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Lay summary

In this thesis, we study systems of entities that move under their own power

(self-propelled particles) such as birds, fish or bacteria, known as active matter

systems. Much like how fluids such as water are made up of many microscopic

individual water molecules, active matter systems can be approximated as an

active fluid to explore their behaviour at large scales. Fluids are usually described

by a set of equations for the change in the fluid’s density and velocity over time,

whose solutions give the behaviour of the fluid in time and space.

An example of a large-scale behaviour seen in an active matter system is the

flocking of birds. Here, birds that are close together move in the same direction,

creating a highly organised cluster. Occasionally, a flock of birds will rapidly

change direction en masse with no obstacles or predators in sight. In this thesis,

we study particle models where flocking is observed in simulations and derive fluid

equations to explore the conditions needed for this random change in direction

to be able to occur.

We introduce and use a method of deriving fluid equations for active matter

systems and compare the solutions of these equations to the behaviour of the

particle system. Our key finding is that the mathematical form of the randomness

in these fluid equations plays a large role in determining whether the fluid behaves

the same way as the particle system. We then show that using the method we

introduced gives the correct mathematical form, and the fluid equations derived

this way can be used to better understand the system as a whole. These results

show why getting the random element of fluid equations right is important and

outline a method to better understand the random behaviour of other active

matter systems.
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Abstract

Systems of self-propelled particles are often capable of exhibiting complex

behaviours on a macroscopic scale with only simple interactions between the

active microscopic agents. In systems where the particles interact by attempting

to align their directions of motion, the ordered steady state tends towards a

dense coherent grouping of particles (a “flock”) travelling in the same direction.

Continuum theories where the particles are treated as an active fluid allow for

a greater understanding of the macroscopic behaviour of these flocks, although

these theories have typically focussed on understanding the behaviour of the flock

in a steady state. In this thesis, we are interested in deriving continuum theories

of aligning self-propelled particle systems and in understanding the role that

stochasticity has in ensuring the dynamical behaviour of the underlying agent-

based model is maintained.

The focus of this thesis is a family of models of aligning self-propelled particles

on a lattice that interact by aligning with a subset of nearby particles. We

use the Kramers-Moyal approximation to derive stochastic Langevin equations

directly from the microscopic interactions. Our goal is to obtain equations for

the evolution of the system’s density and polarisation such that their trajectories

match the dynamic behaviour of the underlying agent-based models and, in doing

so, to demonstrate that the form of the stochastic prefactor in the polarisation

equation can greatly affect the macroscopic behaviour of the system.

In Chapter 2, we study the ordered state of a system of aligning self-propelled

particles on a one-dimensional lattice. The aligning interaction between particles

allows for the formation of a flock capable of alternating the direction it travels

through the lattice. We derive a set of stochastic differential equations for the

density and polarisation of the system and introduce a numerical integration

scheme to demonstrate that the order parameter of each of the agent-based and

continuum systems scales identically with increasing noise strength. We then use
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the continuum equations to obtain a minimal set of interactions for a flock to

exist in one dimension and demonstrate how alignment interactions with three

particles are necessary for a flock to form on a one dimensional lattice.

This motivates the work in the remainder of this thesis, wherein we examine a

family of two-dimensional models to explore whether we can derive stochastic

differential equations whose trajectories demonstrate the same behaviour as in

the agent-based models. We introduce a family of four lattice-based agent-based

models in Chapter 3 and map out the behaviour of the ordered state in each of

these models. These models consist of all combinations of two interaction types

(exponential or linear in local polarisation) and two interaction neighbourhoods

(fixed or varying with local density). One of these models shows the “banding”

present in traditional Vicsek models, while the other three show the occasional

macroscopic change in direction observed in flocks of birds such as starlings.

In Chapter 4, we use the Kramers-Moyal approximation again to derive stochastic

differential equations for the density and polarisation of the four models above.

Using linear stability analysis, we explain why the ordered state in each model

consists of a flock that will either be capable or incapable of turning. The

linear stability analysis shows why the choice of interaction neighbourhood does

not affect the ability of the flocks with a linear interaction to macroscopically

alter direction and why that choice does affect the ability of a flock to turn for

systems with an exponential interaction, although some calculation remains here

to demonstrate linear stability exactly matching that of the agent-based systems.

We also explore a numerical integration scheme for the two dimensional models,

laying out a procedure that may result in integrated trajectories matching the

behaviour of the agent-based model as in one dimension.

The work in this thesis explores the effects of different stochastic terms in

continuum equations describing systems of aligning self-propelled particles and

introduces a mechanism to derive these terms to ensure the behaviour matches

that of the underlying agent-based models. We demonstrate the power of this

mechanism by identifying a minimal model of flocking in one dimension and

by exploring when flocks can turn in two dimensions. These examples provide a

pathway for exploring the dynamic behaviour of other interacting particle models

on a macroscopic scale.
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Chapter 1

Background

1.1 Non-equilibrium steady states

The designation of a non-equilibrium system can typically be applied to two major

groups: a system that is in the process of relaxation towards equilibrium, such as a

“glassy” system wherein particles are moving towards equilibrium on a time-scale

much longer than the typical time-scales of the constituent particles [13, 103]; or a

driven system where external forces are applied to keep the system from reaching

equilibrium, such as particles in a constant or oscillating field [69, 97]. States in

driven systems where one or more macroscopic quantities of the system remain

constant in time are typically referred to as non-equilibrium steady states.

Active matter systems are examples of driven systems for which the external

forces are generated by the individual constituents [91]. These constituents,

termed “active particles”, consume energy to produce propulsion. As such, the

external force acting on the system is a sum of individual internal forces. Most

active matter systems can be characterised as being along three main axes: dense

vs dilute, wet vs dry, and aligning vs repulsion [29, 30]. Dense systems typically

have a higher ratio of three or more body interactions to two body interactions,

compared to dilute systems where interactions are less frequent; wet systems tend

to be momentum-conserving due to hydrodynamic interactions, while dry systems

are non-momentum conserving; aligning systems [116] tend to have a much larger

particle interaction radius compared to repulsive systems [18]. While not every

active matter system can be neatly characterised as being on one or other end

1



of each of these axes [43, 49, 56, 93, 101], the three axes can be a good way to

categorise and differentiate active matter systems.

Interest in active matter typically focuses on the complex motion that these

systems can exhibit. Under certain systematic conditions, active matter systems

can produce macroscopic motion, whether in the form of a particle current [112]

or a non-zero vorticity [64]. While simulations of agent-based models can be used

to observe and identify macroscopic behaviours [100], an understanding of why

and how these behaviours manifest typically requires more direct study of how

macroscopic observables behave. This is often done by examining differential

equations appropriate to the system, whether obtained phenomenologically

[112], directly from the particle interactions [88, 118] or through experimental

observations [24, 62, 83].

In this thesis, we derive stochastic differential equations describing a sample of

dry, aligning, dense active matter systems to investigate the role of the stochastic

prefactor in the dynamics of the system. We seek to understand this role by

studying the impact of the stochastic prefactor on the ability of a coherent ordered

condensate (hereafter “flock”) to form and spontaneously change direction. In

this chapter, we explore the background to our goal, discussing various agent-

based models of aligning self-propelled particles and the differential equations

that describe the large-scale behaviour of these systems.

We begin by introducing the Vicsek model in two or more dimensions in Section

1.2.1, which consists of a fixed number of self-propelled particles aligning with

other particles within a fixed radius and travelling with a fixed speed and is

the basis for the Vicsek class of models. Models within this class exhibit a

transition between a disordered state where no coherent motion is observed and

an ordered state where particles travel through the system in the same direction.

In Section 1.2.2, we examine Vicsek-class models in one spatial dimension, and

discuss how the change to a discrete rotational symmetry affects the behaviour

observed in these models. Sections 1.2.3 and 1.2.4 introduce modifications to the

base Vicsek model, the former reproducing the behaviour of the ordered state,

the latter introducing macroscopic turning based on observations of flocks of

starlings. Section 1.3 describes various methods of obtaining differential equations

describing Vicsek-class models, from phenomenological approaches in Section

1.3.1 to derivations from microscopic models in Section 1.3.2, finishing with the

Kramers-Moyal expansion that will be the focus of much of the analytical work

in the thesis. Finally, in Section 1.4, we outline the structure of the remainder of
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this thesis.

1.2 Agent-based models of self-propelled particles

Throughout this thesis, we discuss non-equilibrium steady states in the context

of systems of aligning self-propelled particles, which we hereafter abbreviate as

SPPs. SPP models aim to capture behaviours of ordered systems in the physical

world consisting of active particles [95], such as birds flocking [20, 33], fish

schooling or milling [64], locust swarming [12, 15], pedestrian motion in crowds

[77] or bacterial motion [109, 117]. Ordered motion arises in such systems from the

spontaneous breaking of a rotational symmetry [90] that is continuous in systems

with two or more dimensions. In this work, we focus on “polar particles”, defined

as particles with a clearly defined “head” and “tail” that move in the direction

given by a vector from their tail to head. Thus, the “angle” of a particle in two

dimensions is the angle that their orientation or velocity vector makes to the

horizontal.

Early work in this field [93] focussed on the interplay between short-range

repulsive interactions, mid-range aligning interactions, and long-range attractive

interactions in polar particle systems to generate system trajectories that would

qualitatively behave like real-life flocks of birds. While this combination of

interactions produced system trajectories that behaved similarly to such flocks,

the number of parameters required made it difficult to analyse conceptually. By

reducing the set of possible interactions to alignment only, a clearer understanding

of the physics underpinning this motion can be obtained.

1.2.1 The Vicsek model

In this thesis, we focus on a reduced set of models where only aligning interactions

are included. The field of aligning SPPs is perhaps best exemplified by the Vicsek

model [35, 116]. The Vicsek model presented below is a simplified version of how

real-world agents such as birds or fish flock, acting as a prototype from which

more complicated dynamics can be created.

In the two-dimensional Vicsek model, a fixed number N of polar particles move

about in a space of size L2 with periodic boundary conditions, each with a
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constant speed v0. Time is scaled such that the time ∆t between updates of

particles’ position and velocity is 1. In a single time-step, the i-th particle’s

position rti and velocity vti are updated according to

rt+1
i = rti + vti, (1.1)

vt+1
i = v0 cos θt+1

i x̂ + v0 sin θt+1
i ŷ, (1.2)

θt+1
i = 〈θ〉tR + ηti , (1.3)

where 〈θ〉tR is the average angle of all particles (including particle i) within a given

radius R of particle i at time-step t, and ηti is a random number drawn from the

uniform distribution
[−η0

2
, η0

2

]
. The average angle is typically computed as

〈θ〉tR = arctan

(∑N
j=1 n

t
ij sin θtj∑N

j=1 n
t
ij cos θtj

)
, (1.4)

where ntij is the neighbourhood matrix at time t whose entries are 1 if j is a

neighbour of i and are zero otherwise. Note that, in general, this matrix is not

constant in time, such that particles may no longer be neighbours if they move

too far apart. Using the neighbourhood matrix is the most general way of writing

Eq. (1.4), allowing for calculations and code to be generalised for other definitions

of the neighbourhood.

For the Vicsek model, the neighbourhood matrix is defined as

ntij = Θ(R− |rti − rtj|) (1.5)

where the Heaviside function, Θ(x), restricts the interactions to the fixed radius

R. As nij is symmetric for the Vicsek model, the interaction is reciprocal, i.e.

if particle i is in j’s neighbourhood at a given time t, then j must be in i’s

neighbourhood at time t.

The noise term ηti in Eq. (1.3) can be thought of as an error arising from the

particle’s inability to accurately determine the average of its neighbours [95]. For

this reason, a noise term affecting the angle of the particle directly as in Eq. (1.3)

is typically referred to as “intrinsic” noise. In contrast, “extrinsic” noise refers

to an error arising from a particle’s inability to accurately follow the direction it

has determined to be the local average. Extrinsic noise can be implemented by

4



Figure 1.1 The phases of the two-dimensional Vicsek model as the noise
strength is varied. Each of these snapshots contains 300 particles.
The arrowhead indicates the current direction of motion, with the
short lines indicating the particle’s trajectory over the preceding 20
time-steps. (a) High density and high noise (L = 7, η0 = 2.0), early
time. No coherent orientational order is observed. Particles move as
is performing a random walk in continuous space. (b) Low density
and low noise (L = 25, η0 = 0.1). Distinct groups form that move in
random directions. Motion within each group is coherent (c) Later
time of (a). Small correlation is observed, though particles still move
largely at random. (d) High density and low noise (L = 5, η0 = 0.1)
results in highly ordered motion. Image reproduced from [116] with
permission.
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replacing (1.2, 1.3) with

vt+1
i = v0

∑N
j=1 n

t
ij(v

t
j + ξti)∣∣∣∑N

j=1 n
t
ij(v

t
j + ξti)

∣∣∣ , (1.6)

where ξti is a random vector of fixed magnitude η0 [87]. Intrinsic and extrinsic

noise are often called “scalar” and “vectorial” noise respectively, due to their

implementation. For sufficiently large system size, the choice of noise type causes

no difference in the essential macroscopic properties of the system discussed below

[53]. Alternative versions of the extrinsic noise equation (1.6) scale the stochastic

vector ξti differently with the number of particles in the neighbourhood [87], but

these alterations do not affect the macroscopic properties of the system either.

Behaviour of the Vicsek model

The behaviour of particles at a macroscopic level in a Vicsek model is determined

by the magnitude of the intrinsic noise strength η0. In the limit as η0 → 2π, no

orientational order is observed in the system (Fig. 1.1a) and particles do not form

a coherent flock. A flock is defined here as a coherent, ordered group of SPPs

undergoing collective motion. When the average density ρ̄ = N
L2 is sufficiently

high and η0 is sufficiently low (Fig. 1.1d), particles will spontaneously break

rotational symmetry to align in a single direction. Once the rotational symmetry

breaks and a flock forms, a change in direction is a rare event with a probability

that is exponentially small in system size, unless external forces are added to

cause the flock to turn.

The ability of a flock to form in the 2d Vicsek model is notable given its similarity

to the 2d XY model, in which long-range order is forbidden. The Mermin-Wagner

theorem [73] states that continuous symmetries (like the rotational symmetry of

particle direction/spin) cannot be spontaneously broken at finite temperatures in

one- or two-dimensional systems with short-range interactions. The key difference

between the Vicsek and XY models is the motion of the particles in the Vicsek

model, which allows the continuous symmetry to spontaneously break and enables

long-range order to exist. The Vicsek model allows for a more efficient transfer

of information than the XY model and hence long-range order can exist for

dimensions d > 3
2

[53, 107, 110].

The transition between the ordered and disordered states was initially assumed
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Figure 1.2 Banding in a two-dimensional Vicsek model (top) and a two-
dimensional active Ising model. The number of bands in the
Vicsek model increases as the total density is increased and remains
constant as they propagate through the system. Figure reproduced
with permission from [104].

to be continuous, i.e. second-order [116], akin to the ferromagnet-paramagnet

phase transition [45]. Later works questioned whether this was the case [75], with

Solon & Tailleur [19, 104, 106] proving that the transition is discontinuous and

that systems phase separate into high-density, highly-ordered and low density,

disordered regions, akin to a liquid-gas transition [2]. The highly ordered

condensates are known as “bands”, and the probability of a change in direction

or size due to fluctuations within the band is exponentially small in the system

size, though the number and size of the bands depends on the model choice and

system size (see Fig. 1.2). Phase separation is observed in the Vicsek model

regardless of whether intrinsic or extrinsic noise is used, provided the system size

is sufficiently large [53].

The Vicsek model in higher dimensions

Equations (1.1, 1.2, 1.3) work well for systems with spatial dimension d =

2. For systems in higher dimensions, (1.2) must be tweaked. A common

implementation [36] is to include stochasticity through a rotation matrix that

takes the (normalised) local average velocity and rotates it through an angle of

η about a randomly chosen axis perpendicular to the local average. Thus, the

velocity of particles in a higher dimensional Vicsek model update as

vt+1
i = v0R(η)

 ∑N
j=1 n

t
ijv

t
j∣∣∣∑N

j=1 n
t
ijv

t
j

∣∣∣
 . (1.7)
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Figure 1.3 The dynamics of a trajectory of the one-dimensional Vicsek SPP
model with L = 300, N = 600 and η0 = 2.0. The darker
area represent regions of higher particle density, and time increases
in the negative y direction. Particles undergo phase separation
and clustering into condensates, with the condensate alternating
direction stochastically. Note that η0 here is much larger than for
the ordered state of the two-dimensional SPP model [116]. Figure
reproduced with permission from [35].

An alternative approach [53] is to use extrinsic noise (1.6) again here. The

equation for the implementation of extrinsic noise remains the same for two

dimensions or greater, thus it can be useful for comparing results from Vicsek

models across dimensions. As the results for Vicsek class models in two

dimensions and greater are broadly similar, we will not consider systems with

three spatial dimensions or greater any further in this work.

1.2.2 Agent-based flocking models in one dimension

While (1.7) works well for dimensions higher than two, a model of aligning SPPs

in one dimension is more challenging due to the change from a continuous to

a discrete rotational symmetry. Following the approach of Czirók et al. [35]

wherein a particle’s velocity no longer has a constant magnitude, the transition

from a disordered to ordered state can be found in a continuous one-dimensional
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space by using the following equations

rt+1
i = rti + ∆tvti , (1.8)

vt+1
i = v0

[
G
(〈
vt
〉
i

)
+ ηti

]
, (1.9)

where 〈vt〉i is the average local velocity near particle i

〈
vt
〉
i

=

∑N
j=1 n

t
ijv

t
j∑N

j=1 n
t
ij

, (1.10)

and G(u) is an antisymmetric function incorporating the deterministic forces

present in the system, defined as

G (u) =

{
u+1

2
, u > 0,

u−1
2
, u < 0.

(1.11)

For sufficiently high noise, the system is disordered, while in the absence of noise,

the system tends towards a steady state where |vi| = 1 and P (ri = x) = 1
L

,

although the direction of the steady state depends on the initial conditions of

the system. Unlike in two dimensions, when the noise is small but non-zero,

the system phase separates into high density, highly-ordered and low density

disordered regions (see Fig. 1.3). Additionally, the direction of the highly-ordered

regions (flocks) are not constant in time. Instead, they stochastically alternate

direction [82, 119], which can be clearly observed in Fig. 1.3.

The existence of an alternating flock can be seen more clearly in the discretised

model of O’Loan & Evans [82]. In this model, N particles lie on a lattice with

L sites. Unlike the Vicsek model in one dimension (1.8, 1.9), particles in the

discrete space model update their positions stochastically. Thus, while a particle

will move a fixed distance with each move, they do not have a constant speed.

Stochasticity is introduced in the form of a fixed “anti-alignment” probability,

η, which is the probability that a particle will choose to move in the direction

opposite to the local average. The behaviour of the discrete space model for

different values of η can be seen in Fig. 1.4.

The size of the condensate’s peak is extensive in system size [7], although

the shape of the nose is independent of system size or time elapsed since the

last reversal. Once formed, the condensate travels in a single direction for

some time before reversing direction at semi-regular intervals, with the time

between reversals T ∼ O(logL) [7, 82]. A reversal begins with particles in the

9



Figure 1.4 The dynamics of a trajectory of a discrete space one-dimensional
SPP model with L = 1000 and N = 1000. The darker area
represent regions of higher particle density. (a) η = 0.2, time
between snapshots ∆t = 1. Particles change direction frequently
and no ordered flock is observed. (b) η = 0.02,∆t = 5. Particles
undergo phase separation and clustering into condensates, with the
condensate alternating direction stochastically. Figure reproduced
from [82]. © IOP Publishing. Reproduced with permission. All
rights reserved.

nose changing direction causing a wave akin to a shock to travel through the

condensate, returning to its compact form once the shock has travelled through

the condensate. Its width then increases with time, initially expanding diffusively

in the co-moving frame, before becoming more diffuse at the front than at the

rear [7].

While the discrete-space [82] and continuous space models (1.8, 1.9) [35] display

similar asymptotic behaviour, they differ in their implementation. Stochasticity

was introduced in the continuous model by removing the constraint that the

particles’ speed is fixed and adding fluctuations to the speed; the discrete model

instead added an anti-alignment probability η ∈ [0, 1]. Additionally, the discrete

model added some diffusion to the particle’s motion by updating their positions

stochastically instead of simultaneously. These details have little effect on the

observed behaviour in the ordered state, and as such both models belong to the

Vicsek-class of models.

O’Loan & Evans [82] showed that, if particles near the front (or “nose”) of a

flock change direction - either due to random perturbations or a collision with

another flock - the remainder of the flock will also change direction. Thus, the

question of how often the flock alternates can be reduced to the question of how
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often perturbations form at the flock’s nose. This highlights the important role

of stochasticity in the existence of the phase-separated ordered alternating flock

state in one dimension and suggests that successfully modelling a physical system

requires an appropriate treatment of stochastic effects.

1.2.3 Reaction-diffusion models of aligning self-propelled

particles

While the Vicsek model is a good basis for studying aligning SPPs, other choices

exist. Some of these are expansions or modifications to the original Vicsek model,

while others have a substantially different setup. Using multiple interaction types

between particles diffusing through a system, each occurring at their own rate,

reaction-diffusion equations seek to simulate SPPs as active versions of chemical

reactions.

An example of the reaction-diffusion approach is the work of Dyson et al. [46]

to model the motion of locusts in a ring-shaped arena, based on the experiments

of Buhl et al. [15]. The model consist of N individuals, each of whom is facing

clockwise or anti-clockwise. The size of the system is immaterial, as particles can

interact with one another at any distance and the parameter of interest is the

average velocity of the particles taken over the entire system.

In the model of [46], particles can interact with one another in six different ways.

In the following, Xl denotes a left-facing (clockwise) particle, while Xr denotes a

right-facing (anti-clockwise) particle.

Xl
r̂1−→ Xr, Xr

r̂1−→ Xl, (1.12)

Xl +Xr
r̂2−→ 2Xr, Xr +Xl

r̂2−→ 2Xl, (1.13)

Xl + 2Xr
r̂3−→ 3Xr, Xr + 2Xl

r̂3−→ 3Xl. (1.14)

r̂1, r̂2 and r̂3 denote the rates for a one-, two- and three-body interaction

occurring. The one-body interaction represents a stochastic switch in direction,

akin to anti-alignment for particles on an otherwise empty site in the discrete-

space one-dimensional model (1.8, 1.9). The two- and three-body interactions

cause particle alignment, with three-body interactions being necessary for the

drift and diffusion coefficients of the model system to match the experimental

results.
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Figure 1.5 (A) The neighbourhood of the i-th particle (shaded blue) in a limited
field-of-view Vicsek model. Here, nij = 1 if the j-th particle lies
within a sector of angle 2φ of a fixed radius circle centred on particle
i. (B) An example of a non-reciprocal interaction. While nij = 1,
nji = 0 due to the directional vision. Reproduced with permission
from [44].

The necessity of three-body interactions is expanded on by the work of Chatterjee

& Goldenfeld [32]. Their work adds spatial diffusion to the model of Dyson et al.

and demonstrates that, as r̂3 → 0, the high density, highly-ordered flock (as in

the one-dimensional continuous [35] and discrete [82] space models) is no longer

present in the system.

1.2.4 Alternative neighbourhoods for a self-propelled particle

model

A common modification of the original Vicsek model involves changing the criteria

that particles must satisfy to be considered neighbours. Examples of such a

modified neighbourhood are a sector of a fixed-radius circle (see Fig. 1.5) to better

simulate a limited field of view, projection of the whole flock against the sky [86],

or directional vision [44, 47], such as used in modelling pedestrian behaviour [85];

particles within a fixed radius whose direction differs from the central particle

by no greater than a given amount [96]; or a scaling-invariant neighbourhood

consisting of a fixed number of particles [20] or geometric Voronoi neighbours [54],

motivated by the observation that the density of the flock does not determine

whether order is observed in starling flocks [4] or pedestrian dynamics [77].

Models that use a scaling-invariant neighbourhood are typically referred to as

12



Figure 1.6 An example of a non-metric neighbourhood where the k = 5 nearest
particles are considered neighbours in a dense (a) and dilute (b)
system. Reproduced from [55].

“non-metric” or “topological” due to the focus on relative particle positions over

a metric distance for determining neighbours (see Fig. 1.6).

Modifying the particle neighbourhood such that it no longer depends on the

distance to neighbouring particles has a substantial effect on the dynamics of the

ordered state of SPP systems. Ginelli & Chaté [54] demonstrated that by forcing

particles to interact via a non-metric interaction as opposed to the usual metric

interaction, bands in a two-dimensional system would no longer form. Instead, the

phase transition from disordered to order is continuous, and no phase separation

occurs [88]. Additionally, the flock stochastically changes its direction, something

not observed in the metric Vicsek model in dimensions greater than one.

Much has been made of the ability of the flock to alternate directions in the

topological Vicsek model. Solon et al. [104] showed that the high density, highly-

ordered bands in the metric Vicsek model are stable to momentum fluctuations.

In contrast, anti-symmetric [37] and more generally asymmetric [27] interactions

in SPP models lead to an instability in the longitudinal diffusivity causing the

ordered flock to turn. Cavagna et al. [27] suggested that asymmetric interactions

and heterogeneity of the particle density may both be necessary for particle

systems to exhibit a reorientation of the ordered flock in finite time, based on the

propagation of the turning stimulus through the flock (see Fig. 1.7). In contrast,

we demonstrate in Chapter 3 that non-symmetry is not a required feature for the

presence of macroscopic turning in Vicsek-class models.

In the long wavelength limit, the Vicsek model is well described by the Toner-

Tu equations [112], a phenomenological hydrodynamic approach to studying how
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Figure 1.7 Representation of the propagation of turning information in a real
flock and a Vicsek model. (a) The turning information is undamped
in a real flock, propagating throughout the system and causing a
macroscopic turn. (b) In a Vicsek model, turning information is
damped. Reproduced with permission from [23].

the density and velocity of SPP systems evolve in time on a large scale. We now

move on to discussing this approach and other continuum equation approaches

to studying aligning active matter. The derivation of continuum equations for

SPP systems will be the focus of much of this thesis, in particular Sections 2.2

and 4.1.

1.3 Active hydrodynamics

While simulations of agent-based models of SPPs can be used to determine how

the system behaves with a specific set of particle interactions, they are unable

to ascertain in advance whether the system will tend towards order or disorder

or to explain how the order or disorder arises. It is more straightforward to

comprehend how large-scale behaviours manifest in systems of aligning SPPs by

focussing on coupled partial differential equations (PDEs) of macroscopic fields

such as particle density or velocity. The equations governing particle dynamics

are similar to the Navier-Stokes equations [108] for hydrodynamic systems due to

similar terms existing in both, although the PDEs for aligning SPP systems are

typically not momentum-conserving for “dry” systems (see Section 1.2) and may

contain explicit stochastic effects not typically seen in hydrodynamic models.
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1.3.1 Phenomenological equations

An early attempt to represent the dynamics of the Vicsek model as continuous

fields came from the work of Toner & Tu [111, 112]. Their “top-down” approach

[17] to generating field equations for the Vicsek model considered every relevant

term in the equations not excluded by symmetries and conservation laws in the

system. In this context, “relevant” means retaining only terms that are important

at large length-scales; practically, higher order gradients are excluded. Under

this approximation, the following equations for density and velocity fields ρ and

v emerge, known as the Toner-Tu equations,

∂tρ = ∇ · (ρv) , (1.15)

∂tv + λ1 (v · ∇) v + λ2 (∇ · v) v + λ3∇|v|2

=
(
α− β|v2|

)
v −∇P (ρ) +DB∇ (∇ · v)

+DT∇2v +D2 (v · ∇)2 v + f ,

(1.16)

P (ρ) =
∞∑
n=1

σn(ρ− ρ0)n, (1.17)

where P (ρ) is akin to the pressure term in a traditional hydrodynamic model, ρ0

is the mean of the number density, σn are coefficients of the pressure expansion,

β, DB, DT and D2 are all positive, and α > 0 gives an ordered state while α < 0

leads to a disordered state. (1.15) is the usual equation of conservation of mass,

as we have assumed that no particles are created or destroyed in the system and

the time-scale is such that diffusion has a negligible effect on the dynamics.

The λ1, λ2 and λ3 terms are the convective derivatives, with all three forms

having non-zero prefactors due to the lack of Galilean invariance in the system.

α and β give rise to the average velocity in the ordered state, where α > 0 and

|〈v〉| =
√

α
β
. The Di’s are diffusion constants, and f is a stochastic driving force,

assumed to be Gaussian white noise with constant variance ∆ (similar to ξti in

(1.6)). At scales sufficiently large that (1.15, 1.16, 1.17) accurately describe the

system, local fluctuations do not play a significant effect on the dynamics, and

as such a simple additive noise suffices to ensure the system does not get trapped

in an unstable fixed point of state space.

As reasoned above, (1.15, 1.16, 1.17) are useful equations for studying the large-

scale properties of a Vicsek-class system, such as the long-range correlations

of velocity (or orientation) fluctuations. These fluctuations were shown to be
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“scale-free” [112] as a consequence of the spontaneous breaking of a continuous

symmetry. This feature of model aligning SPP systems has also been observed

experimentally [21]. However, it is not clear how the many macroscopic variables

in the Toner-Tu equations relate to the microscopic variables in the agent-

based Vicsek models such as particle speed, frequency of alignment, or particle

interaction radius.

While it is possible to experimentally determine the value of the macroscopic

variables for a particular agent-based model [113], a better comprehension of the

way macroscopic variables depend on the microscopic parameters can be obtained

through approaches that can generate PDEs from an agent-based system directly.

In the next section, we introduce three key approaches to obtaining field equations

in this “bottom-up” manner [17] and discuss the benefits and limitations of each

approach.

1.3.2 Microscopic to Macroscopic

Boltzmann equation

An early attempt to identify the macroscopic variables with microscopic param-

eters utilised the Boltzmann equation [28], which describes the average forces

acting on particles in a non-equilibrium stochastic system. The Boltzmann

equation evolves the probability distribution of a single particle which can be

changed through three processes: diffusion of the particle through the system,

collision with other particles, and through the application of external forces.

Given a one-particle probability distribution f(r, θ, t) of particles with position

vector r and angle of motion θ at time t, the evolution of this probability density

obeys the following relation

∂tf + e(θ) · ∇f = Idiff [f ] + Icoll[f ] + Iext[f ], (1.18)

where e(θ) is the unit vector in the direction of θ, Idiff [f ] contains the forces due

to self-diffusion, Icoll[f ] describes the effect of collisions with other particles, and

Iext[f ] describes the effect of any external forces.

Bertin et al. [9, 10] considered a dilute system of SPPs travelling through space

with a fixed speed v0, rotating diffusively, aligning through particle collisions

and in the absence of external forces. The dilute nature of the system ensures
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Figure 1.8 (a) A typical rotational diffusive “kick”, where a random angle η has
been applied to a particle moving in a direction θ to give it a new
velocity with angle θ′. (b) A typical collision between two particles
with directions θ1 and θ2, where the average angle θ̄ (1.19) is given
by the dashed line. After the collision, each particle assumes a new
velocity that differs from θ̄ by a random noise η1 and η2 respectively.

that collisions involving more than two particles were sufficiently rare as to be

ignored, therefore the collision kernel Icoll[f ] could be simplified to consider binary

collisions only.

Each particle moves ballistically until a “kick” occurs with rate λ, causing it to

change orientation from angle θ to θ′ = θ + η, where η is drawn from a Gaussian

distribution P(η) with mean 0 and variance η2
0. A collision occurs if two particles

get within a distance d0 of one another. When this occurs, both particles update

their orientation from θ1 and θ2 to θ′1 = θ̄ + η1 and θ′2 = θ̄ + η2 (see Fig. 1.8b),

where the ηi are also drawn from a Gaussian distribution P ′(η) with mean zero

and variance η′20 (which need not be the same as η2
0), and θ̄ is the average of θ1

and θ2, calculated as

θ̄ = Arg
[
eiθ1 + eiθ2

]
. (1.19)

Under these conditions, Idiff and Icoll can be expressed as

Idiff [f ] =− λf + λ

∫
dη P(η)

∫
dθ′ f(r, θ′, t)

∑
n

δ (θ − θ′ − η + 2nπ) , (1.20)

Icoll[f ] =− 2d0v0f(r, θ, t)

∫
dθ′ |e(θ)− e(θ′)|f(r, θ′, t) + 2d0v0

∫
dη P ′(η)

×
∫
dθ1

∫
dθ2 |e(θ1)− e(θ2)|f(r, θ1, t)f(r, θ2, t)

∑
n

δ
(
θ − θ̄ − η + 2nπ

)
.

(1.21)

Note that while stochastic effects occur in the agent-based model, the Boltzmann

equation is deterministic due to the stochasticity being integrated out. As the

particle models are broadly similar and stochasticity does not feature prominently,
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we expect the continuum equations should contain terms also found in the Toner-

Tu equations (1.15, 1.16).

We can define density ρ(r, t) and velocity u(r, t) fields by integrating the particle

probability distribution f as

ρ(r, t) =

∫
dθ f(r, θ, t), (1.22)

u(r, t) =
1

ρ(r, t)

∫
dθ e(θ)f(r, θ, t). (1.23)

It is more natural in this case to consider the evolution of the momentum field

w(r, t) = ρ(r, t)u(r, t) instead of the velocity field u(r, t). As such, subsequent

equations will be written in terms of ρ and w. As a result, any direct comparison

with the Toner-Tu equations must first transform one set of equations to match

the variables of the other.

Integrating (1.18) over θ directly gives the usual equation of mass conservation

for compressible fluids

∂tρ(r, t) = −∇ ·w(r, t). (1.24)

Obtaining the evolution equation of w is more challenging. To simplify this, we

introduce the Fourier transform of f ,

f̂k(r, t) =

∫
dθ eikθf(r, θ, t). (1.25)

Note that these Fourier components relate to the density and momentum fields

as

ρ = f̂0 and w =

(
<[f̂1]

=[f̂1]

)
, (1.26)

where <[f̂1] and =[f̂1] denote the real and imaginary components of f̂1 respec-

tively. Thus, obtaining the equation of evolution of w is equivalent to finding

the evolution of f̂1. By multiplying the Boltzmann equation (1.18) by eikθ and

integrating over θ, an equation for f̂k in terms of f̂k−1 and f̂k+1 can be obtained.

By the definition of the Fourier components f̂k (1.25), f̂ ∗k = f̂−k. Thus, the

system of equations can be solved if for some k ≥ 0, ∂tf̂k does not depend on

f̂k+1. Under the assumption that the average momentum is much smaller than

the average density, f̂2 varies sufficiently slowly that ∂tf̂2 ≈ 0, and subsequent
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terms f̂k ≈ 0 for k ≥ 3. This assumption thus truncates the infinite series of

coupled equations, enabling an explicit solution for f̂2 to be found in terms of f̂1

and f̂0. Finally, the equations describing the system reduce to [10]

∂tρ =− v0∇ ·w, (1.27)

∂tw + v0γ(w · ∇)w =
(
µ− ξ|w|2

)
w − 1

2
∇ρ+

κ

2
∇
(
|w|2

)
− κ (∇ ·w) w

+ ν∇2w + ν ′∇ρ ·
(
∇w +∇wT

)
− ν ′ (∇ ·w)∇ρ, (1.28)

where µ, ξ, κ, γ, ν and ν ′ depend on the microscopic parameters ρ, v0, d0, λ, η0

and η′0 as

µ =
8d0v0ρ

π

(
e−

η20
2 − 2

3

)
− λ

(
1− e−

η′20
2

)
, (1.29)

ν =
v2

0

4

[
λ

(
1− e−

η′20
2

)
+

16d0v0ρ

3π

(
7

5
+ e−

η20
2

)]−1

, (1.30)

ν ′ =
∂ν

∂ρ
=

64d0ν
2

3v0

(
7

5
+ e−

η20
2

)
, (1.31)

γ =
16νd0

πv0

(
16

15
+ 2e−2η20 − e−

η20
2

)
, (1.32)

κ =
16νd0

πv0

(
4

15
+ 2e−2η20 + e−

η20
2

)
, (1.33)

ξ =
256νd2

0

π2v2
0

(
e−

η20
2 − 2

5

)(
1

3
+ e−2η20

)
. (1.34)

The first equation above (1.27) is the usual Navier-Stokes equation of mass

conservation, as in the Toner-Tu equations (1.15). The second equation (1.28)

is also similar to the Toner-Tu equation for velocity (1.16). Indeed, there is a

one-to-one correspondence between some of the prefactors, mostly notably α and

β from (1.16) are equivalent to µ and ξ from (1.28) respectively. Other variables

are related, though are not directly one-to-one due to the change from velocity

to momentum.

A similar set of equations was derived by Peshkov et al. [88] for a set of particles

interacting through a topological interaction (see Sec. 1.2.4). The key change

to the model is to the collision integral Icoll (1.21), though Peshkov et al. kept

the assumption that binary collisions dominate. This is implemented through

an aligning collision occurring with a rate α0 per topological neighbour. The
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resultant continuum equations are

∂tρ =−∇ ·w, (1.35)

∂tw + γt(w · ∇)w =
(
µt − ξt|w|2

)
w − 1

2
∇ρ+

κt
2
∇
(
|w|2

)
+ νt∇2w − κt (∇ ·w) w, (1.36)

where v0 = λ = 1 here. The equations above (1.35, 1.36) are functionally identical

to the equations for the metric case (1.27, 1.28), although the dependence of the

coefficients on density differs (and some higher order terms were dropped) and

are instead represented by

µt =

(
4α

π
+ 1

)
e−

σ2

2 − (1 + α) , (1.37)

νt =
1

4

[
α + 1 + e−2σ2

]−1

, (1.38)

γt =
4νtα

ρ

[
e−2σ2 − 2

3π
e−

σ2

2

]
, (1.39)

κt =
4νtα

ρ

[
e−2σ2

+
2

3π
e−

σ2

2

]
, (1.40)

ξt =
16νtα

2

3πρ2
e−

5σ2

2 , (1.41)

where α = nα0 is the average rate of binary collisions per particle and n is the

average number of neighbours. When the density field varies slowly, the functional

form of continuum equations describing SPP systems are not highly sensitive

to whether particle interactions are metric or topological. As the magnitude of

variables (1.29-1.34, 1.37-1.41) controls the behaviour of the continuum equations,

their form is more important to predicting the behaviour we expect to see in

trajectories of the system. We explore the similarities and differences between

topological and metric continuous equations further in Chapter 4, based on agent-

based models developed in Chapter 3.

The Boltzmann equation is clearly a powerful tool in obtaining the dependence of

macroscopic variables on microscopic parameters. Due to the lack of stochasticity,

however, the resulting equations are not suitable for generating trajectories that

behave in a similar fashion to the agent-based models. As such, they fail to

adequately predict or explain the existence of behaviours that rely on external

or stochastic effects to occur, such as the macroscopic turning of the flock. We

now turn to methods of deriving continuous hydrodynamic equations that include
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stochastic effects explicitly.

Stochastic differential equations

The Toner-Tu (1.15, 1.16) and Boltzmann (1.27, 1.28) equations describe the

mean dynamics of systems of SPPs at a large scale, with scaling exponents of the

agent-based models well reproduced by these equations. For systems below the

length scale where hydrodynamic considerations dominate, finite size effects and

realisations of the noise play a significant role in the dynamics of the system [53].

An example of these finite size effects is that the bands described in Section 1.2.1

can’t be observed in a 2d Vicsek system if the system size is too small. At these

mesoscopic length scales, adding stochasticity to a system without regard for the

structure of that term can alter fundamental properties such as the behaviour

of the ordered state near the phase transition [72]. As such, a more complete

understanding of the stochastic effects in a finite-sized system may require a

more nuanced approach to stochasticity in continuum equations.

Starting from a set of Langevin equations describing N particles i interacting

through a pairwise potential V (x) and subject to a stochastic force ηi(t),

dXi

dt
= −

N∑
j=1

∇V (Xi(t)−Xj(t)) + ηi(t), (1.42)

where ηi(t) is a Gaussian white noise with mean zero and variance η2
0, Dean [38]

derived a stochastic differential equation for the density ρ of particles. To begin,

consider the single particle density ρi(x, t) defined by

ρi(x, t) = δ(Xi(t)− x), (1.43)

and the total particle density ρ(x, t)

ρ(x, t) =
N∑
i=1

ρi(x, t) =
N∑
i=1

δ(Xi(t)− x). (1.44)

For an arbitrary function f(x) defined over the system, the properties of the Dirac

delta function gives

f(Xi(t)) =

∫
dx ρi(x, t)f(x). (1.45)
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Taking the time derivative of (1.45), the integral becomes

df(Xi(t))

dt
=

∫
dx

∂ρi(x, t)

∂t
f(x). (1.46)

However, the left hand side of (1.46) can also be expanded using Itô calculus [89],

(1.42) and integration by parts to arrive at

df(Xi(t))

dt
=

∫
dx f(x)

[
−∇ρi(x, t) · ηi(t) +

η2
0

2
∇2ρi(x, t)

+∇ρi(x, t) ·
N∑
j=1

∇V (Xi(t)−Xj(t))

]
. (1.47)

As f is an arbitrary function, the evolution of the single particle density ρi in

time becomes

∂tρi = −∇ρi · ηi(t) +∇ρi ·
N∑
j=1

∇V (Xi(t)−Xj(t)) +
η2

0

2
∇2ρi. (1.48)

Finally, summing over all particles and by replacing the noise term with one

that is statistically identical, a stochastic differential equation for the density is

obtained as

∂tρ(x, t) =∇ ·
(
ρ(x, t)

∫
dy ρ(y, t)∇V (x− y)

)
+
η2

0

2
∇2ρ(x, t)

+∇ ·
(√

ρ(x, t) η(t)
)
. (1.49)

The above equation (1.49) can be read as a modified continuity equation with

diffusion and explicit stochasticity added. The entire right hand side can be

written as the divergence of a vector, thus enforcing mass conservation. Crucially,

the stochastic term is also expressed as the divergence of a Wiener process with

a multiplicative density term. The divergence preserves mass conservation, while

the multiplicative prefactor ensures that spontaneous particle creation cannot

occur.

While (1.49) is an early example of deriving stochastic differential equations for

SPP systems, its usefulness can be limited by the equations of motion of the

particles in the system of interest. For example, if we wish to obtain continuum

equations for the Vicsek model with intrinsic noise (1.1, 1.2), the particle velocity

cannot be displayed in the Langevin form dVi
dt

= f(Xi, Vi, t) + g(Xi, Vi, t)η(t) as
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the stochasticity is present in the angular equation. Therefore, the Itô calculus

used to obtain (1.47) cannot be used for the velocity or momentum field equation.

Another method of obtaining coupled PDEs is the Kramers-Moyal expansion

[66, 78, 115]. While it requires more approximation than the approach above

resulting in Eq. (1.49), the Kramers-Moyal expansion is a powerful tool for

creating coupled PDEs to describe many systems, and we will use it in much of

the main body of this thesis for that purpose.

The Kramers-Moyal expansion

While Dean’s approach [38] started from a set of Langevin equations for particle

positions, the Kramers-Moyal expansion typically begins with a master equation

for the probability of a position in space-time having a given density and

momentum. In a continuous space system, however, the master equation has an

infinite number of states between which the system can travel. For this reason,

it is often easier to use the Kramers-Moyal expansion in systems that sit on a

spatial lattice (such as the one-dimensional O’Loan & Evans model [82] from

Section 1.2). For sufficiently large systems, we do not expect discretisation will

have a significant effect on the macroscopic behaviour.

Consider a master equation where the state of the system can be expressed in

terms of state variables ψ1, ..., ψn and time t. These state variables could be the

density and momentum values at each site in a lattice, for example. A state in

this system is represented by a specific set of values {ψ1, ..., ψn} the state variables

can take, and will be denoted by σ. The probability of the system being in a

given state σ at time t evolves as follows

∂P (σ, t)

∂t
=
∑
σ′

T (σ′ → σ)P (σ′, t)− T (σ → σ′)P (σ, t) (1.50)

where T (σ′ → σ) is the transition rate from the state σ′ to a state σ.

The Kramers-Moyal expansion is a power series expansion in powers of ν = σ−σ′.
To this end, T (σ′ → σ) is rewritten as T (σ− ν, ν). The expansion can be written

in the form [94, 115]

∂tP =
∞∑
k=1

(−1)k

k!

n∑
i1,...,ik=1

(
∂k

∂ψi1 ...∂ψik

)
[ai1,...,ik(σ)P (σ, t)] (1.51)
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where ai1,...,ik(σ) is the “k-th jump moment” of the process and is defined as

ai1,...,ik(σ) =
∑
ν

vi1 ...vikT (σ, ν) (1.52)

where ν = {v1, ..., vn}. The expansion can often be truncated after the first

or second term [84], i.e. ai1,...,ik(σ) ≡ 0 for k ≥ 3. Thus, the Kramers-Moyal

expansion (1.51) becomes a Fokker-Planck equation

∂P (σ, t)

∂t
= −

n∑
i=1

∂

∂ψi
[ai(σ)P (σ, t)] +

1

2

n∑
i,j=1

∂2

∂ψi∂ψj
[ai,j(σ)P (σ, t)] . (1.53)

If it cannot be truncated exactly, infinitely many terms are non-zero [94]. In

this case, another approach must be considered to arrive at the Fokker-Planck

equation above. This usually takes the form of a system size expansion [114],

whereby the jump moments ai1,...,ik(σ) scale inversely with some large parameter

N , usually proportional to N−k [14]. In the large N limit and under an

appropriate rescaling of time, ai1,...,ik(σ) ≡ 0 for k ≥ 3 as above. Thus, the

Fokker-Planck equation is recovered.

The Fokker-Planck equation 1.53 can be transformed into a set of coupled

Langevin equations in the Itô sense [8] to describe the evolution of a particular

trajectory of the system,

dψi
dt

= −ai(σ) +
n∑
j=1

bi,j(σ)ξj(t), (1.54)

where bi,k(σ) is a matrix satisfying the property
∑n

k=1 bi,kbj,k = ai,j and ξj(t)

is a delta-correlated random variable drawn from a Gaussian distribution with

mean 0 and variance 1. In general, for a given ai,j, the matrix bi,k is not unique,

as a different representation can be created as b′i,j =
∑n

k=1 bi,kck,j where ci,j is

any orthogonal matrix. The usual choice for creating bi,j is to use Cholesky

decomposition [67] which creates an upper triangular matrix.

The Langevin equations are useful as they allow us to simulate trajectories of

the system that the original master equation (1.50) represents. In practice,

this involves numerical integration, which is the process of evolving the field

variables at discrete points in space and time, usually by discretising the spatial

and temporal derivatives. A specific choice of discretising these derivatives is

known as a “discretisation scheme”. Numerical integration often comes with its
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own challenges, such as finding a stable discretisation scheme; namely, one in

which errors do not grow exponentially large as time increases.

An additional benefit to starting with a particle system based on a discrete spatial

lattice is that the simple “forward time, centred space” (FTCS) difference schemes

are stable. Under the FTCS scheme, the field variables f(x, t) are replaced by a

discrete field fni1,...,id = f(i1∆x1, ..., id∆xd, n∆t) and derivatives are treated as

∂tf
n
i1,...,id

−→
fn+1
i1,...,id

− fni1,...,id
∆t

, (1.55)

∇ · fni1,...,id −→
d∑
j=1

fn+1
i1,...,ij+1,...,id

− fni1,...,ij−1,...,id

2∆x
· ej, (1.56)

∇2fni1,...,id −→
d∑
j=1

fn+1
i1,...,ij+1,...,id

− 2fn+1
i1,...,ij ,...,id

+ fni1,...,ij−1,...,id

∆x2
, (1.57)

where ej are the unit vectors in the j-th direction. In Sections 2.3.2 and 4.4, we

describe a numerical integration process to generate trajectories based on specific

Langevin equations.

1.4 The structure of this thesis

In the remainder of this thesis, we examine coupled stochastic differential

equations to identify the features required for an ordered flock to alternate

direction stochastically. We generate these equations using the Kramers-Moyal

approach detailed above, using numerical integration to demonstrate that the

equations are a good representation of the agent-based system.

In Chapter 2, we introduce a one-dimensional system with SPPs on a lattice,

interacting with one another through an alignment interaction. The model

introduced is a simplified version of the O’Loan & Evans model described earlier

in this chapter 1.2.2. We use the Kramers-Moyal expansion to generate a set of

coupled stochastic differential equations for particle density and momentum and

explain the assumptions used to justify truncating the expansion at second order

and subsequently transforming the Fokker-Planck equation into a set of Langevin

equations. Using numerical integration, we demonstrate the resulting equations

exhibit the same behaviours as the particle system. We examine the requirements

on the equations for trajectories to exhibit turning, and use those requirements to
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obtain a minimal model for turning in one-dimensional aligning particle models.

Chapter 3 focuses on examining aligning active matter on a two-dimensional

lattice. We expand our one-dimensional model from the previous chapter into

two dimensions and examine the conditions under which stochastic macroscopic

turning is present in the system. Contrasting our extended model with another

lattice-based model, we explore model choices which do and do not affect the

existence of macroscopic turning. We find that systems where particles align

according to a topological rather than metric neighbourhood rule are not the

only systems in which macroscopic turning can manifest. The existence of a

metric model in which macroscopic turning can be observed provides an avenue

for analytical comparison with more traditional flocking models.

We return to stochastic field equations in Chapter 4, where we use the Kramers-

Moyal approximation to derive field equation representations of the models

in Chapter 3. The differences between the equations generated for the two

model choices highlight a potential reason for the discrepancy observed in the

previous chapter. As the macroscopic turning of the ordered flock occurs

as the growth of an instability, we conduct linear stability analysis on the

two models. We demonstrate that the behaviour of the models due to the

interaction neighbourhood differs greatly, with one model having no dependence

on interaction type, while the other demonstrates different linear stability

depending on the choice. We then conduct numerical analysis on the equations to

compare trajectories of the system with the agent-based models from the previous

chapter.

Finally, in Chapter 5, we gather and discuss the key findings of the previous

chapters and suggest further routes of exploration in this field, along with

detailing exploratory work to expand this approach to off-lattice models.
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Chapter 2

Stochastic field equations for

one-dimensional flocking

In Chapter 1, we saw how a Vicsek-class model of self-propelled particles (SPP)

in one dimension (hereafter 1d) [35] can exhibit an aligning ordered collective

motion (see Fig. 1.3). Unlike its traditional counterpart in higher dimensions

[112, 116] where rotational symmetry is broken in the ordered state, the ordered

flock in 1d has the capacity to alternate directions, a behaviour also observed in

schools of fish [62]. This manifests as a macroscopic change in the direction of the

flock (see Fig. 2.1). Additionally, the order is not present on all lattice sites for a

finite number of particles; instead a condensate forms in the system, which phase

separates into a high-density, highly ordered travelling flock and a low density,

disordered region.

The main aim of this chapter is to obtain a continuum equation description of

a model that exhibits this alternating flocking behaviour in 1d. Previous work

with this aim by Raymond & Evans [92] used a mean-field approach to generate

a set of deterministic partial differential equations for density and polarisation

fields, in addition to adding in attraction and repulsion interactions as in other

flocking models with non-local interactions [47, 50, 93]. While the equations

generated through the mean-field approximation reproduced the position of the

phase transition between the ordered and disordered states, the ordered state

obtained in the trajectories of the mean-field model differed from the alternating

flock observed in the agent-based model (hereafter ABM) by the absence of

turning. The ability of the flock to turn was hypothesised to be the result of
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Figure 2.1 Sample trajectories of the agent-based model at different values of
the noise strength η. Points with darker colours have more particles
on that site, with black denoting the most dense regions. Left: η =
0.02. Here, a condensed group (red) is moving through the lattice
before stochastically alternating direction. Other than the large flock,
the lattice is sparsely populated with a small number of travelling
particles (yellow). Right: η = 0.2. The stochastic effects dominate
here and no condensate forms. Particle density is approximately
uniform and no coherent motion is observed. For both trajectories,
N = L = 2000 and β = 2.0. For these plots, ∆x = 1 and ∆t = 5.

stochastic fluctuations in the front, or “nose”, of the flock, thus the mean-field

approximation is unable to reproduce the alternating behaviour. We demonstrate

conclusively later in this chapter that artificially inducing a fluctuation in the nose

of a mean-field flock is sufficient to return the alternating flock behaviour.

We will start by describing a lattice-based model of aligning SPPs as a basis

to compare our continuum equations to. Although the O’Loan & Evans model

[82] is suitable for clearly demonstrating the alternating flock in an ABM, there

are a number of choices in the model definition that do not translate easily to a

continuum description. In Section 2.1, we define a model based on the one in [82],

with modifications that facilitate an analytical understanding of the behaviour

exhibited. In this way, the model contains only local terms and has an analytical

form for the alignment that can be understood in terms of an average of sampling

the majority direction.

In Section 2.2, we utilise the Kramers-Moyal approximation to generate a set of

field equations for density and momentum. As described in Section 1.3.2, the

Kramers-Moyal approximation is a method of generating stochastic differential

equations (SDEs) from ABMs governed by a master equation. Given certain
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assumptions, realisations of these SDEs can reproduce the behaviour of the ABM.

We detail what assumptions are necessary to generate a set of Langevin equations

that will exhibit the alternating flock observed in the ABM as described in Section

2.1. These assumptions include a particular choice of the stochastic variable in

the system to avoid the issue of complicated correlations.

As with any numerical integration, the specifics of the discretisation can play

a role in the behaviour of the system. Additionally, correctly approximating

the Wiener process is crucial to achieve quantitative matching between the

ABM and the continuum equations. We discuss in Section 2.3 the merits of

different approaches to discretising the SDEs generated by the Kramers-Moyal

approximation, including using non-Gaussian noise to eliminate a bias towards

higher order due to non-zero time-steps. Sampling from a beta distribution

with mean and variance equivalent to the Gaussian distribution in question

gives quantitative agreement with the ABM, strong evidence that substituting

a Gaussian distribution with beta-type noise can generate physically accurate

equations.

Once we have a set of continuum equations that match the behaviour of the

ABM, we reduce the complexity of the system to obtain minimal requirements

for flocking to occur. We show in Section 2.5 that a linear interaction term is

insufficient to allow a single ordered flock to emerge from a disordered system. A

modified model that includes non-interacting motion in the form of run-and-

tumble behaviour [109] is used to explain the lack of flocking with a linear

interaction. Using a third-order local interaction instead is then shown to be

sufficient for the alternating flock behaviour to be exhibited. This supports

evidence that three-body interactions are required for flocking in 1d [32, 61].

Finally, in Section 2.6, we explore some variations on the ABM and observe the

effect they have on the behaviour exhibited by the system. These variations

focus primarily on different choices for particle neighbourhoods corresponding

to alternative physical interactions such as sight-based interactions. We also

examine the effect of a particle including itself in its definition of neighbours,

highlighting the large effect this can have on the existence of an ordered flocking

phase.
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Figure 2.2 Graphical representation of the update rules for a single time-step.
Once a particle has been selected (red above), a new direction is
chosen with probabilities given by (2.1), represented by the diverging
paths. Once the particle has a new velocity, it travels one space in
that direction, then the process repeats.

2.1 Agent-based model

2.1.1 Model definition

The system described by O’Loan & Evans [82] consists of N polar particles (as

defined in Section 1.2) on a one-dimensional (1d) periodic lattice of length L,

where the sites have no maximum capacity. Each particle α has a position xα ∈
{1, ..., L} and a velocity vα ∈ {−1, 1}. The agent-based description of the system

is updated for a single time step δt according to the following rules.

1. A single particle α is chosen uniformly at random.

2. It obtains a new velocity vα = ±1 with probability W±
α (defined below).

3. It moves a single site in the direction of its new velocity.

4. Repeat steps 1-3 with a new particle for a designated number of time steps.

With these rules, each particle will have moved on average one space on the lattice

in N time steps. The probability of hopping right (+) or left(-) is given by

W±
α =

1

2
(1± v(pα)) , (2.1)

where pα is the polarisation of the site xα and is defined as

pα =

∑N
β=1 vβδ(xα − xβ)∑N
β=1 δ(xα − xβ)

. (2.2)
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Figure 2.3 Plot of the mean site velocity v as a function of the site polarisation p
for (left) varying strengths of non-linear interactions β and (right)
varying strengths of stochasticity η. Note that the β → ∞ limit
approaches a step function of height 2− 4η.

From 2.2, we see that the polarisation must lie between −1 and 1. The mean

velocity function, v(p), is chosen here as

v(p) = (1− 2η)
tanh(βp)

tanh(β)
, (2.3)

where β represents the ability of the particles to identify the majority direction

and η is the probability of a particle to anti-align with its neighbours. These can

be thought of as the strength of the non-linear interactions and the strength of the

stochasticity respectively. The effect of β and η on the structure of v can be seen

in Fig. 2.3. The constraint on probability such that W± ≥ 0 and W+ +W− = 1

forces v ∈ [−1, 1] and hence η ∈ [0, 1].

2.1.2 ABM behaviour

The main control parameter of this model is η, as there exists a non-zero critical

value ηc such that the behaviour of the system switches from order to disorder

as η increases across this threshold value (see Fig. 2.4). In the η → 0 limit, all

particles assume the same direction (depending on initial conditions) and a phase-

separated condensate forms that diffuses until a uniform density over the lattice

is reached (directional order). Hereafter, this condensate will be called a “flock”,

as it matches the definition in Chapter 1. For η larger than ηc, the system exists

in a state of disorder as the particles change direction too often for the flock
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Figure 2.4 Plot of a measure of order in the system as a function of the
stochasticity η. Below the phase transition η = ηc ≈ 0.05, the system
exhibits order, while above the critical noise strength, no global order
is observed.

to be stable. Between these two extremes, there exists an ordered state with

bi-directional order, where a flock propagates through the lattice, occasionally

alternating its direction of propagation.

Order in this system at a given time is characterised by a non-zero value of the

unsigned mean particle velocity, defined as

v̄(t) =

∣∣∣∣∣ 1

N

N∑
α=1

vα(t)

∣∣∣∣∣ , (2.4)

while the order parameter of the system for a given set of parameters is the

average of this quantity, i.e.

ϕ = 〈v̄〉 . (2.5)

As the particle interaction has no explicit time dependence, we expect that the

average in (2.5) is identical whether it is taken over many realisations of the noise

or over a sufficiently long time for a single trajectory. This property is known as

ergodicity [115].
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2.1.3 Differences from O’Loan model

The ABM above differs from the O’Loan & Evans model in two respects, both

in the definition of v(p) (2.3). The first is the reduction of the neighbourhood of

each particle. While the original model evaluated the total magnetisation across

the sites i−1, i and i+1, we have reduced our model to consider contributions at

site i only. By comparing Fig. 2.1 to Fig. 1.4, we observe that the interaction in

Eq. (2.3) does not change the qualitative behaviours in the ordered or disordered

states, though it may affect the position of the phase transition.

The other change is the softening of the hard “majority-rules” update used by

Raymond & Evans [92], which is the change to (2.3) from

vO′Loan(p) = (1− 2η)sgn(p) (2.6)

where sgn is the “signum” function defined as

sgn(x) =

{
1 if x > 0,

−1 if x < 0.
(2.7)

The motivation behind the above change is to introduce a tuning parameter

β acting as another source of noise, akin to a thermodynamic β = (kBT )−1.

Raymond & Evans demonstrated a relationship between β and the maximum

number of neighbours M sampled in the majority-rule interaction [92], showing

that this source of noise acts in a similar way to an incomplete sample of the

particles in the neighbourhood.

The above connection assists us in interpreting the small and large β limits. The

β → 0 limit is a linear interaction

vβ→0(p) = (1− 2η)p, (2.8)

akin to a simple voter-type interaction [41], where a single particle from the

neighbourhood is chosen at random to be the preferred direction. In the

other extreme, β → ∞, the strict “majority-rule” is taken over the entire

neighbourhood and v → vO′Loan.
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2.2 Kramers-Moyal approximation

We wish to gain a better understanding of the macroscopic behaviour of the agent-

based system described in Section 2.1, in particular how stochasticity affects the

steady states. To this end, it is useful to switch to a continuous model as in

Section 1.3. As the dynamics of the ABM can be written in a master equation

form, we use the Kramers-Moyal approximation to generate a coupled set of

Langevin equations describing the dynamics of the system.

2.2.1 Arriving at a set of Langevin equations

We follow here the van Kampen system size expansion approach as in [115] and

outlined in Section 1.3.2. In the O’Loan & Evans model, we can take the ψi as

the set of density ρi and magnetisation mi values at each site on the lattice (with

n = 2L) which are defined as

ρi(t) =
1

N

N∑
α=1

δ(xi − xα(t)) (2.9)

mi(t) =
1

N

N∑
α=1

vαδ(xi − xα(t)). (2.10)

This choice represents a natural set of variables to describe the behaviours of the

system and aligns with those often studied in other field models of flocking. The

polarisation field that was the study of early forays in the field [35, 112] is thus

pi(t) =
mi(t)

ρi(t)
. (2.11)

Computationally simulating a trajectory of a system requires evolution equations

for the variables of interest, so we would like to obtain a set of Langevin equations

to describe this system. Following the approach laid out in Section 1.3.2, these

have the following form in the Itô sense,

dψi
dt

=
〈δψi〉
δt

+
n∑
j=1

bijξj(t), (2.12)

where ξj(t) is a Gaussian white noise with mean 〈ξj(t)〉 = 0 and correlator
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〈ξj(t)ξk(t′)〉 = δjkδ(t− t′), and bij is a matrix that satisfies the relation

(
bbT
)
ij

=
n∑
k=1

bikbjk =
〈δψiδψj〉

δt
. (2.13)

If the set of ψi are uncorrelated (i.e. 〈δψiδψj〉 = δij 〈δψ2
i 〉), b has a diagonal

matrix representation and (2.12) can be expressed as

dψi
dt

=
〈δψi〉
δt

+

√
〈δψ2

i 〉
δt

ξi(t). (2.14)

2.2.2 The density equation

Now we have a structure for the Langevin equations of the evolution of ρ and w,

we must find the jump moments for these variables. We start with the density

ρ. In a single time-step δt where one particle undergoes a move as described in

Section 2.1, the density at a site i can change in the following ways

δρi(t) = ρi(t+ δt)− ρi(t) =


1
N

with probability W+
i−1ρi−1 +W−

i+1ρi+1

− 1
N

with probability ρi

0 otherwise

(2.15)

Here, W±
i is the transition probability of a particle at site i moving one step in

the ± x-direction. The jump moments are calculated by taking the mean and

variance of (2.15) as

〈δρi〉 =
1

2N
[ρi+1 + ρi−1 − 2ρi − v(pi+1)ρi+1 + v(pi−1)ρi−1] , (2.16)〈

δρ2
i

〉
=

1

2N2
[ρi+1 + ρi−1 + 2ρi − v(pi+1)ρi+1 + v(pi−1)ρi−1] . (2.17)

The next step in the derivation is to take the L→∞ limit, keeping N
L

constant,

by making the replacements ρi → ρ(x) and pi → p(x), with x = ia and Taylor

expanding ρ(x ± a) to second order in a. Finally, space can be rescaled so that

a = 1. Under the transformation to continuous space, (2.16, 2.17) become

〈δρ〉 =
1

N

[
−∂ (v(p)ρ)

∂x
+

1

2

∂2ρ

∂x2

]
, (2.18)

〈
δρ2
〉

=
1

N2

[
2ρ− ∂ (v(p)ρ)

∂x
+

1

2

∂2ρ

∂x2

]
. (2.19)
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We next set the time-scale of the system so that δt = 1
N

[14]. This results in a

Langevin equation for the density evolution

∂ρ

∂t
= −∂ (ρv(p))

∂x
+

1

2

∂2ρ

∂x2
+

√
2

N

√
ρ− 1

2

∂ (ρv(p))

∂x
+

1

4

∂2ρ

∂x2
ξρ(x, t) (2.20)

where ξρ(x, t) is delta-correlated in time and space.

The number of particles in the system is fixed, therefore we should expect (2.20)

to have a conservation form, i.e.

∂ρ

∂t
= −∂F (ρ, p, x, t)

∂x
(2.21)

for some function F . While the first two deterministic terms in (2.20) exhibit

this behaviour, it is not seen in the stochastic term. The lack of a conservative

form for the stochastic term is a consequence of the assumption that the densities

on neighbouring sites are uncorrelated. One potential fix is to assume that the

white noise function ξρ does not have a delta-correlation in space. Introducing a

non-delta-correlated noise function adds significant complexities to our equation,

and finding a useful matrix solution to (2.13) is more difficult.

Another approach, and the one we take here, is to assume that the noise does

not have a strong effect on the density through Eq. (2.20). In the N → ∞
limit, the ratio

a
(2)
ρρ

a
(1)
ρ

∼ N−1 → 0. Therefore, the second jump moment of density

is negligible in the Fokker-Planck equation in the thermodynamic limit, and we

ignore it in the Langevin equation also. Although the typical size for many flocks

has N = O(100), this will be sufficient for the stochastic term in (2.20) to be

negligible compared to the deterministic term.

When the assumption that the stochastic term is negligible is included, we arrive

at the following equation for the evolution of density in the system

∂ρ

∂t
= −∂ (ρv(p))

∂x
+

1

2

∂2ρ

∂x2
. (2.22)

Therefore, the density of our system evolves in time according to an advective

term with variable velocity plus a diffusive term with constant diffusion. In order

for a dense flock to form in the ordered state, the advection must overcome the

constant diffusion of particles in some way. In the paper this model is based on,

O’Loan and Evans [82] note this diffusive behaviour and that the flock is more

compact after a change in direction, theorising that the changes in orientation
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are responsible for maintaining the structural integrity of the flock.

2.2.3 The magnetisation equation

The derivation of the Langevin equation for the magnetisation is more challenging

than for density. While we can assume here that the correlations between

magnetisation on neighbouring sites is also negligible, the assumption that the

magnetisation and density at the same site i are uncorrelated is highly unlikely

to be justifiable as both depend on the number of particles on a site. Thus we

are unable to use magnetisation as one of the variables in the Kramers-Moyal

expansion as in Section 2.2.1.

Instead, we will use the polarisation, defined as in (2.11). The polarisation is a

measure of the number of particles facing right vs left on a site, and has no direct

dependence on the total number of particles on that site in the large N limit. We

therefore assume, that the correlation between density and polarisation at a site

is negligible.

As the polarisation is defined in terms of the density and magnetisation, these

quantities can be used to obtain the jump moments of polarisation for this system.

To begin with, we obtain the first two jump moments for the magnetisation. In

a single time-step δt, the magnetisation updates as

δmi(t) = mi(t+ δt)−mi(t) ≈


1
N

with probability W+
i−1ρi−1 + ρ−i

− 1
N

with probability W−
i+1ρi+1 + ρ+

i

0 otherwise

(2.23)

where W±
i are defined as in (2.1) and ρ+

i and ρ−i represent the densities of right-

and left-facing particles respectively. These latter quantities relate to ρi and mi

as

ρ±i =
ρi ±mi

2
. (2.24)

Following the same procedure as in Section 2.2.2, the first and second jump

moments of magnetisation are

〈δmi〉 =
1

2N
[ρi−1 − ρi+1 + v(pi+1)ρi+1 + v(pi−1)ρi−1 − 2mi] , (2.25)〈

δm2
i

〉
=

1

2N2
[ρi−1 + ρi+1 − v(pi+1)ρi+1 + v(pi−1)ρi−1 + 2ρi] , (2.26)
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which, in the continuous limit and keeping terms up to second order, become

〈δm〉 =
1

N

[
ρv(p)−m− ∂ρ

∂x
+

1

2

∂2 (ρv(p))

∂x2

]
, (2.27)

〈
δm2

〉
=

2

N2

[
ρ− 1

2

∂ (ρv(p))

∂x
+

1

4

∂2ρ

∂x2

]
=
〈
δρ2
〉
. (2.28)

Next, we examine how the jump moments of p change with m. The change in p

in a single time-step is

δp = p(t+ δt)− p(t) =
m(t+ δt)

ρ(t+ δt)
− m(t)

ρ(t)
=
m(t) + δm

ρ(t) + δρ
− m(t)

ρ(t)
. (2.29)

Assuming that δm and δρ are small compared to m and ρ respectively (true in

the large N expansion), the first fraction can be expanded in powers of δm and

δρ to get

δp =
m

ρ

[
δm

m
− δρ

ρ
+O

((
δm

m

)2

,
δmδρ

mρ
,

(
δρ

ρ

)2
)]

(2.30)

Dropping powers of δm
m

and δρ
ρ

greater than one, the first two jump moments of

p become (using the transformations δm = ρδp + pδρ and 〈δpδρ〉 = 〈δp〉 〈δρ〉 as

we have assumed that p and ρ are uncorrelated)

〈δp〉 =
〈δm〉 − p 〈δρ〉

ρ
(2.31)

=
1

N

[
v(p)− p− 1

ρ

∂ρ

∂x
+

1

2ρ

∂2(ρv(p))

∂x2
− p

ρ

(
−∂ (v(p)ρ)

∂x
+

1

2

∂2ρ

∂x2

)]
,

〈
δp2
〉

=
〈δm2〉 − p 〈δmδρ〉+ p2 〈δρ2〉

ρ2

=
〈δρ2〉 (1 + p2)− p (ρ 〈δpδρ〉+ p 〈δρ2〉)

ρ2

=
(
1− p2

) 〈δρ2〉
ρ2
− p

ρ
〈δp〉 〈δρ〉

=
2

N2ρ

(
1− p2

)
+O (∂xρ, ∂xp) . (2.32)

In regions of the system where the prefactor in (2.32) is sufficiently large to

contribute to ∂p
∂t

, the derivative terms are negligible compared to the density at
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those sites. Thus, these terms do not contribute significantly to the dynamics of

the system, and we choose to suppress them in the following equations.

The jump moments of p give a Langevin equation for the behaviour of p

∂p

∂t
= v(p)− p− 1

ρ

∂ρ

∂x
+

1

2ρ

∂2(ρv(p))

∂x2
− p

ρ

∂ρ

∂t
+

√
2

Nρ

√
1− p2 ξp(x, t). (2.33)

Using Itô’s lemma [89], we can transform this into an equation for the

magnetisation as

∂m

∂t
= ρv(p)−m− ∂ρ

∂x
+

1

2

∂2(ρv(p))

∂x2
+

√
2

Nρ

√
ρ2 −m2 ξ(x, t) (2.34)

where ξ(x, t) = ξp(x, t), but we have dropped the subscript in the noise function.

2.2.4 Choice of stochastic variable

One key assumption made in Section 2.2.3 is that the correlation between ρ and

p on a single site is negligible. If instead, the correlation between ρ and m was

negligible, what effect would this have? Following the same procedure for above

using m as one of the stochastic variables, we get the following equation for the

evolution of magnetisation,

∂m

∂t
= ρv −m− ∂ρ

∂x
+

1

2

∂2(vρ)

∂x2
+

√
2ρ

N
ξ(x, t), (2.35)

while the density evolution (2.22) remains the same, due to a lack of a stochastic

term. Notice that although the deterministic term is identical to (2.34), the

stochastic prefactor is missing a multiplicative term,
√

1− p2. If there are any

differences in behaviour between simulations of the two sets of equations, it will

be due to this factor. A similar factor is seen in some voter models [1, 40, 41, 98]

and reaction-diffusion processes [6].

To determine which of these is a more accurate description of the dynamics of

the system, we must consider what happens in the ABM in a single time-step.

We start by considering a single site i that has n particles on it with directions

vα for α ∈ {1, ..., n}. Next, we choose a particle β at random to move from this

site to a neighbouring site. If vα = 1 for all particles on site i, vβ must have the

value 1 and the change in the magnetisation does not depend on which particle
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is chosen, i.e. the change in the state of the system at that site is deterministic.

The same argument can be made if vα = −1 for all particles on site i. This would

indicate that, for sites where |mi| = ρi, any change in mi (and hence pi) should

be deterministic only.

Looking again at (2.34, 2.35), only the former is purely deterministic under this

condition, while the latter has the same stochastic strength regardless of the

magnitude of m. This would suggest that (2.35) does not accurately represent

the dynamics of the system while (2.34) displays behaviour consistent with the

ABM. This alone is not enough evidence to show that (2.22, 2.34) accurately

translate the ABM to a set of continuum equations, something we can accomplish

by direct numerical integration of these equations instead.

2.3 Numerical integration

To investigate the behaviour of the system described by the stochastic field

equations (2.22) and (2.34), we numerically integrate them. In the deterministic

terms, we follow the standard approach of replacing space and time derivatives

with finite differences: throughout this work we use δx = 1 and δt = 0.01 (hence

N = 100). The standard (Euler-Maruyama) method for handling the stochastic

term, wherein one replaces the combination ξ(x, t)
√
δt with a Gaussian random

variable with zero mean and variance δt is not well adapted to the problem

at hand. The issue with the Euler-Maruyama approach is that as p → ±1,

unphysical values of the polarization (i.e., |p| > 1) can be obtained with a

sufficiently large random number.

2.3.1 Truncating the noise term

One method to prevent unphysical values of polarisation arising, used by Dickman

[39] to numerically integrate trajectories of directed percolation equations,

involves truncating the Gaussian noise term such that |ξ(x, t)| never exceeds a

given value ξmax. This method also requires that the density and polarisation are

discretised to integer numbers of ρmin and pmin respectively. The value of pmin

must satisfy pmin = 1
n

for some integer n, while the value of ρmin must be such
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that the maximum stochastic jump can never cause |p| > 1. Calculating this, we

arrive at a value of ρmin ≥ 2ξ2max(2−pmin)δt
Npmin

.

The Dickman method often results in many time-steps that don’t lead to a change

in p that is an integer multiple of pmin. To overcome this, two new variables are

introduced, ψρ and ψp. Rather than integrating the discretised ρ and p directly,

the Dickman approach involves integrating ψρ and ψp and storing the integer

multiples of ρmin and pmin of these variables as ρ and p. While we expect this

method to work for our system of equations (2.22, 2.34), we instead use a more

efficient but less general method of removing the possibility of unphysical values

of polarisation p

We first notice that the noise term is of the voter type i.e. ∝
√

1− p2 [40, 41, 98]

(also characteristic of the Wright-Fisher model [5, 34]), causing the noise to vanish

at the boundary points p = ±1. A crucial feature of the dynamics is that p must

be constrained to the interval −1 ≤ p ≤ 1 by the definition of p. Allowing p to

have magnitude greater than 1 is both unphysical and is incompatible with the

numerical scheme, as m at the following time-step would evaluate to a complex

value.

In the following, we compare results using two strategies to remove the ability

for unphysical values to appear. The first, and more straightforward strategy,

is to truncate p to the physical range whenever it has greater magnitude than

physically allowable. This approach is dangerous, as it may tend towards higher

polarisation than seen in the ABM. The more sophisticated strategy, inspired by

the approach of Michaud [74], is to replace the Gaussian random variable in the

numerical integration scheme with a variable drawn from a distribution that is

defined only over the physical range, and has the required mean and variance.

More precisely, this second approach involves integrating the stochastic and

deterministic parts of the equation separately using Hamiltonian operator-

splitting on the Fokker-Planck equation equivalent to (2.34) [42, 76]. If the

Fokker-Planck equation is written in the following form

∂tP (w, t) = HP (w, t) =⇒ P (w, t) = eH(t−t0)P (w, t0), (2.36)

where H = Hdet + Hstoc is a Hamiltonian operator defined as the sum of a

deterministic Hamiltonian and a stochastic Hamiltonian, then H can be split
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across two exponential functions as

P (w, t) = eHdet(t−t0)eHstoc(t−t0)P (w, t0), (2.37)

with corrections of order [Hdet,Hstoc](t− t0)2 where [A,B] is the commutator of

the operators A and B (this is a consequence of the Baker–Campbell–Hausdorff

formula [57]). This is equivalent to performing the operations sequentially, i.e.

each time-step δt = t − t0 is separated into two processes; the probability

distribution is updated to consider only the stochastic contribution to the

evolution of ρ and m, then the deterministic change in these variables is calculated

based on the intermediate values obtained from the stochastic step, ρint and mint.

In practice, ρint = ρ(t0) as the stochastic contribution in (2.22) has been dropped.

The method above involves sampling an intermediate value of p, pint, from the

probability distribution obtained by solving

∂tP (p, t) = HstocP =
1

Nρ
∂pp
[
(1− p2)P

]
. (2.38)

By transforming to another variable y = 1
2
(1+p), (2.38) is shown to be equivalent

to a Wright-Fisher equation [65] that has a known solution, an infinite series of

hypergeometric functions,

P (y, t|y0, t0) = y0(1− y0)
∞∑
i=1

i(i+ 1)(2i+ 1)F (1− i, i+ 2, 2, y0)

×F (1− i, i+ 2, 2, y)e−
i(i+1)
N

(t−t0). (2.39)

Unlike other forms of noise with a known distribution such as directed percolation

[42], the beta distribution cannot be written in a form that allows it to be easily

sampled. However, it can be shown (see Appendix B) that, given an initial

condition y0, the mean and variance of this distribution after a time δt are given

by µ = y0 and

σ2 = y0(1− y0)

(
1− exp

[
− 2

Nρ
δt

])
. (2.40)

An appropriate distribution to sample y from is the Beta distribution, Pα,β(y) ∝
yα(1 − y)β for y ∈ [0, 1] (see Fig. 2.5), with the parameters α and β taking the

values

α = µ

(
µ(1− µ)

σ2
− 1

)
=

y0

exp
[

2
Nρ
δt
]
− 1

, (2.41)
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Figure 2.5 Plots of Betaα,β(y) for various α and β. We have kept α+β constant
for comparison. This relates to a constant density (here, ρ ≈ 2

N ).

β = (1− µ)

(
µ(1− µ)

σ2
− 1

)
=

1− y0

exp
[

2
Nρ
δt
]
− 1

. (2.42)

This is a natural distribution to choose because it is defined only for a finite

interval and has an independent mean and variance. Since we have already

truncated the Kramers-Moyal expansion at second order to obtain the stochastic

field equations (2.22) and (2.34), we do not expect differences between the Beta

and Gaussian distributions in the third and higher moments to be physically

relevant for small δt. Once the intermediate value pint = (2y − 1) is sampled, we

then integrate the deterministic part of (2.34) numerically using this intermediate

value in the usual Euler method with forward time and centred space derivatives,

i.e.

mi(t+ δt)−mi(t) =
δt

2N
[(1 + v(pi−1(t)))(1− pint)ρi−1(t)

−(1− v(pi+1(t)))(1 + pint)ρi+1(t)] . (2.43)

Note in the above equation the use of intermediate values of p for site i only, not

including the intermediate values for neighbouring sites. This is a safe assumption

to make if the values of p at neighbouring sites are uncorrelated. This assumption
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Figure 2.6 The order parameter of the system ϕ vs the noise strength η for three
different implementations of the continuum equations and compared
with the ABM (dots). In all of these implementations, we had N =
L = 100, β = 2.0, δt = 1

N = 0.01, T = 50000.

has already been made in the derivation of (2.34), so we make use of it again here

to increase computational performance.

2.3.2 Comparison of continuum equations with agent-based

model

In the preceding sections, we have made some claims about which numerical

implementations of the continuum model give results that match the behaviour

of the ABM and which will not. These claims are based on Fig. 2.6, which

is a section of the phase diagram of the system in which we plot the order

parameter of the system, ϕ (2.5), against the control parameter η. Three different

numerical integrations of continuum equations are considered here against a single

implementation of the ABM.

The first set of continuum equations are given by (2.22, 2.35) and the Euler-
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Maruyama discretisation of the noise (beta-type noise will not work for this model

as the multiplicative prefactor does not vanish for ρ2 = m2). As can be seen from

Fig. 2.6 (light blue line, labelled φ), no significant order is observed for any value

of η. This supports the assumption that correlations between ρ and m at the

same site are not negligible, hence (2.22, 2.35) are a poor choice of continuum

equations to describe the system in Section 2.1.

The implementations that do allow an ordered flock to exist in the low noise

regime are both implementations of (2.22, 2.34), with the difference between

them being the choice of discretisation of the stochastic term, as explained in

Section 2.3. Within the margins of error, there is quantitative agreement between

the behaviour of the ABM (blue dots) and the continuum equations with beta-

type noise (green line, labelled θ − β). We take this as strong support for the

replacement of the white noise ξ(x, t) with the operator splitting method involving

sampling from a beta distribution.

The red line in Fig. 2.4 (labelled θ−Gaussian) indicates the values of the order

parameter if truncated white noise is used instead. The higher value of the order

parameter than for the beta-type noise suggests that truncating out-of-bounds

values to the closest physical value acts as a bias towards greater order. We

expect that in the δt → 0 limit, this discrepancy will vanish. Fig. 2.7 shows

sample space-time trajectories for the system using a beta-type and truncated

Gaussian noise (left and right panels respectively).

Another way to demonstrate that our SDEs (2.22, 2.34) accurately depict the

ABM system in Section 2.1 would be by demonstrating that the polarisation

correlations align between the two. These polarisation correlation functions are

defined as

CABM(r) =
1

LT

∫ T

0

dt
N∑

α,β=1

[
vα(t)vβ(t)− v̄(t)2

]
δ (r − |rα − rβ|) , (2.44)

CSDE(r) =
1

LT

∫ T

0

dt

∫ L

0

[
m(x, t)m(x+ r, t)− m̄(t)2

]
dx, (2.45)

where v̄(t) and m̄(t) are the mean velocity and mean magnetisation at time t

respectively. We don’t study these functions in detail in this chapter, as we

have demonstrated the agreement between the ABM and SDE through the order
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Figure 2.7 Sample space-time trajectories for (2.22, 2.34) using beta noise (left)
and truncated Gaussian noise (right). Both trajectories show the
existence of a phase separated ordered flock. For the same system
parameters (N = L = 2000, β = 2, η = 0.02), the flock in the
truncated Gaussian model is more dense, suggesting this treatment
of the noise gives rise to greater order. This can be seen more clearly
in Fig. 2.6

parameter, but examining the graphs of these functions against inter-particle

distance r could be used to further demonstrate this agreement.

2.4 Interpretation of the continuum equations

To facilitate comparison of (2.22, 2.34) to other equations for similar systems both

in 1d and higher dimensional analogues, we will discuss the physical interpretation

of the terms in these equations.

2.4.1 Density equation

The most crucial thing to note about (2.22) is that, as previously mentioned, it

satisfies global conservation of mass
(∫ L

0
ρ(x, t)dx = 1

)
, and hence has the form

of a conservation equation with a particle current given by

Jρ(x, t) = vρ− 1

2
∂xρ. (2.46)

This was made possible by removing the stochastic term in Section 2.2.2. Given

that the matrix decomposition of the second jump moments (2.12, 2.13) is not
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unique, we cannot say for certain that a conservation form of the stochastic term

cannot be found, in a method similar to that of Dean [38] described in Section

1.3.2. It is also possible that careful manipulation of the noise function ξρ(x, t),

akin to a reversal of the process in [63], could generate a conserved noise term.

Additionally, the presence of a second order spatial derivative in (2.22) suggests

that particle diffusion should be observed in the system. In Fig. 2.1, this diffusion

can be seen in the ordered state (left image). The spatial dimensions of the

flock grow with time, increasing the likelihood of a “flip”, whereupon the flock

alternates direction [82]. This diffusion separates (2.22) from the traditional

Navier-Stokes continuity equation [108] or the Toner-Tu equations [112], both of

which contain an advective term only. The presence of a diffusive term reflects

the non-fixed speed of particles in the ABM, wherein particles may move more

or less than a single lattice step in a time-step ∆t = 1.

2.4.2 Magnetisation equation

Active matter systems generally involve an input of energy into the system,

usually in the form of additional forces. These will affect the momentum w = vρ,

which in turn affects the magnetisation by altering the direction particles are

facing. As expected, (2.34) cannot be written in the form of a conservation

equation due to the presence of a non-differential deterministic term vρ−m and

the presence of a non-zero non-differential stochastic term. Although it is feasible

that the stochastic term could be written in conserved form by manipulating the

noise function ξ(x, t), the deterministic term cannot be rearranged into a spatial

derivative of some current Jm provided η, β 6= 0.

The deterministic terms all linearly scale with density, as does the magnetisation

itself. The first two terms reflect the local magnetisation updating by the change

due to the momentum and is non-linear in m provided β 6= 0. The third term is

a density gradient, which represents a pressure term similar to that seen in other

hydrodynamic equations [23, 112]. The fourth deterministic term is momentum

diffusion and is included for the same reasons as the diffusion term in the density

equation (2.22).

The key to replicating the flocking behaviour in stochastic differential equations

comes through the stochastic prefactor in (2.34),
√

2
Nρ

(ρ2 −m2). Unlike the

deterministic terms that scale linearly with ρ, this term scales as ρ
1
2 . On sparsely
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populated sites, such as those in the disordered state or outside the flock in

the ordered state, the stochastic and deterministic terms of (2.34) are of similar

magnitude. However, for densely populated sites where ρ � 1
N

, such as those

near the centre of the flock in the ordered state, only the deterministic terms play

a role in the time evolution of the polarisation due to the N−
1
2 prefactor in the

stochastic term.

The continuum equations (2.22, 2.34) work together to display the alternating

state behaviour observed in the trajectories of the ABM. As the flock propagates,

it diffuses, spreading out slowly. This decreases the density throughout the flock,

especially at the nose and tail. When density decreases, the stochastic effects in

the nose and tail cause particles to change direction. In the tail, this results in a

decrease in total flock density as particles leave the condensate to join the diffuse

disorder in the rest of the system.

The change in direction in the nose, on the other hand, is responsible for the

existence of the alternating state. Once sufficient particles have turned around

in the sparse nose of the flock, the remainder of the flock becomes unstable

to a change in direction. Fig. 2.8 shows an implementation of the continuum

model (2.22, 2.34) where the stochastic effects have been removed. A small pulse

(equivalent to a single particle) starts on the right hand side of the system at

t = 3000 travelling left. When it impacts on the flock, it is sufficient to cause

the flock to flip through deterministic effects only. This suggests that a single

particle in the nose of the flock stochastically changing direction and persisting

in that new direction for long enough is sufficient to cause a macroscopic change

in direction in the flock.

2.5 Minimal model

Now that a set of stochastic differential equations have been derived for this

system, one can ask how much of this structure is necessary for the desired

behaviour to be observed and why. We have previously noted that the β → ∞
limit has been studied [82], which can be thought of as the non-linear limit of the

interactions. Instead, let’s examine the β → 0 limit.

Fig 2.9 shows that when β = 0, the order parameter is small for all values of the

noise strength η, showing that no flocking is possible in this limit. The β → 0 limit
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Figure 2.8 A purely deterministic version of the agent-based model with a small
pulse sent in from the right. This pulse is enough to turn the flock
around, demonstrating that the flock is unstable to a sufficiently
persistent fluctuation in the nose.
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Figure 2.9 When β = 0, all values of η have low order parameter ϕ. Other
parameters: N = L = 1000, T = 90000.

is equivalent to the particle choosing its preferred direction based on a random

sample of a single other particle in its neighbourhood, akin to a simple voter

model [40, 41]. To understand why flocking cannot occur in the system in this

limit, we consider how the model with non-zero β changes when an additional

interaction is added to the system.

We add in a “run-and-tumble” behaviour [70, 99, 102] with tumble rate η to the

ABM defined in Section 2.1. At each time-step a particle either undergoes run-

and-tumble behaviour with probability r or alignment with probability 1−r. In a

system with no maximum site occupancy, tumbling particles do not spontaneously

order [18]. Therefore, we expect that the r → 1 limit gives a disordered system

under any non-zero value of η. The resulting equations using the Kramers-Moyal

approximation are found to be identical to (2.22, 2.34), with one minor change

to the exact form of the mean velocity v(p) (the derivation may be found in

Appendix C). The updated v(p) is now

ṽ(p) = (1− 2η)

[
(1− r)tanh βp

tanh β
+ rp

]
. (2.47)

In the r → 1 limit, v has become linear with the same form as the β → 0 limit.

Therefore, the stochastic equations resulting from a non-flocking interaction (run-

and-tumble) are the same as those for a linear form of the alignment interaction

or a simple voter-type interaction.
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Figure 2.10 Space-time trajectories of the field equations (2.22, 2.34) for a
linear interaction (left) (2.47) and a third order interaction (right)
(2.48). Parameters are N = L = 2000, β = 2, η = 0.02, r = 1.

Including the next order term in the expansion of tanh and rescaling appropriately

is sufficient for the flocking to occur (see Fig. 2.10), i.e.

vmin(p) =
3

2
(1− 2η)

(
p− p3

3

)
. (2.48)

The form of (2.48) matches the expression needed for a particle sampling a random

set of three neighbours to determine the preferred direction [92]. This supports

the findings of Chatterjee et al. [32], where is it shown that one- and two-body

interactions are insufficient for an ordered flocking state to occur in 1d. Run-

and-tumble without volume exclusion is a one-body interaction, while a simple

voter-type interaction is a two-body interaction.

2.6 Modifications to the alignment rule

We return to the agent-based model for a discussion of the alignment rule. The

continuum equations describing the system (2.22, 2.34) were derived with no

assumptions made about the nature of the alignment function v, other than the

densities and polarisations on neighbouring sites were uncorrelated. Therefore,

it stands to reason that modifications to this function should produce the same

set of equations, whose behaviour we can expect to match the behaviour in their

corresponding ABM. In this section, we discuss a number of alterations to v that

reflect certain physical systems and observe their effects on the ABM.
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Raymond & Evans [92] included repulsive and attractive effects in v, based on

work by Reynolds [93] that proposed that such effects should be included to

observe the breadth of movements observed in flocks of birds. While these may

be necessary for the existence of coherent flocking in higher dimensional systems

that Reynolds’ work focussed on (in particular in keeping the flocks from diffusing

throughout the system), there are no indications that they are needed in 1d.

However, they would be straightforward to include by modifying the form of v.

Raymond & Evans work is a comprehensive study of the new behaviours observed

when these factors are included, so we will not explore it further here.

2.6.1 Particle self-interaction - persistence or uncertainty

One major question with ABMs such as the one in this work is how particles

should behave in the absence of neighbours with whom to interact. In the model

from this chapter, for example, if a particle has no other particles on its site, it will

consider the direction it is moving to be the preferred direction for its move. We

can conceive of a more uncertain particle that, in the absence of other particles

with whom to align, performs an unbiased random walk, hoping to meet another

particle in doing so. This behaviour can be extended such that the particle will

always exclude itself from its own neighbourhood. We refer to particles with this

quality as “uncertain”, while particles that always include themselves in their

neighbourhood are termed “persistent”.

The change from a persistent to uncertain particle is straightforward to implement

in the ABM where particles can be distinguished easily. In the continuum

equations, implementing this change is more challenging. If we are not including

the particle in its own neighbourhood, we must consider different transition

probabilities for particles facing right and left, denoted

W±,r,l
α =

1

2
(1± vr,l(pα, ρα)) , (2.49)

where, if we use the minimal velocity function from Section 2.5, the right/left-

facing mean velocity is

vr,l(p, ρ) =
3(1− 2η)

2

(
pr,l(p, ρ)− pr,l(p, ρ)3

3

)
(2.50)
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with an effective polarisation given by

pr,l(p, ρ) =
Npρ− r + l

Nρ− 1
Θ (Nρ− 1) (2.51)

where r, l = 1 for particles facing right or left respectively and are zero otherwise.

This changes the transition rates as

W±
i ρi = W±,r

i ρ+
i +W±,l

i ρ−i = ρi
1

2
[1± vuncertain(pi, ρi)] (2.52)

with the effective uncertain mean velocity becoming

vuncertain(p, ρ) = (1− 2η)p

(
1 +

1− p2

2
∆(ρ)

)
Θ (Nρ− 1) (2.53)

with ∆(ρ) =
ρ2(ρ− 3

N
)

(ρ− 1
N

)3
as the change due to increased uncertainty for Nρ > 1 and

whose form can be seen in Fig 2.11. For ρ > 5
N

, ∆ ∼ 1 and the uncertain particle’s

behaviour approaches that of the persistent particle. On sites where 1
N
< ρ < 3

N
,

uncertainty actively opposes the polarisation to arrive at the expected velocity.

As the turning of the flock is determined by the flipping rate of particles at the

nose (where particle density is comparatively low), and uncertainty decreases the

mean velocity compared to persistence, we expect uncertainty to lead to lower

order or perhaps only a disordered state.

This choice of particle persistence or uncertainty can be combined with different

definitions of what constitutes a particle’s neighbourhood to give rise to multiple

models. Regardless of the details of these neighbourhood definitions, we expect

uncertain particles to exhibit lesser order than their persistent counterparts.

2.6.2 Alternative neighbourhood definitions

While two particles α and β are considered neighbours in the model in this

chapter only if they are on the same lattice site, previous works from O’Loan

& Evans [82] and Raymond & Evans [92] included particles as neighbours if the

distance between them was no larger than a single lattice site. Although the same

qualitative behaviour is observed in those models as in the ABM from Section

2.1, it is worth examining what effects, if any, the changes to the neighbourhood

definition have on the order in the system. Examples of other changes to the

neighbourhood are discussed in Section 1.2.4.
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Figure 2.11 The multiplicative change in p due to uncertainty instead of
directional persistence. No difference is made when ∆ = 1, thus
the low density regime Nρ < 5 has a large change in the mean
velocity v due to particle uncertainty.

Figure 2.12 A measure of the order parameter ϕ (2.5) against noise strength
η for various neighbourhood definitions. The dots denote models
where particles count themselves as their own neighbour, even if
they would not normally meet the criteria for inclusion, while the
crosses are for models where particles exclude themselves from their
own neighbourhood, even if they would normally meet the criteria
for inclusion.
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In Fig. 2.12, the order parameter ϕ (2.5) is plotted against noise strength η

for a variety of neighbourhood definitions. Different coloured points denote a

different neighbourhood for the particles, while dots denote models with persistent

particles and crosses denote those with uncertain particles (as in Section 2.6.1).

In this figure, persistence and uncertainty trumps the usual neighbourhood

definition, i.e. if an uncertain particle has a property that would usually count it

among its own neighbours, it does not, while if a persistent particle does not have

such a property, it includes itself nevertheless (e.g. An uncertain particle will not

count itself for the “on-site” interaction and a persistent particle will count itself

for the “neighbours only’ interaction).

The neighbourhood definitions are defined as follows: “on-site” is the neigh-

bourhood definition for much of this chapter, where a particle on site i uses

the polarisation on site i (including or excluding themselves) to determine the

preferred direction; “neighbours” is where a particle on site i uses polarisation on

sites i− 1 and i+ 1 according to (2.54); and “looking ahead” is where a particle

on site i will look at polarisation on site i + vα, where vα is its direction at the

start of the time-step. This last neighbourhood is equivalent to a “sight”-type

interaction, where the range of a particle’s sight is a single lattice site.

The other neighbourhood definitions in Fig. 2.12 are combinations of those in the

previous paragraph. The polarisation for neighbourhoods spanning multiple sites

is given by ratio of total magnetisation to total density in the neighbourhood, i.e.

p =

∑
i∈neighbourhoodmi∑
i∈neighbourhood ρi

. (2.54)

Fig. 2.12 shows the behaviour of multiple models, as denoted in the legend.

This figure tells us a few things, with the key results summarised in Table 2.1.

Crucially, all the models that include explicit persistence will exhibit order to

some degree for sufficiently low η. Additionally, those neighbourhoods that span

multiple sites including the particle’s own site will exhibit order even if particles

are uncertain. These data suggest the degree of order for persistent models may

depend on the number of sites sampled over, although the data does not exist to

demonstrate this conclusively.
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Persisting Uncertain
On-site Flocking observed No flocking observed
On-site + neighbours Flocking observed Flocking observed
Neighbours only Flocking observed No flocking observed
Ahead only Flocking observed No flocking observed
On-site + Ahead Flocking observed Flocking observed

Table 2.1 Summarised behaviour of different ABMs according to Fig. 2.12.

2.7 Summary

In this chapter, we have explored a family of one-dimensional lattice-based

agent-based models of self-propelled particles undergoing collective motion and

equivalent continuum equation models. We derived the continuum models by

using the Kramers-Moyal approximation [66, 78, 115] on the master equation

describing the agent-based model and truncating the expansion at second-order.

This gave a set of Langevin equations that generated trajectories of density and

polarisation matching the flocking behaviour observed in the agent-based model.

A key assumption in the derivation was that density and polarisation are weakly

correlated in space and with one another. This assumption allowed us to

diagonalise the diffusion matrix in the Fokker-Planck equation obtained by the

Kramers-Moyal approximation. We showed that assuming a different set of

variables were uncorrelated gave a different Langevin equation, which, when

numerically integrated, did not allow for a coherent flock to form. In this way,

we showed that the choice of stochastic variable used in the Kramers-Moyal

expansion can greatly change the final behaviour of the continuum equations. We

also explored alternative methods of numerically integrating continuum equations

of this form to accurately replicate the behaviour of the agent-based models.

Given a general set of continuum equations for a class of one-dimensional lattice-

based agent-based models, we then examined other members of that class by

altering the inter-particle interaction function. By comparing these interactive

particle models with non-interactive particle models, we obtained the minimal

interaction necessary for collective motion to exist in these systems. We finished

by discussing additional interactions based on physical processes and how they

could be incorporated into these models.

56



Chapter 3

Agent-based flocking in two

dimensions on a lattice

In Section 1.2.1, we introduced the Vicsek class of self-propelled particle (SPP)

agent-based models (ABMs). Vicsek-class models in two dimensions (hereafter

2d) have been studied extensively, from SPPs aligning to their neighbourhood

average direction [31, 116], to particles acting as moving Ising spins [106], to

particles aligning their velocity to their internal orientation or “spin” [26]. Much

focus in recent years has been on the presence or absence of “banding” [104–106]

in continuous space (off-lattice) systems, which refers to regions of high density

and high polarisation (“bands”) travelling through the system, typically parallel

to one of the system boundaries (see Fig. 1.2). These may exist as a single large

band or as many individual bands, depending on the interaction type, but the

key features are phase-separation between highly ordered, high density and low

order, low density regions, and the lack of a macroscopic change in the direction

of the band as time increases. Although individual particles may change direction

within the band, the structure of the band and overall direction of motion are

linearly stable to these fluctuations [104].

The fixed-radius interaction zone used by Vicsek et al. [116] will typically lead to

bands forming in the ordered state of 2d systems [31], but macroscopic turning

of a flock in continuous space can be introduced by changing the definition of

a particle’s neighbours. In Section 1.2.4, we introduced a variable interaction

radius such that each particle has a fixed number of neighbours and showed

that it can enable an ordered and directional group of particles (hereafter, flock)

57



travelling in a continuous space 2d system to turn [4, 16, 88]. This is known

as a “topological” or “metric-free” measure of particle neighbourhoods, as the

neighbourhood network is unchanged if the system is scaled up or down, changing

the mean distance between particles. This does not imply that the system

behaviour will be identical for two different densities, as there remains an inherent

length-scale in the particle velocity which has not been removed. However,

unless the velocity or time between reorientations are sufficiently large that the

neighbourhood network changes often, similar qualitative behaviour should be

observed in topological systems with the same density but different sizes.

It is unclear, however, if macroscopic turning can be introduced in the same way

in a system on a 2d lattice, or if a topological interaction is the only way to obtain

a flock capable of turning in such a system. Our aim in this chapter is to obtain

a clearer understanding of the factors that can give rise to a flock being able to

undergo a macroscopic turn in the absence of external forces. To this end, we

explore the behaviour of a number of related SPP ABMs in 2d, primarily varying

the method used by particles to reorient towards their neighbours.

In Section 3.1, we introduce two lattice-based models of interacting SPPs on a 2d

lattice. One model is a simplification of a lattice-gas cellular automata (LGCA)

model, while the other is an extension of our model from Section 2.1 into 2d. To

facilitate comparison, these models differ only through the probability a particle

will turn based on the direction of the local “magnetisation” field. We show that

this difference is sufficient for different behaviours to be observed in the ordered

state. Demonstrating the existence of turning in a model with a metric interaction

disproves an assumption in the literature that asymmetric interactions between

particles are required for this turning to occur (see Section 1.2.4 for more details).

We next replace the metric neighbourhood definition with a topological one as

described above to both models and observe how this change affects the behaviour

in the ordered state of both models in Section 3.2. We demonstrate that one of

our models is incapable of turning with a metric neighbourhood and is capable of

turning in a topological neighbourhood, while the other model exhibits turning

behaviour regardless of the neighbourhood definition.

Finally, we inspect the behaviour of each of these models in the ordered state

and explore the robustness of their behaviours in Section 3.3. We demonstrate

in this section that the qualitative behaviours of our lattice-based models should

not differ from the more traditional models explored in Section 1.2 as a result of
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the lattice or the implementation of stochastic uncertainty. As these models differ

very slightly in their implementation and demonstrate behaviour that is robust

to changes to the implementation of these models, we are led towards analysing

the stochastic differential equations associated with each model to understand

this difference, which is the topic of Chapter 4.

3.1 Agent-based models

We begin by introducing two lattice-based models for SPPs in 2d. The first,

based on the lattice-gas cellular automata (LGCA) family of models [58, 59, 79],

exhibits banding in the ordered phase, while the second, based on a 2d version of

the model from Chapter 2, produces an ordered phase that undergoes macroscopic

turning. These models differ only in the update rule for the velocity of particles,

where the probability is an exponential function of the local magnetisation field

for the first model and is a linear function of the local magnetisation field for the

second model. Hence, we term these models “exponentially-aligning” (EA) and

“linearly-aligning” (LA) respectively.

3.1.1 Exponentially aligning model (lattice-gas cellular

automata)

LGCA models typically consist of a spatial lattice of sites where each site has

a number of states with a given maximum occupancy (see Fig. 3.1). As some

of these states have an associated direction and each typically has a maximum

occupancy, we refer to them here as spin states as an analogy with quantum

systems. Each site usually consists of one spin state for each of the cardinal

directions of the lattice plus a fixed number of spin-zero states representing

particles with no velocity, termed “idle” states. The system evolves in time by

stochastically rearranging which spins particles have in each site, then particles

deterministically either move one lattice site in the direction of their spin, or

they remain stationary in the idle states if their spin is zero. The method used

to determine which spin state the particles move to is the key variable affecting

the behaviour of the system as a whole.

We focus here on a version of an LGCA model where the particles attempt to align

with one another, i.e. occupy corresponding spin states across different sites. Our
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Figure 3.1 Particles moving on a section of a lattice in an LGCA model. Note
that the direction of motion is determined by the spin state particles
occupy on the lattice site, with particles sitting in the centre spin
states remaining stationary. Sites can contain multiple particles,
while spin states within sites typically have a maximum occupancy
of 1.

model consists of N particles constrained to a square lattice with Lx × Ly sites,

lattice spacing a, and periodic boundary conditions. There are no idle states, and

the cardinal spin states (and hence sites) have no maximum occupancy. Although

the cardinal states in an LGCA model typically have maximum occupancy of 1,

for a sufficiently low density of particles we expect the probability that a spin

state has occupancy greater than one to be negligible.

Particles in our lattice-based LGCA model have an average velocity v0 and take

discrete angular values θα = nπ
2

with n ∈ {0, ..., 3}. The direction a particle faces

is equivalent to it sitting on the corresponding cardinal spin state. At a given

time t, each particle α ∈ {1, ..., N} has a position (site) rα(t) and an orientation

(spin) vα(t) = a cos θα(t)x̂ + a sin θα(t)ŷ. In what follows, we rescale the space

and time variables such that a = v0 = 1.

At each time-step δt = 1
N

, a single particle α is chosen. It then reorients (i.e.

chooses a new spin state within a lattice site, which may be the same spin it

previously had) and moves (i.e. changes site) in the direction of its updated

direction. The probability P (v|Mα(t)) that α will select a spin in the direction

v is a function of the total magnetisation Mα(t) in the neighbourhood of particle

α. The neighbourhood is the usual metric definition whereby particles within a

fixed radius R of particle α are considered to be its neighbours. Mathematically,
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the probability can be expressed as

P (v|Mα(t)) =
1

Zα(t)
exp [βv ·Mα(t)] δ (|v| − 1) . (3.1)

where β is a positive finite number proportional to the strength of the alignment

interaction and Zα(t) is the partition function for particle α at time t, given by

Zα(t) =
∑
v

exp [βv ·Mα(t)] δ (|v| − 1)

= 2 cosh βMα,x(t) + 2 cosh βMα,y(t). (3.2)

Due to the form of the probability equation, we call this model “exponentially-

aligning” (EA).

The total magnetisation of the neighbourhood of particle α, Mα(t), is both a

measure of the alignment strength near the chosen particle and an indication

of the flock’s preferred direction of motion near this point, and is given

mathematically as

Mα(t) = R (ηα(t))
N∑
γ=1

nαγvγ(t) (3.3)

where R (ηα(t)) is a 2 × 2 rotation matrix with angle ηα drawn from a uniform

distribution ηα ∈ [−η0π, η0π] (0 ≤ η0 < 1). ηα(t) represents the error α has in

calculating the preferred direction at time t, i.e. it is an intrinsic noise as defined

in Section 1.2.1. nαγ in Equation (3.3) is the neighbourhood matrix whose entries

are 1 if particles α and γ are neighbours, and are 0 otherwise. For the metric

neighbourhood in our EA model, nαγ can be simplified to

nαγ = Θ (R− |rα(t)− rγ(t)|) , (3.4)

where Θ(x) is the Heaviside function.

As β → 0, the system tends towards disorder and as β → ∞, the system tends

towards perfect alignment. Therefore, it is comparable to the inverse temperature

β of equilibrium statistical physics. As β acts as a control parameter for the

system, the intrinsic noise η is not strictly necessary here and we will set η0 = 0

in our EA model for the rest of this chapter.
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3.1.2 Linearly aligning model

We next turn to our other main model. To facilitate comparison between models,

the model in this section is similar in most respects to our EA model in Section

3.1.1. We consider N polar particles confined to an Lx × Ly square lattice with

spacing a = 1 and periodic boundary conditions. Each particle α has a position

rα(t) and a direction vα(t) = a cos θα(t)x̂ + a sin θα(t)ŷ. Akin to the ABM from

Section 2.1, the direction and position of a single particle α are updated in a

single time-step δt = 1
N

. The key difference between this alternative model

and the LGCA-based model comes through the probability P (v|Mα(r, t)) of α

choosing a new velocity v. Here, P (v|Mα(r, t)) takes the form

P (v|Mα(t)) =
1

Zα(t)
max {v ·Mα(t), 0} δ (|v| − 1) (3.5)

where the partition function Z becomes

Zα(t) = |Mα,x(t)|+ |Mα,y(t)|. (3.6)

Mα(t) again is the total magnetisation in the neighbourhood as defined in 3.3,

with the neighbourhood again defined by the disc of radius R about particle

α. Due to the form of the probability (3.5), we will refer to this model as our

“linearly-aligning” (LA) model.

Note that in the LA model, there is no prefactor β multiplying Mα(t). While we

could include one in the definition of P (v|Mα(r, t)), it would divide out due to

the partition function. Thus, we cannot set the intrinsic noise strength η0 to 0

here as in the EA model, as doing so would leave the system without a tunable

source of noise.

The probability P (v|Mα(r, t)) remaining unchanged when the magnetisation

Mα(r, t) is rescaled has an additional effect; the probability for each direction

is unchanged by a change in the number of particles in the neighbourhood or

the magnitude of the neighbourhood magnetisation, provided the angle of the

magnetisation is unchanged. As in the 1d model of Section 2.1 and unlike the 2d

EA model of Section 3.1.1, the probability of a particle choosing a new direction

depends only on the total neighbourhood polarisation angle, not on the density

of particles or their magnetisation. This is not a metric-free interaction, however,

as if the system is sufficiently dilute or the interaction radius R sufficiently small
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Figure 3.2 Order parameter of selected trajectories of the ABM models. Order
is present in each trajectory, as evidenced by the magnitude of
the order parameter being close to 1. The LA model with metric
interactions exhibits a change in orientation of the ordered flock,
while the EA model does not. The average magnitude of the order
parameter is lower for the LA model than the EA model. N = Lx =
Ly = 100, β = 0.75, η = 0.02.

that the probability of two particles interacting is rare, the system tends towards

a system of non-interacting persistent random walkers on a lattice and global

order does not emerge.

3.1.3 Ordered phase behaviour

To study the degree of order in the ABMs above, we examine the mean velocity

of the particles, defined as

ϕ = |〈v̄(t)〉| =

∣∣∣∣∣
〈

1

N

N∑
α=1

vα(t)

〉∣∣∣∣∣ , (3.7)

where v̄ is the mean velocity at time t and the average 〈〉 is taken over multiple

realisations of the noise. We cannot assume that v̄ itself is ergodic (i.e. the

average over time will match the average over realisations of the noise [115]) as

the ordered flock does not change direction if banding is present. As ϕ is invariant

under a rotation of the system, we assume ϕ is ergodic, i.e. averaging over time

and noise realisation will be the same given enough data.

Fig. 3.2 displays the mean velocity v̄ (magnitude on the left, orientation on the
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right) for sample trajectories of the EA and LA models as a function of time.

Beyond an initial transient state wherein the system transitions to the ordered

state from the disordered state, the magnitude of v̄ is typically close to 1 for both

models. The orientation, however, remains constant after the transition for the

EA model, but it varies for the LA model as the flock changes direction.

Note that, as the metric interaction is by definition symmetric (i.e. nij = nji

for all particle pairs i, j), non-symmetry of the particle interaction is not strictly

necessary for a system to exhibit a stable flock that can stochastically change

direction. This finding partially contradicts the conclusions of Cavagna et al.

[27], although we demonstrate in the next section that asymmetric interactions

can lead to turning in a system where a symmetric interaction does not.

3.2 Topological interaction

As we discussed in Section 1.2.4, off-lattice agent-based models in 2d with

topological interactions have been shown to exhibit an ordered flock capable

of turning. While these models involve particles moving in a continuous 2d

space, the behaviour of our LA model with a metric neighbourhood definition

demonstrate that macroscopic turning on a 2d lattice is possible (see Fig. 3.2). In

this section, we change the ABMs from Section 3.1 to a topological neighbourhood

definition to determine whether flocks under the EA model are also capable of

macroscopically turning and observe how the topological LA model varies from

the metric model.

3.2.1 Definition of the neighbourhood

While there are multiple methods of implementing a topological interaction in

agent-based models [20, 54, 68], the qualitative behaviour of the systems in the

ordered state do not vary significantly between models. For that reason, we select

an implementation that differs from our metric model as little as possible. We

alter the definition of a particle’s neighbours to those lying within a varying radius

Rα(t) surrounding each particle, chosen to be the minimum radius needed to

ensure each particle has the same (fixed) number of neighbours c. Mathematically,

Rα(t) is defined as the radius of the smallest circular area around particle α
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containing c particles, i.e. the minimum radius R that satisfies the equation

N∑
γ=1

Θ (R− |rα(t)− rγ(t)|) = c. (3.8)

With the above assumptions, the neighbourhood matrix in 3.4 can be written as

nαγ(t) =

{
Θ (R0 − |rα(t)− rγ(t)|) metric interaction

Θ (Rα(t)− |rα(t)− rγ(t)|) topological interaction
(3.9)

where Θ(r) is the Heaviside function and R0 is a fixed parameter of the metric

models. Note that under the above definitions for the neighbourhood matrix,

α will be a neighbour of itself. This choice is akin to giving the particle some

persistence, allowing local fluctuations in the flock’s direction to last longer. We

demonstrated in Section 2.6.1 that, in a 1d system with interactions similar to the

metric LA, persistence leads to higher order (see Fig. 2.12). It is reasonable to

assume that in metric systems, persistence leads to higher stability of the flock,

although this may not also hold for topological flocks. Nevertheless, allowing

persistence makes deriving the stochastic differential equations simpler, so we

choose to keep it in our ABMs to better facilitate comparison later.

3.2.2 Changes to the ordered state

When the interaction neighbourhood is defined topologically instead of through a

fixed distance, we expect to see changes to the observed behaviour of the ordered

state in the ABM. As a reminder, the ordered state for the EA model displayed

banding while the LA displayed a macroscopically turning flock in the ordered

state.

Fig. 3.3 shows the mean velocity of a sample trajectory of the EA and LA

models with a topological interaction. Note that, while the frequency of changes

in the orientation of the order parameter varies between the two models, the

flock is capable of turning in both. As expected from off-lattice models, changing

the EA model from a metric to a topological interaction enables the flock to

macroscopically turn and removes the banding previously present. Little has

changed for the LA model, suggesting that the neighbourhood choice does not

determine the dynamics of the ordered state of this model.
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Figure 3.3 Mean velocity of selected trajectories of topological neighbourhood
ABMs. Order is present in each trajectory, evidenced by the
magnitude of the order parameter (left plot) being close to 1. Unlike
for metric neighbourhood ABMs, both the EA and LA models exhibit
macroscopic turning here, as evidenced by the non-constant angle of
the mean velocity (right plot). Parameters were N = Lx = Ly =
100, β = 0.75, η = 0.02.

We now have three lattice-based ABMs (metric LA, topological EA, topological

LA) with an ordered state consisting of a flock capable of macroscopically turning

and one lattice-based ABM (metric EA) with an ordered state consisting of a

flock that forms into stable directional bands. We can create two pairs of models

from the four above that result in different macroscopic behaviours, yet differ in

their implementation in one place only (metric EA and metric LA differ in the

probability of choosing a new direction given a neighbourhood magnetisation;

metric EA and topological EA differ in the determination of that neighbourhood).

By examining how the effects of these changes are manifested in our model pairs,

we may begin to understand what factors play a role in how aligning SPP systems

form bands or change direction.

Before we begin to examine the whys of the different behaviours observed in our

various EA and LA models, we must ensure that the behaviours observed are

robust to changes to the implementation of simulations of the above models. If a

change in implementation does not cause the ability of the ordered flock to turn

to vanish or appear, we can be confident that the presence or lack of turning is

indeed caused by the physics of the model and can begin to examine that physics

in greater detail.
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3.3 Robustness of the ordered phase behaviour to

model changes

If we wish to determine if the behaviours exhibited by flocks in our ABMs are a

result of a simulation choice or compare those behaviours with the literature, we

must understand how changes in the model implementation can affect the order

parameter of our systems. In this section, we explore the effects of changing

from a lattice-based to an off-lattice model, from an intrinsic (scalar) to an

extrinsic (vectorial) stochastic term, and from a stochastic particle update rule

to a simultaneous update rule.

3.3.1 Constraining particles to a lattice

By definition, models where particles are constrained to lie along a lattice permit

movement of particles between lattice sites only. In our EA and LA models above,

this is further restricted to prohibit particles from moving to a site that is further

than one lattice spacing away (i.e. moves are possible between nearest neighbours

only). On a square lattice, a particle can only move in cardinal directions (up,

down, left, right), a substantial restriction from the relative freedom of movement

in 2d off-lattice systems.

Nava-Sedeno et al. [80] demonstrated that key qualitative features of an off-lattice

model can be replicated with a comparable lattice-based model [79]. Although

this analysis was performed with a specific model with a metric neighbourhood,

it demonstrates that confining a system to a lattice need not remove its key

behaviours. Their analysis did not determine whether the same was true for a

model with a topological neighbourhood.

While removing the ability for a particle to turn diffusively could have an impact

on the flock’s ability to turn, we demonstrated with the metric LA model in Fig

3.2 and both topological models in Fig. 3.3 that an ordered flock can undergo

macroscopic turning on a lattice given the right model. Meanwhile, the metric

EA model demonstrates in Fig 3.2 that turning need not always be present in the

system. As such, it is likely that any effect of the lattice affects the magnitude of

the order parameter ϕ (3.7) or the position of the phase transition of the system,

not whether the flock is capable of turning stochastically or not.
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Figure 3.4 Top: The order parameter in the metric EA model above as a
function of system density using either intrinsic or extrinsic noise as
a function of ρ or β. Bottom: The order parameter in the metric LA
model above as a function of system density using either intrinsic
or extrinsic noise as a function of ρ or η. The behaviour of the
order parameter in the ordered state is similar between the two noise
types, although it is closer quantitatively in the EA model than the
LA model. Lx = Ly = 100, R = 16, β = 0.3 (top left), η0 = 0.005
(bottom left), ρ0 = 0.01 (top right and bottom right).

3.3.2 Implementation of stochastic uncertainty

We discussed in Section 1.2.1 how a stochastic term can be added to models to

simulate uncertainty. In both models above, we have used intrinsic (scalar) noise.

While there should be no difference in the behaviour observed in systems with

an intrinsic or extrinsic noise in the limit of infinite system size (with finite and

non-zero mean density ρ0 = N
LxLy

) [53], we expect that the finite system size may

affect the behaviour of the ordered state [105], although not significantly enough

to alter whether or not macroscopic turning is possible.

From Fig. 3.4, we observe that the behaviour of the ordered state of the metric

EA with extrinsic noise is very similar to the intrinsic noise model. However,

the magnitude of the time-averaged mean velocity in the extrinsic noise metric

LA model is significantly greater than in the intrinsic noise model. While η does
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Figure 3.5 Order parameter of selected trajectories of the ABM models. Order
is present in each trajectory, as evidenced by the magnitude of the
order parameter being close to 1. Changes in direction occur more
frequently in the metric LA model with intrinsic noise than the
metric LA model with extrinsic noise. N = Lx = Ly = 100,
η = 0.02.

represent a noise strength in both the intrinsic and extrinsic LA models, it is not

implemented in the same manner. In the intrinsic model, η is added to the angle

of the mean velocity (equivalent to ηti in Eq 1.3), while η is the magnitude of a

random vector added to the mean velocity in the extrinsic model (equivalent to

ξti in Eq. 1.6). Therefore comparisons should focus on the shape of the bottom

plots in Fig. 3.4 rather than comparing quantitative behaviour for a given value

of η.

Examining sample trajectories of the extrinsic model (Fig. 3.5) demonstrates

that changes in direction are more frequent in the intrinsic metric LA model

than in the extrinsic model for the same value of η, and the magnitude of the

mean velocity decreases while the system is undergoing a change in direction. We

conclude therefore that, while extrinsic noise may produce different behaviour in

the ordered state in our finite-size systems, the qualitative behaviour (namely

whether or not turning is possible in the ordered state) is unaffected by which

noise type is used.
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3.3.3 Removing the “fixed-speed” assumption

One limit of using models to simulate physical systems is that discretisation must

be applied to the system. For modelling physical objects moving at a constant

speed such as birds in flight, models typically use a discretisation of time where

all particles update their positions simultaneously [26, 29, 71]. This preserves

the constant speed of particles, though a delay of order δt is typically introduced

between the position and velocity updates.

Another option is the stochastic update rule used in Chapter 2 for our 1d aligning

SPP ABM. This rule does not preserve the constant speed of particles, although

the average speed over all particles will be constant. However, we expect that

in a sufficiently large system, we should observe no significant difference in the

order parameter between these update rules. We set out the implementation of

our choices of update rule below and explore how they affect the order parameter

of our finite system.

Simultaneous update

The simultaneous update rule updates each particle in a single time-step δtsim as

rα(t+ δtsim) = rα(t) + δtsimvα(t+ δtsim), (3.10)

vα(t+ δtsim) = V (rα(t), {rα′(t), vα′(t)}) , (3.11)

where V is some function of the positions and velocities of all the other particles.

In the models in Section 3.1 above, V is the new direction chosen randomly

with weights given by P (V|M(r, t)) (3.1, 3.5). Therefore, (3.11) can better be

expressed as

vα(t+ δtsim) =


x̂ with prob. P (x̂|Mα(t))

ŷ with prob. P (ŷ|Mα(t))

−x̂ with prob. P (−x̂|Mα(t))

−ŷ with prob. P (−ŷ|Mα(t))

(3.12)
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Figure 3.6 Top: The order parameter in the metric EA model above using either
a stochastic or simultaneous update rule as a function of ρ or β.
Bottom: The order parameter in the metric LA model above using
either a stochastic or simultaneous update rule as a function of ρ
or η. While the position of the phase transition may differ between
the two selections, the overall behaviour remains similar between the
two update types. N = Lx = Ly = 100, R = 16, β = 0.3 (top left),
η0 = 0.005 (bottom left), ρ = 0.01 (top right and bottom right).
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Stochastic update

An alternative approach is to use a stochastic update, as in the 1d model in

Chapter 2. Under this scheme, a single particle chosen at random takes a

movement step in a time-step δtstoc. In order to ensure the mean particle velocity

remains constant between the two update rules, δtstoc must be related to δtsim by

the relation

δtsim = Nδtstoc. (3.13)

The equations for how rα and vα are updated are the same as (3.10, 3.12), though

δtsim is replaced by δtstoc and only a single particle is updated in each time-step.

Comparison

Although both update rules use the same equations, additional diffusion is present

in the stochastic update due to the additional particle fluctuations introduced by

particles moving at different speeds. The presence of additional diffusion suggests

that care must be taken when directly comparing between equations derived from

ABMs with equations of motion from other sources to properly account for any

added diffusion due to the update rule.

Indeed, Fig. 3.6 demonstrates that, although the order parameter ϕ = 〈|v|〉
is broadly similar for both update types, the lines do not fully overlap. Under

most combinations of system variables, the stochastic rule leads to lower order

including changing the position of the phase transition in our EA model.

3.4 Summary

In this chapter, we explored some variations in agent-based models in two

dimensions, with a focus on identifying models that facilitated an ordered

state capable of turning while remaining ordered. We introduced a baseline

lattice-based model, based on the lattice-gas cellular automata family of models,

to compare broadly with off-lattice models. This model, which we termed

“exponentially-aligning” (EA), typically exhibits banding, a phase separation

observed in many 2d models that exceed certain spatial dimensions [53], as

described in Section 1.2.1.
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We contrasted the EA model with a “linearly-aligning” (LA) model based on

the 1d ABM in Chapter 2, in which banding is not present and the ordered

state of the system is capable of changing its direction more akin to a real flock.

To facilitate this comparison, the EA and LA models were designed to have

few differences between then. We also introduced an alternative (“topological”)

neighbourhood definition, based on the observation that physical flocks utilise a

topological neighbourhood [4, 20]. Turning was present in the ordered state of

both the topological EA and LA models, leading to another avenue for comparison

between our 4 models.

The key results in this chapter were obtained from simulations on a lattice with

an intrinsic noise type and a stochastic update rule. To ensure the robustness of

these results, we examined changing our simulations to an off-lattice system, to

an extrinsic noise, or to a simultaneous update rule in turn. We demonstrated

that our choice to use a lattice, intrinsic noise and a stochastic update did not

cause the turning behaviour either to manifest or become suppressed and was

instead due to differences in the model definition (and hence underlying physics).

While there were differences in the order parameter between the choices we made

and the alternatives, it is likely that many of these are finite size effects and would

decrease or disappear in a larger system.

One change not examined in this section was how robust the behaviours in the

ABMs are to changes in system size. While we expect that turning should be

observed in large systems in the topological EA model and not in the metric

EA model given its similarity to other SPP models in 2d [80, 104], we can be

less certain the presence of turning in both LA models is robust to system size

changes. In particular, if we wished to rigorously demonstrate that the presence

of turning in the metric LA model is not a finite-size effect, an examination of how

the order parameter changes with system size should be conducted. As we are

more concerned in this thesis with replicating the behaviours in the ABMs using

SDEs, the existence of a potential finite size effect here is not a great concern.

From our 4 models, we identified two model choices that either allowed or

suppressed turning: the metric neighbourhood suppresses turning in the EA,

while the topological neighbourhood allows it; and the probability of choosing

a new direction in the metric EA also suppresses turning while the probability

in the metric LA allows it. In the next chapter, we use the Kramers-Moyal

approximation again to derive and compare stochastic differential equations for

the 4 models explored in this chapter to identify how different model choices
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enable or prohibit macroscopic turning in a physical context.
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Chapter 4

Continuous space flocking in two

dimensions

In the previous chapter, we introduced four related agent-based self-propelled

particle models. Three of these models generate trajectories of ordered flocks

undergoing macroscopic turning, while one resulted in an ordered flock continuing

to travel in a single direction. In this chapter, we explore whether using the

Kramers-Moyal approximation to generate stochastic differential equations can

allow us to determine the cause of this turning behaviour.

In Section 1.3, we discussed a number of models consisting of PDEs describing

the time evolution of SPPs and discussed methods of obtaining such equations,

either phenomenologically from the symmetries of the system (Section 1.3.1) or

by summation (or integration) over the microscopic dynamics of the particles

involved (Section 1.3.2). Having a set of equations for macroscopic system

variables allows for analytical analysis of the model, including the stability of

the ordered state to macroscopic turning [3, 25].

We begin in Section 4.1 by deriving stochastic Langevin equations for the

exponentially-aligning (EA) and linearly-aligning (LA) models using the Kramers-

Moyal approximation as in Chapter 2. As we wish to compare the behaviour of

multiple different models directly, we derive the field equations for a general set

of interactions. This would also enable us to compare and contrast our equations

with deterministic equations derived from other sources [10, 51, 101], although

we do not make these comparisons here.
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Unlike the 1d ABM examined for much of Chapter 2, the 2d ABMs in Chapter

3 use non-local interactions. We substitute these specific interactions into

the general field equations in Section 4.2, where we examine how the particle

current and directional density differ between model choices and discuss how the

turning vs non-turning behaviour could arise as a result of these differences. In

Section 4.3, we conduct linear stability analysis on our field equations and obtain

dispersion relations, providing a quantitative measure of whether an ordered flock

is or is not stable to fluctuations causing it to turn. While we cannot demonstrate

conclusively that linear stability alone can determine whether or not turning is

possible, we are able to identify when different alignment rules and different

neighbourhood definitions play a role in enabled or suppressing turning in our

four ABMs.

We next perform numerical integration and compare the resulting trajectories

with the agent-based models to understand if the Kramers-Moyal approximation

produces stochastic differential equations that replicate the behaviour exhibited

by the ABMs. Based on our findings from Section 2.3.2 that a beta-type noise

caused the ordered parameter of the numerically integrated trajectories and the

agent-based models to match, we use this approach again here. We then examine

the results and compare the resulting trajectories with the agent-based model

to determine if the Langevin equations are an accurate representation of the

ABM. While the stochastic differential equations we obtained do not match the

behaviour observed in the ABMs, it remains possible that fewer approximations

in the Kramers-Moyal expansion could yet yield accurate equations.

We finally summarise the key findings from this chapter, identifying the successes

and failures of the Kramers-Moyal approximation for our two-dimensional models,

highlighting the approximations that lead to these results, and suggesting ways

in which the equations obtained might be improved.

4.1 Continuous equation derivation

We begin with a Kramers-Moyal expansion as in Chapter 2 of the ABMs in

Chapter 3. As before, we use the density ρ (2.9) and magnetisation m (2.10)

as our final stochastic variables of interest, although we continue to use the

polarisation p (2.11) instead of magnetisation as our Kramers-Moyal variable for

the same reason as in 1d: the assumption that correlations between magnetisation
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and density are not negligible. Note that the magnetisation and polarisation

are now vector quantities, thus the definitions should be altered slightly to

accommodate the shift to 2d.

As we are discussing the differences between a number of models, the form of our

continuous equations will be kept general as long as possible. In the following,

we define the probability of a particle at position x and time t selecting a new

direction v with fixed magnitude a as

P(r,v, t) = P (v|M(r, t)) (4.1)

where P (v|M(r, t)) is the probability of an individual particle choosing a

direction v when the preferred direction is M(r, t) (3.1, 3.5) and

M(r, t) = R (η(r, t))

∫
dr′ N m(r′, t) n(r, r′, t) (4.2)

is a continuous space version of the total neighbourhood magnetisation (3.3) from

Chapter 3. Recall that N was the number of particles in the ABM system, and

the neighbourhood magnetisation was defined such that changing N would not

change M.

The stochastic rotation matrix R(ηi(t)) of random angle ηi(t) also has a

continuous stochastic angle function η(r, t) and the neighbourhood matrix nαγ(t)

(3.9) has been replaced by a neighbourhood function n(r, r′, t) whose definition

depends on the choice of particle interaction. For the metric interaction defined

in Section 3.1, it takes the form

nmet(r, r
′, t) = Θ (R0 − |r′ − r|) , (4.3)

where R0 is the constant interaction radius and a parameter of the metric model,

and Θ(y) is the Heaviside function. For the topological interaction in Section 3.2,

it takes the form

ntop(r, r′, t) = Θ (R(r, t)− |r′ − r|) , (4.4)

where R(r, t) is the variable interaction radius (equivalent to (3.8)), defined

implicitly by the relation

N

∫
dr′ ρ(r + r′, t)Θ(R(r, t)− |r|) = c (4.5)

where c is the fixed number of neighbours that each particle in the topological
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ABM interacts with. In a steady system with |∇kρ| � ρ for k ≥ 1, we can

approximately solve Equation (4.5) to get

R(r, t) ≈
√

c

πρ(r, t)N
+O

(
∇2ρ

N
3
2ρ

5
2

)
. (4.6)

4.1.1 Jump moments of probability density

To reduce the complexity of the master equation for density and magnetisation,

we introduce an intermediate quantity, the probability density u, defined as

u(r,v, t) =
1

N

N∑
α=1

δ (r− rα(t)) δ (v − vα(t)) . (4.7)

From this quantity, the particle density ρ and magnetisation m can be easily

found as

ρ(r, t) =

∫
u(r,v, t) dv and m(r, t) =

∫
v

a
u(r,v, t) dv, (4.8)

where a is the lattice spacing. On a lattice, the above integrals become sums

over the possible directions. For a square lattice in 2d, v ∈ {ax̂, aŷ,−ax̂,−aŷ}.
As ρ and m are linear functions of u, the jump moments of ρ and m can also

be obtained by summing over the jump moments of u. Thus, finding the jump

moments of u will lead to the desired Langevin equations.

In a single time-step, one particle will reorient itself and move in the direction of

its new orientation, as described in Section 3.1. This changes u on a given site

according to

δu(r,v, t) =


1
N

with probability P(r− v,v, t)ρ(r− v, t)

− 1
N

with probability u(r,v, t)

0 otherwise

(4.9)

where P(r − v,v, t)ρ(r − v, t) is the probability that a particle on site r − v

changes its velocity to v and moves one site in that direction, u(r,v, t) is the

probability that a particle on site r chooses any new velocity and moves away,

and there are no changes to u(r,v, t) otherwise.

We expand the position variable of P and ρ in powers of v and truncate after the
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third term. Thus, the first two jump moments of u are

〈δu〉 =
1

N

[(
1− v · ∇+

1

2
(v · ∇)2

)
(Pρ)− u

]
+O

(
(v · ∇)3 (Pρ)

)
, (4.10)

〈
δu2
〉

=
1

N2

[(
1− v · ∇+

1

2
(v · ∇)2

)
(Pρ) + u

]
+O

(
(v · ∇)3 (Pρ)

)
, (4.11)

where a lack of arguments in the functions above and hereafter indicate that they

are evaluated at position r and time t (and orientation vector v where relevant).

4.1.2 Field equation for particle density

Once we have found the jump moments of the probability density u, we can find

the jump moments of the density ρ from (4.8). Summing over the possible values

of v, the first moment of the density becomes

〈δρ(r, t)〉 =
∑
v

〈δu(r,v, t)〉

=
1

N

∑
v

[(
1− v · ∇+

1

2
(v · ∇)2

)
[ρ(r, t)P(r,v, t)]− u(r,v, t)

]
+O

(
∇3
)

=
ρ

N
[P(r, ax̂, t) + P(r,−ax̂, t) + P(r, aŷ, t) + P(r,−aŷ, r, t)− 1]

− a

N
[∂x [(P(r, ax̂, t)− P(r,−ax̂, t)) ρ] + ∂y [(P(r, aŷ, t)− P(r,−aŷ, t)) ρ]]

+
a2

2N
∂xx [(P(r, ax̂, t) + P(r,−ax̂, t)) ρ]

+
a2

2N
∂yy [(P(r, aŷ, t) + P(r,−aŷ, t)) ρ] +O

(
∇3
)

= − a

N
∇ · J +

a2

2N
[∂xxρx + ∂yyρy] +O

(
∇3
)
, (4.12)

where J(r, t) = Jxx̂ + Jyŷ is the particle flux defined by

Jx(r, t) = ρ(r, t) [P (r, ax̂, t)− P (r,−ax̂, t)] (4.13)

Jy(r, t) = ρ(r, t) [P (r, aŷ, t)− P (r,−aŷ, t)] (4.14)

and ρx and ρy are the directional particle densities,

ρx(r, t) = ρ(r, t) [P (r, ax̂, t) + P (r,−ax̂, t)] , (4.15)

ρy(r, t) = ρ(r, t) [P (r, aŷ, t) + P (r,−aŷ, t)] , (4.16)
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Their definitions depend on the model choice through P , as laid out in Chapter

3. For now, they will be kept general.

Assuming that u(r,v, t) and u(r,v′, t) are weakly correlated for v 6= v′,

〈
δρ(r, t)2

〉
=

∑
v

∑
v′

〈δu(r,v, t)δu(r,v′, t)〉

=
∑
v

〈
δu(r,v, t)2

〉
+
∑
v 6=v′

〈δu(r,v, t)δu(r,v′, t)〉

=
1

N2

∑
v

[P(r,v, t)ρ(r, t) + u(r,v, t) +O (v · ∇(ρP))]

+
∑
v 6=v′

〈δu(r,v, t)〉 〈δu(r,v′, t)〉

=
2ρ

N2
+

1

N2
O (∇ · J) . (4.17)

The derivative terms in Equation (4.17) are negligible compared to the leading

term for systems in the ordered phase. Thus, we truncate the second jump

moment of ρ at the first order term.

Taking δt = 1
N

and a = 1, the stochastic equation for ρ is

∂tρ = −∇ · J +
1

2
[∂xxρx + ∂yyρy] +

√
2ρ

N
ξρ(r, t)

≈ −∇ · J +
1

2
[∂xxρx + ∂yyρy] , (4.18)

where we have neglected the stochastic term again here as in (2.22), due to density

conservation and its small magnitude compared to the deterministic term. Note

that when motion is confined to a single axis, (4.18) matches the equation for

density evolution in 1d (2.22). We have kept the diffusive terms here as they were

found in 1d to have been necessary and sufficient to replicate the quantitative

behaviour observed in the 1d ABM.

4.1.3 Field equation for magnetisation

Next, we obtain the first two jump moments of the magnetisation by summing

over possible velocities as in the definition of the magnetisation field (4.8), where

we assume again that u(r,v, t) and u(r,v′, t) are weakly correlated for v 6= v′.

Under this assumption and using the equations for the moments of u (4.10, 4.11),
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the first two moments of m are given by

〈δm(r, t)〉 =
∑
v

v 〈δu(r,v, t)〉

=
1

N

∑
v

[
v

(
1− v · ∇+

1

2
(v · ∇)2

)
[Pρ]− vu

]
+O

(
∇3
)

=
1

N
[J−m]− 1

N
[∂xρxx̂ + ∂yρyŷ] +

1

2N
[∂xxJxx̂ + ∂yyJyŷ] +O

(
∇3
)
,

(4.19)

and

〈
δm(r, t)2

〉
=

〈(∑
v

vδu(r,v, t)

)2〉
=

∑
v

〈
δu(r,v, t)2

〉
+
∑
v 6=v′

v · v′ 〈δu(r,v, t)δu(r,v′, t)〉

=
2ρ

N2
+
∑
v 6=v′

v · v′ 〈δu(r,v, t)〉 〈δu(r,v′, t)〉+O

(
∇
N2

)
=

2ρ

N2
+O

(
∇
N2

)
≈
〈
δρ(r, t)2

〉
, (4.20)

where a = 1 as before and we truncate the second moment of m to include only

constant terms as in the second moment of density (4.12). Note that, as in the

1d system, 〈δm(r, t)2〉 ≈ 〈δρ(r, t)2〉 to O
(
∇·J
N2 ,

∂jρj
N2

)
.

However, as in 1d, we cannot assume that correlations between ρ(r, t) and m(r, t)

are negligible and therefore cannot assume the Fokker-Planck diffusion matrix

is approximately diagonal. Thus, we must find the jump moments for the

polarisation p to perform the Kramers-Moyal expansion. These can be obtained

from 〈δρ〉, 〈δm〉, 〈δρ2〉 and 〈δm2〉 as in 1d (2.31, 2.32) through

δp =
δm− pδρ

ρ
+
δρ

ρ2
O (δρ, δm) , (4.21)

〈δp〉 =
1

Nρ
J− 1

N
p− ∂xρxx̂ + ∂yρyŷ

Nρ
+
∂xxJxx̂ + ∂yyJyŷ

2Nρ

− p

Nρ

[
−∇ · J +

∂xxρx + ∂yyρy
2

]
+O

(
∂3
j , N

−2
)
, (4.22)〈

δp2
〉

=
2

N2ρ

(
1− p2

)
+O (∂j) . (4.23)

We obtain an equation for the evolution of p through the above equations
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(4.224.23) and the Kramers-Moyal approximation (2.14). The presence of the

density ρ in the denominator of 〈δp〉 suggests that, while p is the correct variable

to use in the Kramers-Moyal expansion, it is not a natural variable to describe

the system. Using the Itô transformation [89] again on the Langevin equation for

polarisation gives us our equation for magnetisation, taking δt = 1
N

as

∂tm = J−m− ∂xρxx̂− ∂yρyŷ +
1

2
∂xxJxx̂ +

1

2
∂yyJyŷ

+

√
2

Nρ
(ρ2 −m2) ξ(r, t), (4.24)

where ξ(r, t) is a two-component vector whose components are drawn from a

Gaussian white noise distribution and satisfy the relations

〈ξi(r, t)〉 = 0 and 〈ξi(r, t)ξj(r′, t′)〉 = δijδ(r− r′)δ(t− t′). (4.25)

When confined to a single dimension, (4.24) also reduces to our 1d equation for

magnetisation (2.34).

4.1.4 Review of key assumptions

Before we begin to examine these equations in greater detail, we should review the

assumptions made in their derivation. It is important that we do not make more

assumptions than are required, nor make assumptions that cannot be justified.

Recall that, in Section 2.2, we demonstrated that the 1d Langevin equations (2.22,

2.34) obtained from the Kramer-Moyal approximation quantitatively matched

the behaviour of the ABM (see Fig. 2.4). These equations, and the 2d

Langevin equations above (4.18, 4.24), were truncated at second order in both the

Kramers-Moyal approximation and the spatial expansion from a discrete lattice

to continuous space.

The Kramers-Moyal truncation can be assumed provided the fluctuations are

small and their derivatives become decreasingly small with increasing number of

derivatives (see [14] for an example of this method). Without the approximation

of the Kramers-Moyal expansion, a Fokker-Planck equation cannot be obtained,

hence no Langevin equations and we are unable to directly simulate trajectories

of the system. As such, truncating the Kramers-Moyal expansion to second order

is necessary for the rest of the analysis.
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Figure 4.1 The real values of the Fourier-transformed spatial correlation
function of fluctuations in particle direction in our ABMs. The
fluctuations are shown to be long-range, as indicated by the rapid
decrease as k increases. Rising values for large k are due to the
periodicity of the lattice. N = Lx = Ly = 100, β = 0.75, η = 0.02.

The truncation of the spatial expansion in going from a lattice to continuous

space is suitable for systems where any sufficiently large fluctuations are long-

ranged (and hence, high order derivatives of such fluctuations rapidly die off).

Typical fluctuations in the ordered state of the ABM systems in Chapter 3 are

long-ranged (see Fig. 4.1), thus we are confident that truncation to second-order

in the spatial expansion are justified here.

To ensure that the global density is conserved while also assuming that the density

fluctuations are decoupled, the stochastic term of our density equation (4.18) must

be negligible compared to the deterministic term and need not be included. We

previously assumed in the 1d Langevin equation for density (2.22) that excluding

the stochastic term led to a system of equations that matched the ABM, therefore

we exclude the stochastic term in the 2d Langevin equation (4.18) as the details

of particle motion have not changed significantly in our 2d ABMs from our 1d

ABM and N is still sufficiently large that N−2 � N−1.

The final key assumption, also made in the 1d equations, is that the diffusion

matrix in the Fokker-Planck equation is diagonal, allowing for a straightforward

matrix decomposition (2.13). This assumption relies on the density and

polarisation on neighbouring sites being decoupled, and hence their correlators

are negligible compared to the self-correlations in the largeN limit. The reasoning
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Figure 4.2 Autocorrelation function of polarisation (4.26) within our ABMs.
The correlation function drops sharply for r 6= 0, therefore
correlations between neighbouring sites are significantly smaller than
self-correlations.N = Lx = Ly = 100, β = 0.75, η = 0.02.

behind the above assumption are clear in the 1d system, where the polarisation

changes on a site were dependent on the polarisation of other particles on that

site only.

In the 2d systems in Chapter 3, the polarisation on a site i depends on particles

that sit within a fixed radius R or the nearest c particles, where c is fixed. In

general, these neighbouring particles will not lie on the same lattice site, thus it is

less clear that the correlations between polarisation on neighbouring sites should

be negligible. Indeed, real-life flocks often have long-range correlations [11, 22].

However, we can see from Fig. 4.2 that the spatial auto-correlation function,

C(r) =
1

LxLyT

∫ T

0

dt

∫
dr′ 〈(p(r′, t)− p̄(t)) · (p(r′ + r, t)− p̄(t))〉 , (4.26)

drops off sharply for |r| > 0, hence we have made the same assumption here as

in the 1d equations. In the above, p̄(t) is the mean polarisation at time t.

4.2 Comparison between interaction types

We now turn to how the different ABMs from Chapter 3 are implemented in these

equations. We focus here on how J and ρx,y differ between the linearly-aligning
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(LA) and the exponentially-aligning (EA) models, and how the neighbourhood

definition affects the total neighbourhood magnetisation field M(r, t). As a

reminder, the probability that a particle α in the ABM with position rα and

velocity vα at time t will take a new velocity v′α is denoted by P (v′α|M(rα, t)),

where the function P depends on the model choice. This has been extended to

continuous space through Equation (4.1).

4.2.1 EA model

In the EA model as set out in Chapter 3, the directional probability function

P is given by Equation (3.5). A continuous version of this probability can be

expressed as

P(r,v, t) =
eβv·M(r,t)

2 cosh βMx(r, t) + 2 cosh βMy(r, t)
. (4.27)

Therefore, the particle flux J (4.13, 4.14) and directional density ρx,y (4.15, 4.16)

for the EA model become

Jx(r, t) =
ρ(r, t) sinh βMx(r, t)

cosh βMx(r, t) + cosh βMy(r, t)
, (4.28)

Jy(r, t) =
ρ(r, t) sinh βMy(r, t)

cosh βMx(r, t) + cosh βMy(r, t)
, (4.29)

and

ρx(r, t) =
ρ(r, t) cosh βMx(r, t)

cosh βMx(r, t) + cosh βMy(r, t)
, (4.30)

ρy(r, t) =
ρ(r, t) cosh βMy(r, t)

cosh βMx(r, t) + cosh βMy(r, t)
. (4.31)

The above equations are highly dependent on the magnitude of M(r, t), as

increasing the neighbourhood magnetisation by a multiplicative factor κ (e.g.

by multiplying the number of particles in that neighbourhood by κ) is equivalent

to multiplying β by κ. β acts here similar to inverse temperature in equilibrium

statistical mechanics. As such, anything that increases M by κ > 1 is equivalent

to multiplying the “temperature” by the reciprocal of κ, leading to a higher degree

of order.
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4.2.2 LA model

In the LA, the directional probability function P is given by Equation (3.5). A

continuous version of this probability can be expressed as

P(r,v, t) =
max{v ·M(r, t), 0}
|Mx(r, t)|+ |My(r, t)|

. (4.32)

Therefore, for the LA model, J and ρx,y become

Jx(r, t) =
ρ(r, t)M(r, t)

|Mx(r, t)|+ |My(r, t)|
, , (4.33)

Jy(r, t) =
ρ(r, t)M(r, t)

|Mx(r, t)|+ |My(r, t)|
, , (4.34)

and

ρx(r, t) =
ρ(r, t)|Mx(r, t)|

|Mx(r, t)|+ |My(r, t)|
, (4.35)

ρy(r, t) =
ρ(r, t)|My(r, t)|

|Mx(r, t)|+ |My(r, t)|
. (4.36)

As we observed when we introduced the LA in Section 3.1.2, the probability

of a particular direction being chosen is unchanged by a rescaling of the

neighbourhood magnetisation M. We note here that, as the field equations

depend on the particle flux J and directional densities ρx,y and their derivatives,

the behaviour of the density and magnetisation fields also should not depend on

the magnitude of M.

A consequence of the lack of dependence of the field variables on the magnitude

of M is that the density and magnetisation fluctuations can be rescaled such that

the deterministic terms in our Langevin equations (4.18, 4.24) are independent

of the mean density ρ0 = 1
NLxLy

. Although the model uses a metric interaction

neighbourhood, as described in Section 3.1.2, robustness to system-size scaling

is a feature typically associated with topological interactions [4]. As topological

interactions in polar SPP systems lead to the ability to macroscopically turn, we

suspect this robustness contributes to the LA flocks turning.
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4.3 Stability analysis

To better understand the deterministic and stochastic effects of the two models,

we first examine the stability of the ordered flock to an infinitesimal perturbation.

We expect that, for a stable flock to exist, the magnitude of p should change very

little in time, while the angle φ = arctan py
px

= arctan my
mx

will be either stable or

unstable to a sufficiently large fluctuation for non-turning and turning models

respectively. To quantify the stability of the system to fluctuations introduced

by the stochastic terms of our equations, we consider how small fluctuations of ρ

and m about a fixed steady state behave under our equations of motion.

Under the assumption that fluctuations in our field variables are sufficiently small,

ρ and m can be represented by

ρ(r, t) = ρ0 + δρ(r, t) (4.37)

and

m(r, t) = m0 + δm(r, t) = (m0 + δm)

(
cos (φ0 + δφ)

sin (φ0 + δφ)

)
, (4.38)

where the fluctuations |δρ| � ρ0, |δm| � m0 and |δφ| � 1. These definitions

also lead to the polarisation field taking the form

p(r, t) = p0 + δp(r, t) =
m0

ρ0

+
ρ0δm−m0δρ

ρ2
0

+O

(
δρδm

ρ2
0

,
m0δρ

2

ρ3
0

)
. (4.39)

We keep only terms that are linear in a small term (i.e. δρ
ρ0

, δm
|m0| or δφ) to observe

the dominant behaviour near the ordered steady state (where δρ = δm = 0).

4.3.1 Fluctuations to the neighbourhood magnetisation M

To observe the behaviour near the steady state, we examine how the fluctuations

affect (4.18, 4.24). We start by exploring how R(r, t) changes. Recall from

Sections 1.2.4 and 3.2, the metric and topological interactions have a fixed and

varying radius of interaction respectively. Thus, R(r, t) can be expanded to linear

order as

R(r, t) =

{
R0 + δR topological interaction

R0 metric interaction
(4.40)
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where

R0 =

√
c

πρ0N
and δR ≈ −

√
c

4πρ3
0N

δρ = − R0

2ρ0

δρ, (4.41)

with corrections to δR of order R0

ρ20
∇2δρ. We subsequently generalise (4.40) by

defining topological and metric radius fluctuations as δRt = δR and δRm = 0

respectively.

We next derive the behaviour of the neighbourhood magnetisation M(r, t). We

assume without loss of generality that φ0 = 0, i.e. the mean direction of motion is

along the x̂-axis, giving m0 = m0x̂. To linear order, the change in magnetisation

m can be expressed in component form as

m(r, t) = (m0 + δm(r, t)) x̂ +m0δφ(r, t)ŷ. (4.42)

Hence, the neighbourhood magnetisation M(r, t) (4.2) can be expressed as

M(r, t) ≈ R(η)

[
πNm0R

2
0x̂ + 2πNm0R0δR(r, t)x̂ +

∑
r′

Nδm(r + r′, t)Θ(R0 − |r′|)x̂

+Nm0

∑
r′

δφ(r + r′, t)Θ(R0 − |r′|)ŷ

]
= [cos η (M0 + δM(r, t))−m0 sin η δΦ(r, t)] x̂

+ [m0 cos η δΦ(r, t) + sin η (M0 + δM(r, t))] ŷ, (4.43)

where δM and δΦ are the neighbourhood magnetisation fluctuations in magnitude

(including due to density fluctuations) and angle respectively. Note that we have

removed the dependence on δR in the neighbourhood fluctuations, as any effects

it would have involve higher order powers of small terms. As we are concerned

with understanding the system’s behaviour in the ordered state where η � 1,

we next expand the rotation matrix in powers of η, dropping terms of O(η2) and

O(η δm, η δφ). Thus (4.43) becomes

M(r, t) = [M0 + δM(r, t)] x̂ + [M0η(r, t) +m0δΦ(r, t)] ŷ. (4.44)

Recall that in Section 3.1, we kept η as the stochastic control parameter for the

LA and set it to zero for the EA (in which we use thermodynamic β as the control

parameter instead).

In the absence of noise (where R(η) = I2), the fluctuations in the interaction
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radius R due to the density only affect the neighbourhood magnetisation in the

mean direction of propagation (i.e. the direction of m0). The inverse is also true,

namely that the switch from a metric to topological interaction in a low rotational

noise system should primarily affect the magnitude, not the orientation, of M at

linear order. Therefore, any terms in our Langevin equations (4.18, 4.24) that

depend on the orientation of M should not cause any difference in the behaviour

observed due to a different interaction neighbourhood definition.

4.3.2 Fluctuations to particle flux and directional density

The next step in obtaining linearised field equations for the density and

magnetisation is to examine the linearised forms of J and ρx,y. This is highly

model dependent, and as such, we must discuss each interaction type separately

here.

LA model

Recall the exact definition of J(r, t) (4.33, 4.34) and ρx,y(r, t) (4.35, 4.36) for this

model. Making the substitutions ρ = ρ0 + δρ, Mx = M0 + δMx and My = δMy

in those equations, noting that M0 � |δMx| > 0 and keeping terms up to linear

order in δρ, δMx and δMy, these become

Jx(r, t) = ρ0 + δρ− ρ0|δMy|
M0

, Jy(r, t) =
ρ0δMy

M0

, (4.45)

ρx(r, t) = ρ0 + δρ− ρ0|δMy|
M0

, ρy(r, t) =
ρ0|δMy|
M0

. (4.46)

There are two main things to note here. Firstly, M0 > |δMx| =⇒ |Mx| = Mx

and hence ρx = Jx. In physical terms, there are no particles moving directly

against the flow in the ordered state. The second, and more important thing,

to notice is that none of the terms above depend on δMx, and hence δR, to

linear order. As we reasoned above, this suggests that a change from a metric to

a topological interaction should have no effect on the behaviour of the ordered

state at the linear level. Indeed, this is observed in the LA ABM, as demonstrated

in Chapter 3.

89



EA model

Recall the exact definition of J(r, t) (4.28, 4.29) and ρx,y(r, t) (4.30, 4.31) for this

model. Making the substitutions ρ = ρ0 + δρ, Mx = M0 + δM and My = δMy

in those equations, noting that M0 � |δMx| > 0 and keeping terms up to linear

order in δρ, δMx and δMy, these become

Jx(r, t) = (ρ0 + δρ) tanh

(
βM0

2

)
+

βρ0δMx

1 + cosh βM0

, (4.47)

Jy(r, t) =
βρ0δMy

1 + cosh βM0

, (4.48)

ρx(r, t) =
(ρ0 + δρ) cosh βM0

1 + cosh βM0

+
βρ0 tanh

(
βM0

2

)
δMx

1 + cosh βM0

, (4.49)

ρy(r, t) =
ρ0 + δρ

1 + cosh βM0

−
βρ0 tanh

(
βM0

2

)
δMx

1 + cosh βM0

. (4.50)

Unlike the LA, the EA model contains terms that are linear in δMx and hence

δR. While this does not suggest that a difference in behaviour between a metric

and topological interaction must be observed in trajectories of the system, it

highlights a discrepancy at linear order that could cause such a difference to

appear. Given that the behaviour of the EA ABM differs under the above change

while the LA ABM does not (Section 3.2), we propose that this change at linear

order could be responsible for the macroscopic change observed.

4.3.3 Linearised equations and dispersion relations

Now that we have a form for our particle current and directional densities, we

can examine the linearised field equations. We wish to show that, for a stable

state where δρ and |δm| do not grow in time, δφ will be stable for the metric EA

model and unstable for the other three model choices (topological EA, topological

LA, metric LA). These findings would show that linear stability is sufficient to

explain the different behaviours observed in the ABMs. We neglect the effects of

the stochastic function ξ(r, t) here, as we wish to study the deterministic mean-

field effects first.

Consider a function f(r, t). We can express this function as a sum of its Fourier

90



components f̂λ,k as

f(r, t) =
∑
λ,k

f̂λ,ke
λteik·r. (4.51)

If a mode f̂λ,k 6= 0, the contribution of that mode to the function will grow

or shrink in time depending on whether λ takes a positive or negative value

respectively. We can plug Fourier expressions of δρ, δm and δφ into (4.18, 4.24)

and solve these equations to find values of λ in terms of k for which f̂λ,k 6= 0.

These values of λ are known as “dispersion relations”, and they can tell us about

the behaviour of the untransformed functions. If no value of k gives a value of λ

with positive real part, the functions do not grow in time. Otherwise, there is at

least one Fourier mode that grows exponentially in time and the function is not

linearly stable.

Returning to the component form of the linearised neighbourhood magnetisation

(4.43), we expand δR, δm and δφ in Fourier components. We then approximate

the sum over all lattice sites r as an integral over space to obtain the Fourier

components of the fluctuations of M as

δM(r, t) ≈ 2πm0NR
2
0

∑
λ,k

[
δ̂Rλ,k

R0

+
J1(kR0)

kR0

ˆδmλ,k

m0

]
eλteik·r, (4.52)

where J1(x) is the first Bessel function of the first kind, k = |k|, and δRλ,k is

the Fourier transformation of δR(r, t), which is zero for the metric interaction.

Similarly,

δΦ(r, t) ≈ 2πNR2
0

∑
λ,k

J1(kR0)

kR0

δ̂φλ,k e
λteik·r. (4.53)

With these approximations, we can obtain dispersion relations for our PDEs.

These will enable us to understand the linear stability of the equations.
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LA model

To linear order, (4.18, 4.24) become

∂tδρ =

(
−∂x +

1

2
∂xx

)
δρ+

ρ0

NπR2
0

[
−∂y

(
δΦ +NπR2

0η
)

+
1

2
∂yy|δΦ +NπR2

0η|
]
,

(4.54)

∂tδm = ρ0 −m0 +

(
1− ∂x +

1

2
∂xx

)(
δρ− ρ0

NπR2
0

|δΦ +NπR2
0η|
)
− δm,

(4.55)

∂tδφ =
ρ0

Nπm0R2
0

[(
1 +

1

2
∂yy

)(
δΦ +NπR2

0η
)
− ∂y|δΦ +NπR2

0η|
]
− δφ.

(4.56)

We first define α = 1− m0

ρ0
. m0 is bounded above by ρ0 and below by 0, therefore

0 < α < 1. The first two terms of (4.55) suggest that, unless α� 1, δm will grow

in magnitude until the linear approximation no longer holds. If instead α is on

the same order of magnitude as one or more of the other terms in the equation,

δm can remain bounded.

In the absence of rotational diffusive noise (η = 0), the time evolution of δφ

depends only on δΦ to a linear scale, so we can attempt to solve it directly through

Fourier expansion. Using the linear approximations to Jy (4.45) and ρy (4.46), the

Fourier transform of the fluctuations of the neighbourhood magnetisation (4.53)

and the linearised PDE for the angular fluctuations to the magnetisation (4.56),

and expanding the Bessel function J1(kR0) in the angular fluctuations of M in

powers of k, the Fourier modes of δφ for small k satisfy the equation

λ = α∓ iky −
k2
x + 5k2

y

8
+O

(
k3, αky, α

2
)
, (4.57)

where the sign of ky depends on whether |δφ| = ±δφ. This shows that, unless

m0 = ρ0 exactly (i.e. α = 0), λ will be positive for sufficiently small k. If we still

consider the underlying lattice, the magnitude of k is bounded below by kmin = 2π
L

where L is the length of one side of the lattice. Thus, there is a corresponding

αmin such that for α > αmin, Equation (4.57) indicates that δφ will grow in time.

Let’s now examine what happens to δm. If we consider fluctuations δρ, δm that

are constant in space (the k = 0 mode of the Fourier expansion) and substitute
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in the k = 0 modes of the fluctuations in M (4.52, 4.53), (4.55) reduces to

∂tδm ≈ ρ0∂tδp ≈ ρ0 (α− δp− δφ) . (4.58)

Thus, a fluctuation δm that is constant in space can grow in magnitude until

δp+ δφ ≈ α. As such, linear fluctuations in the direction of motion are bounded

and cannot grow uncontrollably.

Typical values from the ordered state in the agent-based models have α ∼ 0.1−
0.2 � k2min

8
(see Fig. 3.6), thus there exist small values of k corresponding to

Fourier modes of δφ that will cause growth. Hence, there exists a long wavelength

instability that causes the flock as a whole to turn while remaining in a highly

ordered state, as seen in the ABMs. As this does not depend on the value of δR,

this is independent of interaction neighbourhood choice, also as observed in the

ABMs in Chapter 3. Thus, the linear stability analysis is sufficient to explain

flock turning in the LA.

One final note before we turn our attention to the EA model. We have not

included the rotational noise η in the dispersion relation, as it is not necessary

for the fluctuations in δφ to grow. Rather, it is responsible for generating the

fluctuations in the first place, ensuring that the α = 0 state, for which turning is

not expected to occur, is not an absorbing state. The other form of noise in this

equation, ξ, has a multiplicative prefactor proportional to
√
α, thus it cannot

play this role.

EA model

In the equations below, we define τ = tanh
(
βM0

2

)
for brevity. By the properties

of hyperbolic functions, this gives the following relations

cosh βM0 =
1 + τ 2

1− τ 2
and sinh βM0 =

2τ

1− τ 2
. (4.59)

As the rotational noise is not required for turning to be observed in the topological

EA model (see Fig. 3.3), we will set η = 0 here. Then, as above, we can write
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the linearised evolution equations (4.18, 4.24) as

∂tδρ =

[
−τ∂x +

1 + τ 2

4
∂xx +

1− τ 2

4
∂yy

]
δρ− βm0ρ0(1− τ 2)

2
∂yδΦ

+
βρ0(1− τ 2)

2

[
−∂x +

τ

2
(∂xx − ∂yy)

]
δM, (4.60)

∂tδm = τρ0 −m0 + τ

(
1− 1 + τ 2

2τ
∂x +

1

2
∂xx

)
δρ− δm

+
βρ0(1− τ 2)

2

(
1− τ∂x +

1

2
∂xx

)
δM, (4.61)

∂tδφ =
βρ0(1− τ 2)

2

(
1 +

1

2
∂yy

)
δΦ− δφ− (1− τ 2)

2m0

∂y (δρ− βρ0τδM) . (4.62)

Let’s examine the second equation (4.61). To keep the linear assumption (4.37,

4.38) valid, we must have
∣∣∣m0

ρ0
− τ
∣∣∣� 1, as the k = 0 terms must be on the same

scale as the next order terms to keep the system stable. We define a small constant

quantity α′ = τ − m0

ρ0
and drop terms of O (α′2). Unlike α in the LA, α′ can be

negative. Again, we wish for α′ to be small, otherwise the linear assumption will

not hold true.

As the evolution of δρ, δm and δφ do not depend on their own value only,

we cannot solve a single equation individually to obtain a dispersion relation.

Instead, we solve this by a Fourier transform and subsequent matrix inversion.

Taking α′ = 0, this gives the following singular matrix equation Aρ,ρ − λ Aρ,p Aρ,φ

Ap,ρ Ap,p − λ Ap,φ

Aφ,ρ Aφ,p Aφ,φ − λ


 δ̂ρλ,k

δ̂pλ,k

δ̂φλ,k

 = 0. (4.63)

The definitions of Ai,j and method of obtaining the solution of this equation can

be found in Appendix D.

The matrix A has three distinct eigenvalues, each corresponding to a different

dispersion relation. To determine the dynamics of the system and whether

our small quantities grow or shrink in time, we examine the real part of these

eigenvalues. While the eigenvalues take complicated forms, we can expand them

for low values of k and ε = 1− τ 2 � 1. We can assume that τ is very close to 1

in the ordered state as, for α′ = 0, τ is solved by the transcendental equation

τ =
m0

ρ0

= tanh

(
βNπR2

0m0

2

)
= tanh

(
βcτ

2

)
, (4.64)
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and βc > 2 for the ordered state (see Section 3.1.1). In the low k and low ε

approximation, the eigenvalues λi are approximately given by

<[λ1(k)] = −1

2
k2
x −

ε

4

(
1−Mβ̃

)
k2
y −

β̃ε2

64

(
β̃R2

0 + 4
(
Mβ̃ − 1

))
k4
y, (4.65)

<[λ2(k)] =
β̃ε

2
− 1− β̃ε

4

[(
R2

0

4
+ ε

)
k2
x +

(
R2

0

4
+ 1− ε

)
k2
y

]
, (4.66)

<[λ3(k)] =
β̃ε

2
− 1− β̃εR2

0

16
k2
x −

β̃ε

4

(
1 +

R2
0

4

)
k2
y, (4.67)

where β̃ = βc = Nπρ0βR
2
0, the next highest order terms in kx and ky are strictly

negative,M = 1 for a metric interaction andM = 0 for a topological interaction.

We note that the k = 0 intercepts of <[λ2] and <[λ3] are negative when ε� 1 and

the second order terms in k are also negative, so these eigenvalues always have

real part less than zero, and hence are stable modes of the Fourier expansion.

The remaining eigenvalue gives λ = 0 when k = 0, with the next highest order

behaviour giving different results for the metric and topological models. We

examine this eigenvalue in greater detail.

The first thing to notice is that for fluctuations along the axis of propagation

(|kx| > 0, ky = 0), λ1 has negative real part. This supports the assumption that

fluctuations in the direction of propagation are short-lived, also found in other

flocking systems [25]. We turn next to fluctuations perpendicular to the direction

of motion (|ky| > 0, kx = 0). The behaviour of these fluctuations depends on the

sign of Mβ̃ − 1, which changes between neighbourhood interaction types.

For a topological interaction, this term reduces to −1, which is negative. Thus,

the k2
y term is negative and the fluctuations should die away. For a metric

interaction, this varies with the system parameters. For a typical set that give

an ordered state in the agent-based model (see Fig. 3.3), we have β = 0.75

and c = 7. This gives a prefactor Mβ̃ − 1 ≈ 4. Thus, the prefactor of the k2
y

term is positive, leading to exponentially growing fluctuations and an unstable

Fourier mode. The k4
y term has a negative prefactor in the metric case, thus the

fluctuations must be sufficiently long-range (small k) to cause growth.
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4.3.4 Inconsistencies in the linear stability analysis

The behaviour of the LA ABM with either a topological or metric interaction

both contain regions of parameter space where the system contains an ordered

flock capable of undergoing stochastic turning. We demonstrated using linear

stability analysis that a highly ordered and evenly-distributed flock is unstable

to fluctuations causing it to change direction regardless of the interaction

neighbourhood choice.

On the contrary, the EA ABM can exhibit both turning and non-turning ordered

flocks for topological and metric interactions respectively. If the difference

between the topological and metric models could be explained by linear stability

analysis, we would expect to observe that the topological model is unstable to

fluctuations causing the flock to turn, while the metric model is stable to such

fluctuations. This is not what we observe from Section 4.3.3; rather the conclusion

of the linear stability analysis for the EA model is that the opposite should be

observed.

Before concluding that linear stability of the field equations is not sufficient to

explain the behaviours of the EA ABM, we re-examine the assumptions that

led to the dispersion relations that gave us (4.65). We identify ways the linear

stability could break down as follows:

1. Truncating the equations of motion (4.18, 4.24) at third order in derivatives

neglects terms that are sufficiently large to make a significant contribution

to the linear dynamics.

2. The topological radius of interaction R(r, t) cannot be approximated to the

form (4.6).

3. α′ is not sufficiently small that we can solve for λ by treating α′ = 0.

Any assumptions made about the stochastic terms in (4.24) are not relevant

here, such as the stochastic contribution to ∂tρ being negligible compared to the

deterministic term or polarisation on neighbouring sites being uncorrelated from

one another, as stochastic contributions to a Langevin equation do not affect the

linear stability of the dynamics. Note that the first two items in the list also

apply to the LA model, where the linear stability predictions match the ABM

observations.
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Nevertheless, let’s consider point 1. Returning to the position in the field equation

derivation where the continuous space approximation was made, we instead keep

the lattice terms in (4.12, 4.19, 4.20). Performing the linear stability analysis as

in Section 4.3.3, the linearised equations of motion become

λδρk,λ ≈
[

1 + τ 2

2
(cos kx − 1)− iτ sin kx +

1− τ 2

2
(cos ky − 1)

]
δρk,λ

+ βρ0
1− τ 2

2
[−i sin kx + τ (cos kx − cos ky)] δMk,λ

− iβm0ρ0
1− τ 2

2
sin kyδΦk,λ (4.68)

λδmk,λ ≈ τρ0 −m0 +

[
τ cos kx − i

1 + τ 2

2
sin kx

]
δρk,λ − δmk,λ

+
βρ0(1− τ 2)

2
[cos kx − iτ sin kx] δMk,λ (4.69)

λδφk,λ ≈
βρ0(1− τ 2)

2
cos kyδΦk,λ − δφk,λ + i

1− τ 2

2m0

sin ky [βτρ0δMk,λ − δρk,λ] .

(4.70)

For sufficiently small k, these equations match the Fourier transformed versions of

(4.60, 4.61, 4.62) (assuming τρ0 = m0). Thus, we can rule truncation of equations

of motion out as a cause of this discrepancy.

For a similar reason, we believe the approximation to the topological radius of

interaction (point 2 above) to be adequate at the linear level. Therefore, point 3

(i.e. α′ 6= 0) is likely to be the cause of the discrepancy observed, due to it being

a feature of the EA model only. In the case where α′ 6= 0, we discard Equation

(4.63) and solve instead the equation Aρ,ρ − λ Aρ,p Aρ,φ

Ap,ρ Ap,p − λ Ap,φ

Aφ,ρ Aφ,p Aφ,φ − λ


 δ̂ρλ,k

δ̂pλ,k

δ̂φλ,k

 = −α′

 0

1

0

 δk,0δλ,0, (4.71)

which adjusts the dispersion relation where λ = 0 and k = 0 and should affect

the eigenvalues for low k. As the right hand side of Eq. (4.71) is no longer zero,

it is not possible to solve the equation in the same way as before. As such, we

leave the solution of this equation for α′ 6= 0 as an open problem.

While confirming the observations of the 2d ABMs with the linear stability

analysis would be useful, our analysis thus far is sufficient to make a key

observation. As none of the eigenvalues blow up as k → ∞, there exists a
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numerical scheme that we can use to stably integrate the equations. In the next

section, we will describe a numerical integration scheme along the lines of the 1d

scheme from Section 2.3.

4.4 Numerical analysis

As we did for the 1d equations (2.22, 2.34), we can directly numerically analyse

the equations and average over trajectories to obtain a quantifiable measure of

the order in the system through the order parameter

ϕ =
1

LxLy

〈∫
|p(r, t)| dr

〉
(4.72)

where the average 〈〉 can be taken over t or realisations of the noise ξ(r, t) due to

ergodicity.

4.4.1 Numerical integration

We numerically integrate (4.18, 4.24) in much the same way as their 1d

counterparts in Section 2.3. To reiterate that procedure, we use operator splitting

to perform the stochastic update first, due to the presence of a complicated

multiplicative prefactor, then perform the deterministic update by following the

Euler-Maruyama approach that we introduced in Chapter 2 of replacing time

and space derivatives with finite differences, using δx = 1 and δt = 0.01 (hence

N = 100) again here.

Taking this step by step, we first split the vector equation for magnetisation

evolution (4.24) into two scalar equations. To simplify dealing with the stochastic

term, we choose to study the evolution of the magnitude m and angle φ of the

magnetisation vector m. The magnetisation vector component equations can be

expressed as

∂tm(r, t) =
1

m

[
mx

(
Jx − ∂xρx +

1

2
∂xxJx

)
+my

(
Jy − ∂yρy +

1

2
∂yyJy

)]
−m+

√
2

Nρ
(ρ2 −m2)ξm(r, t), (4.73)
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∂tφ(r, t) =
1

m2

[
mx

(
Jy − ∂yρy +

1

2
∂yyJy

)
−my

(
Jx − ∂xρx +

1

2
∂xxJx

)]
+

√
2

m2Nρ
(ρ2 −m2)ξφ(r, t), (4.74)

where ξm and ξφ are Gaussian random variables with mean zero and variance 1

[63].

Next, we split the Hamiltonian into stochastic and deterministic parts [60], take

the stochastic part of (4.73) and rewrite it in terms of a Fokker-Planck equation

∂tP (m, t) =
1

Nρ
∂mm

[
(ρ2 −m2)P (m, t)

]
. (4.75)

We draw an intermediate value, mint, from a beta distribution with parameters as

in Chapter 2 and use that in the discretised deterministic equation. For the noise

term in (4.74), we can take the Euler-Maruyama approach and add a Gaussian

distributed random number with variance σ2 = 2δt(ρ2−m2)
m2Nρ

, which is constant in φ.

Thus, the equations for numerically updating the particle density and magneti-

sation are

ρi,j(t+ δt) = ρi,j(t)(1− δt) + δt
[
ρi−1,j(t)P (x̂|Mint

i−1,j(t)) + ρi+1,j(t)P (−x̂|Mint
i+1,j(t))

+ρi,j−1(t)P (ŷ|Mint
i,j−1(t)) + ρi,j+1(t)P (−ŷ|Mint

i,j+1(t))
]
, (4.76)

mi,j(t+ δt) = δt cosφi,j(t)
[
ρi−1,j(t)P (x̂|Mint

i−1,j(t))− ρi+1,j(t)P (−x̂|Mint
i+1,j(t))

]
+δt sinφi,j(t)

[
ρi,j−1(t)P (ŷ|Mint

i,j−1(t))− ρi,j+1(t)P (−ŷ|Mint
i,j+1(t))

]
+mint

i,j (t)(1− δt), (4.77)

φi,j(t+ δt) = δt
cosφi,j(t)

mint
i,j (t)

[
ρi,j−1(t)P (ŷ|Mint

i,j−1(t))− ρi,j+1(t)P (−ŷ|Mint
i,j+1(t))

]
−δtsinφi,j(t)

mint
i,j (t)

[
ρi−1,j(t)P (x̂|Mint

i−1,j(t))− ρi+1,j(t)P (−x̂|Mint
i+1,j(t))

]
+φi,j(t) +

√
2ρi,j(t)δt

Nmint
i,j (t)

2

(
1−

mint
i,j (t)

2

ρi,j(t)2

)
ξi,j(t), (4.78)

with

mint
i,j (t) = (2yint

i,j − 1)ρi,j(t), (4.79)
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where yint
i,j (t) are drawn from the distribution

yint
i,j (t) ∈ Beta

α =

1
2

(
1 +

mi,j(t)

ρi,j(t)

)
exp

[
2δt

Nρi,j(t)

]
− 1

, β =

1
2

(
1− mi,j(t)

ρi,j(t)

)
exp

[
2δt

Nρi,j(t)

]
− 1

 . (4.80)

and Mint is calculated from the intermediate magnetisation mint and φi,j(t) as in

(4.2).

4.4.2 Results of the numerical integration

The equations (4.76, 4.77, 4.78) are stable when directly numerically integrated,

unlike in some other sets of field equations to describe flocking in 2d, e.g. [88].

They also remain physical, i.e. the density on any site never drops below 0 and is

conserved globally, and the magnitude of the magnetisation on a site never exceeds

that site’s density. However, the trajectories generated by the field equations do

not replicate some key behaviour observed in the ABMs. Crucially, the turning

of an ordered flock observed in 3 of the 4 ABMs in Chapter 3 (see Fig. 3.2) is

not seen under the same conditions in the trajectories of the field equations.

Fig. 4.3 highlights how, using the same parameters, the mean polarisation differs

between the field equations and the ABMs. With the exception of the metric

EA ABM, the magnitude of the polarisation in the ABMs decays with increasing

density, while the magnitude of the polarisation for the field equations remains

constant. This is likely due to the absence of any macroscopic turning for the

field equations.

As the order parameter ϕ does not match between the field equations and the

ABM, the quantitative agreement observed between the 1d field equations and

ABM (Fig. 2.6) is not present in our 2d system.

To understand why the numerically integrated field equations generate trajecto-

ries displaying different behaviour than their corresponding ABM, we return to

the linear stability analysis of the previous section. There, we demonstrated that

the LA is linearly unstable to macroscopic turning in the absence of explicit noise

(ξ = 0), unlike in the numerically integrated results above. As we demonstrated

that the behaviour in the 1d field equations was very sensitive to the form of

the stochastic term (Section 2.2.4), and the linear stability was analysed for the

deterministic term only, it is reasonable to assume that the stochastic term is
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Figure 4.3 Top: The order parameter in the ABM EA model vs the numerically
integrated field equations as a function of system density with
metric (left) or topological (right) interactions. Bottom: The order
parameter in the ABM LA model vs the numerically integrated
field equations as a function of system density with metric (left)
or topological (right) interactions. For all four models, the order
parameter for the numerically integrated SDE trajectories is close to
1 and does not change significantly as density increases. However,
for trajectories of the ABMs that exhibit macroscopic turning in the
ordered state (top right, bottom left and bottom right), the order
parameter is lower than 1 and decreases further as density increases.
This indicates that the macroscopic turning present in the topological
EA and both LA ABMs is not observed in the trajectories of the
numerically integrated field equations, as we see from Fig.s 3.2 and
3.3 that the order parameter drops as the flock changes direction.
The ABM data was obtained using a stochastic update with scalar
noise. Lx = Ly = 100, β = 0.75, η = 0.02.
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responsible for the unexpected behaviour in our numerical equations.

As we highlighted earlier in Section 4.1.4, we made the assumption in the deriva-

tion of our 2d Langevin equations that the autocorrelation of the polarisation p

is negligible for r > 0, enabling us to diagonalise the diffusion matrix in the

Kramers-Moyal expansion. While we reasoned at the time that polarisation

correlations in the ABMs suggested that the autocorrelation function dropped

off rapidly, it is the only assumption made in our equation derivation that affects

the stochastic term only, suggesting that the polarisation correlations do not drop

off sufficiently fast that they are negligible. As such, more work is likely needed to

obtain a more accurate stochastic term in the magnetisation Langevin equation

(4.24).

While we have not confirmed through linear stability analysis that the deter-

ministic terms of our Langevin equations (4.18, 4.24) act appropriately for our

EA model, we assume that the same issue with the stochastic term arises in the

numerical integration, resulting in the trajectories that do not conform to the

trajectories in the ABM at the same point in parameter space.

4.5 Summary

We set out in this chapter to identify if we could derive field equations for density

and magnetisation that generate trajectories matching those seen in related agent-

based models, and to use those equations to explain why some flocks undergo

macroscopic turning while others don’t. Using linear stability analysis, we

demonstrated that the form of the deterministic terms in our Langevin equations

may be the determining factor in the presence or absence of turning, while the

form of the stochastic term is likely responsible for obtaining the correct behaviour

in numerical trajectories, as it was for the one-dimensional models in Chapter 2.

We used the Kramers-Moyal approximation [66, 78, 115] to derive a set of

stochastic field equations describing the evolution of density and magnetisation

in a family of related agent-based models on a square lattice. We re-used many

key assumptions from Chapter 2 in this derivation, including an expansion from

the lattice to continuous space, choosing the appropriate stochastic variables, and

negligible correlations between neighbouring lattice sites. Some factors such as

the radius of interaction and neighbourhood magnetisation required more careful
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consideration due to the move to two spatial dimensions, the distinction between

different interaction types, and increasing the range of interaction beyond a single

site.

We turned next to linear stability analysis to explain the distinction between the

macroscopically turning and non-turning models. For the LA, we demonstrated

that the linearised evolution equations do not depend on the choice of metric or

topological interaction. We subsequently derive the dispersion relation for the

angle of the magnetisation and conclude that large wavelength fluctuations are

capable of causing the flock to turn. This directly matches the behaviour of the

agent-based simulations.

On the other hand, the linear stability analysis for the EA model is more

complicated. The stability of the linearised equations of motion depend on

whether a metric or topological interaction is used, as observed in the agent-based

simulations. An approximate dispersion relation suggests that macroscopic turn-

ing should be observed for metric interactions only, not topological interactions

as the agent-based simulations display.

While there are a number of reasons that linear stability analysis might have

failed to duplicate the behaviour observed in agent-based systems, the most likely

reason is the assumption that the linearised equations form a singular system of

coupled equations. We expect that removing this assumption will be sufficient to

demonstrate the expected behaviour, although more complicated techniques will

be required to solve a nearly singular set of equations.

To illustrate that the field equations accurately represented behaviours observed

in the ordered state of the agent-based models, we performed numerical

integration of the field equations. The resulting simulations display some, but not

all of the behaviour seen in the agent-based systems. Crucially, the macroscopic

turning observed in the LA and the topological EA agent-based simulations is not

exhibited at the same point in parameter space in the field equations. Rather, all

models display an non-turning ordered state, as seen in the metric EA agent-based

model. As the stochastic term was not present in the linear stability analysis that

demonstrated the expected behaviour for the most part, the form of the diffusive

stochasticity may be the cause of the incorrect behaviour observed.
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Chapter 5

Discussion & conclusion

The work in this thesis shows the importance of the stochastic term in the

dynamical (Langevin) equations describing a system of aligning self-propelled

particles (SPPs) and introduces a method (the Kramers-Moyal approximation)

of deriving these equations with an appropriate stochastic term. In the one-

dimensional (1d) case, we demonstrated that deriving Langevin equations from

the underlying microscopic dynamics can lead to a system of equations with

trajectories matching those of the underlying agent-based models (ABMs). We

further demonstrated how the Kramers-Moyal approximation could be used to

identify the minimal requirements on the inter-particle interaction within a

system of aligning SPPs in 1d to ensure an ordered coherent flock could form

that was capable of turning. Turning to two dimensional (2d) models, we used

the Kramers-Moyal approximation and linear stability analysis to explore how

the ability of an ordered flock to spontaneously turn could be observed through

the stochastic differential equations (SDEs) and ambitiously explored whether

a simplified version of the Kramers-Moyal approximation could lead to SDEs

with trajectories matching the behaviour of the underlying agent-based models.

While there were some challenges with actually obtaining these equations for the

2d case, the work in this thesis demonstrates how a set of SDEs can be obtained

from an agent-based system that match the dynamics of that system and outlines

a practical way to obtain these equations in 1d.

We demonstrated in Chapter 2 that the form of the stochastic prefactor plays a

large role in the dynamics of the SDEs. Using the wrong form of the stochastic

prefactor could lead to behaviour that didn’t match that of the agent-based model
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(ABM) the SDEs were based on. In one of the systems of equations we studied,

the stochastic term was so large that it overpowered the deterministic effects

and an ordered flock was unable to form. We outlined a procedure to obtain a

stochastic term that - when trajectories of the set of SDEs are obtained - matches

the behaviour of the ABM without the need for arbitrary rescaling.

These results are significant in three primary ways. Firstly, we demonstrated

that it is possible to obtain stochastic Langevin equations describing macroscopic

properties directly from the microscopic interactions. Previous works [23, 112]

have often made assumptions about the form of the stochastic term and

added an arbitrary scaling factor to ensure behaviour matches. Secondly, we

detailed the procedure to arrive at these equations, enabling the derivation of

SDEs for a variety of other systems. Finally, we showcased that the SDEs

generate trajectories that match the underlying mechanics of the ABM. We also

highlighted how minor alterations to the stochastic prefactor can have outsized

effects on the dynamics of the trajectories obtained, even removing the ability for

an ordered state to exist.

With our ability to derive SDEs corresponding to agent-based systems, we

explored the minimal requirements for a flock of aligning self-propelled particles

(SPPs) in 1d to be able to alternate their direction stochastically. While there

have been a number of works exploring 1d flocks as ABMs or differential equations

[35, 46, 47, 82, 92], none had previously examined what factors were necessary

for these flocks to change direction spontaneously in 1d. We demonstrated that

a particle determining which direction to travel needed, at minimum, the ability

to sample three particles chosen at random from its neighbourhood in order for

a coherent flock to form capable of alternating direction. The “three particle

minimum” that we demonstrated was needed for alternating flocks to exist did

allow for a particle to select itself as one of those three. However, whether or not

allowing that was necessary was also unclear from the literature.

We then outlined some preliminary findings from analysis into a few different

variations of our base model, motivated by a desire to understand whether

particles should include themselves in their neighbourhood, and by other 1d

models that used larger neighbourhoods [46, 92] or directional neighbourhoods

[47, 48]. By controlling whether or not a particle included itself in its own neigh-

bourhood, we demonstrated that particles including themselves (“persistent”

particles) allowed for a flock to exist for some non-zero noise strength, regardless

of the neighbourhood chosen. Additionally, sampling from more sites tended to
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result in higher order, and could even introduce order in systems of particles that

did not include themselves in their own neighbourhood (“uncertain” particles).

A potential avenue for further investigation in this area is to identify whether the

ability of the system to form a coherent flock can be identified from the SDEs

rather than by examining the ABMs. In this way, a better understanding of the

interplay between microscopic interactions and macroscopic behaviour could be

attained.

The results of Chapter 2 add to the work on self-propelled particle models in

1d [35, 46, 47, 82] by exploring how explicit stochastic terms can affect the

trajectories of a system. They also explore the minimal interactions necessary for

flocking to occur, adding to and reinforcing other works in the literature [32, 92]

and contrasting with other agent-based systems such as run-and-tumble particles

in which flocking is typically not present [109].

Examining the impact of different neighbourhoods on flocking dynamics in 1d was

the inspiration for the latter half of this thesis; what if we could obtain SDEs for

systems of aligning SPPs in 2d without arbitrarily scaling the noise term? If we

could derive 2d SDEs in the same way as for 1d, might we be able to understand

the factors that lead to stochastic turning in flocking models with a topological

neighbourhood [4, 54] while leading to band formation in models with a metric

neighbourhood [112, 116]?

In Chapter 3, we expanded our exploration of modifications to the 1d ABMs

to consider the addition of another spatial dimension. We chose to examine

lattice-based ABMs in 2d for two primary reasons. Firstly, while methods exist

of deriving differential equations for off-lattice ABMs in 2d (see Section 1.3.2 for

examples), none had previously been used to derive the stochastic term of those

equations explicitly. For example, the phenomenological approach of Toner & Tu

[112] typically includes an additive stochastic term in the velocity equation, while

the Boltzmann equation approach [29] typically includes the stochastic nature of

collisions and reorientation implicitly. Secondly, we had initially explored directly

integrating the particle equations of motion to obtain SDEs for the evolution of

density and velocity, in a similar manner to the approach of Chaté [29] and others.

However, our approach ran into difficulties with the closure of the set of equations,

as we were unable to neatly separate the deterministic and stochastic terms in

the resulting SDEs.

We returned therefore to the Kramers-Moyal approximation that had served
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us well for obtaining our 1d equations. The Kramers-Moyal approximation

doesn’t strictly require a finite number of states the particles can be in; however,

dealing with infinite matrices is an additional complexity that is not needed to

understand the factors necessary for turning, nor to demonstrate that the form

of the stochastic term plays a large role in the dynamics of the system. As such,

we constructed 2d agent-based systems based on a square lattice as a base from

which we later derived SDEs. We introduced two different alignment interactions

and two neighbourhood definitions, giving us four related lattice-based ABMs in

2d. We chose these alignment interactions such that, while similar in approach,

spontaneous turning was not observed in one of the models but was observed for

the remaining three. As these models were constructed for our purposes and had

not been examined in previous works, we then demonstrated that the difference

between these models was robust to changes in the mechanism of simulation.

Additionally, we demonstrated that the lattice did not prevent the ability of a

flock to turn, as one might have expected from introducing restrictions on the

directions of motion of particles.

The phase-separated banding observed in 2d SPP ABMs with a metric neigh-

bourhood and the macroscopic turning observed in 2d SPP ABMs with a

topological neighbourhood are well-documented [4, 54], and was observed in our

“exponentially-aligning” (EA) model. In contrast, the ability of an ordered flock

to form and turn spontaneously in our “linearly-aligning” (LA) model has not

been explored. Rather, the findings from simulations of the LA model contradict

a belief that asymmetric interactions are necessary for an ordered flock to turn

in 2d [27]. Exploring why simulations of the metric LA model do not result in

band formation is challenging with the ABMs, but becomes more accessible if we

can examine corresponding Langevin equations.

We begin Chapter 4 with a derivation of the stochastic Langevin equations

for the ABMs introduced in the previous chapter, using the Kramers-Moyal

approximation as in Chapter 2. As the later parts of Chapter 4 focus on

comparisons between the SDEs for our four models, we derived a general equation

for all interaction types covered in Chapter 3.

Based on the finding that the presence of an instability towards fluctuations

perpendicular to the particle velocity can cause a flock to turn through

propagation of that signal through the flock [3, 25], we conducted linear stability

analysis on our SDEs to determine if stability arguments could explain the

difference in behaviour between our systems. The neighbourhood definition had
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no effect on the linear stability of the LA system, which is always unstable to

perpendicular fluctuations and hence a flock can always turn spontaneously. This

finding reinforces our result from Chapter 3 that non-reciprocal interactions are

not strictly necessary for a flock to turn in a 2d system. Even when constrained

to a lattice, the reciprocal interactions of the metric LA allowed the particles to

form a flock capable of turning spontaneously.

Conducting linear stability analysis on the EA models was more challenging.

Solving the equations required complicated matrix algebra that our analytical

software was unable to perform. By making an additional assumption regarding

the magnitude of the mean polarisation, we observed that the stability of an

ordered flock under the EA model depended on the neighbourhood definition

through fluctuations in the direction of motion. The addition of this simplification

meant that we were unable to demonstrate the correct stability behaviour. To

determine whether linear stability is sufficient to explain the behaviours observed

in each of the topological and metric EA models, the small quantity approximated

to be negligible (α′) must be included and the equations solved more directly.

Linear stability analysis of differential equations has another benefit; if the small

length-scale behaviour of differential equations is stable, there exists a numerical

integration scheme that will generate trajectories of the differential equations

that are also stable. We numerically integrated the SDEs obtained at the start of

Chapter 4 to determine if the resulting trajectories matched the behaviour of the

2d ABMs, as they did for the 1d equations. Instead, we observed that all four

models exhibited flocks that did not turn macroscopically and persisted travelling

in the same direction. We determined that the likely cause of the observed

mismatch was the assumption within the Kramers-Moyal approximation that

correlations of density and polarisation were negligible beyond self-correlation.

This assumption was necessary to ensure that the matrix of second order jump

moments D was diagonal. However, if a suitable decomposition of the matrix of

second order jump moments into the product of a matrix B and its transpose was

found, the assumption of negligible correlations would no longer be necessary.

We close this work by discussing potential avenues of future research. The clearest

direction of further study would be an exploration of the SDEs obtained through

the Kramers-Moyal approximation with a non-diagonal D (and hence B). The

elements of B are related to the stochastic prefactor gi through the relation

g2
i =

∑
j b

2
ij for i ∈ {1, ..., 3LxLy} [63]. For each variable ψ ∈ {ρ, px, py}, the

stochastic prefactor gψ(x) will depend only on ρ(x), p(x) and their derivatives (i.e.
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gψ(x) = gψ[ρ,p](x)), although it would be preferable if higher order derivatives

are negligible.

The ABMs in this work were toy models, not based directly on any physical

system. Another avenue for future research would be to explore using the

Kramers-Moyal approximation to obtain SDEs for ABMs that more closely

resemble physical systems of birds, fish, insects, or other aligning self-propelled

agents. Doing so may involve starting with off-lattice ABMs to more accurately

represent the dynamics of agents, such as the constant-radius turning observed

in flocks of birds [26]. Alternatively, one could examine the effect of further

decoupling particle polarisation and particle velocity by introducing an internal

“spin” (similar to the Inertial Spin Model [23]) with a continuous range of possible

values.

We expect that in either an off-lattice system or one where a continuous spin

variable was introduced, the field equations would look very similar to (4.18,

4.24). In moving to an off-lattice system, gradients, divergences and Laplacians

would likely replace the directional derivatives in the deterministic terms, while

an additional equation is needed in the case of the model adding a spin field. The

details of Jx, Jy, ρx and ρy would depend on the exact interactions, though we

expect that only the probability normalisation needs to be updated in a move to

a continuous symmetry.

Additionally, as the results for 2d models in this work have considered a system

in bulk, more interactions (e.g. a surface tension-like term [87]) may need to be

added to ensure the flock does not diffuse and lose its cohesion. Agents in physical

systems can often only interact with a subset of neighbours depending on which

neighbours are within their field of view [44] or are within auditory range [48].

Obtaining accurate stochastic terms using the methods outlined in this work may

prove useful in understanding the dynamics of these physical models.
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Appendix A

The Kramers-Moyal approximation

The only possible transitions are those where the number of particles on a site i

will decrease as a particle moves to a neighbouring site (or where a move from a

neighbouring site will increase the density at i). The polarisation at both sites

will also change in this move. I will denote T±r,l(ρi, wi) as the transition rate for

a particle at site i facing right/left taking a step in the positive (right)/negative

(left) direction. It will be a function of the density and momentum at that site

only and has no explicit time dependence. Therefore, (1.50) can be expanded as

∂P

∂t
=

L∑
i=1

T+
r

(
ρi−1 +

1

N
,wi−1 +

1

N

)
P

(
...ρi−1 +

1

N
, ρi −

1

N
, ..., wi−1 +

1

N
,wi −

1

N
, ..., t

)
+T+

l

(
ρi−1 +

1

N
,wi−1 −

1

N

)
P

(
...ρi−1 +

1

N
, ρi −

1

N
, ..., wi−1 −

1

N
,wi −

1

N
, ..., t

)
+T−r

(
ρi+1 +

1

N
,wi+1 +

1

N

)
P

(
...ρi −

1

N
, ρi+1 +

1

N
, ..., wi +

1

N
,wi+1 +

1

N
, ..., t

)
+T−l

(
ρi+1 +

1

N
,wi+1 −

1

N

)
P

(
...ρi −

1

N
, ρi+1 +

1

N
, ..., wi +

1

N
,wi+1 −

1

N
, ..., t

)
−
[
T+
r (ρi, wi) + T+

l (ρi, wi) + T−r (ρi, wi) + T−l (ρi, wi)
]
P ({ρi, wi}, t) (A.1)

To simplify this further, consider a set of operators a±i and b±i that act of a

function f({ρi, wi}) such that

a±i f({ρi, wi}) = f

(
..., ρi ±

1

N
, ...

)
and b±i f({ρi, wi}) = f

(
..., wi ±

1

N
, ...

)
.

(A.2)

Using these operators and using the periodicity of the lattice, the master equation
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can be expressed as

∂P

∂t
=

L∑
i=1

(
a+
i b

+
i a
−
i+1b

−
i+1 − 1

)
T+
r (ρi, wi)P

+
(
a+
i b
−
i a
−
i+1b

−
i+1 − 1

)
T+
l (ρi, wi)P

+
(
a+
i b

+
i a
−
i−1b

+
i−1 − 1

)
T−r (ρi, wi)P

+
(
a+
i b
−
i a
−
i−1b

+
i−1 − 1

)
T−l (ρi, wi)P. (A.3)

Provided N is sufficiently large, ρi and wi can be approximated as continuous

variables. Under this assumption, the operators defined above can be approxi-

mated by the following Taylor expansion

a±i = 1± 1

N

∂

∂ρi
+

1

2N2

∂2

∂ρ2
i

+O
(
N−3

)
(A.4)

b±i = 1± 1

N

∂

∂wi
+

1

2N2

∂2

∂w2
i

+O
(
N−3

)
(A.5)

The Kramers-Moyal approximation [52, 66, 78] involves truncating the above

operators at the second order to obtain a Fokker-Planck equation. Under this

approximation, and grouping terms under the same derivative, the Fokker-Planck

equation for the above system becomes

∂P

∂t
=

1

N

L∑
i=1

∂ρi
(
T+
r,i − T+

r,i−1 + T+
l,i − T

+
l,i−1 + T−r,i − T−r,i+1 + T−l,i − T

−
l,i+1

)
P

+∂wi
(
T+
r,i − T+

r,i−1 − T+
l,i − T

+
l,i−1 + T−r,i + T−r,i+1 − T−l,i + T−l,i+1

)
P

+
(
a+
i b
−
i a
−
i+1b

−
i+1 − 1

)
T+
l (ρi, wi)P

+
(
a+
i b

+
i a
−
i−1b

+
i−1 − 1

)
T−r (ρi, wi)P

+
(
a+
i b
−
i a
−
i−1b

+
i−1 − 1

)
T−l (ρi, wi)P. (A.6)

∂P

∂t
=
∑
i

∂

∂ψi

(
〈δψi〉
δt

P

)
+
∑
i,j

∂2

∂ψi∂ψj

(
〈δψiδψj〉

δt
P

)
(A.7)

where δψi represents the possible changes in ψi in a single time-step δt.
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Appendix B

Beta-type distribution

In Section 2.3, we describe separating a Langevin equation (2.33) into a

deterministic and stochastic part to perform each step sequentially. We transform

the variable p in the stochastic piece of our equation (2.38) to another variable

y = 1
2
(1 + p), giving us

∂tP (y, t) =
1

Nρ
∂yy [y(1− y)P (y, t)] . (B.1)

To more accurately simulate the above distribution with a beta distribution, we

wish to calculate its mean ȳ and variance σ2. Given Equation (B.1), we can

calculate the temporal evolution of ȳ as

∂tȳ =
1

Nρ

∫ 1

0

dy y∂tP (y, t)

=
1

Nρ

∫ 1

0

dy y∂yy [y(1− y)P (y, t)]

=
1

Nρ
[y∂y (y(1− y)P (y, t))]10 −

1

Nρ

∫ 1

0

dy ∂y [y(1− y)P (y, t)]

= − 1

Nρ
[y(1− y)P (y, t)]10 = 0, (B.2)

where the probability distribution vanishes at y ∈ {0, 1}. As the time derivative

of the mean is 0, the mean is constant in time, i.e. ȳ = y0.

We calculate the variance similarly by calculating the temporal evolution of
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〈y(1− y)〉

∂t 〈y(1− y)〉 =
1

Nρ

∫ 1

0

dy y(1− y)∂tP (y, t)

=
1

Nρ

∫ 1

0

dy y(1− y)∂yy [y(1− y)P (y, t)]

= − 1

Nρ

∫ 1

0

(1− 2y)∂y [y(1− y)P (y, t)] dy

= − 2

Nρ

∫ 1

0

y(1− y)P (y, t)dy = − 2

Nρ
〈y(1− y)〉 . (B.3)

Thus, if we have y(t) = y0 at time t0, we have that at future times t,

〈y(1− y)〉 = y0(1− y0)e−2
t−t0
Nρ , (B.4)

and hence the variance σ2 is

σ2 =
〈
(y − y0)2

〉
=
〈
y2
〉
− y2

0

= −〈y(1− y)〉+ 〈y〉 − y2
0

= −y0(1− y0)e−2
t−t0
Nρ + y0(1− y0)

= y0(1− y0)
[
1− e−2

t−t0
Nρ

]
. (B.5)
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Appendix C

Run-and-tumble velocity derivation

When the “run-and-tumble” interaction is added to the 1d model defined in

Section 2.1, the update probabilities for a given site’s density ρi and magnetisation

mi must be altered. In Section 2.5, we describe particles undergoing either an

alignment step as in Section 2.1 with probability 1− r or a run-and-tumble step

with probability r.

If a run-and-tumble step is chosen, the chosen particle will continue in the same

direction (run) with probability 1 − η and will change direction (tumble) and

move in its new direction with probability η. Adding these new steps in, the

change in density on a given site i over a single time-step is given by

δρi(t) =



1
N

with probability
(
W+
i−1ρi−1 +W−

i+1ρi+1

)
(1− r)

+r(1− η)
(
ρ+
i−1 + ρ−i+1

)
+rη

(
ρ−i−1 + ρ+

i+1

)
− 1
N

with probability ρi

0 otherwise

, (C.1)
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leading to jump moments for density of

〈δρi〉 =
1− r
2N

[ρi+1 + ρi−1 − v(pi+1)ρi+1 + v(pi−1)ρi−1]− ρi
N

+
r

2N
[ρi−1 + ρi+1 − (1− 2η) (mi+1 −mi−1)]

=
1

2N
[ρi+1 + ρi−1 − 2ρi − [v(pi+1)(1− r) + r(1− 2η)pi+1] ρi+1

+ [v(pi−1)(1− r) + r(1− 2η)pi−1] ρi−1] ,

=
1

2N
[ρi+1 + ρi−1 − 2ρi − ṽ(pi+1)ρi+1 + ṽ(pi−1)ρi−1] , (C.2)

where ṽ(p) is defined in (2.47), and

〈
δρ2

i

〉
=

1− r
2N2

[ρi+1 + ρi−1 − v(pi+1)ρi+1 + v(pi−1)ρi−1] +
ρi
N

+
r

2N
[ρi−1 + ρi+1 − (1− 2η) (mi+1 −mi−1)]

=
1

2N2
[ρi−1 + ρi+1 + 2ρi − ((1− r)v(pi+1) + r(1− 2η)pi+1) ρi+1

+ ((1− r)v(pi−1) + r(1− 2η)pi−1) ρi−1]

=
1

2N2
[ρi+1 + ρi−1 + 2ρi − ṽ(pi+1)ρi+1 + ṽ(pi−1)ρi−1] . (C.3)

Note that (C.2) and (C.3) match (2.16) and (2.17) under the change v(p)→ ṽ(p)

as claimed in Section 2.5.

The possible changes in magnetisation in a single time step are

δmi(t) =



1
N

with probability (1− r)W+
i−1ρi−1 + ρ−i

+r
[
(1− η)ρ+

i−1 + ηρ−i−1

]
− 1
N

with probability (1− r)W−
i+1ρi+1 + ρ+

i

+r
[
(1− η)ρ−i+1 + ηρ+

i+1

]
0 otherwise

(C.4)
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The jump moments for magnetisation now become

〈δmi〉 =
1− r
2N

[ρi−1 − ρi+1 + v(pi+1)ρi+1 + v(pi−1)ρi−1]− mi

N

+
r

2N
[ρi−1 − ρi+1 + (1− 2η) (mi+1 +mi−1)]

=
1

2N
[ρi−1 − ρi+1 − 2mi + ((1− r)v(pi+1) + r (1− 2η) pi+1) ρi+1]

+ ((1− r)v(pi−1) + r (1− 2η) pi−1) ρi−1]

=
1

2N
[ρi−1 − ρi+1 − 2mi + ṽ(pi+1)ρi+1 + ṽ(pi−1)ρi−1] , (C.5)

and

〈
δm2

i

〉
=

1− r
2N2

[ρi−1 + ρi+1 − v(pi+1)ρi+1 + v(pi−1)ρi−1] +
ρi
N2

+
r

2N2
[ρi−1 + ρi+1 − (1− 2η) (mi+1 −mi−1)]

=
1

2N2
[ρi−1 + ρi+1 + 2ρi − ((1− r)v(pi+1) + r(1− 2η)pi+1) ρi+1

+ ((1− r)v(pi−1) + r(1− 2η)pi−1) ρi−1]

=
1

2N
[ρi−1 + ρi+1 + 2ρi − ṽ(pi+1)ρi+1 + ṽ(pi−1)ρi−1] , (C.6)

Similarly, (C.5) and (C.6) match (2.25) and (2.26) under the change v(p)→ ṽ(p)

as claimed in Section 2.5.
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Appendix D

Exponentially-aligning Fourier

transform and matrix solution

In ordered state simulations of the exponentially-aligning (EA) agent-based

models, we find that α′ � 1 and τ ≈ m0

ρ0
≈ 1. In order to use a matrix solution,

we must set α′ = 0 to obtain a set of linear equations for δρ, δp and δφ. We also

introduce a small quantity ε = 1 − τ 2 for easy of labelling. We finally choose to

define T = 1 if we are considering a topological interaction and T = 0 if a metric

interaction is used.

In the equations below, we examine linear equations for δp rather than δm. The

behaviour of the system will not change under this transformation, so we are free

to choose the quantity that best suits our needs. We first must derive a linearised

equation for the evolution of δp in time.

∂tδp ≈ ∂t

[
δm

ρ0

− p0δρ

ρ0

]
≈
[
− ε

2
∂x +

τε

4
(∂xx − ∂yy)

] δρ
ρ0

− δp

+
βε

2

[
1 +

ε

2
∂xx +

τ 2

2
∂yy

]
δM +

βm0ετ

2
∂yδΦ (D.1)

where δM and δΦ are the changes in the local magnetisation field (4.52, 4.53).

117



We can therefore write (4.60, D.1, 4.62) as

∂t

 ρ(r, t)

p(r, t)

φ(r, t)

 = AT (β̃, ε, R0)

 ρ(r, t)

p(r, t)

φ(r, t)

 (D.2)

where AT is an operator acting on r with components given by (4.60, 4.61, 4.62),

and β̃, η and R0 are physical constants of the linearised system.

We next perform Fourier transformation on (D.2) by making the substitution

f(r, t) =
∑
k,λ

eik·r+λtf̂k,λ (D.3)

where f ∈ {ρ, p, φ}. This leads to the following

∑
k,λ

[λ− Ak]

 ρk,λ

pk,λ

φk,λ

 eik·r+λt = 0 (D.4)

where Ak is the operator A under the substitutions ∂x → ikx and ∂y → iky.

As (D.4) must hold for all values of r and t, we must have that λ are the

eigenvalues of Ak. To determine the leading behaviour of the eigenvalues, we

look for the behaviour for low values of k, keeping terms up to second order.

Under the low k approximation, the matrix has components

Aρ,ρ = −iτ

[
1− β̃ε

2
M

]
kx −

k2
x

2
+
[ ε

4

(
1− β̃τ 2M

)] (
k2
x − k2

y

)
(D.5)

Aρ,p = − β̃ερ0

2

[
ikx +

τ

2
(k2
x − k2

y)
]

(D.6)

Aρ,φ = −i β̃ετρ0

2
ky (D.7)

Ap,ρ =
ε

2ρ0

[
β̃τM− ikx −

τ

2

(
β̃R2

0

4
+ 1 + β̃εM

)
k2
x −

τ

2

(
β̃R2

0

4
− 1 + β̃τ 2M

)
k2
y

]
(D.8)

Ap,p =
β̃ε

2
− 1− β̃ε

4

[(
ε+

R2
0

4

)
k2
x +

(
1− ε+

R2
0

4

)
k2
y

]
(D.9)

Ap,φ = i
β̃ετ 2

2
ky (D.10)
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Aφ,ρ = −i ε

2m0

[
1− β̃τ 2M

]
ky (D.11)

Aφ,p = i
β̃ε

2
ky (D.12)

Aφ,φ =
β̃ε

2
− 1− β̃εR2

0

16
k2
x −

β̃ε

4

(
1 +

R2
0

4

)
k2
y (D.13)

where M = 1 − T . The eigenvalues are subsequently obtained by solving the

equation det (Ak − λI3) = 0, and the small k limits of these eigenvalues are given

in equations (4.65, 4.66, 4.67).
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[29] H. Chaté. Dry Aligning Dilute Active Matter. Annual Review of Condensed
Matter Physics, 11(1):189–212, 2020.
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