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Abstract
In this paper ideal undirected independence

tests are defined and it is investigated whether

optimal ones exist in the arithmetical hierar-

chy of functions. It is shown that there are no

non-constant universal independence tests in the

classes of recursive and co-enumerable functions.

However, there exists one in the classes Σ0
n, n ≥ 2

which equals algorithmic mutual information up

to a small term. Mutual information can be de-

composed as a sum of three parts: information

transfer from x to y, information transfer from y

to x and common simultaneous information. We

investigate the objectivity of both tests. A small

amount of prior information can only result in a

decrease of the test strength, but it can change its

decomposition in algorithmic information trans-

fer arbitrarily.

Keywords: Algorithmic Complexity, Independence
Tests, Causality, Recursion Theory.

1 Introduction

Much literature is available on randomness of infi-
nite sequences and randomness of infinite sequences
relative to other infinite sequences. In the last

decade an impressive amount of new material has
been published and has been organized in [1]. Ran-
domness relative to a string answers the question: is
x random given y? While an independence test an-
swers the question: becomes x more random given
y? Little attention has been drawn to measures for
the last question as well for measures that study
causal or directed independence.

Independence tests play a crucial role in many
engineering applications. A popular application is
the construction of contrast functions in ICA al-
gorithms for solving blind source separation prob-
lems [2, 3, 4, 5]. Directed independence tests are
important to determine how information is flow-
ing in complex systems if little knowledge on the
system is available except for the activity of some
components. Examples of applications of directed
independence tests can be found in the analysis of
EEG signals for estimating the influence of the ac-
tivity of different brain areas to others [6, 7].

In this paper we investigate from a theoretical
point of view the existence and the use of ideal
directed and non-directed independence tests. In
[8] there is a short reference to independence mea-
sures for the universal distribution. In [9, 10] the
information distance and information metric are de-
scribed. The information distance is the shortest

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55864248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


program that reproduces x from y and y from x.
The similarity metric is a normalization of the in-
formation distance. Independent strings have an
information distance close to 1. However, to us, it
is not clear how one can make this property into
a statistical test for independence with confidence
bounds. To call a test a ’statistical’ test, confi-
dence bounds are necessary. Here we study the
existence of universal statistical independence tests
relative to the classes of the arithmetical hierarchy.
We show that we can calculate algorithmic infor-
mation transfer with high probability given a short
program.

Section 2 to 4 describe some basic concepts such
as: algorithmic prefix complexity, the arithmeti-
cal hierarchy for total functions, and the universal
probability measure, necessary for proving the the-
orems in Sections 5 and 6. In Section 5 general
purpose dependence tests are introduced and char-
acterized in terms of the universal distribution. We
prove theorems regarding the existence and the cal-
culability of universal independence tests. In Sec-
tion 6 algorithmic information transfer is defined
and it is shown that it decomposes mutual infor-
mation. Calculability properties are proved and the
objectivity of the measures is investigated.

2 Algorithmic complexity

Algorithmic complexity K(x) is the accepted ab-
solute measure of information content in a binary
string x [9]. K(x) can be viewed as the data com-
pression limit of x. In this section we present the
theory of algorithmic (Kolmogorov) complexity as
treated in the standard work [11] in which all proofs
of the theorems can be found.

A prefix-free Turing machine U is a Turing ma-
chine with a read only input tape, a read and write
work tape and a write only output-tape. A pro-
gram p is a halting program if the input reading
head reads all bits of p and halts before reading the
next bit. Denote x and y as finite binary strings, ε
as the empty string. l(x) is the length of x. The fi-
nite strings can be identified with the natural num-
bers by the bijection 1↔ ε, 2↔ 0, 3↔ 1, 4↔ 00,
5↔ 01, ... In this way U defines a partial function
U : N→ N. Algorithmic complexity is defined as:

Definition 2.1.

KU (x) = min{l(p)|U(p) ↓= x}

This definition of information content seems to
depend on the type of machine one uses, but one
can show that this independence is bounded by a
constant for universal Turing machines (TM).

Definition 2.2. A function f (additively) domi-
nates a function g, (notation: g <c f) if there ex-
ists a constant c such that ∀x ∈ dom(f) : g(x) <
f(x) + c.

Definition 2.3. A function f equals g up to an
(additive) constant (notation: g =c f) if g <c f
and f <c g.

Theorem 2.4. If U and U ′ are universal prefix-
free Turing-machines, KU =c KU ′

From now on we use a fixed TM U and write
K(x) for KU (x).

Every string has a trivial representation and
therefore:

Theorem 2.5. K(x) <c l(x) + 2 log l(x)

One can equip a TM with extra input-tapes and
extra output tapes. This enables us to define:

K(x, y) = min{l(p)|U(p) = (x, y)}
K(x|y) = min{l(p)|U(p, y) = x}

Denote y∗ as the shortest program such that
U(y∗) ↓= y.

Theorem 2.6.

K(x, y) =c K(x|y∗) + K(y)

Definition 2.7. The mutual algorithmic informa-
tion I(x; y) is:

I(x; y) = K(x) + K(y)−K(x, y)

One has:

I(x; y) =c K(x)−K(x|y) =c K(y)−K(y|x)

3 The arithmetical hierarchy

The arithmetic hierarchy represents the ’hardness’
of evaluating a function. This section gives the defi-
nitions and theorems we will use in Section 5. They
can be found in [12] and [11]. Generalized Kol-
mogorov complexities are studied in [13].



Definition 3.1. Total, recursive, enummerable
and co-enumerable functions.

• A function is total if it is defined in it’s whole
domain.

• A total function f is computable if there is a
program that calculates f(x) and halts for all
x.

• A total function f : N → N is enumerable
resp. co-enumerable if there is a computable
function g : N × N → N such that ∀x,∀t, t′ ∈
N : g(t, x) ≤ g(t+t′, x) resp g(t, x) ≥ g(t+t′, x)
and limt=∞ g(t, x) = f(x).

K(x) is an example of a function that is co-
enumerable but not computable.

The halting sequence ξ is defined as: ξn = 1
if U(n) ↓ and ξn = 0 else. There is no program
that calculates ξn for all n. This is the famous
halting problem. We can equip a TM with an extra
infinite input tape containing the halting sequence
(notation: U (2)). The algorithmic complexity of x
relative to U (2) is K(2)(x):

Definition 3.2.

K(2)(x) = min{l(p)|U (2)(p) ↓= x}

KU is computable relative to U (2). It is possible
to go further and ask if a program x on such a U (2)

halts. The halting sequence relative to the halting
problem is: ξ

(2)
n = 1 if U (2)(n) ↓. A program for

U (2) that calculates ξ
(2)
n for all n does not exist.

We can equip a Turing machine U (2) with an extra
input tape containing ξ(2) and denote it by U (3),
then K(3)(x) is defined in a similar way as K(2)(x).

This procedure can be iterated to define U (n),
ξ(n) and K(n) for n = 1, 2, .... Denote U (1) =
U ,ξ(1) = ξ and K(1) = K.

Definition 3.3. Σ0
n,Π0

n and ∆0
n, n ≥ 1:

f ∈ Σ0
n ⇐⇒ f is total and co-enumerable relative

to U (n).
f ∈ Π0

n ⇐⇒ f is total and enumerable relative to
U (n).
∆0

n = Σ0
n ∩Π0

n

The classes Σ0
n,Π0

n and ∆0
n for n ≥ 1 constitute

the arithmetical hierarchy. It is shown that they
form a strict hierarchy [12]: ∆0

n ( Σ0
n, ∆0

n ( Π0
n,

and Σ0
n ∪Π0

n ( ∆0
n+1.

4 Algorithmic probability

The universal probability distribution is the cen-
tral probability distribution for defining universal
learning and proving many optimality claims and
theorems. Here it is used as a mathematical tool.
Definitions, theorems and proofs of this sections can
be found in [11].

Definition 4.1. A probability distribution or semi-
measure P is a function P : N→ [0, 1] such that∑

x

P (x) ≤ 1

The set of semi-measures is denoted as P.

Definition 4.2. A rational function f : N → Q
is partial recursive if a program p exists such that
U(p, x) ↓= (r, s) and f(x) = r/s each time f(x) is
defined.

Definition 4.3. A real function f : N→ R is called
enumerable if a recursive rational function g : N×
N → Q exists such that ∀t, t′, x ∈ N : g(t, x) ≤
g(t + t′, x) and limt→∞ g(t, x) = f(x).

The set of semi-measures that are enumerable
are denoted as P0

1 .
The next theorem shows that K(x) defines

a probability distribution. Every other co-
enumerable function defining in the same way a
probability distribution dominates K(x).

Theorem 4.4. Let f : N→ N, g : N×N→ N and
f, g ∈ Π0

1:

• ∀y :
∑

x 2−K(x|y) ≤ 1

•
∑

x 2−f(x) < 1⇒ K(x) <c f(x)

• ∀y :
∑

x 2−g(x,y) < 1 ⇒ ∃c,∀x, y : K(x|y) <
g(x, y) + c

The proof of the 3 equations can be found in
[11]. We remark that the proof of this equations
also hold if U (n) is used as reference machine:

Theorem 4.5. Let f : N→ N, g : N×N→ N and
f, g ∈ Π0

n:

• ∀y :
∑

x 2−K(n)(x|y) ≤ 1

•
∑

x 2−f(x) < 1⇒ K(n)(x) <c f(x)

• ∀y :
∑

x 2−g(x,y) < 1⇒ ∃c,∀x, y : K(n)(x|y) <
g(x, y) + c



Definition 4.6. The algorithmic probability is de-
fined as:

m(x) = 2−K(x)

m(x|y) = 2−K(x|y)

It can be shown that m,Q ∈ P0
1 . m and Q are

the ’largest’ elements of P0
1 .

Theorem 4.7. Domination ∀P ∈ P0
1 ,∃cP such

that ∀x
P (x) ≤ cP m(x)

Theorem 4.8. Coding theorem

log m(x) =c log Q(x)
log m(x|y) =c log Q(x|y)

c, c′ are independent form x and y

5 Undirected independence
tests

This section introduces statistical independence
tests similar to sum-p tests in [11]. The differences
with this approach are that we consider functions
with 2 inputs and enforce no computability con-
straints.

Definition 5.1. A total function d : N×N→ N is
a (P,Q)-independence test for P,Q ∈ P0

1 iff:∑
x,y

P (x)Q(y)2d(x,y) < c

This definition ensures that if x, y are drawn
independently according to P (x) and Q(y) then
Prob{d(x, y) − log2(c) > k} < 2−k. An inde-
pendence test has exponential increasing confidence
bounds relative to P and Q.

We denote the set of (P,Q)-independence tests
as DP,Q and use the shorthand notation D for
Dm,m.

Lemma 5.2. d ∈ D iff ∀P,Q ∈ P0
1 : d ∈ DP,Q

Proof. part 1 : if: put P = Q = m ∈ P0
1

part 2 : only if:
∀P,∃c,∀x : P (m) < cP m(x)
Therefore ∑

x,y

P (x)Q(y)2d(x,y)

<
∑
x,y

cP m(x)cQm(y)2d(x,y)

< cP cQc

This lemma tells us that if a test works well for
the universal measure, it works well for all enumer-
able measures.

Definition 5.3. A function is universal in a set
of functions if it dominates every other function in
the set.

Now the question rises: Is there a universal in-
dependence test in some class of functions? This
question is answered by Theorems 5.4 and 5.5 for
the classes Σ0

n and ∆0
n, n ∈ N.

Theorem 5.4. D∩Σ0
n has a universal element for

all n ≥ 2 and D ∩ Σ0
1 has the constant function

as universal element. The universal elements for
n ≥ 2 are given by:

d(x, y) = K(x) + K(y)−K(n)(x, y) (1)

Theorem 5.5. D ∩ ∆0
n has no universal element

for all n > 2 and D ∩∆0
1 has the constant function

as universal element.

The proofs are omitted because of space. The
lowest class in the arithmetical hierarchy for which
we found an independence test is Σ0

2. The test
equals Kolmogorov mutual information up to a
term I(x, y; ξ). Strings for which this term is high
are seldom because it requires to much time for
generating them [14].

Summarized one can see that these theorems
prove or disprove the existence of a universal el-
ement in the arithmetical hierarchy for Σ0

n and ∆0
n,

∀n ∈ N. The lowest element in the hierarchy for
which we have found a non-constant universal el-
ement is Σ0

2. It equals the mutual information up
to a term I(x, y; ξ). It is believed that strings for
which such term is high do not appear in nature
because there is no time to generate them.

6 Algorithmic Information
Transfer

The goal is to decompose mutual information of
two strings x and y into three parts: information
flowing from x to y, from y to x and information
coming from both.

6.1 Definition

First we introduce a new kind of input tape on a
Turing machine. Assume without loss of generality
that the reading head of the input tape and the



writing head of the output tape of U are not allowed
to return. A causal input tape is now defined as an
input tape that is only allowed to read a new bit if
a bit has been written to the output tape. Input
that is given to the Turing machine on a causal
input tape is denoted with an arrow. U(p, y ↑) = z
means that zk is produced before reading yk...l(y),
k = 1...l(y).

Definition 6.1. K(x|y ↑):

K(x|y ↑) = min{l(p)|U(p, y ↑) = x}

Definition 6.2. The information transfer is:

IT (x← y) = K(x)−K(x|y ↑)

The program that realizes the definition of 6.1 is
denoted by px←y. To decompose mutual informa-
tion a third term is necessary representing a com-
mon source for both signals. Consider by example
x and y = x: I(x; y) = K(x) but IT (x ← y) =
IT (y ← x) = 0.

Definition 6.3.

I(x = y) = I(px←y; py←x)

One has that K(x) >c IT (x ← y) >c 0 and
K(x) >c I(x = y) >c 0

Theorem 6.4. The mutual information is split up
in three parts up to an additive term dIT (x, y) =
K(K(x|y ↑),K(y|x ↑)|x, y) <c l∗(l(x)) + l∗(l(y)).

I(x; y) =+c IT (x← y) + IT (y ← x)
+I(x = y) + dIT (x, y)

Proof. The right side of equation 2 can be rewritten
into:

I(x; y) + K(x, y)−K(px←y, py←x) + dIT (x, y)

It rests to show that:

K(x, y) + K(K(x|y ↑),K(y|x ↑)|x, y)
=c K(px←y, py←x)

x,y,K(x|y ↑) and K(y|x ↑) can be calculated from
px←y and py←x. The other way around, px←y

and py←x can be calculated from x,y,K(x|y ↑)
and K(y|x ↑) by devotailing all possible programs
shorter than max(K(x|y ↑),K(y|x ↑)).

Consequently, I(x; y) >c IT (x ← y) and
I(x; y) >c IT (x = y). Therefore IT (x ←
y), IT (x = y) ∈ D and the tests will give us ex-
ponential confidence bounds for the conclusion of
a directed dependence if x, y are drawn indepen-
dently from P and P ′: Prob{IT (x← y)− log2 c >
k} < 2−k.

6.2 Objectivity

We argue that mutual information is an objective
test for independence and algorithmic information
transfer is not. To define the effect of side infor-
mation we calculate I(x; y|z). However just giving
a constant z is not general enough, instead we as-
sume that the information is given in the form of a
total functionM : N× N→ N. For the undirected
test the corresponding measure is I(x; y|M(x, y)).
Equation I(x; y|M(x, y)) <c I(x; y) is false and we
don’t necessarily have that I(x; y|M(x, y)) ∈ D.
But if it is in D we know by theorem 5.4 that
it is dominated by I(x; y) up to an additive term
I(x, y; Ω) and this term is assumed to be small for
real data. Adding information by a total function
M in such a way that I(x; y|M(x, y)) remains a
statistical test, will only decrease the significance
for the conclusion of a dependency by the test.

If we do the same for algorithmic information
transfer we can change the partition of mutual in-
formation arbitrarily and this warns us for the sub-
jectiveness of the algorithm. Assume the side in-
formation is available in terms of a total function
as above:

IT (x← y|M(x, y))
= K(x|M(x, y))−K(x|M(x, y), y ↑)

Take some u, v, w with l(u) = l(v) = l(w) =
n/2 and K(u),K(v),K(w) > n/2. Denote z =
xor(u, v), the bitwise application of the xor-gate:
xor(1, 1) = xor(0, 0) = 0 and 1 otherwise. Take
x = u∧z denoting the concatenation of u and
z, and take y = 0∧v∧w1...n/2−1. We have that
I(x, y) = n/2, IT (x ← y) = n/2 and IT (y ←
x) = 0. However if we take the simple model M :
(x, y) → x1...n/2 we have that I(x; y|M(x, y)) =
n/2, IT (x ← y) = 0 and IT (y ← x) = n/2. For
this reason a universal decomposition of I can not
easily be defined using this framework.

7 Conclusion and further re-
search

We investigated the existence of universal indepen-
dence tests in the Σ0

n and ∆0
n classes in the arith-

metic hierarchy. Σ0
1 and ∆0

1 have only constant
dependence tests and ∆0

n has no universal depen-
dence tests for n ≥ 2. Non trivial universal inde-
pendence tests exist in Σ0

n, n ≥ 2. The universal
test in Σ0

2 equals algorithmic (Kolmogorov) mutual



information up to a term I(x, y; Ξ) which is small
for real data. Mutual information can be decom-
posed into 3 parts that represent the flow of infor-
mation in both directions and information from a
direct common source. This partition is very sen-
sitive for side information provided by total func-
tions as it is able to flip the total information flow
between some strings. One of the reasons for the
loss of this ‘objectivity‘ property is the generality
of semi-measures under consideration. Further re-
search will be carried out in defining suitable sets
of semi-measures for which optimal directed inde-
pendence tests can be constructed.
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