŝX̂ŝŝ + Γs�̂3X̂ŝ ∧ X̂ŝŝ

+ T̂ X̂ŝ + 4
X̂ŝ ∧im̂idi)

|
|ŝ=0

,

(4.54a)

(
∬

)B̂

'̂(Ŷ ) dS
Ŷ
)
⋅ X̂ŝ

|
|ŝ=0

= (ÊX̂ŝŝ ⋅ X̂ŝŝ)
|
|ŝ=0

+ T̂ (0), (4.54b)

(
∬

)B̂

(Ŷ − X̂0) ∧ '̂(Ŷ ) dSŶ
)
∧ X̂ŝ

|
|ŝ=0

= (ÊX̂ŝŝ)
|
|ŝ=0

− 4
M̂ ∧ X̂ŝ

|
|ŝ=0

, (4.54c)

(
∬

)B̂

(Ŷ − X̂0) ∧ '̂(Ŷ ) dSŶ
)
⋅ X̂ŝ

|
|ŝ=0

= Γs�̂3(0) − 4
M̂ ⋅ X̂ŝ

|
|ŝ=0

, (4.54d)

0 = ( − ÊX̂ŝŝŝ − ÊŝX̂ŝŝ + Γs�̂3X̂ŝ ∧ X̂ŝŝ

+ T̂ X̂ŝ + 4
X̂ŝ ∧im̂idi)

|
|ŝ=1

,

(4.54e)

0 = T̂ (1), (4.54f)

0 = (ÊX̂ŝŝ)
|
|ŝ=1

, (4.54g)

0 = �̂3(1), (4.54h)

where

M̂(ŝ) =
∫

1

ŝ

im̂i(ŝ)di(ŝ) dŝ, (4.55)

is the distal integral of the dimensionless active moment per unit length, and where

"̂ ≪ q̂ ≪ 1 and ̂
� > 0 are parameters to be chosen. The surface )B̂ is the dimensionless

surface of the cell body, scaled by the total �agellum length.
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The dimensionless ratios Γs = C/Ed and Γd = �L2/�R describe the relative strength of

twist to bending sti�ness and bending to twist drag, and are dubbed the sti�ness ratio

and drag ratio respectively. The dimensionless groups, referred to as the swimming

parameter and actuation parameters respectively are

 = L
(

�!

E
d )

1

4

=

viscous forces
elastic bending forces , (4.56a)

i =

m
0

i

�!L
2
=

active forces
viscous forces , i = 1, 2, 3, (4.56b)

In what follows, we will refer exclusively to the dimensionless model described above

unless otherwise declared, and drop the hat notation for clarity.

4.2.7 Numerical implementation

The system of equations forming the dimensionless model given in 4.2.6 is numeri-

cally integrated in time using a backwards (i.e. implicit) Euler scheme. For a general

ordinary di�erential equation

ut =  (u, u′, u′′, … ) (4.57)

where primes denote di�erentiation with respect to the independent variable, discre-

tised in time by tn = nΔt , the backwards Euler method provides a solution via

u
n+1

= u
n
+ Δtn+1

(u, u
′
, u

′′
, … ). (4.58)

Whilst other time stepping schemes are available, such as a Crank-Nicolson type

scheme (Montenegro-Johnson et al., 2015), or a mixed implicit-explicit ImEx scheme
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(Tornberg & Shelley, 2004; Lim et al., 2008; Gadêlha et al., 2010), we use the back-

wards Euler method for its conceptual simplicity and ease of implementation, �nding

that improvements in other areas of the numerical implementation compensate for the

common drawbacks of using such �rst-order time stepping approaches.

Labelling temporally discrete �lament positions as X n
∶= X(s, nΔt) (and other

variables similarly), applying the backward Euler scheme to the elastohydrodynamic

equation (4.52a) yields

4
X

n+1
− ΔtV

n+1
= 4

X
n
+

�Δt

�⟂
(
− EX

n+1

ssss
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 − 1)(X
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s
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ssss
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s
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sss
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ss
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ss
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3,s
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∧ X
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ss
+ Γd�
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3
X
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s
∧ X
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sss
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X

n+1

ss
∧im
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i
d
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i
+ 4

X
n+1

s
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i
d
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s
X

n+1

s
⋅ (X

n+1

s
∧im

n+1

i
d
n+1

i
)
)
, (4.59)

which is nonlinear in the unknown �lament positions X n+1. Note that as the actuation

functions mi(s, t) are prescribed, their values at all time points is automatically known.

Calculation of the line tensions T n+1 requires solving the auxiliary equation (4.52b)

evaluated at time tn+1, which is also nonlinear in the �lament shape. The nonlinearity

of these equations, as well as others in the system, is tackled by linearising the model

equations and employing Picard �xed point iteration until the iterated solutions con-

verge to within a chosen tolerance. Denoting by Xm the mth iterate approximating
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X
n+1, and labelling other variables similarly, the linearised system of equations is

4
X

m+1
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(4.60a)
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(4.60d)
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(4.60f)

The kinematic equations for the angular velocity and director normal at the body-

�agellum join linearise as

Δt4
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= 4
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s
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at s = 0, (4.61a)
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1
at s = 0. (4.61b)

The boundary conditions linearise as

∬
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198



0 = ( − EX
m+1

sss
− EsX

m+1

ss

+ Γs�
m

3
X

m

s
∧ X

m+1

ss
+ T

m
X

m

s

+ 4
X

m

s
∧im

n+1

i
d
m

i )
|
|s=1

,

(4.62e)

0 = T
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(1), (4.62f)
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At each iteration, the director frame is updated using the most recent iterates by solv-

ing the separate system of partial di�erential equations given by the linearised equa-

tions

d
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1,s
= �

m

3
d
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m+1

2
X

m

s
, (4.64a)

d
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s
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, (4.64b)

�
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2
= X

m

ss
⋅ d

m+1

1
, (4.64c)

closed by the boundary condition prescribing dm+1
1
(0) equal to the most recent iterate

for d1(0) provided by the solution of equation (4.61b).

The �agellum is spatially discretised by i = 1, … , N equally spaced nodes along its

arclength at discrete values s[i] ∶= (i − 1)Δs. The cell body is discretised by M nodes

distributed across its surface, obtained through a cubic projection method as outlined

in section 1.2.8. Derivatives with respect to s are approximated using second order

accurate central �nite di�erence schemes for variables positioned at interior nodes.
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Derivatives of variables at the boundaries (that is, each end of the �agellum) are ap-

proximated using third order accurate one-sided �nite di�erences.

Integrals of the active moment vector and director vectors are numerically approx-

imated using the trapezium rule. The regularised stokeslet integrals across the body

surface in equations (4.60c–4.60e) and the boundary conditions are approximated us-

ing a nearest neighbour discretisation as described in section 1.2.8, which requires the

additional generation of a higher resolution discretisation of the cell head. These dis-

cretisations are generated in a reference con�guration during initialisation, and then

rotated by a rigid body transformation as required at each iteration according to the

values of 
 and X0,t calculated upon each solve. The boundary conditions involving

integrals across the surface of the cell body are formulated as operators onto the un-

known head forces. Steps taken to obtain the required linear operators are described

in appendix F.

Applying the aforementioned �nite di�erence scheme to approximate spatial

derivatives, equations (4.60a–4.61b), closed by the boundary conditions (4.62a–4.62h)

form a linear system solveable at each time step for the unknown positions Xm+1, ten-

sions Tm+1, force densities fm+1 and 'm+1, angular velocity 
m+1

0
, director dm+1

1
[1], and

twist curvature �m+1
3

. This system can be written as a matrix equation,

Ab = Z, (4.65)

where A is a (8N +3M+6)×(8N +3M+6) square matrix, Z is an (8N +3M+6)×1 column

vector of unknowns, and b is an identically sized vector encoding the right hand sides

of the model equations.

The linear system at each iteration is solved in a monolithic fashion, di�ering from
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other nonlocal methods by Gueron & Levit-Gurevich (2001a) and Montenegro-Johnson

et al. (2015), which tackle the hydrodynamic problem separately from the elastohydro-

dynamics. The left hand side operator, expressed in matrix blocks, is

A =
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⎜

⎜
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⎜
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⎟

⎠

, (4.66)

where the subscript of each block matrix indicates onto which of the unknowns of the

iterative problem the operator multiplies. Respectively, the matrices AE , AT , AH , AK ,

and AC encode the linearised elastohydrodynamic equation (4.60a), auxiliary equation

(4.60b), hydrodynamics equations (4.60c,4.60d), kinematic equations (4.61a,4.61b), and

compatibility relation (4.60f). The matrix blockAE

f ,'
encodes the nonlocal velocity con-

tribution (equation (4.60e)) appearing on the left hand side of the elastohydrodynamic

equation (4.60a). The vector of unknowns is

b = (b
E
, b

T
, b

H
, b

K
, b

C

)

T

, (4.67)

where
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[M], (4.68d)
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f
m+1

3
[1], … , f

m+1

3
[N ], Φ

m+1

3
[1], … , Φ

m+1

3
[M], ), (4.68e)

b
K
= (


m+1

0
, d

m+1

10 ), (4.68f)

b
C
= (�

m+1

3
[1], … , �

m+1

3
[N ]), (4.68g)

where the subscripts 1, 2, 3 indicate the x, y, z components of the respective variables.

The force quantities �[1], … , �[M] are the combined forces per unit area the cell body

exerted by the body onto the �uid, with their associated weights,

�[j] = '[j]dSY[j], j = 1, … ,M, (4.69)

arising due to the choice of nearest-neighbour discretisation for the regularised

stokeslet surface integrals, which does not require explicit knowledge of the force per

unit area '.

The linear system is preconditioned using the MATLAB® equilibrate function,

which reduces the condition number of the matrix (measured for a typical swimming

cell simulation) from (1016) to (109), aiding in numerical stability. Since the order

of the condition number of the matrix is approximately temporally constant, the scal-

ing matrices are computed on the �rst time step and then reused on all subsequent

time steps in order to reduce computational expense. Additionally, for problems not

involving any mechanical twist (such as a planar beating problem), the linear system

may be reduced by removing the rows of the matrix containing the block matrices AC ,

and their corresponding right hand sides bC from b, since �3[1] = ⋯ = �3[N ] = 0

can be prescribed in these cases. The system is solved using the MATLAB® mldivide

command to obtain new iterates for the model unknowns. The system is then rebuilt
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with the new information and repeatedly solved until

max |X
m+1

− X
m
| 6 � , (4.70)

where � is the desired tolerance of the iterative solver. In what follows, we choose

� = 10
−4 unless otherwise stated. Depending on the problem under consideration, con-

vergence to this tolerance is typically achieved with 1–5 iterations per time step. Upon

satisfying the tolerance, the converged values are stored as the solutions to the problem

at tn+1, and used as initial guesses for variables at the next time step.
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4.3 Model comparisons

In the following section we compare the accuracy and performance of the proposed

framework, hereafter referred to as the SPX method, against the previously developed

EIF method (see chapter 2 for details). Additionally, as in section 2.3, we compare

against a nonlocal bead and spring model (labelled BSM), and the nonlinear model of

Moreau et al. (2018) (labelled MGG), which contrasts in that it employs resistive force

theory to model only local hydrodynamic interactions. In all of the following, unless

otherwise stated, the regularisation parameter is set at " = 0.01, and the tolerance

for the nonlinear iterative solver is � = 10
−4. As described previously, iterations are

considered converged when the maximum absolute di�erence in centreline positions

X is below � , as opposed to convergence in the full vector of unknowns Z . In practice,

X -convergence at each time step is su�cient for an accurate and stable algorithm, and

converges in fewer iterations than waiting for full Z -convergence.

4.3.1 Passively relaxing �lament

A headless cell (i.e. a �lament) is initially deformed into a planar semicircle of unit

arclength. The initial condition is obtained by prescribing �1(s) = 0, �2(s) = � and

�3(s) = 0 along with proximal directors d1(0), d2(0) and d3(0) and solving the linear

system given in equations (1.70). Since Xs = d3, the resulting centreline coordinates

can be obtained through numerical integration. The corresponding initial condition

for the angle formulation methods is obtained through basic trigonometric formulas.

At t = 0, the simulation begins and the �lament relaxes towards its equilibrium

con�guration of a straight line. In the absence of any external or internal actuation

forces, we characterise the �laments by  = 1 without loss of generality. A trace of
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Figure 4.1: Comparisons between the SPX method and alternate planar �l-
ament modelling codes. In all SPX simulations, the damping parameter is
� = 200. (a) The trace of the �bre as it relaxes during the simulation over
0 6 t 6 0.06. (b) Relative di�erences in the �nal position of the centre of
mass between the SPX method and the (i) EIF (blue crosses) (ii) BSM (orange
circles) and (iii) MGG (yellow diamonds) models, for increasing spatial dis-
cretisation parameter N .

the planar �bre con�guration, produced by the SPX and EIF methods respectively, is

shown in �gure 4.1a. For a su�ciently �nely discretised �lament, the SPX method

agrees well with a converged result using the EIF method (see section 2.3.1 for details

on the convergence properties of the EIF method).

The root mean squared di�erence in the �nal position of the �lament centre of

mass between the SPX solution and the EIF, BSM, and MGG solutions respectively are

presented in �gure 4.1b. For N > 100, the SPX solution agrees to within 6 1% with the
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Figure 4.2: E�ects of the choice of tension damping parameter � on dimension-
less �lament arclength L. A �lament discretised with N = 161 relaxes from
an initial semicircular initial condition towards a straight line equilibrium. (a)
Arclength measured at the end of the simulation (t = 0.06) for increasing �. (b)
Arclength over the course of the relaxing �lament simulation (0 6 t 6 0.06),
for a selection of � values.

nonlocal EIF and BSM methods. The marginally improved agreement with the local

MGG approach is due to the hybridised nonlocal hydrodynamic model the SPX em-

ploys, with a small neighbourhood around each collocation point approximated with

a local expression, complemented by a full nonlocal approximation outside this area.

The reported lower error for N < 100 when compared with the nonlocal methods is a

result of unconverged SPX simulations, since the accuracy of derivatives of variables,

and the extent to which the inextensibility constraint is successfully enforced, both

scale with the re�nement of the �lament discretisation.

Motivated by the comparison results in �gure 4.1, we choose N = 161 and simulate
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a relaxing �lament using the SPX method for a range of values of �, the parameter

governing the strength of the inextensibility correction. Results are shown in �gure 4.2.

For � > 100, unit arclength is ensured at the end of the relaxing �lament simulation, as

seen in �gure 4.2a. In �gure 4.2b, the total arclength throughout the relaxing �lament

simulation is tracked for a selection of � ∈ [0, 104]. Whilst larger values tightly enforce

the unit arclength requirement, in all cases the deviation of the total �agellum length

is < 0.25%.

4.3.2 Passively relaxing cell

We next assess the SPX model for the case of a passively relaxing planar sperm cell.

We compare against the EIF with the extensions described in section 2.5. In both ap-

proaches, the cell �agellum is assumed to extend perpendicular from the surface of

the cell body at the head-�agellum join X0, so that both methods describe the same dy-

namic physical problem, allowing appropriate comparisons between simulation results

to be made.

As in section 4.3.1, the cell is initialised in a semicircular con�guration and is al-

lowed to relax over t ∈ [0, 0.06], with the dimensionless swimming parameter set at

 = 1. The presence of the cell head provides additional drag to the proximal �agellum,

altering the �nal rest state of the cell. The dimensionless head axes are prescribed as

a = [2, 1.6, 1]/45 ≈ [0.044, 0.036, 0.022]. In both methods, integrals over the cell head

are included using nearest-neighbour methods, requiring the generation of a re�ned

quadrature discretisation and a coarser traction discretisation. The cell body discreti-

sations in both SPX and EIF methods are �xed with Mq = 600 and Mt = 149 for the

quadrature and traction respectively, which arise from cubic projections with Hq = 10
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Figure 4.3: Comparisons between the SPX method and the EIF method for
modelling a planar relaxing cell. The cell body, with dimensionless axes
lengths [2, 1.6, 1]/45, is attached at the left-most end of the �lament, though
is omitted from the plots for clarity. (a) Trace of the cell �agellum over
t ∈ [0, 0.06]. Root mean squared di�erences (RMSD) upon increasing N in
(b) the �nal position of the head-�agellum join X0, (c) the �agella curves, av-
eraged across t , and (d) the head angle �, averaged across t .

and Ht = 5 nodes per face respectively. These values are deemed su�cient to pro-

vide converged results following the convergence testing presented in section 1.2.8

(see �gure 1.6), as well as in Neal et al. (2020). The number of �agella segments in the

EIF method is chosen as Q = 80, su�cient for a converged result (see section 2.3.1 for

details).

The trace of the cell across the simulation, with the head omitted for clarity, is

displayed in �gure 4.3a, illustrating the good qualitative agreement between theN = 81
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SPX result and SPX solution with N = 161. The RMSD between the �nal positions of

the head-�agellum joinX0 upon increasing the number of �agellum nodesN is given in

�gure 4.3b, with the error 6 2 × 10
−3 for all N > 50 considered. The MATLAB® spline

function is used to generate a smooth interpolating cubic polynomial closely matching

the discrete solution; the SPX solutions for varying N can be then be sampled from

the spline at arclength values matching those used in the EIF simulation. The RMSD

between these two vectors, calculated at each time point and then averaged across the

interval, is presented in �gure 4.3c. This curve exhibits the same misleading reduced

di�erences forN < 100 as observed in �gure 4.1 arising from the the SPX method being

underresolved in these cases. For N > 100, this di�erence remains below 6 × 10
−3.

A similar metric is applied to the body tangent angle �, with results given in 4.3d.

Despite convergence in the head-�agellum join coordinate X0, larger di�erences are

observed in the tangent angle. In these methods we enforce � = tan−1 Xs(0, t), and thus

di�erences previously established in the �agellar model (section 4.3.1) manifest here

in the observed discrepancy. Nevertheless, taken together these results indicate that

the SPX method accurately accounts for the additional physics associated with the in-

clusion of a cell body. Since the error associated with the regularised stokeslet method

itself is order ", with " = 0.01 as in these simulations, we consider these convergence

and di�erence statistics as satisfactory.

4.3.3 Planar beating sperm cell

In the following section, we examine the convergence properties of the SPX method

when used to simulate a planar swimming cell. To model human spermatozoa, we em-

ploy the varying sti�ness model as described in section 4.2.3. Additionally, motivated
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by the recent �ndings of Neal et al. (2020), we choose the scalar actuation function

m2(s) so as to model the inactive end piece observable at the distal few microns of

human sperm �agella. In the aforementioned work, and in the method used in chap-

ter 3, this is implemented by combining a travelling wave function with a Heaviside

function, so that

m2(s, t) = cos(ks − t) H ((1 − �) − s), (4.71)

where 0 6 � 6 1 is the length of the inactive distal end piece, k is the dimensionless

wave number of the actuating travelling wave, and t is time. Implementing the passive

end piece in this manner introduces a discontinuity in the values for m2; moreover the

analytical derivative m2,s at s = 1 − � is in�nite. However, for levels of discretisation

which ensure a converged result (see sections 4.3.1 and 4.3.2), these derivatives are not

so large as to cause numerical instability.

A cell is characterised by swimming parameter  = 14 and actuation parameter

2 = 0.015, �xing q = 0.1 and the dimensionless wave number k = 4� . The passive

end piece is modelled as described above by including m = m2d2, with m2(s) given

by equation (4.71), in the SPX model equations detailed in section 4.2.6. In all simu-

lations, the time step is �xed at Δt = 0.01 and the tolerance of the iterative solver is

� = 1 × 10
−4. With these values, solutions at each time step converge in between 2 and

5 iterations. The cell body is discretised identically as in section 4.3.2, with Ht = 5 and

Hq = 10 de�ning the discretisations for the head traction and kernel discretisations

respectively.

The �agellum is initialised as a straight line, and the cell swims across the time

interval t ∈ [0, 4�] in the xy-plane, in the negative-x direction. Fixing � = 200, the

number of nodesN along the �agellum is varied between 17 and 501, with intermediate
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Figure 4.4: Spatial convergence properties of the SPX method when used to
simulate a swimming human sperm cell, for varying (a) level of discretisation
N , and (b,c) inextensibility enforcement parameter �. In all simulations, the
cell is characterised by swimming parameter  = 14 and actuation parameter
2 = 0.015, and simulated over t ∈ [0, 4�]. (a) Convergence of the relative
error of the �nal position of X0 between the highly-re�ned solution and sim-
ulations with varying N ∈ [91, 501]. Choosing N = 201, (b) variation in total
arclength L across each simulation for varying � ∈ [1, 10

4
], and (c) conver-

gence in the range of L as � increases.

values chosen from a logarithmic scale. Simulations withN / 90 did not converge due

to underre�nement of the auxiliary equation leading to violation of the inextensibility

constraint. Such cases are omitted from consideration in the following results.

Figures 4.4a and 4.4b indicate the e�ect of increasing spatial re�nement upon sim-

ulated swimming dynamics. The �nal �agellum con�guration from simulations with

N = 501 (blue line) and N = 91 (orange line) nodes respectively is displayed in �gure

4.4a, illustrating that coarsely discretised cells can exhibit underresolved dynamics,

particularly in the distal s > 0.6 region, despite convergence of the numerical method.

Note that the cell bodies in each simulation are omitted from the plot for clarity. The

relative error in the �nal X0 coordinate between each varied-N simulation and the

highest resolution (N = 501) simulation is presented in �gure 4.4b, indicating that rel-

ative errors are small 6 1% for N ' 151. Motivated by these results, in all subsequent
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simulations, unless otherwise stated, we choose N = 201.

We additionally consider the e�ect of varying the inextensibility parameter � for a

swimming cell. The problem is setup exactly as before, but �xing N = 201 and varying

� ∈ [1, 10
4
] between multiple simulations. Results are presented in �gures 4.4b and

4.4c. Despite an adequately re�ned �agellum discretisation, insu�ciently large values

of � lead to undesirable growth in the total arclength L, up to ≈ 2%, as shown in �gure

4.4b. Maximum extension occurs at moments of extreme dynamics, in particular at

the moment when the distal �agellum changes direction. In �gure 4.4c, the absolute

di�erence between the maximum and minimum recorded total arclength values for

each simulation are presented, indicating that � > 100 is su�cient to ensure that

the total arclength never varies by more than ≈ 0.25%. The size of this range will be

a�ected by choices of and2, both of which will alter the cell dynamics. To this end,

to ensure �lament inextensibility in a range of scenarios, all subsequent simulations

will use � = 200 unless otherwise indicated.

4.3.4 Temporal stability

In the following section, we brie�y assess the temporal stability of the SPX method.

Here, the method is labelled stable if, for a given value of Δt , the nonlinear solver con-

verges. A “brute force” approach is used, whereby stability regions are found through

repeated simulation runs, changing the time step on each run and noting which simu-

lations succeed or fail. Analytical methods were not attempted due to the complexity

of the SPX model, confounding the construction of eigenvalue problems or analytical

linearisations required for such techniques. Moreover, a full analysis of the stability of

the method was deemed outside the scope of the present work, but remains an avenue
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Figure 4.5: Measuring the temporal stability of the SPX framework applied
to a planar swimming sperm cell characterised by  = 14. Increasing actua-
tion parameter 2 produces larger amplitude bending deformations, requir-
ing smaller time steps Δt to ensure a temporally stable result. Simulations
lying within the shaded region above are stable and numerical solutions can
be found.

of potential future study.

As described in section 4.2.7, the system of nondimensionalised PDEs comprising

the model (see section 4.2.6) are numerically discretised in time using an implicit Euler

method. Thus, we expect solutions to be (Δt) accurate in time. In order to ascertain

suitable choices for Δt for use in subsequent problems, we simulate planar swimming

sperm cells, characterised by  = 14 with a variety of actuation parameters 2. For

a �xed choice of swimming parameter, increasing the value of the actuation parame-

ter yields more dynamic cells exhibiting larger amplitude �agellar bending; examining

performance in these cases thereby increases understanding of the stability of the nu-

merical method across a variety of setups.

For each 2 ∈ [0.01, 0.025], the simulation is initially attempted using the largest

considered time step Δt0 = 0.02. Using the MATLAB® try and catch functions, should

the simulation fail it is repeated using Δtn+1 = Δtn/2 with n = 1, …, until the code suc-

cessfully completes. The critical value ofΔt allowing the simulation to complete is thus
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marked as su�cient for the given ( ,2) parameter pair. Results of this procedure

are presented in �gure 4.5. Simulations lying within the shaded region are temporally

stable and solutions can be found. In the region 2 > 0.022, actuation parameters

are too large for the selected  = 14 value, producing a self-intersecting �agellum,

violating the model and causing the code to exit without solving regardless of time

step used. In the remaining white region above the critical line, temporal instability

results in nonconvergence in the nonlinear iterative solver. From the results in �gure

4.5, more dynamic swimming cell problems require smaller time step values in order

to solve. For all but the most dynamic problems, Δt = 5 × 10−2 is su�cient in this prob-

lem for stability of the implicit Euler method. In practice, issues are easily identi�ed

as any potential nonconvergence arising from temporal instability often occurs within

the �rst few time steps of the numerical solve regardless of initial condition or time

step size, allowing rapid reselection of a new, smaller time step.

The backwards Euler method implemented here is desirable in that it can be applied

easily and consistently to all time derivatives of variables across the model equations

(summarised in (4.2.6)). Higher-order schemes, such as the Crank-Nicolson method,

require greater care to implement and can signi�cantly increase the complexity of the

temporally discretised model and associated numerical implementation. By choosing

the time step as Δt = 5 × 10−2 in conjunction with a tolerance of � = 10−4 for the non-

linear iterative solver, converged solutions at each time step are obtained in between

2 and 5 iterations for the aforementioned planar beating problem; a simulation of a

swimming cell across 5 beat cycles thus takes approximately 10 minutes on an Ap-

ple M1 Macbook Pro (2021 model). With the typical runtime tractable, the �rst-order

temporal scheme currently used is considered adequate, with the implementation of

higher-order schemes left as potential future work (see section 4.5 for additional dis-
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cussion of future improvements to the SPX model).
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4.4 Three dimensional swimming with twist and
bend elasticity

In the following section we employ the SPX method as described in section 4.2 to sim-

ulate human sperm cells swimming with nonplanar beats. In section 4.4.1 we consider

cells swimming with a ‘twist and bend’ beat, examining viable parameter choices to

produce progressive swimmers. In section 4.4.2 we consider the e�ects on �agellum

geometry and swimming performance when progressing over and towards an in�nite

plane wall.

4.4.1 ‘Twist and bend’ beating

Bending moments within the �agellum arise from systematic rhythmic engaging and

disengaging of dynein arms within the 9+2 axoneme. Early experimental imaging

of hamster spermatozoa highlighted the complex three-dimensional geometry arising

from the development of torsion within the �agellum axoneme (Woolley & Osborn,

1984; Yeung & Woolley, 1984). Subsequent studies have observed that, particularly in

the absence of solid boundaries, sperm exhibit complex nonplanar beats, causing cells

to roll and follow curved trajectories (Woolley, 2003; Simons et al., 2015). Previous

modelling approaches, with prescribed waveform �agella or no-twist bending models,

have approximated idealised helical beats by applying internal active moments acting

about the cross-sectional d1, d2 directions of the �agellum. Assuming a sliding �lament

model for actuation, the asymmetry of the axoneme due to the central pair suggests

that this is unlikely to be the true physical mechanism by which helical beat patterns

arise in motile sperm. With the exact mechanisms resulting in bending within the

axoneme still mysterious (see section 1.1.1 for details), it can be reasonably assumed

216



that in generating a bending moment, the internal actuating motors may also give

rise to some degree of twisting moment. It is then a combination of active bending

and twisting that results in the nonplanar �agellar waveform propelling the cell. Ac-

tive twisting can be modelled in the SPX framework by setting 3 > 0 and choosing a

suitable scalar function of arclength form3(s), the active twist moment per unit length.

Generation of a viable progressive beat depends greatly on the values of the dimen-

sionless groups  ,3 and Γd . In the latter case, by recalling that �R ≈ 4��a2 (where

a is the radius of the �agellum) and assuming a ≈ L/100, an approximate value for Γd

can be obtained as

Γd ≈

�L
2

4��a
2
=

L
2

4�(L/100)
2
≈ 10

4
, (4.72)

motivating choices for Γd ∈ [103, 105]. The sti�ness ratio Γs = C/E
d is assumed to be

constant along the �agellum and, in lieu of empirical measurements of sperm �agel-

lum sti�ness values, we choose Γs = 4 i.e. the �agellum is assumed to be four times

resistant to twist deformations than to bending deformations at the distal tip. Exper-

imental values for the sti�ness parameters Γs , Γd are not known; indeed, due to the

di�culty of imaging in particular cells swimming in three dimensions, and in general

capturing the �agellum with any reasonable clarity, values are unlikely to be deter-

mined through experimental procedures for some time. Rather, experimentation in

silico and subsequent comparison to experimental images and videos is much more

likely to yield approximate realistic values for these parameters. Such comparison is

outside the scope of this thesis; here, we select values that produce actuation patterns

qualitatively similar to those seen through the microscope.

Despite this uncertainty, in practice, simulation results are largely insensitive to

the choice of Γs , with the values of  and Γd dominating the dynamics. Variations in
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varying sti�ness arclength threshold value sd (see equation (2.75)) additionally alter the

envelope of the developing beat. In what follows, we choose sd = 0.5 unless otherwise

stated.

As the nonplanar beat develops, nonlocal hydrodynamic interactions between the

proximal and distal �agellum can promote unpredictable dynamics. In the passive

end piece, the shape of which is not directly driven by any active internal bending or

twisting moments, this can result in �agellum self-intersection, particularly in viscous-

dominated (i.e. large ) regimes where �uid e�ects are dominant over elasticity. With

this in mind, we consider problems characterised by lower values of  , so that �agellar

shapes are in�uenced more by elasticity, allowing for greater control of the simulated

beats. Unless otherwise declared, we �x  = 12 across all simulations.

In what follows, we perform a systematic parameter sweep in order to determine

values which yield progressive swimming cells. The bending and twist moment per

unit length are chosen as trigonometric functions of arclength as

m1(s) = 0, (4.73a)

m2(s) = cos(ks − t) H (1 − � − s), (4.73b)

m3(s) = − cos(ks − t) H (1 − � − s), (4.73c)

for 0 6 s 6 1, where k is the dimensionless wave number for the bending and twist

actuating travelling waves. The Heaviside functions H(s) account for the presence of

the passive distal end piece. In assuming the twisting moment arises from the same

mechanical process which generates the bending moment, we assume both travelling

waves are de�ned with the same wave number. The dimensionless length of the end

piece is �xed across all simulations at � = 0.05.
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Figure 4.6: Average (a) VAL and (b) Lighthill e�ciency of cells actuated with a
twist and bend beat, characterised through wave numbers k ∈ [3�, 5�], drag
ratios Γd ∈ [103, 105] and twist actuation parameters 3 ∈ [0.5, 2.5] × 10

−4.



The �agellum is discretised using N = 251 equally-spaced points along the centre-

line. The ellipsoidal body is assumed to have mean dimensions as reported by Sunanda

et al. (2018) (values in table 3.1), and its surface is discretised through a cubic projection

method using Ht = 4 and Hq = 8 nodes per face (see section 1.2.8 for details), yielding

a traction discretisation of Mt = 96 nodes and a quadrature discretisation of Mq = 384

nodes. The time step is set at Δt = 2�/60 ≈ 0.1 in accordance with the stability re-

sults in �gure 4.5. Since the time step is chosen as a regular fraction of the beat period

T = 2� , the simulated beats can be precisely sampled at regular intervals throughout

each beat.

In each simulation, the cell is initialised with an exactly straight �agellum, so that

the director frames are all parallel at t = 0, and point along the negative x-axis. Simu-

lations are run over ten �agellar beats i.e. over 0 6 t 6 10T , with T = 2� the period

of the actuating travelling waves, to ensure periodic nonplanar beating is established

before sampling for results. The �rst cycle (t ∈ [0, T ]) is considered a warmup beat,

with 2 and 3 linearly increased over the period to smoothly accelerate the cell.

Across multiple repeated simulations, we vary the twist actuation parameter 3,

the drag ratio Γd , and the wave number of actuation k, so as to consider a broad range

of cells representing swimmers characteristic of di�ering viscosities (through 3 and

k) and sti�ness (through Γd ). The velocity along a line (VAL, see equation 2.68), mea-

sured at the head-�agellum join X0, is computed across each beat period (after the

warmup period) and averaged to obtain a measure, denoted ⟨VAL⟩ for the mean speed

of the cell. The average Lighthill e�ciency ⟨�⟩ is similarly computed over the same

period. Results are displayed in �gure 4.6. Altering parameters has a similar e�ect on

both VAL and � results. Cell speed and e�ciency is largely una�ected by choices of

3, with little appreciable variation in values upon changes in actuation parameter
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Figure 4.7: Flagellar traces across a single beat, plotted relative to the head-
�agellum join positionX0 for cells characterised by3 = 5×10

−5 and Γd = 104,
for wave numbers (a) k = 3� and (b) k = 5� . Relative trajectories of X0 over
the full simulation are indicated by projections in magenta onto the xy and xz
planes. Arrows atX0 indicate the rolling of the cell body across the considered
beat.

across the range [5 × 10−5, 2.5 × 10−4]. For intermediate values of k ∈ [3.5�, 4.5�], re-

ductions in speed and e�ciency are observed as drag ratio Γd , a pseudo-analogue for

�agellum sti�ness, is increased. This degradation occurs as the cell transitions from

planar beating at low values of Γd to nonplanar beating as Γd increases (discussed fur-

ther later on). For extremes k = 3�, 5� , the aforementioned trends in ⟨VAL⟩ and ⟨�⟩

are not observed. Missing values in the plots of �gures 4.6 and 4.8 correspond to the

k = 3� case, where extreme �agellum curvature causes self intersection and the simu-

lation terminates. When k = 5� , the short wavelength of the active twist moment does

not produce nonplanar motion, with the beat remaining planar across the simulation.

Examples of cells exhibiting both these behaviours are given in �gure 4.7.

Depending on the sti�ness of the �agellum, the cell either (a) progresses with a

beat approximately con�ned to a plane through the nearly-parallel d1 directors, or (b)

develops a nonplanar beat, which initiates rolling about its long axis. By rotating the

cell head frame at each instant so that d3(0) and e1 are parallel, the angle between d1(0)
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Figure 4.8: E�ects of varying twist drag ratio Γd , twist actuation parameter
3, and actuation wave number k on (a) the number of full axial cell revolu-
tions Nrev over a ten beat period, and (b) average rate of revolution ⟨!rev⟩. In
both cases, a zero value indicates no axial rolling motion.



Figure 4.9: Relationships between mean rate of axial revolution ⟨!rev⟩ and
average VAL, for varying wave numbers 3� 6 k 6 4.5� and twist actuation
parameters 3. Simulations with k = 5� are excluded since no cell rolling
occurs.

and e3 can be determined, and thus the number of full 2� rotations of the head can

be counted. The rate of axial rolling of the cell, measured over the jth revolution, is

calculated as

!
(j)

rev =
2�

T
(j)

rev
, (4.74)

where T (j)

rev is the time taken for the cell to complete the jth full rotation. These quan-

tities can vary across the simulation, and so we additionally consider the mean axial

rotational rate

⟨!rev⟩ =
1

Nrev

Nrev

∑

j=1

!
(j)

rev, (4.75)

where Nrev is the total number of revolutions the cell exhibits. Figure 4.8 examines the

relations between the varied parameters Γd , k, 3, and the rolling behaviour of the

cell. In these plots, a zero value indicates planar motion with no cell rolling having

occurred. As observed in the relationships with cell VAL and e�ciency, the value of

3 has little e�ect on the amount or rate of revolution of the cell. When Γd = 103, the
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cell beats in a planar manner and does not roll. As Γd increases for k < 5� , nonplanar

motion develops and cells roll about their long axis between 3 and 9 times over a ten

beat period. The periodic nonplanar beat takes a number of beat periods to establish,

accounting for the di�erence in the number of simulated beats and the number of

cell revolutions. The maximum number of revolutions decreases as k increases; when

k = 5� , no nonplanar motion arises and thus zero revolutions are recorded (see �gure

4.7). Within each k case, the number of revolutions increases as Γd increases. Similar

trends are observed in the relationship between Γd , k, and ⟨!rev⟩, the average rate

of revolution. As Γd increases beyond 10
3, ⟨!rev⟩ initially increases with Γd before

plateauing to a value between 0.4 and 0.8 depending on the choice of k. Larger k

values exhibit a lower maximum ⟨!rev⟩ value, and vice versa.

Neglecting the trivial k = 5� case, by plotting the mean rate of revolution ⟨!rev⟩

against the average VAL (�gure 4.75), we note that the average VAL decreases as the

rate of axial revolution increases, a trend observed for each choice of actuation wave

number k and twist parameter 3 (discounting the anomalous result in the �rst panel

of �gure 4.9). Taking together the trends in �gures 4.6, 4.8 and 4.9, we can determine

that increases in drag ratio Γd yield nonplanar swimming, leading to cell rolling that

decreases swimming speed as measured through VAL.

The three-dimensional cell shape is examined by considering the trace the �agel-

lum, moving from yellow through to blue over the �nal beat period. In �gures 4.7, 4.10,

we consider motion relative to the position of the head-�agellum join X0 so that the

cell appears not to progress (though we stress that the cells in silico are unconstrained).

We refer to cells rendered in this approach as being viewed from the �xed laboratory

frame. The cell body position at the beginning of the beat is drawn in greyscale. The

coloured arrows radiating from X0 represent d1(0) at each sampled time point, thus
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giving an indication of the rolling of the cell about its long axis. Additionally, projec-

tions onto the xy- and xz-axis of the trajectory of X0 (relative to �nal position) across

the entire simulation are shown through magenta lines, moving from the circled end

to the squared end as t increases.

For the remainder of this section, we will consider only parameter combinations

which yield progressive cells which do not self-intersect. In �gure 4.10, we observe

waveforms of pinned cells characterised by k = 4� and 3 = 1.5 × 10
−4, for a vari-

ety of drag ratios Γd . Cells are observed and �agella traced over their �nal simulated

beat. For Γd = 103, the �agella beat remains approximately planar (�gure 4.10a), with

little deviation when observed from the xy-plane. Rotations to the cell head are pre-

dominantly xz-planar. Larger values for Γd reduce the e�ective resistance to twisting

deformations, allowing nonplanar beats to develop. The subsequent axial rolling of the

cell is indicated in �gures 4.10b,c by the fan-like director vectors at X0. Body rotation

is approximately con�ned to the xy-plane. Reading from �gure 4.6a, the cell charac-

terised with Γd = 105 (�gure 4.10c) swims slower and is less e�cient than the same cell

with Γd = 104 (�gure 4.10b), observable in �gures 4.10b,c as a reduction in the length of

the projected X0 trajectory. Comparing the planar projections of the waveform traces,

increased distal curvature is apparent in �gure 4.10c, potentially contributing to the

reduction in e�ciency (Neal et al., 2020).

The geometry of an evolving nonplanar beat can be further understood by consid-

ering the �agellum shape relative to the motion of the cell body. At each time point,

a rotation matrix mapping the orthonormal director frame of the head to the identity

I
3 is determined and applied to the position vector of each �agellum coordinate. We

refer to cells presented in this manner as viewed in the �xed body/head frame. The

three dimensional trace and planar projections of the same cells considered in �gure
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Figure 4.10: E�ects of varying the viscous drag ratio Γd on nonplanar twist
and bend beating. Cells are characterised by k = 4� , 3 = 1.5 × 10

−4, and
Γd ∈ [10

3
, 10

5
]. Flagellum motion is indicated by lines of blue through yellow,

plotted relative to the head-�agellum join X0. Short arrows at X0 represent
the roll of the cell over the beat. The head position at the start of the beat
is drawn in greyscale. The trajectory of X0, projected onto the xy- and xz-
planes, is indicated in magenta, moving from the circle through to the square
marker.



Figure 4.11: E�ects of varying the viscous drag ratio Γd ∈ [103, 105] on nonpla-
nar twist and bend beating. Cells considered are the same as those in �gure
4.10, but here plotted in a frame of reference which translates and rotates with
the head.



Figure 4.12: Cell traces across a single beat viewed from the yz-plane, relative
to (a) the head-�agellum join X0 (in the �xed laboratory frame) and (b) the
motion of the cell head (in the �xed head frame). Cells are identical to those
considered in �gures 4.10 and 4.11. The motion of the distal �agellum tip X(L)
is superimposed in magenta, moving from the circular marker through to the
square over the beat.

4.10 are presented in the body frame in �gure 4.11. Viewed this way, the waveform

arising from the cell with Γd = 10
3 (�gure 4.11a) closely resembles planarly beating

cells considered elsewhere in this thesis (chapters 2, 3), and in studies of planar swim-

ming (Gadêlha et al., 2010; Montenegro-Johnson et al., 2015; Neal et al., 2020). For the

nonplanar cells (�gures 4.11b,c), a clear distinction between the plane projections is

apparent, in contrast to the beat projections in �gure 4.10.

The periodicity of the nonplanar beats considered in �gures 4.10 and 4.11 is further
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examined through the trace of the distal �agellum tip X(L) over a single beat (�gure

4.12). The trajectory is drawn in magenta, with the point following the path travelling

from the circle-marked end to the square-marked end over a single period. When

the beating is xz-planar, such as for Γd = 103, the distal trace moves in a vertical linear

pattern. For the nonplanar cells, in the laboratory reference frame (�gures 4.12b), X(L)

appears to trace part of a larger geometric pattern (examined further shortly). Plotted

in the �xed head frame, the trajectory is smoothed and approximately ellipsoidal.

Expanding to consider cell motion from the fourth beat onwards (qualitatively de-

termined as a time by which a periodic nonplanar beat has been established), we see the

complete geometric patterns traced by X(L) across each simulation. In �gure 4.13, we

consider the distal traces of cells characterised by k = 4� and3 = 1.5×10
4, for various

Γd , neglecting trivial planar trace generated when Γd = 103. For each cell, the yz-plane

projection over time in both the �xed lab and head frames of reference is drawn. To

the top-right of each trace, the y and z trajectory components as functions of time are

plotted. To the bottom-right, absolute half-space of the discrete Fourier transform of

the coordinate ‘signals’ is plotted, computed using the MATLAB® fft built-in function.

Qualitatively, in the laboratory frame, the distal tip traces trace star-like patterns, with

the number and smoothness of the peaks dependent on Γd . The projected components

form noisy sinusoidal curves with a period of ≈ 2� , matching the period of the actu-

ating bending and twist waves. Viewed in the �xed body frame, the distal tip traces

a �attened ellipsoid, with the ellipsoid tips become more rounded as Γd increases. In

this frame, the projected components are similarly sinusoidal in appearance but have

wavelength ≈ � .

Both y and z Fourier signals exhibit peaks at the same frequencies, di�ering only

in amplitude. The frequency associated with these peaks is determined using the
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Figure 4.13: Trace of the distal �agellum tip across established nonplanar
beats, projected onto the yz-plane and considered relative toX0 (top plots) and
to the �xed body frame (bottom plots) in each panel. The start and end of the
traces are indicated by magenta circles and squares respectively. To the top-
right; the y (blue line) and z (orange line) components of the projected trace
against time. To the bottom-right; the ones-sided absolute discrete Fourier
transform of the y trace (blue) and z trace (orange). Cells considered are char-
acterised by parameters k = 4� and 3 = 1.5 × 10

4, with viscous drag ratio Γd
varied between panels.



Figure 4.14: E�ects of varying the drag sti�ness ratio Γd and cell mean rate of
revolution ⟨!rev⟩ on the frequency of the distal �agellum tip Fourier modes
(plotted in �gure 4.13), as viewed from (a,c) the �xed laboratory frame, and
(b,d) the �xed head frame, which rotates with the motion of the cell.

MATLAB® findpeaks function, with the detection threshold chosen as 0.1. This analy-

sis reveals the existence of three dominant frequencies in the lab frame signal, and two

in the body frame signal. The additional signal arises from the global rotation of the

cell, a dynamic captured in the laboratory frame plots but absent by de�nition from

the head frame cell trajectories. In the laboratory frame, the frequencies of the Fourier

modes remain approximately constant regardless of the choice of Γd and value of !rev,

with approximate values 0.015, 0.05 and 0.075 (see �gure 4.14). Viewed relative to the

body motion, the two characteristic frequencies are approximately 0.03 and 0.095. The

near-invariance in the characteristic Fourier mode frequencies of the distal �agellum

tip trajectory with respect to the drag ratio Γd suggests that the periodic motion is

not determined by the elastic twist resistance, but instead regulated by hydrodynamic

interactions, provided that the value of Γd is su�ciently large to lead to nonplanar

beating in the �rst instance.
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4.4.2 Nonplanar beating over an in�nite wall

Of particular interest is understanding how cells modulate or alter their beating

upon approaching a planar wall. Previous studies have focused on planar beats

(Montenegro-Johnson et al., 2015; Walker & Ga�ney, 2021a), or used prescribed-beat

models for the cell �agellum (Smith et al., 2009a); the SPX model allows for simulation

of full three-dimensional elastohydrodynamic beating to be considered, with nonlocal

interactions between the wall and �agellum a�ecting the cell geometry. In this sec-

tion we describe the changes required to the SPX framework to accommodate a rigid

boundary, and present some example simulations of cells approaching a plane wall.

The equation for the dimensionless hydrodynamic velocity of the �agellum, via the

method of regularised stokeslets, can be extended to account for the presence of the

wall as

4
Xt =

�

�⟂

(I + (
 − 1)XsXs) ⋅ f + ∫
|s−s

′
|>q
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(X, x) ⋅  (x) dSx, (4.76)

where X are nodes along the �agellum, Y are material points on the surface of the

cell head, and x are material points on the surface of the boundary wall; f is the force

per unit length the �agellum exerts onto the surrounding �uid; similarly ' and  are

the forces per unit area exerted onto the �uid by the cell body and wall respectively.

However, as discussed in section 1.2.5, the stokeslet does not accurately capture the

hydrodynamic e�ects of the presence of the boundary wall, motivating the use of reg-

ularised blakelets in place of regularised stokeslets. Derived by Ainley et al. (2008), the
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regularised blakelet is de�ned

B
"

ij
(x, y) =

�ij(r
2
+ 2"

2
) + rirj

r
3

"

−

�ij(R
2
+ 2"

2
) + RiRj

R
3

"

+ 2ℎΔjk
(

)

)Rk

{

ℎRi

R
3

"

−

�i3(R
2
+ 2"

2
) + RiR3

R
3

"

}

− 4�ℎ�ik�"(R)
)

−

6ℎ"
2

R
5

"

(�i3Rj − �ijR3), (4.77)
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The blob function in equation (4.77) is chosen as �"(R) = 3"2/(4�R5" ), modi�ed to decay

more slowly than the analogous function �" in the regularised stokeslet (see section

1.2.6 for details).

Replacing the regularised stokeslet kernel with regularised blakelets, the hydrody-

namic velocity of the �agellum can be thus written as

4
Xt =
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(X, x) ⋅  (x) dSx, (4.79)

The nonlocal contribution to the �agellar velocity V (equation (4.52e)), which appears

in the elastohydrodynamic equation (4.52a), auxiliary equation (4.52b) and twist equa-

tion (4.52f), is similarly extended, with the kernels of the integrals replaced by regu-

233



Figure 4.15: Sketch of the problem setup considered in section 4.4.2. The cell
is initialised at a distance ℎ0 and at an angle �0 (relative to the x-axis) above
the z = 0 plane, which is an in�nite plane solid wall. Active bending and
twisting moments per unit length m2, m3 respectively produce a nonplanar
waveform which is hydrodynamically in�uenced by the proximal wall. The
orthonormal triad {d1, d2, d3} describes the orientation of the cross section at
each point along the �agellum centreline.

larised blakelets.

In the resulting discretised system, blakelet integrals are treated using a nearest

neighbour discretisation in the same way as the previous regularised stokeslet inte-

grals, as described in section 1.2.8. The unknown forces 	[n] ∶=  [n]dS(x[n]), with

n = 1, … , P , are treated as unknowns of the resulting linear system alongside the forces

per unit length f and forces � (de�ne in equation (4.69)). The matrix in equation (4.66)

similarly expands to accommodate the additional degrees of freedom for the wall. The

process for solving and iterating the problem is the same as described in section 4.2.7.

A number of individual cells are simulated swimming with nonplanar beats to-

wards an in�nite plane solid boundary z = 0. The �agellum is initialised as a straight
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line (so that all tangent directors d3 are parallel at t = 0), lying within the xz-plane, and

at an angle �0 (with respect to the x-axis) pointing towards the wall. In what follows,

we refer to �0 as the incidence angle. Cells are initialised so that the head-�agellum join

X0 is a distance ℎ0 from the origin i.e. X0 = (ℎ0 cos �0, 0, ℎ0 sin �0). We choose ℎ0 = 0.25

so that the cell is in close proximity of the wall within a reasonable number of beats.

In total, we simulate 40 beats. The starting orientation is such that the director vectors

d1 lie in the xz-plane. Note that the initial inclination due to �0 > 0 means they are

not perpendicular to the boundary. A sketch of the problem setup is provided in �gure

4.15. Cells are discretised in the same way as described in section 4.4.1. Note that the

plane wall does not need to be discretised since is it accounted for analytically within

the regularised blakelet. Owing to the increased nonlocal �uid dynamic interactions

due to the presence of the wall, the time step is reduced to Δt = 2�/100 to ensure

stability of the time stepping method.

Across simulations, we vary the drag ratio Γd ∈ [10
3
, 10

4
] and incidence angle

�0 ∈ [�/16, 3�/16], so as to consider a range of swimmers approaching the surface with

beats characteristic of di�erent sti�ness pro�les. In all simulations, we �x  = 12,

1 = 0, 2 = 1.5 × 10
−2, and 3 = 1.5 × 10

−4. Results comparing the trajectories

of cells for di�erent values of Γd and �0 are presented in �gure 4.16. The solid plane

boundary at z = 0 is indicated in grey, and projections of each trajectory onto the xy-

and xz-planes are drawn in transparent dotted lines on the bounding walls of each

panel. For Γd = 103, the resistance to twist is large enough to suppress periodic non-

planar motion. However, as proximity to the wall increases, the approximate plane of

beating rotates from being predominantly xz-planar to increasingly xy-planar.

For the larger values of Γd , a periodic nonplanar beat pattern develops after ap-

proximately 2 or 3 beats. As in the in�nite �uid (see �gure 4.6), cells with a nonplanar
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Figure 4.16: Trajectories, progressing from circle to square, of cells approach-
ing a planar rigid wall at z = 0 (shaded in grey). We consider three di�erent
drag ratios Γd (in (a), (b) and (c)), and three angles of incidence �0 (indicated
by line colour). Projections of each trajectory onto the xz and xy planes are
indicated by transparent dotted lines of the matching colour.



beat traverse less distance over the same simulation time. In all cases, hydrodynamic

interactions between the cell and the plane wall a�ect the large-scale trajectory of the

cell. In the sti�er case (�gure 4.16a), the cells bank left upon approaching the wall, re-

gardless of incidence angle �0. Changing the sign of the twist actuation causes the cells

to bank in the opposite direction. This banking behaviour is observed for moderately-

nonplanar cells, with the amount of deviation a�ected by the angle of incidence (�gure

4.16). The deviation of cell trajectories is considered further shortly.

The �agellum waveforms of the cells considered in an in�nite �uid in �gure 4.16 are

presented in �gure 4.10 approaching the plane wall. As in section 4.4.1, cells are plotted

with the head-�agellum join X0 translated at each instant to coincide with the origin.

Solutions are sampled stroboscopically once per beat, so that regular periodic motion

appears stationary. In general, the choice of the angle of incidence �0 appears to have

little qualitative impact on the developing �agellum waveform, instead a�ecting the

de�ection angle of the head as it gets close to the wall. In the twist-resistant (Γd = 103)

case, the plane of beating rotates from being predominantly xz-aligned to being largely

in the xy-plane. This is due to a rotation of the cell by ≈ �/2, evidenced by the fact that

the �agellum motion remains approximately planar when viewed in the cell body (or

clamped) frame (bottom right of �gure 4.18a). Indeed, viewing the planar projections

of the pinned trace in �gure 4.18a clearly illustrates the change of plane of beating

and of direction of the cell as it advances towards the wall. As above, we consider this

behaviour in more detail later in this section.

As Γd increases from 10
3 , nonplanar progressive motion develops and the cells

adopt a rolling, twisting gait as they approach the wall. For the larger value Γd = 104

considered, a regular twist and bend swimming pattern develops, indicated by the

‘threads’ of similar �agellum lines, reminiscent of a weave or plait, seen in �gures
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Figure 4.17: Waveforms in the �xed laboratory frame of cells di�ering in drag
ratio Γd as they approach a rigid plane boundary from varying incidence an-
gles �0. Cells are plotted with X0 translated to the origin O, and �agellum
shapes sampled stroboscopically so that consistent periodic motion appears
motionless. Flagellum colour, from blue through to yellow, indicates time
t ∈ [3T , 40T ] where T = 2� is the period of the actuating beat. Magenta
lines represent the trajectory of X0 across the same period, projected onto the
xy- and xz-walls of each panel. Arrows at X0 indicate the rolling of the cell
over the simulation.



Figure 4.18: Planar projections of cells in the presence of a solid boundary
onto the xz- and xy-planes (left and right of each panel respectively) of cells
characterised by drag ratios (a) Γd = 103 and (b) Γd = 104, viewed both from
the �xed laboratory frame (top of each panel) and relative to the rotation of
the cell head (bottom of each panel). Line colour indicates the evolving beat
across the interval t ∈ [3T , 40T ], with T = 2� the period of the actuating beat.



4.10 and 4.11. Such a pattern is not as evident for the intermediate Γd ≈ 3.2 × 10
3

case, suggesting that the competing balance of elasticity and �uid dynamics in that

scenario works against the formation of a nonplanar beat that is regular across a larger

time interval. By way of example, �gure 4.18b examines the planar projections of a

nonplanarly beating cell with Γd = 10
4. The geometric regularity of the nonplanar

�agellum is well illustrated by examining the projections in the �xed head frame, with

motion between lines in the bottom-left panel indicating the alteration in trajectory

the cell exhibits as it approaches the wall.

The trajectories of the cells as they approach the wall can be more quantitatively

understood through examination of the tangent angles of the trajectory of X0 when

projected onto the xy- and xz-planes. We label these quantities �xy and �xz respec-

tively, which imply the motion and deviation of the cell; if one or the other is zero

at any time, then the �agellum waveform is not beating in the corresponding plane.

In addition, we track the angle of revolution of the cell head �rev, which indicates the

axial rotation of the cell. These quantities, for the cells drawn in �gure 4.17, are pre-

sented plotted against time in �gure 4.19, starting from t = 4� . For clarity, we plot the

two lines enveloping the oscillating �xy ,�xz waveforms (which are not drawn). These

lines are computed using the MATLAB® envelope function, with smoothing parameter

chosen as 200.

For the cell most resistant to twist (with Γd = 103), �gure 4.19 supports the earlier

qualitative observations by clearly indicating the transition from predominantly xz-

planar beating to xy-planar beating upon approaching the wall. The initial incidence

angle biases the initial �xz curve (drawn in light blue), which reduces to nearly zero

upon approaching the wall. At a critical time tc , the cell head undergoes a partial roll

of approximately �/4 < �rev < �/2, shown by the orange line. Small oscillations in the
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Figure 4.19: Evolving tangent angles �xy (light blue) and �xz (dark blue) to the
curves formed by projecting the trajectory of X0 onto the xy- and xz-planes
respectively. Angles are plotted against time t ∈ [4�, 80�]. Corresponding
to the blue axes of each panel, the trajectory tangent angles are each implied
through two lines enveloping the oscillating curve (not drawn for clarity).
Corresponding to the oranges axes; the evolving angle of revolution of the
cell, varying across −� 6 �rev < � , so that each period represents a complete
axial rotation.



�rev curve imply the 2� periodic beat pattern of the �agellum. The size of the deviation

in orientation depends on �0, and is greater for smaller �0, since the perpendicular

height of the cell above the wall is smaller and as such experiences greater and more

prolonged hydrodynamic interaction with the wall over the course of the simulation.

After the onset of this roll (initiated at a value 20� < tc < 40� depending on �0), the

�xy curve (drawn in dark blue) grows, indicating the change in the plane of beating

of the cell. The close proximity of the enveloping lines for both �xy and �xz in this

case indicate the tight (but slowly rolling) planarity of the �agellar waveform, as seen

previously in �gures 4.17a and 4.18a.

Figures 4.19b and 4.19c track the same angular quantities for the nonplanar swim-

mers characterised by Γd ≈ 3.2×103 and Γd = 104 respectively. The periodic axial rolling

of the cell is immediately evident in the oscillatory curve for �rev, shown in orange, with

the number of peaks being the number of complete revolutions Nrev exhibited across

the selected period. In both Γd cases, and for all �0 considered, the separation between

both the �xy and �xz lines indicates the nonplanarity of the �agellar waveforms. The

levels of separation are approximately equal at each instant, suggesting that the motion

has no preferential plane of beating. With Γd ≈ 3.2 × 103 and �0 = �/16 (�gure 4.19bi),

the relation �xy ≈ �xz is maintained across the simulation, producing an approximately

linear cell trajectory without deviations (also viewable in �gure 4.16b, blue line). This

behaviour appears to be the outlier; as suggested by �gures 4.16b and 4.16c, other cells

characterised by Γ > 3 × 103 exhibit less discernable (if any) relationships between �xy

and �xz through erratic trajectories. Nonetheless, the increase in the relative impor-

tance of hydrodynamic interactions (despite �xing  = 12) by increasing Γd = 10
4

leads to pronounced trajectory deviations of ≈ −�/4 (�gure 4.19cii) and ≈ �/2 (�gure

4.19ciii).
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Figure 4.20: Quantifying the rolling behaviour of cells as they approach a plane
wall from three di�erent angles of incidence, for cells characterised by (a)
Γd ≈ 3.2 × 10

3 and (b) Γd = 10
4. (i) Roll rate !(n)

rev against n, the index of the
revolution to which it corresponds. Marker shape and colour indicates the
initial incidence angle �0. In (ii), index n against the percentage di�erence
between the roll rate !(n)

rev and the mean roll rate ⟨!rev⟩ for an identical cell
in an in�nite �uid. (iii) Percentage di�erences in roll rate plotted against the
smoothed perpendicular height ℎ of X0 above the plane wall.



As in section 4.4.1, the rolling behaviour of the simulated cells can be measured

through !rev, the axial rate of revolution (or rate of rolling) as de�ned in equation

(4.74). Considering only those values of Γd which yield nonplanar beating, in �gure

4.20 we examine how the rate of rolling is a�ected by proximity to the cell wall. For

both Γd ≈ 3.2 × 103 (�gure 4.20a) and Γd = 104 (�gure 4.20b), trends between !rev and

wall proximity are similar. In panels (i), the rate of rotation for a single complete revo-

lution (labelled !(n)

rev) is marked against the index n of the roll to which it corresponds.

In this way, rates for larger n values correspond to cell revolutions later in the simula-

tion when the cell is closer to the plane wall. As n increases, the roll rate !(n)

rev decreases

from ≈ 0.7 to < 0.4, depending on the angle of incidence �0. To better understand the

retarding e�ect of the wall upon the cell, in panels (ii) we consider the percentage dif-

ference between each roll rate and the average roll rate for an identically characterised

cell swimming in an in�nite �uid. Plotted against revolution index n, we see that cells

roll approximately at the same rate as those in an in�nite �uid for / 10 revolutions,

before rolling slower upon approaching the wall (i.e. as n increases). Cells that ap-

proach the wall from a steeper initial angle (through larger �0) more rapidly reduce

their rotation rate in close proximity of the wall, as they ‘ram’ into the surface and

are required to rapidly change orientation (here driven through elastohydrodynamic

interactions, rather than any sensory intelligence). This rapid change in direction is

indicated by the sharp bends in the �xy and �xz line pairs in both �gures 4.19b and c.

Finally, we consider the change in the aforementioned percentage di�erence with

respect to perpendicular height above the plane wall at z = 0. As indicated in �gure

4.16, the evolving trajectory at X0 oscillates with the motion of cell. With this in mind,

the height above the wall is sampled at the start of each new revolution, and smoothed

using the MATLAB® smooth function (with a moving average size of 200 points), to
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obtain an injective curve closely approximating the path taken by the cell towards

the wall. Since more acute incidence angles initialise the cell closer to the surface,

measurements corresponding to smaller values of �0 are concentrated at one end of the

x-axes of �gures 4.20aiii and biii. A rapid reduction in the relative roll rate between

10% and 40% occurs when ℎ < 0.05 for both Γd values considered. The reduction

is more severe and occurs sooner upon approaching from a steeper incidence angle;

since the height ℎ is measured from the plane to X0, this di�erence is accounted for by

the physical presence of the head, de�ned by axes a = [0.044, 0.036, 0.022] (see section

4.3). Nonetheless, percentage reductions in the roll rate are more severe in the case

with Γd = 104, with di�erences of over 40% recorded in extremes (e.g when Γd = 104

and �0 = 3�/16).
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4.5 Summary and discussion

In this chapter we have introduced and benchmarked the SPX method, a newly devel-

oped framework for modelling the elastohydrodynamics of slender bodies and actuated

mono�agellate cells. The method couples a nonlinear elasticity model accounting for

mechanical bending and twisting of a �exible �lament, connected to a rigid-body head,

with a nonlocal expression for the surrounding �uid enabling interactions between the

cell, itself, and surrounding structures.

The SPX model is derived from the general equations for linear elasticity in three

dimensions, and thus accounts for both bending and twisting deformations within a

slender body. By actuating the cell �agellum through the application of internally-

driven bend and twist moments, a geometrically complex, rolling, writhing motion

is generated, which, through interaction with surrounding �uid, induces progressive

swimming. Examining the behaviour of such cells in section 4.4.1, we �nd that nonpla-

nar swimmers are less e�ective at fast and e�cient motion than a purely planar beat,

in agreement with Huang et al. (2018). In the space of parameters considered here,

dynamics are dominated by the choice of Γd , a ratio between the viscous bending and

twist drag of the �agellum, and which governs the e�ective resistance to nonplanar

motion. In contrast to planar swimming, where the value of 2 broadly determines

cell dynamics (for a given ), nonplanar motion is largely invariant to the choice of

3. Through Fourier analysis of the motion of the distal �agellum tip, characteristic

frequencies corresponding to the three types of motion the cell experiences can be de-

termined: a bending and twisting motion in the �agellum, and a global cell rotation

arising from the nonplanar beat (see �gures 4.13 and 4.14).

To our knowledge, the SPX enables for the �rst time explorations into the e�ects of
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solid boundaries upon the beat plane of an active, elastohydrodynamically-accurate,

sperm cell. In section 4.4.2, we consider the dynamics of cells approaching an in�nite

plane wall, varying the e�ective resistance to twist through Γd and the incidence angle

�0. For smaller values of Γd , a cell that originally beats in the plane perpendicular to the

surface rotates by ≈ �/2 as it approaches, so that the plane of beating and the wall are

approximately parallel. Whilst previous studies have used elastohydrodynamic models

to simulate planar swimmers above a wall (Montenegro-Johnson et al., 2015), through

generalisation of the elasticity and hydrodynamic models, the SPX allows for changes

in the plane of beating to be caused dynamically through interactions between the cell

and the rigid boundary. In addition, the SPX enables pioneering simulations of pro-

gressive cells actuated through a combined twist-and-bend motion in the presence of

a wall; results presented in �gure 4.20 indicate that such nonplanar swimmers exhibit

markedly less rolling than those progressing in an in�nite �uid, with reductions in the

rate of rotation up to and exceeding 40% in extremes.

The rotation in the plane of beating for twist-resistant cells (observed in �gures

4.16, 4.17, and 4.19) seems to agree with experimental observations (Woolley, 2003;

Nosrati et al., 2015). We do not, however, observe the adoption of planar beat patterns

by those cells exhibiting nonplanar beats. Since proximity to the wall is maintained

throughout the simulation, it is unlikely that this is due to the simulations not being run

for a long enough time period. Instead, we hypothesise that this nonplanar dampening

does not occur since we have considered only  = 12, a relatively elasticity-dominated

regime. This value was chosen to allow for greater control in investigating the induce-

ment of nonplanar swimming in section 4.4.1; it is possible that for larger choices for

 , characteristic of viscosity-dominant scenarios, this behaviour is observed.

Advancements in elastohydrodynamic modelling o�ered by the SPX method fall
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into two categories: improvements relating to the inclusion of nonplanar bending

and twist elastic deformations, and improvements relating to the use of the nonlocal

method of regularised stokeslets for hydrodynamics. In the former category, the SPX

immediately improves over planar models (Tornberg & Shelley, 2004; Moreau et al.,

2018; Hall-McNair et al., 2019; Neal et al., 2020) by allowing for full bending deforma-

tions in three dimensions. Indeed, by additionally accounting for mechanical twist-

ing of the �agellar axoneme as well as varying bending sti�ness, SPX improves over

those 3D methods which allow for bending but not twist, such as the methods used by

Gadêlha et al. (2010) and Montenegro-Johnson et al. (2015). Considering only the elas-

ticity model, the SPX method di�ers from previous elastohydrodynamic frameworks

accounting for bend and twist by formulating the motion of the �agellum in terms of its

centreline; in contrast, methods by Wolgemuth et al. (2000; 2004) track �lament motion

through the integrated complex curvature, and Schoeller et al. (2021) use a quaternion

basis for describing elastic geometry of �bres. In both these cases, additional trans-

formations to the constitutive equations are necessary, increasing complexity over the

direct position formulation adopted by SPX. The nonlinear elasticity equations used

in the proposed method di�er only super�cially from the equations in methods by

Gueron & Levit-Gurevich (2001a; 2001b), which can be obtained by considering the

scalar components of equations in section 4.2.6 expressed in terms of director curva-

tures �1, �2, �3 following substitutions using equations in 1.3.1. Moreover, the proposed

SPX method expands upon the above fully 3D models by considering the addition of

a rigid body cell head connected to the elastohydrodynamic �agellum at one end, sig-

ni�cantly increasing the complexity of the model boundary conditions.

The use of the nonlocal regularised stokeslet method provides immediate improve-

ments in �ow accuracy over local methods, which have frequently been employed to
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reduce model complexity (Wolgemuth et al., 2000, 2004; Gadêlha et al., 2010). Whilst

structurally similar to the hydrodynamic model used in Montenegro-Johnson et al.

(2015), by using resistance coe�cients directly computed from regularised stokeslet

integrals (see section 4.2.1 for details) over coe�cients derived from resistive force

theory (or indeed, the nonlocally extended L.G.L. theory in Gueron & Levit-Gurevich

(2001b)), the hydrodynamic model in the SPX can be considered wholly a member

of the regularised stokeslet family of �uid models, unifying the hydrodynamic model

compared to those previous approaches utilising hybridised descriptions.

A potential improvement to the SPX model would be the implementation of a more

sophisticated time integration algorithm. In the current numerical scheme, we use

the implicit Euler method, though higher-order time stepping schemes (e.g. Crank-

Nicolson) could be implemented to improve accuracy and stability. Indeed, the similar

framework by Montenegro-Johnson et al. (2015) employs a Crank-Nicolson Adams-

Bashforth (CNAB) method for integration. Such methods can be straightforwardly

implemented onto the elastohydrodynamic equation (4.52a), but require care when ap-

plied to equations containing time derivatives of variables other than centreline posi-

tion. Since there is no overly-hampering restriction on time step size in the current SPX

implementation (see section 4.3 for details), this additional complexity was deemed

unnecessary for the current study. Other models, including those by Tornberg & Shel-

ley (2004) and Gadêlha et al. (2010) use so-called ImEx (IMplicit-EXplicit) methods,

splitting the model equations into those requiring implicit integration (e.g. high-order

derivatives and other numerically sti� terms), and those where explicit integration is

acceptable. Such an approach could help control the complexity of the discrete model

by only requiring selected equations to be written implicitly, enabling higher-order im-

plicit methods for those terms, while allowing the remainder to be straightforwardly
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treated using explicit techniques. More advanced numerical integration techniques,

such as Jacobian-free Newton Krylov or Broyden’s method (both discussed in detail

by Schoeller et al. (2021)) could further enhance stability and accuracy of SPX model

solutions. In addition, a better understanding of the temporal stability of the method

could be obtained through analytical analysis techniques, building upon on the “brute

force” approach described and performed in Sec. 4.3.4.

Morphological accuracy, particularly to human sperm, could be improved by al-

lowing for �exibility at the head-�agellum join. In the current implementation, the

orientation of the cell head is determined by the proximal director frame such that the

�agellum connects perpendicular to the surface, an approach inherited from previous

centreline models by Gadêlha et al. (2010); Montenegro-Johnson et al. (2015). Adapting

recent methods by Neal et al. (2020), head-�agellum �exibility could be included by de-

coupling the head orientation basis from the �agellum director. The elasticity model

could be generalised further by allowing for anisotropic bending sti�ness. However, a

crucial early step in the SPX derivation requires allowing E1�1d1+E2�2d2 = EXs∧Xss , so

that E = E1 = E2. In removing this constraint, the resulting model cannot be formulated

in terms of the �agellum centreline coordinates; rather the centreline curvatures �i be-

come the principal unknowns of the model, as in methods by Gueron & Levit-Gurevich

(2001a,b), with positions obtainable through a geometric relation integrating along d3.

Decoupling the bending moduli would better model the cross-sectional asymmetry of

the 9+2 axoneme and could promote more morphologically accurate nonplanar beats.

Currently, the current SPX formulation only allows for simulations of individual

isolated cells. Allowing for simulation of multiple interacting cells in 3D could en-

able many more problems to be considered, in particular, building upon large-scale

�bre studies by Schoeller et al. (2021) to investigate the three-dimensional bundling
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of sperm cells, either in in�nite �uid or near boundaries, or upon nodal cilia studies

by Gallagher et al. (2020) by incorporating elastohydrodynamic e�ects in the nonlocal

�uid �ow model. Since the SPX requires many times more degrees of freedom than

the EIF to model a single cell, the monolithic approach to include multiple �laments in

that model would be ill-advised; simulations of only two or three cells would rapidly

produce dense matrices with many thousands of rows, ballooning the memory require-

ments and slowing solve times. Using an aforementioned ImEx method, or alternate

hydrodynamic method (e.g. fast-multipole or RPY-tensor, as used by Schoeller et al.

(2021)), could allow the linear system to be solved nonmonolithically and thus avoid

extreme memory requirements while retaining computational e�ciency.

The SPX is explicitly designed to enable accurate simulations of microbiological

slender bodies, and thus has great potential to contribute to future studies within the

mathematical biology community. The presence of a nearby plane wall has already

been shown to reduce axial rolling of nonplanarly beating cells (see �gure 4.20); this re-

sult may have applications into studies considering sperm locomotion near boundaries,

and in particular upon investigations of cell slipstreaming (Ishimoto & Ga�ney, 2015)

and surface attachment (Woolley, 2003; Simons et al., 2014, 2015). With relatively little

alterations, the SPX can be applied to model cilia attached to a planar surface, build-

ing upon previous simulation studies (Gueron & Levit-Gurevich, 2001b; Sartori et al.,

2016a) through improved hydrodynamics modelling to investigate the regulatory role

twist elasticity plays in ciliary actuation. The generality of the driving moment terms

in the SPX formulation make it well suited for future studies comparing and contrast-

ing alternative theories of actuation (such as those discussed in section 1.1.2); poten-

tial research inspired by the recent �ndings of Carichino & Olson (2019) could involve

coupling the SPX model for actuation with a calcium gradient response, improving
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knowledge of the mechanosensory and chemotactic behaviours of sperm (and other

cells), and with applications to cell steering and selection procedures. Novel biotech-

nological propulsion techniques could be adapted for use with SPX, including slender

bodies actuated by phoretic responses (Katsamba et al., 2020), and shape-change elastic

mechanisms (Sharan et al., 2021).

The results in section 4.4.2 reveal that cells characterised by lower values of the

drag ratio Γd = 10
3 exhibit a planar beat pattern by suppressing nonplanar motion.

Such cells swim faster than those exhibiting nonplanar beats, which arise with larger

choices of Γd . This �nding may be biologically relevant for motility in polymeric �u-

ids such as cervical mucus, and upon swimming across step-changes in viscosity (e.g

the semen/cervical mucus boundary). Since the drag ratio Γd de�nes in essence the

behaviour of the surrounding �uid (unlike, for example, the sti�ness ratio Γs = C/Ed ,

which describes only �agellum properties), we hypothesise that polymeric �uids may

e�ectively reduce the value of Γd by making axial rotations relatively harder than trans-

lation, producing more planar beats and thus enabling more e�ective swimmers. Fur-

ther investigations into the relationship between Γd and viscosity (through the swim-

ming parameter ) may additionally help to explain the planar nature of �agellar beats

in high viscosity and complex �uids. The SPX itself could be used to simulate the

constituent polymer chains themselves, with the inextensibility requirement made lax

to enable �lament stretching, or dynamic �bre extension enabled by including addi-

tional growth terms (Wolgemuth et al., 2004). Rigid boundaries more complex than

the in�nite plane considered in section 4.4.2 can be included through distributions of

stokeslets across the surface in conjunction with the regularised blakelet image system

(Ainley et al., 2008) already implemented. The SPX could thus enable accurate assess-

ment and development of novel microchannel designs,without the requirement for
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planar swimming cells present in previous studies (Montenegro-Johnson et al., 2015).
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Chapter 5

Conclusion

In this thesis, we have developed two distinct frameworks for describing and simulat-

ing the motion of elastohydrodynamic slender bodies in viscous �ows. These methods,

referred to throughout as the EIF and SPX methods respectively, have been derived

from basic physical constitutive laws, benchmarked for both accuracy and computa-

tional e�ciency, and used to simulate dynamic �laments and propulsive human sper-

matozoa in both two and three dimensions. MATLAB® codes for both methods are

made available in online GitLab repositories (Hall-McNair, 2019, 2021). In this con-

clusion, we brie�y recap each approach in sections 5.1 and 5.2 for the EIF and SPX

methods respectively. We conclude with summarising remarks in section 5.3.

5.1 Summary of the EIF

Developed to simulate planar passive �laments and swimming mono�agellates, the

Elastohydrodynamic Integral Formulation (or EIF, introduced in chapter 2) provides

an e�cient framework for rapidly simulating �bres and cells in isolation or in small

groups. Interactions between the distal �lament (or �agellum), and between any poten-
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tial neighbours are included in the nonlocal hydrodynamic model by incorporating the

method of regularised stokeslets. The titular integral equations, describing the elastic

bending of the �lament, arise from integration of the moment equilibrium equation (in

(1.86)) for a generalised deforming slender body, combined with a linear constitutive

law relating the bending moment to the centreline tangent angle. The elastic repre-

sentation is coupled to the hydrodynamics through the force equilibrium equation (in

(1.84)) and the regularised stokeslet boundary integral equation, reducible to a one-

dimensional integral along the centreline since the volume of the �agellum does not

change (see section 1.2.3).

Previous position-based elastohydrodynamic methods, such as those by Goldstein

et al. (1998); Wolgemuth et al. (2004); Tornberg & Shelley (2004); Gadêlha et al. (2010);

Montenegro-Johnson et al. (2015), require auxiliary equations enforcing �lament in-

extensibility to be included in their models. Additionally, su�ciently resolving the

line tension can require large numbers of discretising nodes, yielding numerical im-

plementations prone to sti�ness, requiring small time steps to ensure stability. Work

by Moreau et al. (2018) demonstrated that describing �laments by centreline tangent

angle, in conjunction with an integral formulation of the elastodynamic equations, en-

abled large increases in e�ciency and reductions in computational cost. These gains

derive from a reduction in the required degrees of freedom and implicit enforcement of

the inextensibility constraint through the angle formulation. The EIF presented in this

thesis improves on the Moreau et al. formulation by replacing the local hydrodynamic

model with a regularised stokeslet method to include nonlocal interactions. Judicial

use of commercial-grade built-in MATLAB® ODE solvers further improves computa-

tional e�ciency, allowing simulations involving multiple interacting �laments to be

completed on a timescale of minutes (rather than hours or even days) with remarkably
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few constraints on computational hardware.

A keen focus has been kept on adaptability of the EIF to many problem scenar-

ios. Within this thesis, the EIF is used to examine (a) �laments in a linear shear �ow,

(b) sedimenting due to gravity, and (c) self-propulsive swimming. These varied sce-

narios are describable through the EIF with relatively minor alterations to the model

equations, and similarly straightforward tweaks to the MATLAB® code. Despite the

one-dimensional description of the �lament, the method exhibits buckling phenomena

when in compressing shear �ows, in agreement with previous �ndings (Tornberg &

Shelley, 2004). Similar geometric instabilities are observed for sedimenting �laments,

with close agreement to methods by Schoeller et al. (2021).

In chapter 3, extensions to the EIF by Neal et al. (2020) are incorporated to model

planar human spermatozoa, examining the e�ect of varying head morphology on swim-

ming speed and e�ciency. The rigid body head is included in the method through a

nearest-neighbour regularised stokeslet discretisation (Smith, 2018). The �agellar ax-

onemal structure is modelled by varying the elastic bending sti�ness E along the ar-

clength, producing propulsive waveforms typical of cells swimming in high-viscosity

�uids (Neal et al., 2020). For cells optimised for swimming speed, variations in head

dimensions agreeing to a �xed idealised volume constraint produce percentile di�er-

ences in speed and e�ciency over a similarly-actuated cell with a head of average

observed dimensions. These performance di�erences arise from changes in head sway

in the plane of the beat, which leads to changes in both the proximal �agellum shape

(dominated by altered dynamics of the head-�agellum joint) and distal curvature (due

to nonlocal hydrodynamic interactions).

Use of angle formulation methods to model slender bodies deforming in three-

dimensions is an active avenue of research, with early work by Walker et al. (2020)
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demonstrating their applicability to simulate passive unbending and active clamped

�laments. Di�culties arise in correctly tracking the rotations of �agellar segments in

3D space, with care required to ensure uniqueness and avoid so-called “gimbal lock”.

With this in mind, Walker et al. use a spherical mapping to write model equations in a

transformed singularity-free basis. The aforementioned study by Schoeller et al. (2021),

whilst not an angle formulation method in the sense described here, uses a quaternion

representation to track rotations in 3D, an approach which could be applied to the EIF

to enable nonplanar bending.

With the elastodynamic integral equation a key feature of the EIF, it is natural that

it be a focus for potential improvements. The results in section 2.4.1 indicate that the

shape of a buckled �lament can be well described using interpolating Chebyshev poly-

nomials, suggesting the applicability of alternate spectral integral techniques, such as

those by Muldowney & Higdon (1995), enabling increases in e�ciency and accuracy

with potentially fewer degrees of freedom. Recent work by Gallagher & Smith (2021)

reveals the gains in e�ciency at no loss of accuracy available when applying Richard-

son extrapolation to the nearest neighbour regularised stokeslet method, allowing for

larger choices of the regularisation parameter " to be chosen, particularly applicable

to the surface integral arising from the cell body hydrodynamics. Coarse graining the

far-�eld �ow using a treecode formulation similar to Wang et al. (2019) (or equivalent

methods) would simplify the computational cost and enable simulation of increasingly

large numbers of �laments. Fibre self intersections could be avoided through inclusion

of a Lennard-Jones potential acting between each segment, as used in other methods

(Wolgemuth et al., 2004; Jayaraman et al., 2012).
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5.2 Summary of the SPX method

The Sperm-X (SPX) method developed in chapter 4 provides a framework for modelling

mono�agellate cells bending, twisting, relaxing and swimming in three dimensions.

Both linear bend and twist deformations are included in the elastics model, coupled to

a nonlocal hydrodynamic model in the form of the method of regularised stokeslets.

The hydrodynamic model is easily replaced by the method of regularised blakelets to

incorporate �uid interactions between a slender body and an in�nite plane boundary.

Designed primarily for simulating human spermatozoa, morphological features char-

acteristic of sperm, namely a rigid body cell head, varying �agella sti�ness, and a distal

end piece region of mechanically inactive �agellum are present in the model.

To avoid the complexities arising from a three dimensional angle formulation for

nonlinear �lament geometry (discussed above), the model is formulated in terms of

the coordinates of the �agellum centreline. As a result, conservation of arclength is

enforced through coupling to an auxiliary equation derived directly from the inexten-

sibility constraint and the elastohydrodynamic equation for the slender body. Cen-

treline models have previously been used e�ectively to model planar cells in shear

�ows (Tornberg & Shelley, 2004), investigate the importance of nonlinear geometry

on cell trajectory (Gadêlha et al., 2010), and quantify hydrodynamic scattering upon

traversing a microchannel backstep (Montenegro-Johnson et al., 2015). Here, inclusion

of mechanical twist necessitates tracking both the orthonormal director frame (which

describes the orientation of the �agellum) and the twist curvature. These additions

dramatically increase the complexity of the SPX over other centreline models and the

aforementioned EIF approach, but enables for the �rst time investigations into non-

planar swimming near rigid boundaries. In section 4.4, the SPX is used to simulate
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a variety of progressive cells actuated through a dynamic ‘twist and bend’ procedure

originating within the axonemal ultrastructure. In doing so, we highlight the intricate

balance between geometry, elasticity and hydrodynamics crucial to promoting suc-

cessful sperm locomotion. In section 4.4.2, we examine the hydrodynamic impact of a

proximal plane wall upon axial rolling (exhibited by nonplanar swimming cells). We

�nd that the rate of cell rolling is determined by e�ective twist resistance and angle

of approach towards the wall, and that wall e�ects reduce rates of revolution by up to

40% compared to identical cells swimming in an in�nite �uid.

The SPX could be extended in various ways. Allowing for anisotropic bending sti�-

ness, through reformulation of the model unknowns, may improve the regulation and

stability of nonplanar beats through better mechanical likeness to the 9+2 axoneme.

Additionally, the SPX can only simulate a single cell. Whilst nonlocal hydrodynamic

e�ects between multiple cells are straightforward to implement (as discussed in chap-

ter 2), a monolithic approach in SPX as used in the EIF extension to multiple �laments

would rapidly produce extremely large matrix systems due to the larger degrees of free-

dom required to describe a cell in the SPX formulation as opposed to the EIF. These

complexities could be addressed by employing a fast-multipole or RPY-tensor approach

for the far �eld hydrodynamics, previously used with success in modelling large num-

bers of interacting �laments and cells (Delmotte et al., 2015b; Schoeller et al., 2021).

Computational expense resulting from large linear systems could be managed e�ec-

tively and e�ciently by utilising GPUs, recently shown to enable large speed increases

in �uid simulations over comparable CPU-driven experiments (Gallagher & Smith,

2020). Temporal accuracy and stability could be improved by employing a higher-

order time stepping scheme, such as a Crank-Nicolson or Runge-Kutta method, at

the expensive of more complex temporal discretisations, with particular care required
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when treating those equations containing time derivatives of multiple variables. Al-

ternatively, ImEx (Implicit-Explicit) methods have been used to great e�ect in many

previous models (Camalet & Jülicher, 2000; Tornberg & Shelley, 2004; Gadêlha et al.,

2010; Montenegro-Johnson et al., 2015) and could reduce computational expense whilst

improving accuracy. Other previously discussed improvements to the EIF, such as in-

clusion of a Lennard-Jones potential to avoid self-intersections, or far-�eld �ow coarse

graining, are equally applicable to the SPX.

A number of potential avenues for further study are possible. Some key questions

include, (i) how do changes in the viscoelastic swimming parameter change twisting

and bending cells? (ii) For a given swimming parameter, what collection of parameters

optimise the cell for speed and e�ciency when locomoting with a nonplanar beat? (iii)

With the e�ect of head morphology on planar beating investigated in chapter 3, how

does body shape impact the motion of nonplanar beating cells, and is a head that is

optimal for planar beating similarly e�ective for a rolling, twisting cell? And (iv) how

can SPX be applied to model other (potentially multi�agelleted) cells?

The SPX can be immediately applied to many problems comprising biologically-

driven �uids and slender bodies, including (but not limited to) the modelling of cilia

(Gueron & Liron, 1993; Pozrikidis, 2011; Sartori et al., 2016a; Gallagher et al., 2020),

stability analysis of stretching and twisting polymer chains (Wolgemuth et al., 2004;

Jayaraman et al., 2012), cell swimming in the presence of geometrically complex rigid

boundaries (Montenegro-Johnson et al., 2015; Walker et al., 2019), as well to as biotech-

nological innovations such as phoretic swimmers (Katsamba et al., 2020). It is our

hope that the code (provided via open-source repository (Hall-McNair, 2021)) is used

by peers working within the larger mathematical biology worldwide community to

expedite their own studies and inspire pioneering research.
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5.3 Closing remarks

In this thesis, we have introduced, derived, and benchmarked two new modelling

frameworks for elastohydrodynamic problems, labelled the EIF and SPX respectively.

Particular focus has been on modelling both planar and nonplanar human spermato-

zoa, actuated through a variety of physiologically realistic means in both in�nite �uid

and in proximity of a rigid boundary. Through a broad simulation study using the EIF,

we have assessed the e�ect of head shape upon sperm speed and e�ciency, for mor-

phologies common to both healthy and defective cell types, leading to the proposal of

new metrics to determine cell viability, with applications in cell classi�cation methods.

The axial rolling behaviour exhibited by spermatozoa driven by an actively bending

and twisting �agellum, particularly upon approaching a wall, enables new possibili-

ties for simulations of nonplanarly beating cells near boundaries, and providing useful

insights for researchers and technicians alike in designing microtubule devices for cell

selection.

Both of the presented methods are accurate, performant, and generalisable, allow-

ing for their use in a variety of other microbiological �uid �ow problems in addition

to the examples presented in this thesis. The approaches are presented in detail, with

the aim of clearly describing the complex mathematical derivations so that they may

be adapted for future research in the rich world of slender body elastohydrodynamics,

and provide insights useful to both experimentalists and clinicians. Finally, MATLAB®

codes implementing the numerical schemes for both methods are made available via

open-source repositories (Hall-McNair, 2019, 2021). It is our hope that these codes are

used, modi�ed, inspected and critiqued to bene�t future researchers in the �eld, and

aid them in their own scienti�c endeavours.
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Appendix A

Deriving the three-dimensional
geometric compatibility equations

In chapter 1, we present the compatibility equations relating slender body curvature

and angular rotation. These equations are crucial in closing the formulation of the

SPX method in chapter 4. In this appendix, the equations (1.74a–1.74c) are derived.

The argument here follows from Gueron & Levit-Gurevich (2001b) and Wolgemuth

et al. (2004), with minor typographical corrections.

We begin by rea�rming equations for the components of curvature and angular

rotation. The director frame of the �lament is the collection of orthonormal vectors d1,

d2 and d3 = Xs , where X = X(s) are material points along the centreline, parametrised

by arclength s. As in chapter 1, time dependence of all variables is suppressed for nota-

tional clarity. The frame rotates along the �lament length according to the curvatures

� = �idi and rotates in time according to the angular velocities 
 = Ωidi , as

di,s = � ∧ di , di,t = 
 ∧ di . (A.1)

These relations yield equations for the components of curvature and angular velocity

262



as

�1 = d2,s ⋅ d3, Ω1 = d2,t ⋅ d3, (A.2a)

�2 = d3,s ⋅ d1, Ω2 = d3,t ⋅ d1, (A.2b)

�3 = d1,s ⋅ d2, Ω3 = d1,t ⋅ d2, (A.2c)

Additionally, note that since di ⋅ dj = �ij , we obtain an additional identity

(d1 ⋅ d2)t = d1,t ⋅ d2 + d1 ⋅ d2,t = (�12)t = 0, (A.3a)

⇒ d1,t ⋅ d2 = −d1 ⋅ d2,t . (A.3b)

Similarly, d1,s ⋅ d2 = −d1 ⋅ d2,s . These relations are used repeatedly throughout the

following derivations. The compatibility equations are calculated by di�erentiating

the components of curvature given in equations (A.2a–A.2c) with respect to time. We

consider each component in turn. Then,

�1,t = (d2,s ⋅ d3)t = (−d2 ⋅ d3,s)t , (A.4a)

= −d2,t ⋅ d3,s − d2 ⋅ d3,st , (A.4b)

= (Ω3d1 − Ω1d3) ⋅ d3,s − d2 ⋅ Xsst , (A.4c)

= Ω3d1 ⋅ d3,s − d2 ⋅ Xsst = Ω3�2 − d2 ⋅ Xsst . (A.4d)
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The second compatibility equation is computed in a similar manner as

�2,t = (d3,s ⋅ d1)t , (A.5a)

= (d3,t ⋅ d1 + d3,s ⋅ d1,t), (A.5b)

= (Ω3d2 − Ω2d3) ⋅ d3,s + d1 ⋅ Xsst , (A.5c)

= Ω3d2 ⋅ d3,s + d1 ⋅ Xsst = −Ω3�1 + d1 ⋅ Xsst . (A.5d)

The �nal condition is more involved, but follows the same logical arguments to yield

�3,t = (d1,s ⋅ d2)t = d1,st ⋅ d2 + d1,s ⋅ d2,t (A.6a)

= (Ω3d2 − Ω2d3)s ⋅ d2 + (�3d2 − �2d3) ⋅ d2,t , (A.6b)

= (Ω3,s ⋅ d2 + Ω3d2,s − Ω2,s ⋅ d3 − Ω2d3,s) ⋅ d2 − �2d3 ⋅ d2,t , (A.6c)

= Ω3,s − Ω2d3,s ⋅ d2 − �2Ω1, (A.6d)

= Ω3,s + Ω2�1 − �2Ω1. (A.6e)

Noting that Ω1 = d2,t ⋅ d3 = −d2 ⋅ d3,t , and d3 = Xs , this can be further simpli�ed to

obtain

�3,t = Ω3,s + �1d1 ⋅ Xst + �2d2 ⋅ Xst , (A.7a)

= Ω3,s + (�1d1 + �2d2) ⋅ Xst , (A.7b)

= Ω3,s + (Xs ∧ Xss) ⋅ Xst , (A.7c)

with the bending moment equivalency in the �nal step following from the discussion

in section 1.3.1 and Landau & Lifshitz (1965).
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Appendix B

A bead and spring method for elastic
�laments

The bead and link model is used in chapter 2 of this thesis as a baseline against which to

assess the accuracy of both the EIF and SPX methods for a passively relaxing �lament

experiment (see section 2.3.1 and 4.3.1). In this appendix we de�ne and verify the BSM

as it is employed within this thesis.

Based upon work by Jayaraman et al. (2012), the �lament is modelled as a chain

of discrete spherical beads connected by elastic Hookean springs, with elastic bending

and inextensibility properties ful�lled by a prescribed force potential at each bead.

Bead and spring models have been extensively used in polymer modelling (see section

1.4.2 for examples), and where the requirement of �bre inextensibility is less essential

(Wolgemuth et al., 2004). A sketch of the construction is given in �gure B.1. For a chain

of N beads placed along the centreline of a planar �lament, the nth bead experiences
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the force

fe[n](t) = −

)
)X[n]

,

= −

)

)X[n] (

N−1

∑

m=1


2

(b[m](t) − b0)
2
+

N−2

∑

m=1

(N − 1)(1 − cos �[m](t))
)

, (B.1)

for n = 1, … , N − 1, and where

b[m](t) = ‖b[m](t)‖ ∶= ‖X[m + 1](t) − X[m](t)‖, m = 1, … , N − 1, (B.2)

is the size of the bond vector between adjacent beads. The bead separation at elastic

equilibrium is denoted by b0. The angle � is the angle formed between the tangents at

adjacent beads. Filament �exibility is described by the dimensionless group

 =

kL
3

E

=

spring forces
bending forces , (B.3)

where k is the Hookean spring constant of the structural springs, with a single value

common to all springs in the model, and E is the mechanical bending rigidity of the

�lament. To ensure inextensibility, very large values of k are typically required. Beads

are sized so that their diameter matches the radius of the �lament, ensuring the correct

aspect ratio.

In Stokes �ow, the �lament is force and moment free at each instant, and so elastic

forces must balance hydrodynamic forces i.e. fe + fℎ = 0, where fe is the elastic force

density and fℎ the hydrodynamic force density. Employing the method of regularised

stokeslets (Cortez, 2001; Cortez et al., 2005), the dimensionless velocity of each bead is
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Figure B.1: Geometry of a continuous �lament as approximated by the dis-
crete bead and spring model. Spherical beads with centres X[1], … , X[N ] are
connected by Hookean springs with resting length b0 and spring constant k.
The bond vectors b[n] = X[n + 1] − X[n] indicate the direction of the linear
springs.

then given

Xt[n](t) =

1

8�

N

∑

m=1

S
"

(X[n](t), X[m](t)) ⋅ fe[n](t), n = 1, … , N , (B.4)

with the force per unit length fe given in equation (B.1). Given a discrete con�guration,

the elastic forces per unit length are calculable through (B.1), at which point equation

(B.4) is integrated in time to obtain updated bead positions.

To assess the BSM formulation, a planarly relaxing low amplitude parabolic �la-

ment is considered, which, assuming a local hydrodynamic drag law, can be expressed

as a hyperdi�usive partial di�erential equation IBVP, given by

yt(x, t) = −

8��

c⟂

yxxxx (x, t), x ∈ [0, 1], t > 0, (B.5a)

yxx (0, t) = yxx (1, t) = 0, t > 0, (B.5b)

yxxx (0, t) = yxxx (1, t) = 0, t > 0, (B.5c)

y(x, 0) = g(x), x ∈ [0, 1], (B.5d)

where g(x) de�nes the deformed initial condition of the �lament. The normal resis-
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Figure B.2: Comparison of the bead and spring model (BSM) to a �nite di�er-
ence implementation of the hyperdi�usion PDE for a low amplitude relaxing
�lament. (a) and (b): The initial and �nal �bre shapes when modelled with
each method. (c) RMS error between the coordinates of the centres of mass
over time between the BSM solution (with N = 41) and the �nite di�erence
solution with grid spacings Δx = 2×10−3, Δt = 1×10−6. (d) RMSEc convergence
at t = 0.05 for increasing N .

tive force coe�cient is c⟂ = 4��/(1/2 + log(2q/a)) where a = 0.01 is the radius of the

�lament and q is the characteristic wavelength of deformation, set to be L/2. The sys-

tem in equations (B.5a)–(B.5d) is numerically implemented using second-order central

di�erences in space and the backward Euler method in time. The initial condition is

given by the parabola g(x) = 0.5(x − 0.5)2.

Results of the comparison between the hyperdi�usive equation and the bead and

link model are presented in �gure B.2. The initial larger errors between these two

methods is sue to the violation of the no-penetration condition when using coarse

discretisations in the BSM. The bead model is accurate for su�ciently large N , with

clear convergence to the numerical implementation of the hyperdi�usion equation
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model shown in B.2d.

The requirement for large values of , and the resulting numerical sti�ness, pro-

duces a computationally expensive method for modelling naturally inextensible bio-

logical �laments. Furthermore, shape dynamics can only be accurately captured for

�ne discretisations using lots of beads, increasing the degrees of freedom for adequate

accuracy and increasing this cost. The discrete construction of the bead and spring

method makes additional problems such as those involving surrounding �ows, body

forces, or active propulsion, nontrivial to formulate, as they must derive from discrete

formulations of naturally continuous problems. These limitations are crucial in moti-

vating the alternative EIF framework discussed in chapter 2 of this thesis.
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Appendix C

Hydrodynamic velocity of a rod via a
resistance drag law

In the classical resistive force theory of Gray & Hancock (1955), the hydrodynamic

force acting on a slender body is described by considering the velocity of the rod in

each direction associated with a frame describing the orientation of the rod in space.

That is,

f = (c⟂nn + c⟂bb + c∥tt) ⋅ u, (C.1)

where n, b and t are the unit normal, unit binormal, and unit tangent vectors to the rod

respectively. The rod velocity is u, f is the hydrodynamic force per unit length the rod

exerts onto the surrounding �uid, and tt ∶= t ⊗ t is a dyadic product (similarly for nn

and bb). The parameters c⟂ and c∥ are resistance coe�cients, the values of which vary

with rod dimensions, as well as the accuracy of the hydrodynamic approximation (see

section 1.1.2 for details). A sketch of this model applied to human sperm is provided

in �gure 1.2.

Since the mobility problems considered in this thesis often involve unknown body

forces, we desire an equation for the velocity u in terms of f , rather than an equation
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for f in terms of u. Rearranging,

f = (c⟂nn ⋅ u + c⟂bb ⋅ u + c∥tt ⋅ u), (C.2a)

= (c⟂(u ⋅ n)n + c⟂(u ⋅ b)b + c∥(u ⋅ t)t), (C.2b)

= c⟂((u − (u ⋅ t)t − (u ⋅ b)b) + (u ⋅ b)b + 

−1
(u ⋅ t)t), (C.2c)

= c⟂(I + (

−1
− 1)tt) ⋅ u, (C.2d)

= c⟂
[
I +

(

1 − 



 )
tt
]
⋅ u, (C.2e)

⇒ u =

1

c⟂
[
I +

(

1 − 



 )
tt
]

−1

⋅ f , (C.2f)

where I is the three dimensional identity matrix, and 
 = c⟂/c∥ (sometimes referred

to as the anisotropy ratio). We write the velocity decomposed into components i.e.

u = (u ⋅ t)t + (u ⋅ b)b + (u ⋅ n)n to eliminate the nontangential dyadic products. To com-

pute the inverse on the �nal line, consider

[
I +

(

1 − 



 )
tt
]
⋅ (I − �tt) = I +

[
−� +

1 − 





− �
(

1 − 



 )]
tt, (C.3)

for some � . By inspection we must have that

−� +

1 − 





− �
(

1 − 



 )
= 0, (C.4a)

⇒ � =

1 − 




(
1 +

1−



 )

= 1 − 
 , (C.4b)

and thus the desired inverse operator is

[
I +

1 − 





tt
]

−1

= I − (1 − 
)tt = I + (
 − 1)tt. (C.5)
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We can therefore write

u =

1

c⟂

(I + (
 − 1)tt) ⋅ f , (C.6)

expressing the hydrodynamic velocity u in terms of the hydrodynamic force per unit

length exerted by the �lament on the �uid f , the tangents t, and resistance parameters

c⟂ and 
 = c⟂/c∥.
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Appendix D

Angle formulation model with a
local hydrodynamic approximation

The elastohydrodynamic integral formulation (EIF) model for planar elastic �laments,

as de�ned in section 2.2, employs the method of regularised stokeslets to model nonlo-

cal hydrodynamic interactions of the �bre with itself, other �laments, and surrounding

structures. In section 2.3.1, the EIF is compared to a version of itself which instead uses

a local hydrodynamic model.

The hydrodynamic force per unit length acting on a planar linear rod can be written

in terms of the velocity as (details in appendix C)

f = c∥(u ⋅ t)t + c⟂(u ⋅ n)n, (D.1a)

⇒ f = c∥(tt + 
(I − tt)) ⋅ u, (D.1b)

where t and n are unit vectors tangential and normal to the rod, and where 
 = c⟂/c∥ is

the anisotropy ratio. Filament planarity means that u ⋅b = 0, hence the lack of binormal

terms in equation (D.1b). The resistance coe�cients c⟂ and c∥ are chosen according to

the choice of hydrodynamic model. The dyadic product is de�ned tt ∶= t⊗t. In section
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2.3.1, following Lighthill (1975) and Moreau et al. (2018), we choose

c∥ =

2��

−1/2 + log(2q/b)

, 
 ≈ 1.8, (D.2)

where q = 0.1 and b = 0.01 is the radius of the �lament. In the EIF, the continuous

geometrically nonlinear �lament is modelled as a connected sequence of linear rods.

For a sequence of m = 1,… , Q linear segments with tangents t[m] = (t1[m], t2[m]) and

velocities ũ = (ũ1[m], ũ2[m]) (where a tilde indicates measurement at the segment

midpoints), the component of velocity in the tangential direction can be written

(ũ[m] ⋅ t[m])t[m] =

⎛

⎜

⎜

⎜

⎝

ũ1[m]t
2

1
[m] + ũ2[m]t1[m]t2[m]

ũ1[m]t1[m]t2[m] + ũ2[m]t
2

2
[m]

⎞

⎟

⎟

⎟

⎠

. (D.3)

Ordering the tangent and velocity vectors by components enables the hydrodynamic

problem to be written as a 2Q × 2Q system of linear equations. The resistive force

equation is thus

F̃ = c∥[TT + 
(I − TT)] ⋅ Ũ = CŨ , (D.4a)

⇒ Ũ = C
−1
F̃ , (D.4b)

where F̃ = (
̃
f1[1], … ,

̃
f1[Q],

̃
f2[1], … ,

̃
f2[Q])

T is the 2Q column vector of forces per unit

length acting upon each segment comprising the �lament. In this way, by replacing

the hydrodynamic matrix block AH with C
−1 in equation (2.35), we obtain an version

of the EIF using resistive force theory. The kinematic, geometric, and elastic equations

remain unaltered from their de�nitions in section 2.2.
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Appendix E

Steps in the derivation of the three
dimensional centreline model

In chapter 3 we propose the elastohydrodynamic model

�⟂(Xt −V ) = (I + (
 − 1)XsXs) ⋅ ( − EXssss +C[�3(Xs ∧Xss)]s + [TXs]s + [Xs ∧m]s), (E.1)

which is then manipulated to obtain an the nonlocal sperm equation in (4.17), as well

as an auxiliary equation for the internal tension T , given in (4.19). In this appendix,

we detail the steps in the derivation of each of these equations. For brevity we assume

that the bending sti�ness is constant along the �agellum, but the steps to obtain the

additional terms arising from a varying sti�ness model follow in the same manner.

We consider the expansion of (E.1) term by term. The fourth-order derivative term

can be written

(I + (
 − 1)XsXs) ⋅ (−EXssss) = −EXssss − E(
 − 1)(Xs ⋅ Xssss)Xs , (E.2)

recalling that the tensor product can be written aa ⋅ b = (a ⋅ b)a. Terms involving the
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tension expand as

(I + (
 − 1)XsXs) ⋅ (TXs)s = (I + (
 − 1)XsXs) ⋅ (TsXs + TXss), (E.3a)

= TsXs + TXss + Ts(
 − 1)(Xs ⋅ Xs)Xs , (E.3b)

= 
TsXs + TXss , (E.3c)

noting that Xs ⋅ Xs = 1 and Xs ⋅ Xss = 0 as Xs ⟂ Xss . Contributions from the twist terms

simplify through

(I + (
 − 1)XsXs) ⋅ C(�3Xs ∧ Xss)s

= (I + (
 − 1)XsXs) ⋅ (C�3,sXs ∧ Xss + C�3Xs ∧ Xsss),

= C�3,sXs ∧ Xss + C�3Xs ∧ Xsss , (E.4)

noting that the terms arising from the dyadic onto the cross products i.e.

XsXs ⋅ (Xs ∧ Xss) = [Xs ⋅ (Xs ∧ Xss)]Xs = 0, (E.5a)

XsXs ⋅ (Xs ∧ Xsss) = [Xs ⋅ (Xs ∧ Xsss)]Xs = 0, (E.5b)

are zero by properties of the triple product. The vector product between the active

internal moment per unit length m and the tangent Xs contains information only on

the active bending contributions sinceXs∧m = m1d2−m2d1, form1, m2 scalar functions

of s describing the rotation of the director frame about the d1 and d2 axes respectively.
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The �nal expansion involving the actuation terms is then

(I + (
 − 1)XsXs) ⋅ (Xs ∧ m)s

= (I + (
 − 1)XsXs) ⋅ (Xss ∧ m + Xs ∧ ms)

= Xss ∧ m + Xs ∧ ms + (
 − 1)XsXs ⋅ (Xss ∧ m) (E.6)

Combining expressions (E.2), (E.3), (E.4) and (E.6) yields the �nal elastohydrodynamic

equation as written in (4.17).

As discussed in section 4.2.2, the auxiliary equation for the line tension is obtained

by substituting the expression for the centreline velocity from equation (4.17) into the

inextensibility constraint

(Xt)s ⋅ Xs = �(1 − Xs ⋅ Xs), (E.7)

where � ∈ ℝ is a damping parameter, analogous to a spring sti�ness coe�cient work-

ing to converse unit arclength. Expressing the elastohydrodynamic equation (4.17) as

�⟂Xt = RHS + �⟂V , equation (E.7) becomes

�⟂�(1 − Xs ⋅ Xs) − �⟂Vs ⋅ Xs = (RHS)s ⋅ Xs . (E.8)

The right hand side of equation (E.8), substituting for the right hand side terms from

equation (4.17), is

[−EXssss − E(
 − 1)(Xs ⋅ Xssss)Xs + 
TsXs + TXss + Xss ∧ m + Xs ∧ ms

+ C(�3,sXs ∧ Xss + �3Xs ∧ Xsss) + (
 − 1)XsXs ⋅ (Xss ∧ m)]s ⋅ Xs . (E.9)

Terms in this expansion are reduced using di�erential identities deriving from succes-
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sive di�erentiation of Xs ⋅ Xs = 1. These identities are

Xs ⋅ Xs = 1, (ID1)

Xs ⋅ Xss = 0, (ID2)

Xs ⋅ Xsss + Xss ⋅ Xss = 0, (ID3)

Xs ⋅ Xssss + 3Xss ⋅ Xsss = 0, (ID4)

Xs ⋅ Xsssss + 4Xss ⋅ Xssss + 3Xsss ⋅ Xsss = 0. (ID5)

We examine this expansion in stages, and begin by considering the �rst term

(−EXssss)s ⋅ Xs = −EXsssss ⋅ Xs = 4EXss ⋅ Xssss + 3EXsss ⋅ Xsss , (E.10)

where the �fth derivative is reduced by (ID5). The nonlinear bending term becomes

(−E(
 − 1)(Xs ⋅ Xssss)Xs)s ⋅ Xs = −E(
 − 1)(Xs ⋅ Xssss)s , (E.11a)

= −E(
 − 1)(Xss ⋅ Xssss + Xs ⋅ Xsssss), (E.11b)

= E(
 − 1)(3Xss ⋅ Xssss + 3Xsss ⋅ Xsss), (E.11c)

utilising (ID1), (ID2) and (ID5). Combining these terms (E.10) + (E.11c), we have

(−EXssss − E(
 − 1)(Xs ⋅ Xssss)s)s ⋅ Xs = E(1 + 3
)Xss ⋅ Xssss + 3E
Xsss ⋅ Xsss . (E.12)
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Terms involving the tension expand as

(
TsXs + TXss)s ⋅ Xs = 
TssXs ⋅ Xs + (
 + 1)TsXss ⋅ Xs + TXsss ⋅ Xs , (E.13a)

= 
Tss − T (Xss ⋅ Xss), (E.13b)

employing (ID2) and (ID3). The �rst twist term,

C(�3,sXs ∧ Xss)s ⋅ Xs = C�3,ss(Xs ∧ Xss) ⋅ Xs + C�3,s(Xs ∧ Xsss) ⋅ Xs = 0, (E.14)

by triple product identities. The second twist term simpli�es similarly as

C(�3,sXs ∧ Xsss)s ⋅ Xs = C�3,s(Xss ∧ Xsss) ⋅ Xs , (E.15a)

≡ C�3,s(Xs ∧ Xss) ⋅ Xsss , (E.15b)

with the �nal circular shift performed for numerical reasons, allowing the higher-order

third derivative to be more easily treated as the unknown in the subsequent iterative

linear system. The terms involving the active moment per unit length m are

(Xss ∧ m + Xs ∧ ms)s ⋅ Xs

= (Xsss ∧ m + Xss ∧ ms) ⋅ Xs + (Xss ∧ ms + Xs ∧ mss) ⋅ Xs

= (Xsss ∧ m) ⋅ Xs + 2(Xss ∧ ms) ⋅ Xs . (E.16)

The active moment term including the tangent dyadic is

(
 − 1)[(Xs ⋅ (Xss ∧ m))Xs]s ⋅ Xs = (
 − 1)Xs ⋅ (Xsss ∧ m + Xss ∧ ms), (E.17)

279



after repeated application of the triple mixed product identity. Combining the right

hand side expressions from equations (E.16) and (E.17) yields the active moment con-

tribution to the tension equation


(Xsss ∧ m) ⋅ Xs + (
 + 1)(Xss ∧ ms) ⋅ Xs . (E.18)

Combining the expressions in equations (E.12–E.18) yields the auxiliary equation as

presented in (4.19).
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Appendix F

Surface integral operators onto
unknown forces

In the SPX method (chapter 4), we formulate the mathematical model describing an

internally actuated motile sperm cell. The boundary conditions for the proximal �ag-

ellum balance the elastohydrodynamic motion of the �agellum against the force and

moment of the rigid body cell head, in equations of the form

∬
)B

'(Y ) dSY = … (F.1a)

(
∬

)B

(Y − X0) ∧ '(Y ) dSY
)
∧ Xs(0) = … (F.1b)

(
∬

)B

(Y − X0) ∧ '(Y ) dSY
)
⋅ Xs(0) = … (F.1c)

for the force, bending moment, and twist moment respectively, with ellipses represent-

ing terms describing the proximal motion of the �agellum.

After spatial discretisation using the nearest-neighbour regularised stokeslet

method, an operator onto the body forces from the force boundary condition (equation

(F.1a)) is readily obtainable. However, reorganising the moment boundary conditions
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as operators multiplying onto the forces is not trivial. Here, we consider an analytical

expansion of the expression on the left hand side of (F.1b) so that the required numer-

ical method is more readily apparent. A similar (and simpler) expansion is obtainable

for equation (F.1c), but is not considered here.

We desire to compute

(
∬

)B

(Y − X0) ∧ ' dSY
)
∧ X0. (F.2)

Rewriting the above in index notation, we have the equivalent problem, using the Levi-

Civita symbol

�ijkM
B

j
tk = −�ijktjM

B

k
= −�ijktj

(
∬

dB

�klmΔYl'mdS
)
, (F.3)

summing over the repeated indices j, k, l, m, and for i = 1, 2, 3, where MB

i
are the com-

ponents of the surface integral over the cell body. The substitutions ΔYi = Yi − Xi(0),

ti = Xi,s(0), and dS = dSY are made for notational convenience and clarity. By way of

example, we consider the �rst (i = 1) component, which is

−�1jktjM
B

k
= −�123t2M3 − �132t3M2 = −t2M3 + t3M2 (F.4a)

= −t2
(
∬

)B

�3lmΔYl'mdS
)
+ t3

(
∬

)B

�2lmΔYl'mdS
)

(F.4b)

= −t2∬
)B

(ΔY1'2 − ΔY2'1)dS + t3∬
)B

(ΔY3'1 − ΔY1'3)dS. (F.4c)

The second and third components can be computed similarly as

−�2jktjM
B

k
= t1∬

)B

(ΔY1'2 − ΔY2'1)dS − t3∬
)B

(ΔY2'3 − ΔY3'2)dS, (F.5)
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−�3jktjM
B

k
= −t1∬

)B

(ΔY3'1 − ΔY1'3)dS + t2∬
)B

(ΔY2'3 − ΔY3'2)dS. (F.6)

The component expressions in equations (F.4c)–(F.6), after spatial discretisation, more

readily lend themselves as linear operators onto the unknown force components

'i[1], … , 'i[N ], forming the left hand side of the proximal bending moment boundary

conditions (equation (4.54c)) for the elastohydrodynamic model. Component expres-

sions for the components of the proximal twist moment boundary condition (equation

(4.54d)) can be derived through a similar procedure as described above.
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