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Abstract 

Background:  A wide range of tools are available for the detection of copy number 
variants (CNVs) from whole-genome sequencing (WGS) data. However, none of them 
focus on clinically-relevant CNVs, such as those that are associated with known genetic 
syndromes. Such variants are often large in size, typically 1–5 Mb, but currently avail-
able CNV callers have been developed and benchmarked for the discovery of smaller 
variants. Thus, the ability of these programs to detect tens of real syndromic CNVs 
remains largely unknown.

Results:  Here we present ConanVarvar, a tool which implements a complete workflow 
for the targeted analysis of large germline CNVs from WGS data. ConanVarvar comes 
with an intuitive R Shiny graphical user interface and annotates identified variants with 
information about 56 associated syndromic conditions. We benchmarked ConanVarvar 
and four other programs on a dataset containing real and simulated syndromic CNVs 
larger than 1 Mb. In comparison to other tools, ConanVarvar reports 10–30 times less 
false-positive variants without compromising sensitivity and is quicker to run, especially 
on large batches of samples.

Conclusions:  ConanVarvar is a useful instrument for primary analysis in disease 
sequencing studies, where large CNVs could be the cause of disease.
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Background
A copy number variant (CNV) is defined as a DNA fragment with a size of at least 
1 kilobase-pair (kb) which has a different copy number compared to a reference 
genome. This large unbalanced structural variation can be present in the form of dele-
tions (1 or 0 copies) and duplications (>2 copies). CNVs can cause many rare sporadic 
and Mendelian disorders, such as split hand/foot malformation and leukodystro-
phy [1, 2]. Furthermore, severe paediatric conditions are often caused by large CNVs 
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spanning multiple genes, with the size of such CNVs varying from 1 to 3 megabases 
(Mb) (e.g., DiGeorge and Charcot-Marie-Tooth syndromes  [3, 4]) to >10 Mb (e.g., 
Cri-du-Chat and cat-eye syndromes [5, 6]).

Tens of computer programs for CNV detection have been developed over the 
last decade, with most being based on read-depth, split-read, read-pair and de novo 
assembly approaches  [7, 8]. However, the vast majority of benchmarking analy-
ses tend to focus on relatively small variants rather than on big, clinically actiona-
ble alterations in the genome [9–12] (see [13] for an example of a study showing the 
performance of one popular CNV caller on CNVs >1 Mb). Consequently, there are 
no comprehensive benchmarks assessing the performance of different tools on large 
deletions and duplications, a situation which can be partly explained by the limited 
availability of samples with genetic aberrations of this kind.

We present ConanVarvar, a novel software for quick and robust joint calling of large, 
syndromic CNVs in batches of whole-genome sequencing (WGS) samples using read 
depth. To aid in the analysis, ConanVarvar annotates identified CNVs with informa-
tion about associated syndromic conditions and generates plots showing the position 
of each variant on the chromosome. ConanVarvar demonstrated a superior perfor-
mance on our test dataset comprising both clinical and simulated samples with large 
CNVs, compared to some of the most popular programs for CNV analysis.

Implementation
Overview of the approach

ConanVarvar is a read depth-based CNV caller with both a graphical user interface 
(GUI) and a command-line interface (CLI) (Additional file  1: Figs. S1 and S2). It 
approximates read depth along chromosomes by splitting them into bins of fixed size 
(e.g., 50 kb) with subsequent corrections for GC content and mappability. To detect 
abnormal regions, ConanVarvar performs segmentation of binned genomic intervals 
and assigns each segment an averaged copy number value. When the total number of 
available segments is sufficient, the program first removes all outliers with high stand-
ard deviation and then transforms the mean copy number of each segment to a dif-
ferent scale, so that potential deletions and duplications are further away from other 
segments (see Fig.  1); a K-means clustering algorithm then groups all transformed 
segments into “normal” and “CNV” categories. Otherwise, when there are fewer than 
30 segments available, which renders clustering inefficient, a simple threshold-based 
approach is triggered to identify abnormal regions based on the raw read depth of the 
segment.

Once all non-CNV segments are excluded from the list, the program assigns each 
variant an “occurrence” value indicating the total number of identical CNVs found 
in other samples using a distance-based estimation technique (see Fig.  2). Finally, 
ConanVarvar generates plots (Additional file  1: Fig.  S3) and reports the identified 
CNVs, with all per-variant statistics and annotations, including bootstrapped p-val-
ues, summarised in the form of a spreadsheet (Additional file  1: Fig.  S4). A more 
detailed description of the developed methodology is available in Additional file  1: 
Note S1, illustrated with the workflow shown in Additional file 1: Fig. S5.
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Benchmarking

Tools

We benchmarked ConanVarvar against two commonly used read depth-based tools, 
CNVnator v0.4 [14] and Control-FREEC v11.5 [15, 16]. The tools were selected based 
on their superior performance among other similar programs in previous bench-
marks, especially on large deletions and duplications  [9]. We also included in the 
comparison an alternative Python implementation of the CNVnator algorithm called 
CNVpytor (v1.2.1), which provides speed improvements and additional features when 
compared to its predecessor [17]. Another popular tool, Manta v1.6.0 [18], which is 
considered one of the top-performing CNV detection algorithms overall in terms 
of recall, accuracy and precision on both simulated and real data  [9, 11], was also 

Fig. 1  Results of the transformation of all copy number segments from the entire dataset (13 clinical and 
simulated CNVs). The transformation procedure is used to change the scale of log2 copy number values 
for subsequent removal of all non-CNV segments using a K-means clustering algorithm. A Distribution 
of segments’ mean values before the transformation. In this distribution, there is no clear separation 
between normal segments (i.e., those that correspond to the diploid state), which form a peak around zero, 
and potential CNVs (tails of the distribution). B Segments’ mean and standard deviation values after the 
transformation. Circles and triangles denote segments corresponding to real CNVs from the dataset. After 
applying clustering on the transformed values, it becomes easy to remove false positives (the blue and green 
clusters) while keeping all true-positive CNVs (the red cluster, centered around 0)

Fig. 2  Example of the occurrence calculation. ConanVarvar first calculates the Manhattan distance (in bins) 
between all identified CNVs and creates an adjacency matrix, which is then used to build a graph. Each 
disconnected component in the graph corresponds to a group of CNVs that are sufficiently close to each 
other. The occurrence value is then calculated as the number of nodes in each disconnected component
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added to the comparison. In contrast to ConanVarvar, Control-FREEC and CNVna-
tor/CNVpytor, Manta uses read-pair and split-read information instead of read depth.

Data

Due to the extremely deleterious nature of large CNVs, they are much rarer genomic 
events than their smaller counterparts. For this reason, there is a very limited number 
of publicly available WGS samples with large CNVs, which results in the lack of bench-
marking studies involving this type of variation [9, 10].

To assess the performance of ConanVarvar, CNVnator/CNVpytor, Control-FREEC 
and Manta, we created a test dataset of 14 WGS files, comprising 4 clinical samples, 9 
simulated single-chromosome samples and the original sample NA12878 from the 1000 
Genomes Project [19] dataset (see Table 1). The clinical samples were selected based on 
WGS and comparative genomic hybridisation (CGH) microarray results in cases from 
our in-house cohort of patients [20]. The dataset contained a total of 13 large (>1 Mb) 
deletions and duplications. All simulated files were generated using either BAMSurgeon 
v1.2 [21] or Illumina’s EAGLE simulator v2.5.1 [22] (see Additional file 1: Note S2).

Parameters

All read depth-based tools (ConanVarvar, CNVnator/CNVpytor, Control-FREEC) were 
run at the 50 kb resolution. For ConanVarvar and CNVnator/CNVpytor, the default set-
tings were used. The parameters of Control-FREEC were selected to most closely match 
the default settings of ConanVarvar, e.g., both programs were tested with the minimum 

Table 1  Dataset for benchmarking, containing 14 BAM files with BWA-aligned -150 bp Illumina 
reads and 25–30× coverage

Sample Related to Source CNVs of interest BAM file type

1 – NA12878 from 1000G Project None Full

2 3 Clinical Deletion in chromosome 10 Full

3 2 Clinical Deletion in chromosome 10 Full

4 – Clinical Two part-deletions in chromo-
some 5 (5q13.3–14.1 and 
5q14.3)

Full

5 – Clinical Deletion in chromosome 22 
(22q11, DiGeorge syndrome)

Full

6 – Simulated (EAGLE) ∼1.4 Mb duplication in chro-
mosome 17 (Charcot-Marie-
Tooth syndrome type 1A)

Single-chromosome (17)

7 – Simulated (EAGLE) 8p23.1 ( ∼3.7 Mb) duplication Single-chromosome (8)

8 – Simulated (EAGLE) 16p11.2–12.2 ( ∼7.8 Mb) dupli-
cation

Single-chromosome (16)

9 – Simulated (EAGLE) 15q26 ( ∼3.2 Mb) duplication Single-chromosome (15)

10 – Simulated (EAGLE) None Single-chromosome (22)

11 – Simulated (BAMSurgeon) 10q22.3–23.2 ( ∼7.5 Mb) 
deletion (same deletion as in 
samples #2 and #3)

Single-chromosome (10)

12 – Simulated (BAMSurgeon) 5p15.2–15.33 ( ∼11.3 Mb) dele-
tion (Cri-du-chat syndrome)

Single-chromosome (5)

13 – Simulated (BAMSurgeon) 16p11.2–12.2 ( ∼8.7 Mb) dele-
tion

Single-chromosome (16)

14 – Simulated (BAMSurgeon) 2q33.1 ( ∼8.3 Mb) deletion Single-chromosome (2)
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mappability of 0.8. For other parameters, either recommended or default values were 
used (see Additional file  1: Note S2). For CNVnator, Control-FREEC and Manta, the 
same reference files were used in each run, either as separate chromosomes (CNVna-
tor and Control-FREEC) or in a merged form (Manta). Allosomes (sex chromosomes) 
were excluded from the analysis in all samples, as were Manta’s BND (‘breakend’) type of 
records, specific to inversions and translocations.

Evaluation metrics

The performance of ConanVarvar, CNVnator/CNVpytor, Control-FREEC and Manta 
was evaluated using the F1, precision and recall metrics. The execution time on an HPC 
(high-performance computing) server node with 4 Intel Xeon CPUs and 128 GB of 
RAM was recorded for each tool.

Results
F1, precision and recall

Among the tools we evaluated, ConanVarvar had the highest F1 and precision scores, 
as shown in Fig. 3. It correctly identified all CNVs of interest and reported the small-
est number of false positives (i.e., variants other than the selected 13 CNVs). In con-
trast, Manta had the lowest precision overall. It missed more than half of all CNVs and 
performed especially poorly on duplications. Interestingly, the performance of Manta 
on simulated data was better than on real data, where it failed to find most large CNVs 
(Additional file 1: Figs S6–S11), except for one clinical sample, for which it gave a par-
tially correct answer (compare Additional file 1: Fig. S12 with Figs. S13 and S14). Perhaps 
unsurprisingly, the output of CNVnator and CNVpytor for most of the samples in our 

Fig. 3  Overall performance of ConanVarvar, CNVnator/CNVpytor, Control-FREEC and Manta on the 
test dataset based on the merged output of each tool for NA12878 and the 4 clinical and 9 simulated 
single-chromosome samples. A CNV was considered a false positive if it was not present in the simulated 
or clinical samples. “1-Recall” is also known as False Negative Rate (FNR). Absence of a bar indicates that the 
corresponding metric has the value of zero, e.g., ConanVarvar, CNVnator/CNVpytor and Control-FREEC all had 
the FNR of zero (perfect recall). Manta’s output was filtered to include only those variants that were at least 50 
kb in size
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benchmark was identical or nearly identical, which is also reflected in the highly similar 
F1, precision and recall characteristics of the two tools in Fig. 3.

Concordance

As shown in Fig. 4, the overall concordance between the tools was strikingly low. Each 
tool, with the exception of ConanVarvar, produced a considerably large list of unique 
false positives. The most obvious examples of such false positives, identified by Manta, 
are shown in Additional file  1: Figs.  S15–S20. Also, we found that both CNVnator/
CNVpytor and Control-FREEC treat gaps in the centromere regions as CNVs, which 
resulted in another group of false-positive calls (Additional file 1: Figs. S21–S29).

Execution time

Single files

CNVnator and ConanVarvar demonstrated a very similar performance in terms of their 
execution time on the analysed samples (Table 2). Control-FREEC was slightly slower on 
full BAM files compared to ConanVarvar and CNVnator, and was on average as fast as 
the other two programs on single-chromosome samples. Manta was the slowest of the 
five tools on full BAMs, which, however, can be explained by the underlying differences 
between split-read, read-pair and read depth-based methods. In particular, it demon-
strated a two- to three-fold slower performance compared to ConanVarvar, CNVnator 
and Control-FREEC on each of the full BAM files, though its performance on single-
chromosome samples was not too inferior. Interestingly, even though CNVpytor was 
significantly faster on full BAM files than the other four tools, it was surprisingly slow on 
single-chromosome BAMs.

Fig. 4  Concordance between ConanVarvar, CNVnator, Control-FREEC and Manta on the test dataset. Colour 
indicates the total number of false positives (red) and true positives (green). Only 4 variants were correctly 
identified by all tools. The remaining 9 true positives were reported only by ConanVarvar, CNVnator and 
Control-FREEC. Variants smaller than 50 kb in Manta’s output were excluded. As CNVnator and CNVpytor are 
different implementations of the same algorithm and have almost identical performance in terms of true and 
false positives, only CNVpytor’s calls are shown
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Joint calling

None of the above-mentioned tools, except for ConanVarvar, allow for concurrent 
processing of multiple WGS samples. Even though Manta can, in principle, be run on 
several BAM files simultaneously, it is reported to fail on datasets with more than 12 
samples, and, therefore, this feature was not applicable to our dataset. Hence, apart 
from ConanVarvar, all other tools required multiple invocations to analyse files from our 
dataset.

ConanVarvar is different, as it was specifically designed for quick multi-sample analy-
sis. As shown in Table 2, it batch-processed the entire dataset in just 63 min, efficiently 
utilising all available CPUs (configurable behaviour).

Prioritisation

When ConanVarvar was run on all 14 BAM files as one large batch of samples, it 
reported only 50 variants in total, a quantity 10–30 times smaller than the total number 
of false-positive CNVs outputted by the other four tools. Importantly, not only did it find 
all real CNVs of interest, but it also prioritised those variants based on their calculated 
p values and associated syndromes, such that all of them were in the first half of the 
list. Besides, in order to aid in further filtering of false positives, ConanVarvar calculated 
within-batch “occurrence” values for all identified variants based on the nearness of each 
one of them to other variants.

Discussion
CNVs larger than 1 Mb remain a considerably understudied class of genomic variants in 
bioinformatics [9–12]. Yet, these variants cause some of the most severe developmental 
disorders and should, therefore, be prioritised. In this paper we present ConanVarvar, a 
robust CNV detection tool based on read depth that specifically addresses the problem 
of large deletions and duplications. This software is designed to be used as a primary 
analysis program for simultaneous screening of multiple WGS samples for the most del-
eterious mutations. The 1 Mb cutoff on the CNV size allows ConanVarvar to quickly 
detect tens of known syndromic CNVs without reporting large numbers of false posi-
tives. False-positive CNVs are a long-known problem in disease sequencing studies [7, 

Table 2  Comparison of computational performance

Mean and standard deviation (in brackets) of each tool’s execution time on different BAM files, calculated as the time it takes 
for a program to output the results of variant calling without running any additional scripts (e.g., for plots). An HPC server 
node with a total of 128 GB of RAM and 4 Intel Xeon CPUs was used in each run. Symbol † indicates that the value is an 
estimate

Tool Built-in 
parallelisation 
enabled?

Simulated 
samples (single-
chromosome BAM 
files), minutes

Clinical samples 
(full BAM files), 
minutes

NA12878 (full 
BAM file), 
minutes

Joint 
calling, 
minutes

Manta Auto 2.3(1.7) 76.5(21.0) 70 397†

CNVnator Auto 1.4(0.7) 22.0(0.8) 32 133†

CNVpytor Yes 3.6(2.1) 15.3(0.5) 27 121†

Control-FREEC Yes 2.3(1.2) 31.2(7.2) 36 182†

ConanVarvar Yes 1.7(0.9) 21.5(0.6) 32 63

ConanVarvar No 1.8(0.8) 22.5(1.3) 33 131



Page 8 of 10Gudkov et al. BMC Bioinformatics           (2023) 24:49 

23, 24], as they tend to complicate the analysis by obscuring the more severe genomic 
abnormalities.

Our benchmarking results show that read depth-based CNV callers, such as Conan-
Varvar, CNVnator/CNVpytor and Control-FREEC, tend to perform well on large CNVs. 
In contrast, despite being one the de facto best algorithms for the detection of structural 
variation according to previous studies, Manta, which utilises split-read and read-pair 
information for CNV detection, missed half of all the large CNVs in our dataset. In par-
ticular, it did extremely poorly on our large duplications, which is strikingly different to 
its previously reported performance on CNVs of this type with smaller size [9]. Among 
the read depth-based callers in this study, ConanVarvar demonstrated superior results 
in terms of the F1 and precision metrics on both real and simulated data by making sev-
eral-fold less false-positive calls and prioritising true positives higher. Consistent with 
the literature [13], CNVnator correctly identified all large CNVs from our dataset, as did 
Control-FREEC. Nevertheless, the overall concordance between the tools was rather 
low, with the vast majority of calls being unique false positives.

Aside from the superior performance, ConanVarvar offers built-in annotations, facili-
tating the identification of clinically actionable CNVs based on 56 known syndromes. As 
WGS technology is gradually becoming a standard clinical practice, we anticipate that 
the reliance on such readily available annotation features will increase accordingly in the 
near future.

One of the limitations of our study is the size of our selection of CNV callers. Besides, 
we were also limited in the number of metrics we could use for the benchmarking, as the 
definition of a true negative is ambiguous in the context of large CNVs. However, given 
that our test dataset was sufficiently heterogeneous, we argue that the above-mentioned 
conclusions are still valid.

In future developments of ConanVarvar, we plan to add the support of single-nucleo-
tide variants integration, in order to improve the accuracy of CNV breakpoint detection, 
which is currently one of the major limitations of all programs based on read depth, as 
the accuracy depends on the bin size. We also plan to regularly update the list of syn-
dromes which is used for annotations in ConanVarvar.

Conclusions
We believe that this work will not only provide the bioinformatics community with a 
new tool for CNV analysis but will also help to further elucidate the performance of 
existing tools for CNV detection on large CNVs.

Abbreviations
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CNV	� Copy number variant
FNR	� False negative rate
GUI	� Graphical user interface
HPC	� High-performance computing
Mb	� Megabase
WGS	� Whole-genome sequencing
kb	� Kilobase
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