RootAsRole: a security module to manage the administrative privileges for Linux

Ahmad Samer Wazan
College of Technological Innovation
Zayed University
Abu Dhabi, UAE

Email: ahmad.wazan@zu.ac.ae

Romain Laborde
IRIT Laboratory
Paul Sabatier University
Toulouse, France
Email: laborde @irit.fr

Liza Ahmad
College of Technological Innovation
Zayed University
Abu Dhabi, UAE
Email: Liza.ahmad@zu.ac.ae

Abstract—Today, Linux users use sudo/su commands to at-
tribute Linux’s administrative privileges to their programs.
These commands always give the whole list of administrative
privileges to Linux programs unless there are pre-installed
default policies defined by Linux Security Modules (LSM).
LSM requires users to inject the needed privileges into the
memory of the process and to declare the needed privileges in
an LSM policy. This approach can work for users with good
knowledge of the syntax of LSM policies. However, adding or
editing an existing policy is very time-consuming because LSM
requires adding a complete list of traditional permissions and
administrative privileges. Therefore, we propose a new Linux
module called RootAsRole dedicated to managing administra-
tive privileges. RootAsRole is not proposed to replace LSM
but to be used as a complementary module to manage Linux
administrative privileges. RootAsRole allows Linux adminis-
trators to define a set of roles that contain the administrative
privileges and restrict their usage to a set of users/groups and
programs. Finally, we conduct an empirical performance study
to compare RootAsRole tools with sudo/su commands to show
that the overhead added by our module remains acceptable.

Index Terms—sudo/su, Linux capabilities, privilege escalation,
access control.

Eddie Billoir
IRIT Laboratory
Paul Sabatier University
Toulouse, France
Email: eddie.billoir @irit.fr

Mustafa Kaiiali
School of Computer Science and Informatics
De Montfort University
Leicestershire, UK
Email: mustafa_kaiiali@ieee.org

David W Chadwick
Crossword Cybersecurityg
Canterbury, Kent
Email: david.chadwick@ crosswordcybersecurity.com

Remi Venant
Computer Science Department
University of Le Mans
Le Mans, France
Email: remi.venant@univ-lemans.fr

Abdelmalek Benzekri
IRIT Laboratory
Paul Sabatier University
Toulouse, France
Email: benzekri@irit.fr

1. Introduction

Administering an OS includes many tasks, such as man-
aging the OS users, file system, security policy, processes,
system clock, etc. Historically, Linux administration was
based on the existence of one powerful user, called superuser
or root, whose id value is 0. The initial administration
model was straightforward because any user can manage any
resource on the system as long as the effective user ID (euid)
of the process run by the user is equal to zero. Indeed, every
process on Linux systems has four types of group and user
IDs, the most important ones are Real ID (ruid,rgid) and
Effective ID (euid,egid). Typically, real ID is used to show to
which user or group the process belongs, while Effective ID
determines the permissions granted to a process. According
to the initial administration model, any process whose euid
or egid is 0 can achieve all the administrative tasks on Linux.
This type of process is referred to as a privileged process
[11]. Consequently, any regular user who wants to achieve
an administrative task on Linux must change the process’s
euid or egid to 0.

This administrative model can lead to a privilege esca-
lation attack when the executed program has an exploitable
vulnerability or when the executed program has some argu-
ments that allow malicious users to execute arbitrary com-
mands on the system. For example, in 2019, a vulnerability
was discovered in the sudo program (setuid bit set) that

allows any non-privileged user to become root [21]. Another
example is an administrator who adds to the sudo configu-
ration file the possibility for a user to run the command find.
This command could give the user root access to the whole
system if the administrator was not aware of the existence of
the exec argument in the find command. The exec argument
allows the user to execute arbitrary commands on the system
(see Figure 1). In addition, the simple administration model
can also cause disastrous problems in the system when users
commit some fatal error such as “rm -rf /” which allows
the user to remove the whole files system! (see Figure 2).

:~$ sudo find /home/tomas

-exec sh -c "whoami" \;

Figure 1. Privilege escalation with find command.

Mount a file system
Set the system’s time
Backup the files
Manage users and groups

Debug processes

Change a password

@ Sudo Prog; / Create raw sockets
m -rf/@‘ g# °. Open a privileged port
sudo L Etc.

Figure 2. sudo command.

As a consequence, POSIX draft 1003.1e has been pro-
posed to create special permissions called Linux capabili-
ties?. Linux capabilities are a set of administrative privileges
that allow their owner to execute different administrative
tasks (the terms Linux capabilities and administrative privi-
leges are interchangeably used in this paper). Although the
POSIX draft has been withdrawn, it has been integrated
into the kernel of Linux since 1998. The power of the
super user is divided into a list of sub-powers that can be
distributed separately to processes by giving them only the
administrative privileges they need [1] (see Figure 3).

For different reasons, Linux capabilities have not been
widely used. The first problem comes from the use of
extended attributes to store the capabilities of executable
files (problem 1). Secondly, Linux administrators do not
have a tool that allows them to distribute capabilities to
Linux users in a fine-grained manner (problem 2). Fine-
grained privilege distribution should give an administrator
the ability to decide: (1) which capabilities to give to which
users or groups, (2) with which programs, and (3) on which
resources users can use the granted privileges. Finally, Linux
does not provide a tool that permits Linux users to know the

1. In 2006, GNU rm added the option -no-preserve-root to prevent this
problem

2. The capability term here should not be confused with the capability
term used in access control literature which refers to a token given by the
kernel to a process to access an object (e.g. file descriptor)

capabilities that a program needs in order to run successfully
(problem 3).

Traditional Administration model Capability-based Administration model

Create raw sockets

All processes

run by the processes run by
administrator

the administrator
have the same 1?,? % gr %?] bﬁ have different
g

g? ,‘?1
71 L !
. N dminstrative
adminstrative Qﬁ a
i

power. 4 | ?? %ﬂ vﬂ i.m power according

to their needs.
Figure 3. Traditional-based processes vs. capability-based processes.

In 2015, the kernel of Linux was modified in order
to address the technical problems related to the storing of
capabilities in the extended attributes of executable files (i.e.
problem 1). This new feature added to the kernel makes it
possible to extend the capability module by adding on top
of it a policy management tool that can be configured by the
administrators of Linux systems [31]. The objective of this
paper is to allow administrators to restrict the use of Linux
capabilities in their systems by resolving problems 2 and 3.
Concretely, we are providing a module called RootAsRole
that gives system administrators the possibility of finely
controlling the distribution of administrative privileges to
Linux users. We have implemented a role-based approach
where each role maps to a set of capabilities that can be
granted to users or groups of users. Linux users use our sr
command to assume these roles and execute their privileged
applications. In addition, we provide a command called ca-
pable which allows Linux users to know the administrative
privileges requested by Linux users. Finally, we provide
the commands addrole, editrole and deleterole that allow
a Linux administrator to edit the policy of RootAsRole.

Linux Security Modules (LSM) can be used to restrict
administrative privileges by requiring (1) the injection of
the needed privileges into the memory of processes and (2)
declaring them in the LSM policies. Practically, Linux users
always use sudo/su commands to inject the administrative
privileges and depend on the program’s author to define
an LSM policy. sudo/su commands permit users to inject
the full list of administrative privileges into the memory of
processes because Linux kernels come with an emulation
mode that allows any process whose euid is O to have the full
list of Linux capabilities. Whether a program has an LSM
policy or not, Linux users can not notice when a process is
confined or not as they are always using sudo/su commands.
When a process has no LSM policy, Linux administrators
need to write LSM policies that have to contain rules for
the traditional permissions and the administrative privileges.
RootAsRole allows Linux administrators to only edit rules
for administrative privileges while allowing them to still use
the LSM if they need to manage the traditional and the
administrative rules.

This paper expands our previous work [25] by:

1) Providing a clear explanation about Linux capabil-
ities and its history, which is difficult to understand
due to its complexity,

2) Discussing the rationale of the sr command imple-
mentation,

3) Adding more motivation scenarios to prove the
applicability of our proposal,

4) Defining an additional command called capable
that allows users to know which capabilities are
being requested by programs (i.e. problem 3). We
have used eBPF which allows us to intercept the
syscalls of the Linux capability module and return
the requested capability.

5) Adding a set of tools that allow an administrator
to add/update/delete roles without needing to edit
the configuration file manually. This can reduce the
configuration errors that can be accidentally made
by administrators.

6) Providing a detailed analysis of the inefficiency of
LSM in managing the Linux administrative privi-
leges,

7) Discussing the complexity overhead added by our
tools when they are compared with the sudo com-
mand.

The paper is organised as follows. Section 2 describes
Linux capabilities, showing how they are calculated by
the Linux kernel and what limited tools are available to
distribute them to Linux programs. In section 3, we review
related work, whilst section 4 introduces the RootAsRole
module and shows its advantages by presenting two moti-
vating scenarios. We describe the implementation in section
5 and in section 6 we conclude with the limitations of our
proposal and our future work.

2. Linux Capabilities

In 2000, starting with Kernel 2.2, Linux divided the
traditional power of the superuser into smaller distinct units
called capabilities [12]. There are currently 38 capabilities
implemented in the kernel of Linux. In this system, the no-
tion of a privileged process changes to represent any process
that has one or more of the 38 capabilities in its credentials
and is no longer a process whose euid or egid is equal to
zero. The root user is now considered as any other regular
user. However, Linux still provides an emulation mode that
allows any process whose euid or egid is equal to zero to
automatically have the full list of available capabilities in
its credentials and thereby become a privileged process.

All Linux capabilities start with the keyword cap, and
each one of them allows a different set of administrative
tasks. For example, any process that has the capability
cap_net_admin can modify the network interface configu-
ration, administer the IP firewall, and modify the routing
tables as well as many other network-related activities. The
capability cap_dac_override allows the process to bypass
file and directory permissions. Similarly, cap_mac_override
allows the Mandatory Access Control (MAC) rules to be

overridden. A complete explanation of the Linux capabilities
can be found on Linux manual page - capabilities(7) [12].

In response to the presentation of the SELinux project
by the United States NSA in 2001, Linux Torvalds defined a
general security framework, called Linux Security Modules
(LSM), that provides a set of security hooks in the kernel ob-
jects. These hooks can be implemented by different security
modules whose behaviours are controlled by a policy. One
of the most known modules are SELinux’, AppArmor®*, and
grsecurity 7. In addition, Linus Torvalds asked to migrate the
logic of Linux capabilities into the LSM security framework
[10]. LSM framework allows to implement additional access
control models such as Mandatory Access Control (MAC)
and Role Based Access Control (RBAC) models. The capa-
bility’s logic is implemented inside the LSM framework [10]
(Figure 4). However, unlike other LSM such as SELinux and
AppArmor, the capability module cannot be removed from
the LSM and has no policy store to control its behaviour.

The LSM hooks are inserted inside syscalls, which allow
different security models to be integrated into the Linux
kernel. Whenever a privilege is needed during the execution
of a syscall (e.g. fork()), a capable() or ns_capable() func-
tion is called to check whether the calling process possesses
the requested privilege or not. These functions call another
function, called cap_capable() that is implemented inside
the capability module of the LSMC.

Process1 Process2 Process3 Process4
Inheritable

e

Effective ‘

m

lsy&call Syscall Syscall Syscall (e.g. open raw socket)

Verify whether cap1 is
in the Effective of Process 1 €]

capl? cap2?
cap3? cap4?

oMM me
Capability module

Linux Security Modules (LSM)|

Privileged operation
needs cap4

Figure 4. How capability’s check works.

At the process level, when we look at the cred structure
(Listing 1) in the Linux kernel [28], which defines the
security context of a task, we find 5 sets (fields or bitmasks)
used to store the Linux capabilities: Effective, Permitted,
Inheritable, bset (or Bounding) and Ambient. Each of these
sets has a different purpose.

The file /proc/[PID]/status lists the current values of the
five sets for the process with the given PID. For any root
process, the values of Permitted, Effective and Bounding
capability sets are totally filled, whilst the Inheritable and
Ambient sets are totally empty (Figure 5). Since the reserved

3. https://github.com/SELinuxProject

4. https://apparmor.net

5. https://grsecurity.net

6. This behaviour changes when another LSM is installed such as
AppArmor or SELinux. The behaviour is explained in section 3

struct cred {

kernel_cap_t cap_inheritable;

/+ caps our children can inherit =/
kernel_cap_t cap_permitted;

/% caps we’re permitted =/
kernel_cap_t cap_effective;

/+ caps we can actually use s/
kernel_cap_t cap_bset;

/+ capability bounding set =/
kernel_cap_t cap_ambient;

/+ Ambient capability set =/

Listing 1. Cred sturcture [28]

storage size for each capability set is 64 bits, and Linux has
only defined 38 capabilities, this explains why the top 26
bits of each set are empty.

root@osboxes:~-# cat [proc/S$/status
Mame : bash

S5igQ: /7740

SigPnd: 0008000000000000

ShdPnd: 0008000000000000

SigBlk: 0000EEEEE0010000
0000000000380004
000000004b817efb
000000000A000000 Inheritable set
BO0ABO3TFITFffTT Permitted set
0000003FffIfffff Effective set
0O00EO3TFITTTTTT Bounding set
0000000000000000 Ambient set

SigIgn:

Figure 5. Values of a shell run by root (cat /proc/$$/status).

Effective contains the set of capabilities that are cur-
rently used by the process. cap_capable() reads this set in
order to verify whether a process is allowed to achieve a
privileged task or not. Permitted contains the set of ca-
pabilities that a process can use, which is a superset of
the Effective set. A process can drop a capability from its
Effective and Permitted sets. Dropping a capability from the
Effective set means that the process wants to temporarily
disable the concerned capability, but removing a capability
from the Permitted set means that the process permanently
loses the capability. The Inheritable set is used by a process
that wants to grant some capabilities to another process that
results from an exec() call to its binary file. If a process has
the cap_setpcap capability in its Permitted, this gives it the
possibility to add additional capabilities to its Inheritable set.
cap_bset is the capability bounding set of a process. This set
is used to limit the capabilities that it may pass on to a new
process obtained from an exec() call to its executable file.
Without this set, attackers, who succeed in modifying the
extended attributes of an executable file, could run processes
that have the full set of root privileges. The cap_bset set is
also considered to be a superset of the Inheritable set. The

Ambient set is a relatively new addition to the Linux Kernel,
which has been added to resolve the problems arising from
the use of extended attributes to store the capabilities of
executable files (see section 2.2).

Executable files only have the ability to store three sets
of capabilities: Inheritable, Permitted and Effective. These
sets are used to grant privileges to the process resulting from
an exec() call of the binary file, by masking them against
the capability sets of the calling process as described in the
next section.

2.1. Capabilities calculation

After an exec() call of program (F') by the calling
process (P), the Linux kernel applies the following rules’
to calculate the capabilities of the new process (P’):

/

PPer'mitted = (Plnhem'table&Flnheritable)|(FPermitted&Pcap_bset)
/ /

PEffective = FEffective?PPeT'nLitted :0

/
PInhem'table = Prnheritable

)]

Where:

& is bitwise AND,

| is logical OR,

z = x?y : 0 means if x has a value or true; z will take
the value of y otherwise z will be zero.

These rules show that the Permitted set can be filled
either through inheritance by masking the Inheritable set
of the calling process (Prnheritable) against the Inheritable
set of its binary file (Frnneritable), Or directly from the
Permitted set of its binary file (Fpermitteq) after having
masked it against the cap_bset (or Bounding) set of the
calling process P. The Effective set of P’ will have an exact
copy of its Permitted set if the file’s Effective set is enabled,
otherwise it will be empty. Finally, its Inheritable set will
have the same values as the Inheritable set of the calling
process P.

For example, say an administrator wants to give a set
of users the possibility to use fcpdump. In terms of capa-
bilities, fcpdump requires the privileges cap_net_raw and
cap_net_admin. An administrator, providing it owns the
privilege cap_setfcap, can use the command sefcap to grant
these privileges to the tcpdump file, as follows:

setcap cap_net_raw, cap_net_admin=ep /usr/sbin/tcpdump

This command stores the cap_net_raw and
cap_net_admin in the Effective and Permitted sets of
the fcpdump binary file (ep refers to the Effective and
Permitted sets), assuming the system administrator’s
Bounding set contains these capabilities. Whenever a Linux
user runs tcpdump from its shell, the shell makes an exec()
call to the fcpdump file. In this case, the Linux kernel

7. These rules were prior to the addition of the Ambient set in 2015,
and they are not applied when a process creates another process using the
fork() call. The child process resulting from a fork() call always has the
same capabilities as its parent.

applies the calculation rules to determine the capabilities
of the new process P’. P’ will only have cap_net_raw and
cap_net_admin in its Permitted set if the user’s process has
them in its Bounding set. The Permitted set of P’ will be
copied into its Effective set because the Effective set of
the tcpdump file has been set. Thus any user that has the
Discretionary Access Control (DAC) permission to execute
tcpdump can run it without the need to have a root account.

If the administrators desire to restrict the execution of
tcpdump to certain users, they should create a group that
is composed of the users allowed to execute tcpdump and
then change the DAC permission of fcpdump to restrict the
execution to the created group.

Another option an administrator may follow is to use
the pam_cap module. This allows the cap_net_raw and
cap_net_admin capabilities to be given to users, once they
are logged in to the system. The basic idea of pam_cap.so
is to distribute Linux capabilities to users by applying the
inheritance rule. The module pam_cap.so comes with a
configuration file (/etc/security/capability.conf) that allows
the Linux administrators to define the list of capabilities
that they want to grant to users. The first processes that run
(i.e. init and login) during the booting of a Linux system
are privileged processes that own all the capabilities in their
Permitted and Effective sets. As a consequence, they can
fill the Inheritable set of their descendant processes like a
user’s shell. The login process loads the pam_cap module
that injects the privileges in the Inheritable set of its own
process and then it creates the shell process (via fork() and
exec() calls). As a result, the capabilities defined by the
administrator in the “capability.conf” file will be stored in
the Inheritable set of a user’s shell. However, having the
capabilities in the Inheritable set would not allow to the
user to run fcpdump; the administrator must also inject the
same capabilities into the Inheritable and Effective sets of
the tcpdump file, using the command:

setcap cap_net_raw, cap_net_admin=ie /usr/sbin/tcpdump

where ie refers to the Inheritable and Effective sets. Only
users that have the same capabilities in their Inheritable set
of their shell will be able to run the tcpdump command.

2.2. Problems with the Linux Capability File-based
Approach

Linux stores the file capabilities in the extended at-
tributes (xartrs) of binary files. This has been the cause of
several different problems that has limited the use of the
Linux capability model. In particular:

e Some basic Linux commands do not use the ex-
tended attributes correctly. For example, the mv com-
mand preserves the extended attributes by default.
However, the administrator does not get a warning
message when moving files onto a file system that
does not support the extended attributes, so they
are lost. On the other hand, the ¢p command does
not copy the extended attributes by default; the

administrator must add the option --preserve=xattr.
Other issues have been reported about archiving and
backup tools that do not properly take care of the
extended attributes [2];

« Executing privileged scripts in a secure way is not
possible. Linux administrators have to inject the root
privileges into the interpreter program binary and not
into the scripts. In this way, all scripts run by the
interpreter will gain the privileges of their interpreter
whereas the administrator may wish to give different
privileges to different scripts;

o The xarttrs are often lost when Linux packages are
updated. This is a huge problem when the number
of binaries containing capabilities is relatively big;

o The Linux kernel does not take into account the
configuration of the LD_PRELOAD variable when
capabilities are stored in binaries. LD_PRELOAD is
an environment variable that contains the list of user-
specified libraries that are dynamically loaded before
all other shared libraries [3]. Typically, this feature
can be used to intercept the standard system calls
such as malloc(), open(), close(), etc.

It should be noted that it is not possible to completely
remove the need to store capabilities in the xattrs of exe-
cutable files but a mechanism has been introduced to limit
their use. This is the idea of the Ambient set (see section
5.1). However, today there are no tools that permit the dis-
tribution of capabilities to Linux users who wish to use the
Ambient set. Administrators have no choice but to use the
pam_cap module and the extended attributes of executable
files to distribute capabilities to their users. We provide an
alternative to pam_cap that does not necessitate storing the
capabilities in the extended attributes of executable files.

3. Related Works

LSM (e.g. SELinux or AppArmor) are today the main
tools that allow restricting the usage of administrative priv-
ileges in Linux. The LSM’ logic to manage administra-
tive privileges is different from setcap, pam_cap and our
module RootAsRole because LSM are designed to check
first whether the needed privilege is owned by the process
and then check whether the needed privilege is declared in
an LSM’s policy. Figure 6 illustrates the current decision
algorithm implemented by the Linux kernel for LSM. We
can notice two different paths: the first one is to check tradi-
tional permissions (i.e. whether the process owns traditional
permission- read/write/execute) as per DAC model rules, and
the second one is to check the administrative privileges (i.e.
Linux capabilities).

For example, the hook function apparmor_capable()
(Listing 2) implemented in AppArmor checks first whether
the tested capability (cap) is present in the cred data struc-
ture of the process (using cap_capable()). It then checks
whether the process has a pre-defined profile (i.e. confined)
and whether the tested capability cap is present in the
profile using the function aa_capable(). If the process is not

User Level Process User Space

v

system call

l

Error checks

Kernel Space

T
Errors Checking is OK

needed? |

[DAC checks }

!

DAC checking is
granting access

Permission denied YES

Permission granted

YES

Administrative Privilege LSM hnok} [Tﬂdlllnnal Permission LSM hnnk}

Does the LSM policy
authorise this process to
have the needed traditional
permission?

Does the process has the
required privilege in its memory
(cap_capable())?

—NO

NO
Does the LSM policy
uthorise this process to have the,
needed privilege?

YES:

Figure 6. Current access control decision algorithm implemented by Linux

confined then only cap_capable() is checked and its result
is returned.

Consequently, Linux users have to inject the needed
capability into the memory of the process and also declare
the needed capability in the policy of the LSM. Typically,
Linux users use sudo/su commands to inject the whole list
of capabilities into the memory of the process and then mask
them with the list of capabilities declared in the policy of the
LSM. This approach can work well if there is a complete list
of pre-installed policies for Linux processes and programs
used by users or when users can easily add an LSM policy.
First, LSM do not provide by default the whole list of Linux
programs and processes. For example, the default policy
for SELinux is Targeted policy. This policy confines only
a subset of the Linux processes that are considered risky.

Similarly, the pre-installed profiles of AppArmor do
not cover all Linux programs. For example, there is no
pre-installed AppArmor profile for the find command on
Ubuntu; a user has to define a profile for this command

static int apparmor_capable(const struct cred =
cred, struct user_namespace *ns,
int cap, int audit)
struct aa_profile sprofile;
/+cap_capable returns O on success,else —-EPERM :x/

int error = cap_capable(cred, ns, cap, audit);
if (lerror) {
profile = aa_cred_profile(cred);
if (!unconfined(profile))
error = aa_capable(current, profile, cap,
audit);
}

return error,;

}

Listing 2. Code source of the function apparmor_capable() [29]

to protect himself from the escalation attack explained in
the introduction section. Second, adding an LSM policy is
complex because users have to add a complete list of rules
that cover administrative privileges and traditional permis-
sions. The All-or-nothing approach can encourage users to
run their programs without restriction because defining the
whole list of rules is a very time-consuming process. For
example, to restrict the Server web developed in Python
using AppArmor, we have to add more than 100 rules for
traditional permissions (added by a set of include statements
or directly in the policy (see Listing 3) in order to add only
one Linux capability in the AppArmor profile. RootAsRole
proposes a complementary approach to LSM as it allows
the management of administrative privileges exclusively.
So when an administrator defines the needed privileges in
RootAsRole’s configuration file, only the needed capabilities
will be injected into the memory of the process, and the
function apparmor_capable() will continue to work because
cap_capable() function will return O (i.e., success) as the
needed capabilities are present in the memory of the process.
Our module allows then Linux users to restrict the usage of
administrative privileges without needing to define access
rules for traditional permissions. Linux administrators can
still use the LSM to define rules for traditional permissions
and administrative privileges if needed.

In addition, LSM can have additional issues that can be
considered implementation-dependent. AppArmor is consid-
ered easier than SELinux because it supports only the Type
Enforcement (TE) access control mechanism, and uses path-
name enforcement instead of labels. In addition, AppArmor
provides a learning tool for users to facilitate the develop-
ment of profiles. Defining a profile can be completed using
the command aa-genprof which allows users to generate
or update profiles. When using this command, the user is
required to specify the program to profile. The user then
runs the program at the same time and the tool then asks the
user/administrator to approve the addition of each generated
rule to the profile using various options such as Allow,
Deny, Abort, etc. AppArmor also provides the users with two
methods of profiling: Stand-alone profiling and Systemic
profiling. While standalone profiling using aa-genprof com-

abi <abi/3.0>,
include <tunables/global>

/home/ kali/server3 .py {
include <abstractions/apache2—-common>
include <abstractions/base>
include <abstractions/python>

/home/=/ 1,
/home/ kali/server3 .py r,
/usr/bin/python3.9 ix,

}

Listing 3. Profile created by AppArmor for a simple Python web server

mand is suitable for small applications. Systemic profiling is
suitable for creating profiles for many programs that make
up an application or for applications that continue running
on the computer for a long time. Systemic profiling requires
the user to follow the steps shown in Figure 7 [26].

!

Create |
profiles for | put
the | !
individual | | relevant Exercise
- profiles into » the >

l’::tg::;z 3 learning application
mode

up an
application |

Return to
= enforce
mode

Reload all
profiles

Analyze q Edit the
the log profiles

Figure 7. Systemic profiling method in AppArmor [26]

Systemic profiling method requires more efforts from
users to define a complete profile for an application. How-
ever, the standalone profiling method is not perfect as it
suffers from some important issues. To illustrate these is-
sues, we decided to define a profile for a simple Python
script that allows us to run a web server. This server requires
cap_net_bind_service capability. Listing 3 below shows an
example of an AppArmor profile that was created for the
simple Python web server using the learning mode. The user
has to add to the profile not only the privileges to assign to
the Python script, but also a set of traditional permissions
needed by the Python web server.

The first issue that we have identified is that the user
has to run the Python script using sudo in order to define
completely and correctly the needed profile. Running a tool
with full administrative privileges is not recommended in
case the tool has known vulnerabilities or is not trusted.
When comparing AppArmor with RootAsRole, the capable
command that we have designed does not require the user
to run a program with the sudo command to know the
needed capabilities. The capable command can know the
capabilities by intercepting cap_capable() syscall in the
Linux kernel and reporting back the information to the
user space to indicate the capability required by the tested
program.

The second issue that we have noticed is related to the
difficulty to know the processes that are privileged for a
system that is using AppArmor. On one hand, the profiles
created by AppArmor using the learning mode are not

vim:syntax=apparmor

This file contains basic permissions for Apache
and every vHost

abi <abi/3.0>,

include <abstractions/nameservice>

Listing 4. AppArmor profile for <abstractions/apache2-common>

always mentioning explicitly the capabilities used by one
program. For example, the Python script for the simple web
server requires the use of the cap_net_bind_service capabil-
ity, but the generated profile does not explicitly show that
the capability has been added. On the other hand, the user
cannot also trust the information given by the Permitted &
Effective sets of the process that is running the Python script,
as it shows that it has the full list of Linux capabilities,
when in fact the script has only the cap_net_bind_service
capability.

More seriously, AppArmor does not allow to apply the
least privilege principle strictly as it adds many rules that
are not really needed by the Python script. Listing 3 shows
that the profile contains a set of include statements (such as
“include <abstractions/apache2-common>") that are used to
pull in components of other profiles created by AppArmor
and by that it also retrieves access permissions of other
programs. Users will not be able to verify the privileges
by checking the profile files as the capabilities that are
included in the abstraction files are not usually verified by
users. Those include statements make it hard for the user to
know what permissions are being added and whether they
are needed or not. In the profile shown in Listing 3, “include
<abstractions/ apache2-common>" is explicitly listed in the
profile. However, the user can’t know what privileges are
retrieved unless they refer to the AppArmor GitLab page
[27]. As shown in Listing 4 the user will find out that another
include statement is provided to include yet another set of
permissions which is “include <abstractions/nameservice>".
Upon examining the page detailing nameservice profile, the
user can finally note that more include statements are added
as shown in Listing 5 which enters a user in a loop trying
to identify what privileges and permissions are being given
to the program by AppArmor.

grsecurity adopts like AppArmor a pathname enforce-
ment approach. grsecurity implements the Role Based Ac-
cess Control (RBAC) model [20] that allows an administra-
tor to determine for each program the authorized users and
their associated roles as well as the access permissions on
the resources that programs can access. It also determines
the list of Linux capabilities that any programs have the
authorization to take. However, grsecurity is not only an
LSM, it is presented as an extensive security enhancement
to the Linux kernel because it proposes a set of protection
measures against a set of well-known security threats.

SELinux implements a label-based access control
(LBAC) model [23] and uses the extended attributes to store

nis
include <abstractions/nis>

ldap
include <abstractions/ldapclient>

winbind
include <abstractions/winbind>

likewise
include <abstractions/likewise >

mdnsd
include <abstractions/mdns>

kerberos
include <abstractions/kerberosclient>

#libnss —systemd
include <abstractions/nss—systemd>

Listing 5. AppArmor profile for nameservice

label values. As a consequence, SELinux suffers from the
same problems that we mentioned earlier with regard to
the extended attributes. In addition, SELinux is very hard
to manage even by experienced administrators due to the
difficulties with regard to the management of the LBAC
system.

Theoretically, Linux administrators can use these mod-
ules to prevent the privilege escalation problem. However,
only a subset of the processes is confined, while the other
applications are left unconstrained. In addition, many Linux
administrators may not need to extend their kernels with
complex LSM but they may wish to restrict the distribution
of Linux privileges without having to define a complete
policy that includes the traditional permissions. Our module
RootAsRole allows Linux users to restrict the administrative
privileges and can be used simultaneously with LSM.

4. RootAsRole Module

The pam_cap® module is the only module that can be
used by administrators to restrict capabilities in a similar
way to RootAsRole. However, this module has three major
problems: the use of extended attributes to store the capa-
bilities, no fine-grained distribution of capabilities to Linux
users, and no tool that can help Linux users to figure out
the capabilities requested by a program.

To solve these problems, we have created the RootAs-
Role module. RootAsRole comes with a set of commands to
handle the administrative privileges: addrole, deleterole, and
editrole commands are used by Linux administrators to add,
delete and edit roles in a central configuration file, where
each role is a set of administrative privileges. RootAsRole
gives the possibility to Linux administrators and users to
discover the capabilities that are requested by a binary file
when being executed through the capable command. Finally,

8. https://sites.google.com/site/fullycapable/pam_cap-so

RootAsRole allows Linux users to assign the defined roles
to themselves through the sr (switch role) command. This
command provides a set of options that allow users to
know what roles are currently assigned to themselves in
the configuration file, and what capabilities are assigned to
each role.

An administrator defines the rules that allow the fine-
grained distribution of capabilities to users and groups,
without needing to inject the capabilities into the extended
attributes of binary files. Each time a Linux user wants to
execute a program that necessitates one or more capabilities,
they should assign the role to themselves that contains the
needed capabilities, providing there is a rule that allows it.

Roles

e o e

Role 1
T
iptables

tcpdump python myscript.py

n * Define Role Capabilities
« Define rules for assigning roles to users and groups of users
 Limit the usage of roles to certain programs

Figure 8. Role definition in RootAsRole module.

The RootAsRole module comes with a configuration file
called capabilityrole.xml that is stored in /etc/security. This
file allows an administrator to define each role along with its
list of capabilities, as well as the lists of users, groups, and
programs that can be assigned this role. In addition, users
and groups can be constrained as to when the role can be
assigned. For example, Listing 6 shows a configuration file
that defines the role rolel. This role has two capabilities
(cap_net_raw and cap_net_admin). Users tomas and remi
can be assigned this role as can be the users of groups adm
and office. However, remi can only be assigned this role
when he is executing the fcpdump command. It should be
noted that the administrators must indicate the full path of
the constrained binary (i.e. tcpdump) in the configuration
file. During the execution, users have to indicate also the full
path of the constrained binaries. The other users (user fomas
and members of groups adm and office) are not constrained
and can be assigned this role with any program; they get a
privileged shell inside which they can run any program (that
only needs the user’s assigned capabilities).

The configuration file of RootAsRole limits the use of
xattrs. It is read into a central database that allows adminis-
trators to keep track of the assigned roles and the programs
that users can use with these roles.

When the administrator lists a program under a user,
the user can only run this program with the capabilities.
In some cases, a conflict may exist between the programs
defined at the user level and those defined at the group level.
For example, administrators may restrict a user to execute
only one program, but at the same time, they authorise the
user’s group to execute any program. In these situations, we

https://sites.google.com/site/fullycapable/pam_cap-so

<configuration xmlns="http :// mycapconf.xml”>
<roles>
<role name="rolel ">
<capabilities>
<capability>cap_net_raw</capability>
<capability>cap_net_admin</capability>
</capabilities>
<users>
<user name="tomas” />
<user name=""remi’ >
<commands>
<command>/bin/sbin/tcpdump</command>
<args>
<arg>-i ethO0</arg>
</args>
</commands>
</user>
</users>
<groups>
<group name="adm”/>
<group name="office”/>
</groups>
</role>
</roles>
</configuration>

Listing 6. Example definition of a role in the configuration file.

consider the configuration at the user level overrides the con-
figuration at the group level i.e. the specific rule overrides
the generic rule. In the example above, the configuration
shows that remi can only run the tcpdump program, but if
remi was a member of the adm group, which can run any
program, this would not apply to remi.

4.1. Motivation scenarios

We will demonstrate the use of our RootAsRole module
through two different scenarios. These scenarios show the
advantage of our module with regards to the pam_cap
module which is used today to manage Linux capabilities.

e Running privileged Python scripts (Scenario 1): A
user contacts an administrator to ask for a privilege
that allows running a HTTP server that the user de-
veloped using Python. The script needs the privilege
cap_net_bind_service to bind the server socket to
port 80. Without our module, the administrator has
two options: (1) Use the sefcap command to assign
the capability to the Permitted set of the Python in-
terpreter or (2) use the pam_cap module to assign the
cap_net_bind_service to the user and then inject this
capability into the Inheritable and Effective sets of
the Python interpreter. Both solutions pose security
risks. In the case of option (1) the Python interpreter
can be used by any other user who will automatically
gain the cap_net_bind_service privilege. In the case
of option (2), all other Python scripts run by the
user will have the same privilege. It is not possible
to run other Python scripts without giving them the
privilege cap_net_bind_service.

o Preloading shared libraries (Scenario 2): Suppose
developers want to test a library that they have

developed in order to reduce the downloading time
on their server. The developers should use the
LD_PRELOAD environment variable to load the
shared library that intercepts all network calls made
by the servers’ processes. With the current capabili-
ties’ tools, the administrator can use the sefcap com-
mand or pam_cap.so to give the developers’ library
and test program the cap_net_raw capability. How-
ever, the developers still cannot run their test pro-
gram because, for security reasons, the Linux Kernel
does not load the libraries defined in LD_PRELOAD
for a program that has capabilities in its extended
attributes.

4.2. Scenario 1: Running privileged Python scripts

To demonstrate the implementation of Scenario 1, we
selected a Python script, server.py, which can be used to
run a HTTP server [5]. When executing the server.py script
without any privileges, we get the ’permission denied’ error
message (Figure 9).

:~$ python3 server.py -p 80
Traceback (most recent call last):
File "server.py", line 8, in <module>
with socketserver.TCPServer(("", PORT), Handler) as httpd:

File "/usr/lib/python3.8/socketserver.py”, line 452, in __ init__
self.server_bind()
File "/usr/lib/python3.8/socketserver.py”, line 466, in server_bind
self.socket.bind(self.server_address)
PermissionError: [Errno 13] Permission denied

Figure 9. Run the Python HTTP server by a normal user.

In order to determine what privileges are needed by the
script server.py, we use the tool capable as in Figure 10

:~§ capable -c "python3 server.py -p 80"
Traceback (most recent call last):
File "server.py”, line 8, in ule>
with socketserver.TcPServer(("", PORT), Handler) as httpd:
File "/usr/lib/python3.8/socketserver.py”, line 452, in _ init__
self.server_bind()
File "/usr/lib/python3.8/socketserver.py”, line 466, in server_bind
self.socket.bind(self.server_address)
PermissionError: [Errno 13] Permission denied

Here are all the capabilities intercepted for this program :

i service, cap_sys_admin
e capabilities aren't mandatery, but they can change the behavior of tested program.|
SYS_ADMIN is rarely needed and can be very dangerous to grant

WARNING: Cj

Figure 10. Using the capable tool to determine the required privileges.

This tool tells us that the script requires the capabilities:
cap_net_bind_service and cap_sys_admin. The capability
cap_sys_admin will be always returned because the shell
process is using fork() syscall to run any process. The
capability cap_sys_admin is required by fork() syscall but
it can be sometimes required by the program itself, that’s
why we recommend always testing the program without
cap_sys_admin. The script is working when tested with the
capability cap_net_bind_service, so we conclude that this
script requires only this capability to bind the server to port
80.

When an administrator runs the script using the sudo
command (sudo python server.py -p 80), the Python process
is given the full set of privileges, because as indicated
earlier, any process whose euid or egid is equal to zero
automatically gets the full set of privileges (i.e. emulating

mode). Figure 11 shows that process 22325 has the full set
of Permitted, Effective and Bounding capabilities as these
values correspond to the first 38 bits being set to 1.

:~% cat /procf22325/status
python3

a,/7740

Gllelelelelolelelelelalolelel]
GlolelelefeleleleleTe e loTeTels]

G eSS [R TeTe1]
0000P00O01001000
0OPEPOO1800O0BO2
HeOEEOABOEONBA00 Inheritable
0000RO3FF T Permitted
BeRERA3TITfIffff Effective
Bee00A3FFFFfffT Bounding
0000000000000000 Ambient

SigPnd:
ShdPnd:
SigBlk:

Siglgn:
SigCqgt:
CapInh:
CapPrm:
CapEff:
CapBnd:
CapAmb :

Figure 11. Values of the capability sets for the Python process launched
by the sudo command.

When administrators use the sefcap command to assign
the cap_net_bind_service capability to the Python inter-
preter (Figure 12) they create a security risk because now all
other users of the system will be able to run Python scripts
with the same privilege.

:~$ sudo setcap cap_net_bind_service+ep fusr/bin/python3.8
:~$ python3 server.py -p 80

‘erving at port 80

Figure 12. Setting the Permitted and Effective capabilities for the Python3.8
interpreter.

The administrators can alternatively use the pam_cap
module by first setting the cap_net_bind_service in the
letc/security/capability.conf file (pam_cap’s configuration
file), and then using sefcap command as in Figure 13.

Figure 13. Setting the Inheritable and Effective capabilities for the
Python3.8 interpreter.

This solution raises another potential security risk be-
cause now any Python script run by the same user will obtain
the same privilege.

Our solution avoids these security risks. Suppose that
the capabilityRole.xml contains the configuration shown in
Listing 7

In this case, the user tomas can use the role role2 by
using the sr command whenever the HTTP server Python
script (server.py) is run — see Figure 14.

As shown in Figure 15, the user fomas cannot run
another script with the same privilege. Generally, admin-
istrators may not want to limit the use of capabilities to
certain scripts or programs, as this would create a lot of
work for them. However, in some cases administrators may

<role name="role2”>
<capabilities>
<capability>
cap_net_bind_service
</capability>
</capabilities>
<users>
<user name="root”/>
<user name="tomas >
<commands>
<command>
python3 /home/tomas/server.py
</command>
</commands>
</user>
</users>
<groups>
<group name="adm”/>
<group name="office”/>
</ groups>
</role>

Listing 7. Defining role2 for running the Python HTTP server.
:-$ sr -r rolez -c "python3 /home/tomas/server.py"

Authentication of tomas...
Password:

Privileged bash launched with the role rolez and the following capabilities : cap_net_bind_service
serving at port 86

Figure 14. User fomas assigns the role role2 to execute the Python HTTP
server.

need this option especially when they do not completely
trust all their users.
:~$ sr -r role2 -c "python3 /home/tomas/anotherprivilegedscript.py -p 80"

Authentication of tomas...
Password:

This role and command cannot be used with your user or your groups: Permission denied
i~8

Figure 15. User fomas unable to run another Python script.

4.3. Scenario 2: Interception of socket() calls

To demonstrate the implementation of Scenario 2, we
selected the previously published example code [6] that
intercepts any socket() call. Listing 8 shows a simple client
code that opens a raw socket. Listing 9 shows the library
code that tries to intercept the socket() call. When it is
successful, it prints out the message socket() call intercepted.

When executing the simple client code without any
privileges, we get the expected message “permission de-
nied”. We can use the capable command to determine the
privileges that are requested by the simple client program
(see Figure 16).

:~$ capable -c ./simpleclient
Error: couldnot create socket
: Operation not permitted

Here are all the capahilities intercepted for this program :
cap_net_raw, cap_sys_admin

WARNING: These capabilities aren't mandatory, but they can change the behavior of tested progranm.|
WARNING: CAP_SYS_ADMIN is rarely needed and can be very dangerous to grant

Figure 16. Results of using the capable tool.

As can be seen, this program requests the cap_net_raw
and cap_sys_admin capabilities. Since the capable tool

/=
#* A simple client that open a socket
%/

#include <stdio.h>

#include <sys/socket.h>

#include <netinet/tcp.h> //Provides declarations
for tcp header

#include <netinet/ip.h> //Provides declarations
for ip header

int main(int argc, char sargv[]){
int sockfd;

// Create socket and check for error
if ((sockfd = socket (AF_INET, SOCK_RAW,
IPPROTO_TCP)) < 0)

{
perror (" Error could not create socket\n”);
return 1;
}else{
printf (”Socket successfully created\n”);
return 0;
}
Listing 8. The simple client C code to create a socket.

#* A simple socket hook which calls the original
socket library
%/

#define _GNU_SOURCE
#include <stdio.h>
#include <sys/socket.h>
#include <dlfcn.h>

int (xo_socket)(int,int,int);

int socket(int domain, int type, int protocol){
// find the next occurence of the socket()
function

o_socket = slsym (RTLD_NEXT, “socket”);
if (o_socket == NULL)
printf (”Could not find the next socket()

function occurence”);
return -1;

}
printf (”socket() call intercepted\n”);
//return the result of the call to the original

C socket() function
return o_socket(domain,type, protocol);

Listing 9. The socket_hook interception code.

recommends running the program without cap_sys_admin,
then we would run the program with only the cap_net_raw
capability assigned, and it would successfully open the
socket. However, when the LD_PRELOAD is configured,
the Linux kernel disables the interception of the socker() call
because the program to be intercepted has capabilities in its
extended attributes. Figure 17 shows how the interception
works correctly when the capability is removed from the
simple client file (using setcap -r) — the operation is denied,
and not correct when the capability is added to it (it creates
a socket without being intercepted). As a consequence, the
only way to realise the interception and to open up an
intercepted socket is to use the sudo command, which we
do not want to do.

:~% sudo setcap -r .fsimpleclient

:~% LD_PRELOAD=. /socket_hook.so ./simpleclient
socket() call intercepted
Error: couldnot create socket

: Operation not permitted
:~S sudo setcap cap_net_raw+ep simpleclient
:~% LD_PRELOAD=. /socket_hook.so ./simpleclient
Socket success fuily created
H-

Figure 17. Interception is stopped when capabilities are injected into the
extended attributes of simple client.

By using our RootAsRole module, we can realize
the interception and open the socket by giving only the
cap_net_raw capability to the simple client program. Figure
18 shows how the interception program works correctly
when the user fomas uses the role rolel (defined in Listing
6).

:~§ sr -r rolel
Authentication of tomas...
Password:
Privileged bash launched with the role role1 and the following capabilities : cap_net_raw.
$ LD_PRELOAD=. /socket_hook.so ./simpleclient

t success fully created
~:tomas $

Figure 18. Interception works correctly with our RootAsRole module.

5. The implementation

In the section, we are describing how sr, capable and
role manager tools have been internally implemented. sr was
built based on the existing logic of Linux capabilities, while
capable was built based on eBPF technology that allows to
intercept the syscalls and report their arguments to the user
space. Finally, the role manager tools are defined to help
users add/edit/remove roles without having to edit manually
the XML configuration file of RootAsRole.

5.1. Implementing the sr command

The implementation of the sr command depends on the
Ambient capability set that has been added to the Linux ker-
nel since Linux 4.3 [12]. The objective of the sr command is
to allow users to assign roles to themselves and to list all the

roles available to them, along with the capabilities assigned
to each role. The command has the following parameters:

o I, --role=<the role to use>

e -c, --command=<the program to launch with the
role>

e -n, --no-root = <execute the bash or the command
without any special treatment of the root user (uid
0). This option allows the user to deactivate the
emulation mode of the Linux kernel>

o -u, --user=<substitute user reserved for administra-
tors for service management>

e -i, --info =<print the roles and their capabilities
available to the user, or when used with the —r
parameter the commands the user is able to process
with this role>

e -V, --version = <print the version of RootAsRole>

e -h, --help =<print this help>

Implementing this command must not necessitate any
modifications to the kernel. Furthermore, the executable file
of sr must have as few capabilities as possible, so that only
the capabilities from the user’s role are used. In addition,
it must offer the same level of usability as the sudo/su
commands so that Linux users will find it easy to adopt. As
a consequence, our implementation must fulfil the following
requirements:

Requirement 1: calculate the capability sets after an exec
call

The Ambient set was added to the Kernel in Linux 4.3
to resolve problems with using the extended attributes for
storing file capabilities. The following rules are now applied
by the kernel to calculate the capabilities of a new process
P’ that is created when a process P makes an exec call to
an executable file F:

Plhimvient = (file is privileged)?0 : Pampient
P}ge'rmitted = (Plnheritable&Flnheritable)
‘(FPe'rmitted&PBounding)
‘PAmbient (2)
Pé'ffecti'ue - FEffecti’Ue?PII:’ermitted : 0|P1/4'mb7,'ent
Prlunheritable = Prnheritable
P]/B’ounding = PBounding

Where as before: & is bitwise AND, | is logical OR,
7z=x? y:w means if x has a value or true; z will take the
value of y otherwise z will take the value w.

As the rules show, a new process has three options for
getting its Permitted capabilities:

o by masking the Inheritable set of the calling process
with the file’s inheritable capability set;

o Dby masking the Permitted set of the file with the
Bounding set of the calling process; or

o from its own Ambient set (which is copied from the
Ambient set of the calling process if the file is not
privileged).

Clearly, the third option has the advantage if the ex-
ecutable file does not have any extended attributes. The

resulting process P’ copies the Ambient set of P into its
Ambient set, that in turn is copied into its Permitted and
Effective sets. The Inheritable and Bounding sets of the
resulting process P’ are copied from the respective sets of
the calling process P. In the case where the binary file is a
privileged file, the rules are the same as before. This is to
ensure backward compatibility with the old capability model
before the addition of the Ambient set.

It should be noted these rules are not applied when a
process creates a child process via the fork() call as the
child process inherits exact copies of its parent’s capability
sets.

Requirement 2: Constraining the Permitted set

A process cannot add any new capability to its own
Permitted set. However, it can remove some capabilities
from its own Permitted set.

Requirement 3: Constraining the Effective set

A process can add and remove capabilities to its Ef-
fective set, as long as these capabilities are present in its
own Permitted set. Good programming practice is to activate
capabilities when needed by adding them into the Effective
set, and de-activating them when not needed by removing
them from the Effective set.

Requirement 4: Constraining the Inheritable set

The Inheritable set of a process should normally be a
subset of its Permitted set. However, a process can add
additional capabilities in its Inheritable set if it has the
capability cap_setpcap in its Permitted set.

Requirement 5: Constraining the Ambient set

A Process can add a capability to its Ambient set only
when the capability is present simultaneously in its Permit-
ted and Inheritable sets. Thus, the intersection of the Permit-
ted and Inheritable sets is considered to be the superset of
the Ambient set. A new option, called PR_CAP_AMBIENT
has been added to the prctl() syscall in order to use this
feature.

Requirement 6: Filling the capability sets of an exe-
cutable file

A process can add capabilities to the capability set of an
executable file only when it has the capability cap_setfcap
in its Effective set.

Before using the sr command, the system administrator
must edit the capabilityrole.xml configuration file to indicate
the roles that can be assigned by users or groups of users,
and with which programs those users or groups of users can
use those roles.

When calling the sr command, the user must indicate the
role to be assigned. The users can invoke the --info option to
learn which roles they can assign to themselves. In addition,
the users can indicate which program they want to use with
the requested role. In the current implementation, the users
cannot assign more than one role, although this could be
a useful future enhancement. If the users do not indicate a
program, the sr command will launch a privileged shell that
contains the capabilities of the requested role.

How can the sr command launch the user’s program and
inject the capabilities of the user’s role into the new process
if the sr command does not possess any privileges? One

option would be to ask the user to run the sr command
using the sudo command. In this case, the sr process will
have the full set of Linux capabilities and can inject the
capabilities of the user’s role into the extended attributes
of the user’s program and then run it. But this defeats the
objective of our research, which is to provide an alternative
to the sudo/su commands that give programs more privileges
than they need. In addition, we do not want to modify the
extended attributes of the user’s program because another
user may use this program at the same time. Instead, we
give the sr program file the minimum necessary capabilities
at installation time, as described below. On invocation, the
sr process then creates a temporary binary file called sr_aux
and injects the user’s requested capabilities into the Inher-
itable and Permitted sets of this. After that, the sr process
executes sr_aux to produce an auxiliary process that has
the user’s capabilities in its Permitted and Inheritable sets.
Then, according to requirement 5 it will be able to add
these capabilities to its Ambient set, and to execute either
the program that has been selected by the user through the
optional -c¢ parameter, or start a shell.

Figures 24 and 25 in the Appendix provide detailed flow
charts for the implementation of sr and sr_aux respectively.
The sr process checks whether the role exists and whether
the administrator has authorised the user or its group to
assign the requested role with the requested program. If
authorized, then sr authenticates the users by asking them
to provide their password. When the authentication is suc-
cessful, sr will prepare the program or shell to run with the
requested capabilities.

According to Requirement 2, the sr process cannot add
the list of capabilities requested by the user to its own
Permitted set and cannot add them to its Ambient set
either (because they are not present in its Permitted set).
It, therefore, creates the sr_aux temporary file to achieve
this. In order to fill the Permitted set of sr_aux, we have to
use the extended attributes of sr_aux and inject the role’s
capabilities into these attributes. According to Requirement
6, sr needs the capability cap_setfcap in its Permitted set
in order to be able to inject capabilities into the extended
attributes of the sr_aux file. Consequently, we add the
cap_setfcap capability into the Permitted set of the sr file at
installation time. The sr file is now privileged. According to
Requirement 1, filling the Inheritable set of the sr_aux file
will not copy them into the Inheritable set of the resultant
process. Instead, they have to be in the Inheritable set of
the sr process. According to Requirement 4, sr needs the
capability cap_setpcap in order to add capabilities into its
Inheritable set when they are not present in its Permitted
set. Thus, we also have to add the cap_setpcap capability
to the Permitted set of the sr file during installation.

Now the user’s requested capabilities can be added to the
Permitted set of the sr_aux file and to the Inheritable set of
the sr process. According to Requirement 1, when sr makes
an exec call to sr_aux the capabilities of the file’s Permitted
set will be copied into the Permitted set of the resultant
process and the capabilities of the Inheritable set of the sr
process will be copied into the Inheritable set of the resultant

process of sr_aux. According to Requirement 5, the resultant
process of sr_aux can dynamically add the user’s list of
requested capabilities into its own Ambient set. Finally, the
resultant sr_aux process makes an exec call to the program
requested by the user (or the shell). Then, according to the
rules of Requirement 1, the user’s resultant process will have
the requested capabilities in its Permitted and Effective sets.
As a consequence, the Kernel will authorise the resultant
process to perform the privileged operation requested by
the process.

Nevertheless, one major security flaw still persists. To be
able to assign proper Inheritable capabilities, sr should have
the full bounding capabilities. As Péoundmg = PBounding»
sr_aux will also get the full bounding capabilities. Con-
sequently, the executed child command will get the full
bounding capabilities. With that, a malicious user can create
a stub program and utilizes the proposed RootAsRole model
to run it with full bounding capabilities. The resulting stub
process is now capable of executing any child command and
granting it full capabilities via its Inheritable set bypassing
the whole security policy. To address this issue, sr_aux has
to drop its own bounding capabilities or at least mask it
with its own permitted ones, before executing the requested
command. The source code of our module is published
under the GPL License, and can be found here [7].

5.2. Implementing the capable command

The implementation of the capable command was not
straightforward because the kernel does not offer any service
that can tell the user what kind of capabilities a program
needs. Consequently, we had to use the Linux Extended
BPF APIs [13] to build the capable command and provide
it with a filtering mechanism.

User space programs use a list of available syscalls (e.g.
fork, openat, read, write, setuid, etc.). All these syscalls
include several checks in their code to verify whether the
calling process has the required privilege or not. For exam-
ple, the setuid() syscall checks whether the calling process
has the capability cap_setuid. If the calling process does
not have this capability in its Effective set, the setuid() code
returns the error code “EPERM” (see errno(3) [4]), which is
always interpreted by the User space process as permission
denied. The kernel does not tell the calling process that
cap_setuid is needed. This issue represents a major obstacle
to the adoption of Linux capabilities, because administrators
and users do not have commands that can tell them what
kind of capabilities the used programs are asking for. We
have built the capable command to address this issue.

There are two functions that are called by Linux syscalls
in order to check whether a process has the required capa-
bility or not (Figure 19). The first function is called capa-
ble() and the second function is called ns_capable(). The
difference between them is that ns_capable() has the ability
to check the capability in a namespace. However, both of
them are implemented by a function called cap_capable()
in the capability LSM.

User Space

]
]
! Process Process Process
1
]

[(O:EEEEEEFEEEEE FEPES CEPEREEEE: L T @

Kernel Space

fopen() | *| do_forko

capable()

! 1
! 1
! 1
! 1
! 1
! 1
! 1
1

. I !
' 1
' 1
' 1
! 1
! 1
! 1
1

»| ns_capable()

Figure 19. Relation between capable, ns_capable and cap_capable.

As Listing 10 shows, cap_capable() checks whether the
calling process has the required capability in its Effective
set. If not, it returns the “EPERM” error code without
indicating the required capability to the calling process.
One way to resolve this issue would be to modify the
cap_capable() source code. However, discovering the impact
of this modification is a very difficult task. Consequently,
we preferred to opt for another solution, specifically, using
one of the Linux tracing technologies such as Kprobe [14],
tracepoints [15] or Ftrace [16] with eBPF [13].

The basic idea of all the tracing technologies is to insert
trace points in specific locations of the kernel. When the
processor executes one of these points, a trace event is
generated. This event contains the execution context infor-
mation that is stored in the registers of the processor. We
used Kprobe [14] to get the context execution whenever
cap_capable() is executed by the kernel. This allowed us to
get the arguments of the cap_capable() function, which are:

e cred: this provides the id of the calling process, and
e cap: this provides the capability that is requested by
the calling process.

However, using Kprobe is not easy for an average user.
Indeed, the user has to read a huge amount of events because
Kprobe returns the cap_capable() events for every process
in the system. To resolve this issue, we use eBPF [13].
This allows us to obtain only the capability required by one
program without needing to read the whole list of events.

eBPF is an extension to the Berkeley Packet Filter (BPF)
that was designed to filter network packets by handling them
in a virtual machine inside the kernel. Alexei Starovoitov
from Facebook extended the original BPF to include 64-
bit registers and increase the set of instructions [17]. The
basic idea consists of building two programs: the Kernel
program that is attached to the execution path in the Linux
kernel e.g. by linking it to Kprobe; and the User program
that loads the Kernel and reads the data returned by it.
The eBPF virtual machine includes a verifier that checks

int cap_capable(const struct cred xcred, struct
user_namespace starg_ns,
int cap, unsigned int opts)

struct user_namespace *ns = targ_ns;

/% See if cred has the capability in the target
user namespace by examining the target user
namespace and all of the target user namespace
’s parents.

%/

for (;;) {

/+ Do we have the necessary capabilities? =/
if (ns == cred—>user_ns)
return cap_raised (cred—>cap_effective , cap)
? 0 : —-EPERM;
/%
If we’'re already at a lower level than we’re
looking for, we’re done searching.
%/
if (ns—>level <= cred—>user_ns->level)
return —EPERM;
/%
The owner of the user namespace in the parent
of the user namespace has all caps.
%/
if ((ns—>parent == cred—>user_ns) && uid_eq(ns
—>owner, cred—>euid))
return 0;
/%
If you have a capability in a parent user ns,
then you have it over all children user
namespaces as well.
%/
ns = ns—>parent;
/% We never get here =/

Listing 10. Code source of cap_capable() [30].

the loaded Kernel part before accepting it, to ensure that it
does not contain an endless loop or does not try to access
unauthorised data in memory. eBPF also provides a set
of function helpers to access memory in a safe way. For
example, bpf probe_read is a safe version of the memcpy
function that copies characters from one area to another. In
addition, eBPF provides data structures, called maps, that are
accessible from the user space of the eBPF program. Maps
are important because the eBPF verifier does not allow more
than 512 bytes to be allocated in the stack.

Maps are created in the Kernel and filled with Kprobe
events whenever a call is made to cap_capable(). We pro-
vided a filtering mechanism to show to users only the
list of capabilities that are requested by their program. It
is based on the idea of running the user’s programs in
a dedicated PID namespace [|8]. This provides isolation
protection to the user’s system when the tested program is
unknown, and it allows the list of processes that have been
run in the dedicated namespace to be identified. The User

program shows the user the list of capabilities that have been
requested by the list of processes executed in the dedicated
PID namespace.

Our capable tool always returns the capability
cap_sys_admin, even though the tested program does not ex-
plicitly require this capability. This comes from the fact that
the fork() syscall checks the presence of the cap_sys_admin
capability whenever it is called. Whenever a program is
executed by the user, the fork() syscall is called by the
kernel in the context of the new process that represents
the tested program. As a consequence, our tool always
returns cap_sys_admin because we cannot see the difference
between when this capability is called explicitly by the
program or through the fork() call.

5.3. Implementing the Role Manager tool

The fact the administrators have to edit manually the
central configuration file can create different issues, espe-
cially when the number of roles becomes very big. To handle
this issue, we have implemented a set of tools that allow the
system administrators to easily edit the central configuration
file (capabilityRole.xml). The tools allow to maintain the
integrity of the XML file, reduce errors and automate tasks
such as adding roles, editing roles or deleting roles. The
addrole command will enable the system administrator to
add an additional role to the configuration file along with a
list of privileges, users, groups, authorized commands, and
authorized programs. The following example illustrates the
use of the addrole command to add the role role3. In a
system that includes a user fomas and a group titled zayed,
the system administrator might require the cap_fowner and
the cap_setuid capabilities to be assigned to the specified
user and specified group. This role cannot be used with any
program, so the administrator restricts this role to execute
only the commands: /usr/bin/passwd, /usr/bin/chmod and
/opt/myprogram -i. The system administrator can simply use
the addrole command as shown in Figure 20. This command

:~$ sudo addrole role3 cap_fowner,cap_setuid -u tomas -g zayed -c "/usr/bin/passwd” -c "

sr/bin/chmod” -c "/opt/myprogram -i'|
Figure 20. addrole command

will add the role to the configuration file to the assigned user,
authorized group and the authorized commands as shown in
Listing 11.

The tool also includes an editrole command that would
redirect the administrator to choose whether they would
like to add, edit or delete a specific information of an
existing role. For example, the system administrator can
add a capability to an existing role. Figure 21 shows the
command required to add the cap_net_raw capability to
role3.

The editrole command can also be used to edit an
existing node to edit the username, group name, etc. It can
also be used to delete specific information from an existing
role, such as removing a user. Finally, the tool includes
a delete role command that allows the user to delete a

<role name="role3”>
<capabilities>
<capability> cap_fowner </capability>
<capability> cap_setuid </capability>
</capabilities>
<users>
<user name="tomas” />
</users>
<groups>
<group name=""zayed” />
<commands>
<command>/usr/bin/passwd</command>
<command>/usr/bin/chmod</command>
<command>/opt/myprogram —i</command>
</commands>
</ groups>
</role>

Listing 11. role3 added to the configuration file.

:~% sudo editrole role3

1. Add
. Edit
. Delete

8. Quit

What do you want to do ? -> 1

Use URL syntax for add an element to xml file

Example : /capabilities/cap_net_bind_service

What do you want to add ? -> /capabilities/cap_net_raw

Figure 21. editrole command

previously added role. In addition to the above-mentioned
commands, The tools provide additional verification to avoid
any possible errors, for example, the user would get an
error if they attempt to add a role that already exists in the
configuration file. The Role management tools also verify
the user input by controlling which nodes the user is allowed
to edit as shown in Figure 22. The user is not allowed
to edit nodes that would affect the validity of the XML
configuration file.

:~§ sudo editrole role3

What do you want to do ? -> 2
1 role3 :
Capabilities :
cap_fowner
cap_setuid
Users :
tomas
Groups :
zayed
Commands :
Jusr/bin/passwd
Jusr/bin/chmod
Jopt/myprogram -i

Use the displayed tree and selects the number corresponding to the node ->
Requested node invalid, retry -> I

Figure 22. editrole command providing user input verification

6. Complexity and Empirical Performance
Analysis

RootAsRole provides thus a balance between the fine
grained - but complex to handle - LSM offer, and the often

too coarse grained policy given by sudo. One important
aspect of these systems is their high frequency of use,
through manual terminal or through batch processing. Thus,
one key factor of comparison is the scalability of the tool:
its capacity to increase its processing time smoothly as
the configuration grows. We provide here a theoretical and
empirical comparative analysis of our proposition against
sudo, since both tools share the same structure of process.

Indeed, sudo and sr (the main application used in
RootAsRole) present the same conceptual steps: they (i)
authenticate the user if required, (ii) read the configuration
file to verify whether the command to execute with the
requested user/role is authorized (and/or to extract the role
name to use for sr), and eventually (iii) execute the requested
command. As the definition of the policy increases, one
bottleneck for both programs can appear in the second step
that aims, regarding the parsing of the configuration file.

We reviewed the source code of sudo (the latest sta-
ble 1.9.1 version) and sr to compare their computational
complexity. Both programs appear to have an equivalent
theoretical efficiency, with an order of O(n) complexity,
with n the number of items in the configuration file. For
sudo, an item is either a user or a command while for
sr it is either a role, a user or a command. While this
analysis advocates for an equivalent performance for both
sudo and sr programs as they both expose a linear efficiency,
it does not give any clue on the differences between their
linear execution time: (i) the constant time required for any
configuration file, and (ii) the extra amount of time required
with the increasing of the configuration. Since important
differences exist between sudo and sr that can have an
impact on performance, we decided to carry on with an
empirical comparative analysis.

We followed the given protocol that aims at measuring
execution time in real condition:

e for a given number U of users/roles and C' com-
mands, generate of configuration file of U - C items
for both sudo and sr. The last command of the last
user/role in the configuration file matches the test
command (i.e.: whoami) while the last user/role is
the test one;

o using the test user, execute the test command with
sudo and measure its execution time with the GNU
time command,;

o invalidate user’s cached credentials (sudo -k) for the
next test;

o execute the test command with the test role through
sr and measure its execution time with the GNU
time command.

This protocol was implemented in a shell script to automate
the procedure, including the authentication processes. For
both commands we measured 3 different times: the real
execution time, the CPU-seconds spent in kernel mode,
and the CPU-seconds spent in user mode. We applied this
procedure 10 times for each combination of U € {1, 10,
20, 30, 40, 50, 100, 200, 300, 400, 500, 1000, 2000, 5000}
and C € {1, 19, 20, 30, 40, 50, 100, 500}, and compute the

means of the three execution time measures for each of these
combination. Hence 1120 tests were achieved, resulting in
112 results of 3 measures for both commands.

Figure 23 represents the 3 different execution times for
sr and sudo according to the number of items (U - C)
of the configuration file. While the linear execution time
computed previously can be validated, we can also spot
some differences between the two programs: a difference
of intercept of the lines for both system and user times, that
is added up in the overall real time, and a difference of slope
for the system time that seems to be present in the overall
real time.

In order to confirm these observations, we applied a
linear regression for each program regarding the overall
real execution time. Our results show a constant difference
of around 900ms in execution time between sr and sudo,
shared between kernel and user mode. Our main hypothesis
to explain such constant difference resides in the fact s has
to load heavy libraries memory at launch that sudo do not
use, especially libxml, used to parse XML files. While this
difference is not of importance in a terminal mode where
each of the commands are executed by a human operator
one after the other, this overhead of time could significantly
decrease the performance of a batch processing in the case
the script would rely on the sr command.

The difference of slope is near 0.02 ms - kltems™! ;
in other words, the difference of execution time between
sr and sudo increases of 0.02ms each thousand items. Re-
garding Figure 23, this difference of slope seems to reside
in the system operations. However, since we consider this
difference not high enough to have any significant effect in
a real context of use, we did not pursue our analysis in that.

The visible noise at the beginning of the sr curves on
Figure 23 is related to the XML configuration file reading
operation. The current implementation relies on the libxml
library that operates an initial set of memory operations
(mainly allocations) to parse an XML file. In a time-sharing
operating system, such operations may have different time
duration regarding to the system state, so it cannot be
completely deterministic. This random variation on time can
be seen on tests with few items, while it becomes negligible
to the rest of the processing as number of items to handle
increases. In order to address this issue, we will transpose
our proposition in a version using flat files structure, or
binary representation as in SELinux.

7. Conclusions and Future Works

Our module RootAsRole provides new functionality to
the Linux community by providing them with a module
that allows Linux privileges to be given to users through
the assignment of roles. Our module also allows Linux
administrators to constrain the use of these privileges to
certain programs (e.g., the Apache service or tcpdump). In
addition, RootAsRole allows administrators to assign roles
to sets of users through the group concept. Our sr com-
mand is more secure than sudo/su commands because it
comes only with two capabilities which are cap_setpcap

Execution times of sr and sudo according to the configuration size

realTime execution time

3.01

254 2.04

2.04
1.5

151
1.01

Execution time (seconds)

0.5
0.5

0.0 0.0

userTime execution time

sysTime execution time

0.6

0.5

program
— sr
0.3 sudo

0.2

0.1

0.0

0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0
Number of items le6

Number of items le6

1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 25
Number of items le6

Figure 23. Execution times of sudo and sr, depending of the configuration size.

and cap_setfcap, while sudo/su commands need the full list
of Linux administrative privileges.

However we need to conduct a user study to analyze
the usability issues of our module. We need to test the
usability regarding the configuration of RootAsRole and the
invocation of roles by users. But before conducting such
a study, we need to add more tools. Firstly, we would
like to add a GUI for setting the configuration policy.
Secondly, we will work on defining default policies for
different distributions of Linux. Specifically, we will check
the list of distributed tools and provide a pre-configured
policy for these tools. Thirdly, we would like to integrate
the code of capable inside sr, so that the policy will be
configured automatically whenever an administrative user
executes a command with sr. This will be the case for most
personal computer users. Because some programs allow
their resources to be listed in their arguments (e.g., the port
number for an Apache service or the network interface for
tcpdump) then administrators can exploit this to limit the use
of privileges on resources. For example, an administrator
can limit the cap_net_bind_service privilege to port 80 by
defining a new configuration file for the Apache service and
editing the CapabilityRole.xml file so that the user can only
start the Apache service with this new configuration file.
However, not all programs allow their resources to be listed,
and it will not work where users are assigned privileges to
run their own programs. As a consequence, additional work
is needed to implement these sorts of constraints. In future,
we would like to build a kernel or LSM that can intercept
all requests for Linux’s resources and check whether these
are authorized or not, according to the central policy file.

In addition, we would like to extend our module to
handle more complex scenarios. For example, giving ad-
ministrators the possibility to limit the use of privileges not
only in terms of programs and resources but also in terms of
additional contextual information such as time and location.
We would also like to introduce additional RBAC features
such as role hierarchies and separation of duties [20].

Finally, we would like to add the logic of RootAsRole
module into sudo/su commands so that users can restrict

the usages of administrative privileges when they are using
sudo/su commands. We would like to investigate the possi-
bility of detecting the needed capabilities and to add them
to the policy in a semi-automatic way.

Regarding the Linux capability model, we believe it has
some limitations. For example, the capabilities do not have
the same level of granularity e.g., cap_kill, only permits
the killing of other processes, whereas cap_sys_admin can
be used to handle many different features of the kernel
such as administration operations (mount, quotactl, etc.),
syslog operations, extended attributes operations, and many
others. As pointed out by Michael Kerrisk [8] this problem
comes from the fact that Linux does not have a central
authority that determines how capabilities should be linked
to the kernel features. We believe that this issue constitutes
a significant obstacle, but this problem does not affect only
RootAsRole but all other LSM. Further research is needed to
handle this issue because kernel developers define the access
controls on kernel resources in an ad-hoc manner [22].

References

[1] Serge E. Hallyn, Andrew G. Morgan, “Linux capabilities: making
them work”, The Linux Symposium, Ottawa, ON, Canada, 2008,
https://www.kernel.org/doc/ols/2008/01s2008v1-pages- 163-172.pdf.

[2] “Extended attributes: the good, the not so good, the bad”,
2014, https://www.lesbonscomptes.com/pages/extattrs.html, accessed:
29/08/2022.

[3] “LD.SO(8)- Linux manual page”, http://man7.org/linux/man-pages/
man8/ld.so.8.html, accessed: 29/08/2022.

[4] “errno(3) — Linux manual page”, https://man7.org/linux/man-pages/
man3/errno.3.html, accessed: 28/08/2022.

[5]1 “Example code of Python HTTP Server”, https://docs.python.org/2/
library/simplehttpserver.html, accessed: 29/08/2022.

[6] Karl Fischer, “Intercepting / Hooking function calls to shared
C libraries”, 2015, https://fishi.devtail.io/weblog/2015/01/25/
intercepting-hooking-function-calls- shared-c-libraries/, accessed:
29/05/2022.

[71 Ahmad S. Wazan, David W. Chadwick, Rémi Venant, Eddie Bil-
loir, Romain Laborde, “Code source of RootAsRole module”, https:
//github.com/SamerW/RootAsRole, accessed: 29/08/2022.

https://www.kernel.org/doc/ols/2008/ols2008v1-pages-163-172.pdf
https://www.lesbonscomptes.com/pages/extattrs.html
http://man7.org/linux/man-pages/man8/ld.so.8.html
http://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man3/errno.3.html
https://man7.org/linux/man-pages/man3/errno.3.html
https://docs.python.org/2/library/simplehttpserver.html
https://docs.python.org/2/library/simplehttpserver.html
https://fishi.devtail.io/weblog/2015/01/25/intercepting-hooking-function-calls-shared-c-libraries/
https://fishi.devtail.io/weblog/2015/01/25/intercepting-hooking-function-calls-shared-c-libraries/
https://github.com/SamerW/RootAsRole
https://github.com/SamerW/RootAsRole

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

(27]

Micheal Kerrisk, “CAP_SYS_ADMIN: the new root”, 2012, https:
/Nlwn.net/Articles/486306/, accessed: 29/08/2022.

Julianne F. Haugh, Marek Michatkiewicz, Tomasz Ktoczko, Nicolas
Francgois, “passwd code source”, https://github.com/shadow-maint/
shadow/blob/master/src/passwd.c, accessed: 29/08/2022.

Chris Wright, Crispin Cowan, Stephen Smalley, James
Morris, Greg Kroah-Hartman, “Linux Security =~ Modules:
General Security Support for the Linux Kernel”,11th

USENIX Security Symposium (USENIX Security 02),2002,
https://www.usenix.org/conference/11th-usenix-security-symposium/
linux-security-modules- general-security-support-linux.

Michael Kerrisk, “The Linux Programming
159327291X, No Starch Press, October 1 2010.

“capabilities(7) — Linux manual page”, http://man7.org/linux/
man-pages/man7/capabilities.7.html, accessed: 29/08/2022.

interface”, ISBN

“eBPF manual page Linux”, http://man7.org/linux/man-pages/man2/
bpf.2.html, accessed: 29/08/2022.

“Kernel Probes (Kprobe)”, https://www.kernel.org/doc/
Documentation/kprobes.txt, accessed: 29/08/2022.

“Tracepoints”, https://www.kernel.org/doc/Documentation/trace/
tracepoints.txt, accessed: 29/08/2022.

“Ftrace”, https://www.kernel.org/doc/Documentation/trace/ftrace.txt,
accessed: 29/05/2022.

Matt Fleming, “A thorough introduction to eBPF”, 2017, https://lwn.
net/Articles/740157/, accessed: 29/08/2022.

“pid_namespaces(7) — Linux manual page”, http://man7.org/linux/
man-pages/man7/pid_namespaces.7.html, accessed: 29/08/2022.

Francesco Pira, “Getting started with AppArmor”, 2016,
https://www.slideshare.net/pirafrank/getting- started- with-apparmor,
accessed: 29/08/2022.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, Charles E.
Youman, “Role-Based Access Control Models”, 1996, Computer 29,
38-47, doi:10.1109/2.485845

“sudo vulnerability CVE-2019-14287”, 2019, https://nvd.nist.gov/
vuln/detail/CVE-2019-14287, accessed: 29/08/2022.

Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed
M. Azab, Ruowen Wang, “Pex: A permission check analysis frame-
work for Linux kernel”, 2019, Proceedings of the 28th USENIX
Conference on Security Symposium, pp. 1205-1220.

Qixu Wang, Dajiang Chen, Ning Zhang, Zhen Qin, Zhiguang Qin,
“LACS: A Lightweight Label-Based Access Control Scheme in IoT-
Based 5G Caching Context,” in IEEE Access, vol. 5, pp. 4018-4027,
2017, doi: 10.1109/ACCESS.2017.2678510.

Karsten Sohr, Michael Drouineaud, Gail-Joon Ahn, Martin Gogolla,
“Analyzing and Managing Role-Based Access Control Policies,” in
IEEE Transactions on Knowledge and Data Engineering, vol. 20, no.
7, pp. 924-939, July 2008, doi: 10.1109/TKDE.2008.28.

Ahmad S. Wazan, David W. Chadwick, Rémi Venant, Romain
Laborde, Abdelmalek Benzekri, “RootAsRole: Towards a Secure
Alternative to sudo/su Commands for Home Users and SME Ad-
ministrators”, 2021, In: Jgsang A., Futcher L., Hagen J. (eds) ICT
Systems Security and Privacy Protection. SEC 2021. IFIP Advances
in Information and Communication Technology, vol 625. Springer,
Cham, doi: 10.1007/978-3-030-78120-0_13.

“SUSE product documentation - Building profiles from
the command line”, https://documentation.suse.com/sles/
15-SP4/html/SLES-all/cha-apparmor-commandline.html#

sec-apparmor-commandline- profiling-systemic, accessed:
29/08/2022.
“Apache2-common abstraction file”, https://gitlab.com/

apparmor/apparmor/-/blob/master/profiles/apparmor.d/abstractions/
apache2-common, accessed: 29/08/2022

[28]

[29]

[30]

[31]

David Howells, “Cred structure”,
linux/blob/master/include/linux/cred.h,
29/08/2022.

https://github.com/torvalds/
lines 128-132, accessed:

“AppArmor LSM hooks”, https://android.googlesource.com/kernel/
msm/+/android-5.1.0_r0.6/security/apparmor/lsm.c, lines 139-151,
accessed: 31/08/2022.

“code source of cap_capable() function”, https://github.com/torvalds/
linux/blob/master/security/commoncap.c, lines 66-99, accessed:
31/08/2022.

Andy Lutomirski, “capabilities: Ambient capabilities”, March 2015,
https://lwn.net/Articles/636533/, accessed: 31/08/2022.

Appendix
Flow charts of sr and sr_aux

https://lwn.net/Articles/486306/
https://lwn.net/Articles/486306/
https://github.com/shadow-maint/shadow/blob/master/src/passwd.c
https://github.com/shadow-maint/shadow/blob/master/src/passwd.c
https://www.usenix.org/conference/11th-usenix-security-symposium/linux-security-modules-general-security-support-linux
https://www.usenix.org/conference/11th-usenix-security-symposium/linux-security-modules-general-security-support-linux
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/bpf.2.html
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
http://man7.org/linux/man-pages/man7/pid_namespaces.7.html
http://man7.org/linux/man-pages/man7/pid_namespaces.7.html
https://www.slideshare.net/pirafrank/getting-started-with-apparmor
https://nvd.nist.gov/vuln/detail/CVE-2019-14287
https://nvd.nist.gov/vuln/detail/CVE-2019-14287
https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-apparmor-commandline.html#sec-apparmor-commandline-profiling-systemic
https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-apparmor-commandline.html#sec-apparmor-commandline-profiling-systemic
https://documentation.suse.com/sles/15-SP4/html/SLES-all/cha-apparmor-commandline.html#sec-apparmor-commandline-profiling-systemic
https://gitlab.com/apparmor/apparmor/-/blob/master/profiles/apparmor.d/abstractions/apache2-common
https://gitlab.com/apparmor/apparmor/-/blob/master/profiles/apparmor.d/abstractions/apache2-common
https://gitlab.com/apparmor/apparmor/-/blob/master/profiles/apparmor.d/abstractions/apache2-common
https://github.com/torvalds/linux/blob/master/include/linux/cred.h
https://github.com/torvalds/linux/blob/master/include/linux/cred.h
https://android.googlesource.com/kernel/msm/+/android-5.1.0_r0.6/security/apparmor/lsm.c
https://android.googlesource.com/kernel/msm/+/android-5.1.0_r0.6/security/apparmor/lsm.c
https://github.com/torvalds/linux/blob/master/security/commoncap.c
https://github.com/torvalds/linux/blob/master/security/commoncap.c
https://lwn.net/Articles/636533/

Srlaunch

fork

Parent Process Child Process

End of Sr

Figure 24. Flowchart for the sr command.

sr_aux temporary file launch

Figure 25. Flowchart for the sr_aux.

	Introduction
	Linux Capabilities
	Capabilities calculation
	Problems with the Linux Capability File-based Approach

	Related Works
	RootAsRole Module
	Motivation scenarios
	Scenario 1: Running privileged Python scripts
	Scenario 2: Interception of socket() calls

	The implementation
	Implementing the sr command
	Implementing the capable command
	Implementing the Role Manager tool

	Complexity and Empirical Performance Analysis
	Conclusions and Future Works
	References
	Appendix: Flow charts of sr and sr_aux

