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Cytosolic DNA is recognized by the innate immune system as a potential threat. During
apoptotic cell death, mitochondrial DNA (mtDNA) release activates the DNA sensor cyclic
GMP–AMP synthase (cGAS) to promote a pro-inflammatory type I interferon response.
Inflammation following mtDNA release during apoptotic cell death can be exploited to
engage anti-tumor immunity and represents a potential avenue for cancer therapy.
Additionally, various studies have described leakage of mtDNA, independent of cell
death, with different underlying cues such as pathogenic infections, changes in mtDNA
packaging, mtDNA stress or reduced mitochondrial clearance. The interferon response in
these scenarios can be beneficial but also potentially disadvantageous, as suggested by
a variety of disease phenotypes. In this review, we discuss mechanisms underlying
mtDNA release governed by cell death pathways and summarize release mechanisms
independent of cell death. We further highlight the similarities and differences in mtDNA
release pathways, outlining gaps in our knowledge and questions for further research.
Together, a deeper understanding of how and when mtDNA is released may enable the
development of drugs to specifically target or inhibit mtDNA release in different disease
settings.

Introduction
Mitochondria are distinct, highly dynamic cellular organelles with myriad functions including, metab-
olism, energy production, cell death and immune signaling [1,2]. Many of these functions require the
double-membrane system compartmentalizing the mitochondria into intermembrane space (IMS) and
matrix, separated by an outer and inner mitochondrial membrane (OMM and IMM). Alongside
double-membrane compartmentalization, the origin of mitochondria as an archaebacterial endosymbi-
ont also imparts the organelle with its own double stranded, circular genome able to replicate, in the
matrix, independently of the nuclear genome [3]. Mitochondria are essential for mitochondrial
(intrinsic) apoptosis. Particularly during extrinsic apoptosis [4–8] and intracellular death complexes
[9–12] mitochondria can amplify the initial signal leading to cell death. During pyroptosis mitochon-
dria can supply a ligand for inflammasome activation (Figure 1). However, the role of mitochondria
in other types of cell death such as necroptosis and ferroptosis is less clear (Figure 1) (see review [13]).
In this review, we focus on signaling pathways specifically induced by the presence of mitochondrial

DNA (mtDNA) in the cytosol as a consequence of mitochondrial damage. In addition, attention will
be centered on cell death pathways promoting mtDNA release and how this release is mediated.

Receptors and immune signaling pathways activated
by mtDNA
Eukaryotic cells contain a highly elaborate, organellar system ensuring cellular homeostasis. DNA
resides in two distinct organelles, nuclei and mitochondria. The presence of DNA in other compart-
ments indicates one of two things: damaged or misfunctioning nucleus and/or mitochondria or the
presence of foreign DNA. DNA is detected by DNA sensors in the cytosol or in endocytic vesicles
(Toll-like receptor 9 — TLR9) to alert the cell’s immune system to misplaced or foreign DNA. The
activation of the DNA sensor will govern, in turn, the activation of the signaling pathway and
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Figure 1. Role of mitochondria in cell death.

Apoptosis: Mitochondrial apoptosis is held in check by the balance of pro- and anti-apoptotic proteins. An apoptotic trigger promotes BAX BAK

oligomerization and lipid pore formation in the mitochondrial outer membrane — mitochondrial outer membrane permeabilisation (MOMP),

apoptotosome formation (cyto c, APAF1 and caspase-9) in the cytosol and activation of executioner caspases-3 and -7 enforcing cell death. The

intermembrane space protein SMAC binds to and inhibits XIAP thereby relieving the brake on caspase-9 and -3 activity. Activation of caspase-8

results in caspase-3 activation and in type II cells, as well as after activation of the ripoptosome and necrosome; apoptotic cell death requires

caspase-8 mediated cleavage of BID, mitochondrial outer membrane permeabilization and mitochondrial apoptosis. Pyroptosis: mtDNA and mtROS

can act as ligands for the inflammasome receptor NLRP3. Activation of the inflammasome platform (receptor, ASC, caspase-1), allows

autoproteolytic cleavage and activation of caspase-1, thus promoting cleavage of GSDMD. The N-terminal domain of GSDMD (GSDMDNT) inserts

into the plasma membrane — promoting pyroptotic cell death. GSDMDNT also forms pores in the mitochondrial membrane. While caspase-3

cleaves GSDMD in its N-terminus (amino acid D87 mouse) deactivating the N-terminal fragment, caspase-8 cleavage of GSDMD results in an active

GSDMDNT. Activation of caspase-3 can additionally cleave GSDME yielding an active N-terminal fragment promoting pore formation in the

mitochondrial and plasma membrane. Necroptosis: Mitochondria are not required for the execution of necroptosis, however, mtROS can promote

RIP1 kinase phosphorylation and thus promote the initial steps of necroptosis. Ferroptosis: Mitochondria impact ferroptosis in at least two ways;

firstly, promoting ferroptosis due to mtROS oxidizing mitochondrial lipids and secondly dampening ferroptosis by chelating iron (Abbreviations:

MOMP, mitochondrial outer membrane permabilization; APAF1, apoptotic protease-activating factor1; cyto c, cytochrome c; SMAC, second

mitochondria-derived activator of caspases; XIAP, X-linked inhibitor of apoptosis protein; BID, BH3-interacting domain death agonist; mtDNA,

mitochondrial DNA; mtROS, mitochondrial reactive oxygen species; NLRP3, NACHT, LRR and PYD domains-containing protein 3; ASC,

apoptosis-associated speck-like containing a card; GSDMD, gasdermin-D; RIP1, receptor-interacting protein 1).
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immune response. Two cytosolic pattern recognition receptors and one DNA sensor have specifically been
associated with mtDNA detection, the absent in melanoma 2 (AIM2), the NOD-, LRR- and pyrin domain-
containing protein 3 (NLRP3) and cyclic GMP–AMP synthase (cGAS).

mtDNA activates cGAS-STING signaling pathway
cGAS is a DNA-binding protein localized to the cytosol as well as the nucleus [14,15]. While nuclear cGAS
activity is tightly held in check, to avoid an unwanted inflammatory response [16–24], binding of dsDNA in
the cytosol frees the catalytic site of cGAS, allowing its activation. Active cGAS then synthesizes 20,30 GMP–
AMP (cGAMP) using ATP and GTP to act as a second messenger activating the endoplasmic reticulum (ER)
membrane adaptor STING upon binding [25–28]. The active dimeric STING relocates from the ER to the
Golgi compartment, recruits TBK1 which subsequently phosphorylates STING at its C-terminal tail (CTT).
Phosphorylated STING acts as a platform for the recruitment and phosphorylation of interferon regulatory
factor 3 (IRF3) by TBK1 [29]. Phosphorylated IRF3 (pIRF3) dimerizes and translocates to the nucleus to drive
type I interferon transcription (Figure 2). In this review, we specifically highlight the signaling pathways
mediated by cytosolic mtDNA promoting cGAS-STING activation resulting in IRF3 but it is important to note
that activation of cGAS has also been implicated in the induction of other transcriptional responses mediated
by NF-κB [28,30], mitogen-activated protein kinases (MAPK) and STAT factors [31]. Activation of these sig-
naling pathways ensures the transcription of a wide variety of proteins including pro-inflammatory cytokines
and type I interferons.

mtDNA can activate the NLRP3 inflammasome
Activation of the cytosolic pattern recognition receptor NLRP3 leading to inflammasome activation and pyrop-
tosis has been linked to cytosolic mtDNA [32–34]. How the NLRP3 receptor is activated remains unclear,
often — but not always — it is linked to sensing potassium efflux [35]. Interestingly, mitochondrial ROS
(mtROS) [36,37] as well as leakage of oxidized mtDNA was suggested as an activator of the NLRP3 inflamma-
some [32–34] (Figure 2). The release of mtROS/mtDNA has been proposed to depend on VDAC (VDAC1 and
2) [36] and the mitochondrial permeability transition pore (mPTP), an unselective (and poorly defined) Ca2+

regulated pore in the IMM [32,34,38–40]. How mtROS and mtDNA are detected by the NLRP3 inflammasome
remains ambiguous as no DNA recognition/binding domains in the NLRP3 receptor have been identified. One
possibility for receptor activation may relate to the leucine-rich repeat domain (LRR) which was proposed to
recognize RNA : DNA hybrids during enterohemorrhagic Escherichia coli infections [41]. Of note, the bona fide
DNA sensor AIM2 can possibly also recognize cytosolic mtDNA [42].

mtDNA can activate TLR9
In contrast with to cytosolic DNA, the presence of mtDNA in endosomes is detected by a different receptor,
TLR9, predominantly expressed in B-cells, plasma cells, Paneth cells and microglial cells [43]. TLR9 drives
expression of type I interferons and pro-inflammatory cytokines upon activation of the myeloid differentiation
primary response 88 protein (MyD88) which signals through interferon regulatory factor 7 (IRF7), MAPK or
NF-kB signaling pathways [44,45]. TLR9 detects specifically unmethylated cytidine-phosphate-guanosine
(CpG) dinucleotides, DNA motifs that are frequently found in bacterial DNA (Figure 2) [43,46,47]. The
mtDNA can stem various cell types including neutrophils or hepatocytes. Neutrophils release mtDNA due to
accumulated oxidized nucleoids or during neutrophil extracellular trap (NET) formation [48–50]. Whereas the
mtDNA released by hepatocytes is important during nonalcoholic steatohepatitis (NASH), where the mtDNA
is taken up by macrophages inducing inflammation via TLR9 signaling [50–53].

Cell death pathways can induce mtDNA release
Cell death is important during development, for homeostasis as well as for the clearance of pathogens and
destruction of transformed cells. Mitochondria are implicated in many functions ensuring cellular maintenance
and survival; thus it is perhaps not surprising that mitochondria and cell death are tightly linked. Interestingly,
the activation of two contrasting cell death pathways apoptosis and pyroptosis can result in the release of
mtDNA.
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Figure 2. Signaling pathways activated upon mitochondrial DNA recognition in the cytosol.

(a) Cytosolic mtDNA binds and activates cGAS inducing the production of the second messenger cGAMP and dimerization of STING. STING

recruits TBK1 to phosphorylate STING, itself as well as the transcription factor IRF3, thus enabling transcription of pro-inflammatory target genes

via NF-κB and IRF3 in the nucleus. (b) MtDNA activates the NLRP3 and potentially AIM2 inflammasome receptor which act as a platform for

caspase-1 activation and induction of pyroptotic cell death via GSDMD pore formation in the plasma membrane. (c) TLR9 recognizes mtDNA in the

endosomal compartment and relays the signaling to the adaptor protein MyD88-IRAK1/IRAK4-TRAF6 and IRF7, TAK1-IκKBα or TAK1-MAPK1

which in turn promotes pro-inflammatory gene expression via activation of the transcription factor IRF7, NF-κB or AP-1 (Abbreviations: TLR9,

Toll-like receptor 9; mtDNA, mitochondrial DNA; MyD88, myeloid differentiation primary response protein; IRAK, interleukin-1 receptor-associated

kinase; TRAF6, TNF receptor-associated factor 6; MAPK, mitogen-activated protein kinase 1; IRF7, interferon regulatory factor 7; cGAMP, cyclic

GMP–AMP; cGAS, cyclic GMP–AMP synthase; STING, stimulator of interferon genes protein; IRF3, Inteferon regulatory factor 3; AIM2, absent in

melanoma 2; NLRP3, NACHT, LRR and PYD domains-containing protein 3).
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mtDNA release during apoptosis
Apoptosis is divided into extrinsic and intrinsic apoptotic cell death depending on the origin of cell death
ligand. Activation of apoptosis from the cell exterior — extrinsic apoptosis — is induced upon binding of
cognate ligands to death receptors [4–7], as well as the assembly of intracellular death complexes such as
complex IIa, IIb [9,10], ripoptosome or necrosome [11,12] may relay (via tBID) or even require MOMP to
drive cell death [8] (Figure 1). Mitochondrial apoptosis is established as an immunologically silent type of cell
death [54]. Under homeostasis, apoptosis is held in check by a balance of anti- and pro-apoptotic proteins of
the BCL-2 protein family [55]. Upon an apoptotic stimulus such as DNA damage, ER stress, hypoxia or meta-
bolic stress, BH3-only proteins bind pro-survival BCL-2 proteins and pro-apoptotic BAX and BAK proteins
thereby activating the latter [56–60]. This enables cytosolic BAX to translocate and embed into the OMM,
where BAX and BAK oligomerize to form pores, causing MOMP and release of soluble IMS proteins such as
cyto c [61–64]. The presence of cyto c in the cytosol allows the formation of the apoptosome, a protein
complex consisting of APAF1, cyto c, inactive caspase-9, enabling activation of caspase-9 and driving apoptotic
cell death via caspase-3/-7 activation [13].
Interestingly, while caspase activity is important during development for cell clearance and cellular organiza-

tion e.g. in the brain [65,66], APAF1 and caspase-9, -3 and -7 only play a subordinate role compared with BAX/
BAK in cellular homeostasis. In particular, APAF1 and caspase-9 deficient cells provide a short-term resistance
to apoptotic stimuli, while BAX/BAK deficiency grants full protection [56,67–70]. Similarly, BAX and BAK play
a superior role in the clearance of mature blood cell in the hematopoietic stem cell compartment in vivo com-
pared with APAF1-, caspase-9 or caspase-3 [71]. These results imply that there are other, caspase-independent,
ways for cells to die following MOMP — collectively referred to as caspase-independent cell death (CICD). In
contrast with canonical apoptosis, lack of caspases was observed to trigger a type I interferon response prior to
death [72–74]. Two independent studies investigated this phenomenon and found that MOMP-induced death in
the absence of caspases cause the accumulation of mtDNA in the cytosol activating the cGAS-STING DNA
sensing pathway [72,73]. Two separate studies reinforced the previous findings that CICD is pro-inflammatory
by visualizing the gradual widening of BAX/BAK macropores allowing the extrusion of the mitochondrial inner
membrane, its permeabilization and the release of mtDNA into the cytosol ultimately resulting in transcription
of type I interferons (Figure 3) [75,76]. These studies substantiate that apoptosis, a silent type of cell death, can
be pro-inflammatory under caspase-deficient conditions. Since the discovery of mitochondrial-driven CICD,
additional studies have described a type I interferon response during apoptosis [77,78].
Two consecutive studies have advanced the in vitro discovery of CICD by deliberately inducing inflammation

using CICD in the tumor microenvironment, thus turning a ‘cold’ tumor ‘hot’ [74,79]. Specifically, activating
CICD in a colorectal cancer mouse model prompted a strong anti-tumorigenic immune response driven by
infiltration of macrophages and T cells ultimately resulting in regression of the tumor [74]. Subsequent to this,
a combination of radiation and the pan-caspase-inhibitor emricasan as a cancer treatment in mice showed syn-
ergistic therapeutical effects in cancer regression caused by the inflammatory response of mtDNA released
during CICD [79].
The finding that apoptosis can induce inflammation, raises the question of how and why an interferon

response is lacking under caspase proficiency, especially since mtDNA is released into the cytosol independent
of caspase activity [75] Indeed, caspase-3/7 were shown to cleave essential substrates of the cGAS-STING
pathway namely cGAS and IRF3 inactivating these substrates [80]. Additionally, caspases have also been shown
to prohibit de novo protein translation [81,82]. These findings suggest that caspases harbor a ‘non-cell death
function’ important for the regulation of interferon induction by limiting signaling through cGAS-STING and
IRF3, as well as protein translation, ultimately prohibiting type I interferon expression (Figure 3) [72,83].

mtDNA release during pyroptosis
In contrast with canonical apoptosis, pyroptotic cell death is a lytic, highly pro-inflammatory type of cell death.
Pyroptosis entails activation of the canonical or non-canonical inflammasome signaling cascade; for canonical
signaling this comprises the formation of a multiprotein complex, inflammasome complex, required to activate
caspase-1 by autoproteolytic cleavage [84,85]. Activation of the caspase causes cleavage of the cell death sub-
strate gasdermin-D into a N- and a C-terminal domain [86,87]. The N-terminal domain (GSDMDNT) translo-
cates to the plasma membrane where it oligomerizes to form large permeability pores promoting cellular lysis
[88–91].
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Activation of pyroptosis affects mitochondria in different ways: reduction in mitochondrial membrane poten-
tial, dysregulating intracellular ion homeostasis, impediment of mitophagy and even permeabilization of mito-
chondrial membranes [92–95]. As discussed before, mtDNA can act upstream of NLRP3 and possibly AIM2
inflammasome receptor — as a ligand, but inflammasome activation can also cause mtDNA release. It has
been shown that the GSDMDNT interacts with lipid species, including cardiolipin, only found in mitochondrial
and bacterial membranes, and forms conduits in various lipidic liposomes [88–91]. Besides GSDMD, gasder-
min A3 and gasdermin-E (GSDME) have been proposed to target mitochondrial membranes [96,97]. GSDME
is cleaved and activated by the apoptotic caspase-3, and pore formation by GSDME promotes cyto c efflux
[98]. In two recent reports, these findings were extended to show that gasdermin pores (upon activation of the
NLRP3 and pyrin inflammasome) can induce mtDNA release directly and independent of cellular lysis
(Figure 3) [99,100]. Interestingly, the osmoprotectant glycine was shown to inhibit the release of larger proteins
(>25 kDa) as well as mtDNA from GSDM pores in the plasma membrane [101,102], but did not impact release
of mtDNA into the cytosol [99].
Notably, similar to apoptotic caspases, the pro-inflammatory caspase-1 can cleave cGAS thereby inhibiting

the cGAS-STING pathway (Figure 3) [103]. Moreover, potassium efflux via GSDMD pores was sufficient to
impede cGAS-mediated type I interferon activation [95]. These studies suggest that although mtDNA can be
released during inflammasome activation, caspase activity as well as changes in cytosolic ion concentrations
during pyroptotic cell death may limit the expression of type I interferons.
Besides cell death-dependent release of mtDNA many other cell death-independent scenarios have been pro-

posed to also result in mtDNA leakage and cGAS-STING pathway activation. These possibilities are summar-
ized in Table 1 and Figure 4.

Figure 3. Overview of how mtDNA is released during cell death.

Apoptosis: Extrinsic or intrinsic apoptosis signals result in BAX/BAK pore formation activation of the apoptotic pathway, extrusion of the inner

mitochondrial membrane and release of mtDNA into the cytosol. DNA is recognized by cGAS and the cGAS-STING pathway is activated resulting in

IRF3 activation and a type I IFN response. This gene expression is counteracted by caspase-3 cleaving and inactivating cGAS and IRF3. Pyroptosis:

Activation of gasdermins (GSDMD, GSDME, Gasdermin A3) promotes pore formation in the mitochondria inducing mtDNA release and activation of

the cGAS-STING signaling cascade resulting in a type I interferon response. However, the type I IFN reponse is prohibited by caspase-1 and -3 by

inactivating cleavage of cGAS and IRF3 (Abbreviations: cGAS, cyclic GMP–AMP synthase; STING, stimulator of interferon genes protein; IRF3,

inteferon regulatory factor 3; ISG, interferon stimulatory genes; GSDMD, gasdermin-D; GSDME, gasdermin-E; mtDNA, mitochondrial DNA).

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).462

Biochemical Society Transactions (2023) 51 457–472
https://doi.org/10.1042/BST20221525

D
ow

nloaded from
 http://portlandpress.com

/biochem
soctrans/article-pdf/51/1/457/943232/bst-2022-1525c.pdf by U

K user on 10 M
arch 2023

https://creativecommons.org/licenses/by/4.0/


Table 1. Cell death independent mtDNA release Part 1 of 2

Mitochondrial features Cytosolic DNA Ref.

Mitochondrial stress and dysfunction

Fatty acid binding protein (FABP5)
inhibition in T cells

Distorted cristae structure, altered lipid metabolism, lowered
OXPHOS

• Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[104]

Endog−/− Accumulation of ROS in MEF cells • Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[105]

Tfam+/− Alteration of mtDNA packaging — bigger nucleoids • Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[106]

Ymel−/− Imbalance of mitochondrial pyrimidine pool • Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[107]

ATAD3−/− Heterozygous mutations in human ATAD3, THP-1 ATAD3−/− • Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[108]

CLPP−/−, Clpp−/− Mutation in the protease results in altered nucleoid size and
induction of type I interferons

• Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[109]

Samm50−/− Inner membrane remodeling induced mtDNA release • Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[110]

Mic19−/−

Mtx2−/−

Dnajc−/−

Cristae disorganization induced mtDNA release • Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[111]

Reduced and inefficient clearance of mitochondria

Pink1−/−/Prkn−/− Deficiency for PINK or PRK in mice during exhaustive
exercise

• cGAS-STING
activation

• Type I IFN
signature

[112]

TNF-α Down-regulation of PINK1 expression, decreased autophagy Cytosolic DNA [113,114]

IRGM1−/− Accumulation of defective mitochondria — higher mtROS,
lower respiratory capacity, more depolarized mitochondria

Indirect effect [115]

Continued
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Mechanisms of mtDNA release
Many studies have documented escape of mtDNA into the cytosol, but how is a large, negatively charged DNA
nucleoid that resides in the mitochondrial matrix detected by a cytosolic DNA sensor cGAS? Does the DNA
pass through two lipidic membranes into the cytosol? Are membranes permeabilized to facilitate its release?

BAX/BAK macropores
During apoptosis, the release of mtDNA into the cytosol is dependent on pro-apoptotic proteins BAX and
BAK, thus suggesting the requirement of BAX/BAK pores to perforate the OMM. BAX/BAK form dynamic
pores in the OMM upon oligomerization [122–126]. The inner membrane then protrudes through the BAX/
BAK macropore and must thus be large enough to allow the passage of mtDNA [75,76]. Considering that
cGAS could not be detected inside the protruding inner membrane [75,76]; breaching of the inner membrane
likely facilitates mtDNA detection by cGAS. The exact mechanism of mitochondrial inner membrane perme-
abilization remains unclear. However, several possibilities are excluded; for example, mitochondrial dynamics
(fusion and fission) does not impact mtDNA release [76]. In addition, rupture of the inner membrane due to
the prolonged opening of the mPTP and ensuing IMM swelling could also be excluded on the basis that lack of
mPTP regulator cyclophilin D did not reduce mtDNA release [76]. Nevertheless, the data does not exclude that
permeabilization of the IMM is a passive event. New data however indicate shedding of large portions of the
outer membrane prompted by Toxoplasma gondii infection was not sufficient to breach the IMM [127]. This
may indicate that permeabilization of the IMM requires more than disruption of the OMM.

Table 1. Cell death independent mtDNA release Part 2 of 2

Mitochondrial features Cytosolic DNA Ref.

Infections

HSV-I/II — herpes simplex I/II Degradation of TFAM and mtDNA by viral nucelase Type I IFN
signature

[106]

SARS-COV2 — severe acute respiratory
syndrome coronavirus 2

Virus induced mtDNA release in endothelial cells • Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[116]

DENV — dengue virus NSB2 a DENV protease prohibits cGAS detection of mtDNA • Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[117,118]

IAV — influenza A virus
ECMV — encephalomyocarditis virus

Viroporins Cytosolic DNA [119]

Extracellular cues inducing mtDNA release

IL-1β In myeloid, fibroblast and epithelial cells • Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[120]

Intracellular cues inducing mtDNA release

TDP-43 Cytoplasmic accumulation of the nuclear DNA/RNA binding
protein TDP-43 induces mtDNA release

• Cytosolic DNA
• cGAS-STING

activation
• Type I IFN

signature

[121]
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Gasdermin pores
Activation of gasdermin A3, D and E during pyroptosis have been suggested to trigger mtDNA release. Since the
N-terminal domain of gasdermin forms large pores in membranes and has been shown to release soluble cyto-
solic proteins during pyroptosis [101,102,128], it was perhaps natural to assume that mtDNA can be released via
gasdermin pores. The gasdermin pore however would have to perforate both mitochondrial membranes, IMM
and OMM or allow extrusion of the inner membrane when the outer membrane is perforated. The outer diam-
eter of the GSDM pore was measured to 28/40 nm (GSDMA3/GSDMD) and the inner diameter between 10 and
18 nm [88–91,129]. Although gasdermin pores clearly interact with cardiolipin and other lipids, the measured
pore size is too small to transfer full-sized (80 × 100 nm) nucleoids. Thus, two possibilities for mtDNA release are
probable, release as a result of collateral damage or a direct release of mtDNA fragments over the pore.

Mitochondrial permeability transition pores and VDAC oligomers
An early report proposed the release of mtDNA fragments via mPTP [130], which was described to have a
minimal diameter of 2.8 nm [130–132]. A more recent report shows mtDNA release from Endog−/− cells being
independent of apoptosis. Instead, Tfam+/− and ENDOG-deficient cells release mtDNA fragments into the IMS
upon Ca2+ and ROS-induced mPTP opening [105]. In a second step the mtDNA fragments are released upon
VDAC1 (possibly VDAC3) oligomerization — not part of the mPTP — from the outer mitochondrial mem-
brane [105]. Since the release of mtDNA observed in cells deficient for YME1L or TDP-43 invasion into mito-
chondria, is independent of BAX/BAK pores but requires VDAC oligomerization it is likely also released via
mPTP and VDAC oligomers [107,121]. Molecules smaller than 1.5 nm have been suggested to permeate the
mPTP pore suggesting nucleoids are too big, but mtDNA fragments (DNA molecules in solution 0.33 nm
[133]) can pass through the IMM into the IMS [134]. According to the NMR structure of human VDAC1, the
pore has an approximate 3.4 nm diameter, and would thus be large enough to allow passage of mtDNA frag-
ments (PDB 6TIQ) [135]. It was further suggested that mtDNA interacts with the VDAC1 to stabilize the pore;
however, what signals promote dissociation to allow release of mtDNA through the pore remains ambiguous.

Figure 4. Overview of factors inducing mtDNA release.

mtDNA release has been reported in cell death during apoptosis and pyroptosis but also independent of cell death pathways. The non-cell death

cues can be categorized in exterior signals, mitochondrial stress, mtDNA stress, inefficient mitochondrial clearance and pathogenic infections.

Factors in gray induce a type I IFN response possibly mediating by mtDNA release.
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Interestingly, double-stranded mtDNA (dsmtDNA) breaks are immediately cleared rather than repaired
[136,137]. Thus, it is puzzling, that fragments of dsmtDNA are not degraded but instead released through
mPTP and VDAC1 pores. Possibly this is suggestive of a protective mechanism to inhibit mtDNA degradation.

Open questions and future perspectives
The detection and reaction of the cell to mtDNA in the cytosol is multifold. It is dependent on cell type and
availability of receptor, but also on the way mtDNA is released (apoptotic conditions, etc.). This complicates the
study of how mtDNA is released and activates cGAS-STING signaling. Many questions such as how and if
mtDNA is fragmented before release, how mtDNA exits the IMM, how cGAS gets access to mtDNA and recog-
nizes mtDNA, and whether the characteristics of mtDNA play a role in its recognition (circularity, CpG methyla-
tion, proteins and packaging of mtDNA) remain to be answered. It is also unclear how much mtDNA is required
for the activation of cGAS, whether longer DNA stretches induce a more potent inflammatory response as sug-
gested previously [138], and whether mtDNA leakage can occur in absence of mitochondrial rupture. In particu-
lar, can limited mitochondrial permeabilization — minority MOMP cause DNA damage and genome instability
in absence of cell death [139], but can it also be a source of inflammation as suggested for a variety of pathogenic
infections [140]? Furthermore, it is unclear whether mtDNA recognition by cGAS can be masked and potentially
regulated, as reported for nuclear cGAS interacting with histones, thus limiting its activation by the nuclear
genome [16,22–24]. Does mitochondrial TFAM adopt a similar role? Future research should address some of
these questions, as elucidation and characterization of mtDNA is of importance to further our understanding in
the role of mtDNA in health and disease as well as exploit the pathway pharmacologically.
Inflammation induced by the release of mtDNA is double-sided and can be beneficial as well as detrimental

for the cell and organism. For instance, the release of mtDNA by BAX/BAK pores, in absence of caspases,
induces pro-inflammatory cGAS-STING and NF-κB signaling which is important to repress tumorigenesis and
induce tumor clearance. In addition, inhibition of the autophagic machinery fueling mtDNA release can poten-
tially have synergistic therapeutical effects in combination with radiation in breast cancer cells [74,77]. Treatment
of cancers using a combination therapy of apoptosis inducers and caspase inhibitors could thus improve thera-
peutic outcome. Activation of cGAS-STING pathway and expression of type I interferons has also shown to be
beneficial in various virus infections to counteract viral proliferation and limiting viral spread [141–143].
Mitochondrial DNA release can also be unfavorable, for example promoting disease progression in systemic

lupus erythematosus (SLE), amyotrophic lateral sclerosis (ALS), rheumatoid arthritis (RA) and others
[105,114,121]. It is seen that inhibition of VDAC pores, thereby inhibiting mtDNA release, reduces disease
severity in a mouse model of SLE [105]. Moreover, the hallmark protein TDP-43 in ALS was shown to induce
mtDNA release via mPTP, linking mtDNA release to the ALS disease phenotype [121]. Blocking of mtDNA
release in this setting would thus ameliorate the disease phenotype.
Understanding and elucidating the mechanism of mtDNA is of high importance pharmacologically. Hopefully,

it will be employed to develop future treatment for cancer in respect to limiting cancer growth. But also used to
develop agents hindering mtDNA release to limit progression in diseases phenotypes associated to mtDNA release.

Perspectives
• Importance in the field. Escape of mtDNA into the cytosol is associated with the up-regulation

of an inflammatory, type I interferon-driven response. Understanding the cues and factors
inducing leakage of mtDNA into the cytosol in cell death and beyond is of importance to pur-
posely promote (e.g. in cancer, infections) or hinder (mtDNA-associated disease phenotypes)
mtDNA release pharmacologically.

• Summary of the current thinking. mtDNA is released upon MOMP during apoptosis in
caspase-deficient conditions. During apoptosis the cytosolic mtDNA activates the DNA
sensor cGAS inducing a NFκB and type I interferon response, thus promoting inflammation.
Besides apoptosis, cues such as mitochondrial, stress, mtDNA stress, pathogenic infections
and others have been found to induce mtDNA release by distinct mechanisms causing inflam-
mation via activation of the DNA sensors (cGAS) and receptors (NLRP3, AIM2 or TLR9).
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• A comment on future directions. To date, mtDNA release has been observed in a variety of
systems, circumstances and reasons resulting in inflammatory gene expression. However,
mechanistical insight into how mtDNA reaches the cytosol as well as how recognition is regu-
lated is still ambiguous and will require further efforts. Furthermore, the impact of
mtDNA-driven inflammation in health and disease is of high importance for pharmacological
intervention and will require in-depth knowledge of the pathway.
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