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Abstract 
A higher order finite element scheme is presented for the study of the transient hydroelastic response of 
a floating, thin, nonlinear strip in shallow wave conditions. First, nonlinear effects are introduced only 
in the elasticity model, where large deflections and non-negligible normal stress variation in the lateral 
direction are assumed. The nonlinear beam is initially coupled with the linearized and subsequently with 
the full nonlinear Shallow Water equations, introducing nonlinearity in both the hydrodynamics and the 
elasticity model. The effects of the incorporated nonlinear effects are assessed through a numerical 
example featuring an elevation pulse of increasing steepness. 
 
Keywords: transient hydroelasticity, large floating bodies, Shallow Water Equations, Galerkin FEM, nonlinear 
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1 Introduction 
The study of the hydroelastic interaction between ocean waves and large floating bodies is highly 

relevant to both marine engineering and polar science (Squire, 2008) . Geophysical formations and 
pontoon-type Very Large Floating Structures (or VLFS) exhibit large horizontal dimensions compared 
to thickness. Due to their slenderness, hydroelastic effects are dominant over rigid body motion (Wang, 
Watanabe, & Utsunomiya, 2008).  The majority of works on hydroelasticity consider the response of a 
thin, floating body in the frequency domain where eigenfunction expansion methods, Galerkin schemes 
and Green functions have been used (Chen, Wu, Cui, & Juncher Jensen, 2006). In order to account for 
irregular forcing however, transient analysis tools, like direct time integration schemes and Fourier 
transforms need to be employed. Some contributions in the study of the transient hydroelastic response 
of a floating strip include those of Papathanasiou et al. (2015 (a)), (2015 (b)) and Sturova et al. (2010). 
In the literature, floating bodies are most commonly modeled as thin plates under the Kirchhoff-Love 
assumptions ( (Meylan & Squire, 1994), (Sturova, A., Fedotova, Chubarov, & Komarov, 2010), 
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(Papathanasiou T. , Karperaki, Theotokoglou, & Belibassakis, 2015 (b))). However, several attempts 
have been made to include higher order elasticity models like the Reissner-Mindlin or the Von Karman 
plates (Chen, Juncher Jensen, Cui, & Fu, 2003). For the hydrodynamic modeling, small amplitude wave 
theory is most commonly used. Special attention is paid in shallow water models, since a variety of 
engineering applications positions floating structures nearshore, making shallow and variable 
bathymetry effects crucial. For the hydroelastic response of large floating bodies over general 
bathymetry, modelled as thin elastic plates, a coupled-mode system has been derived in Belibassakis 
and Athanassoulis in (2005) and Belibassakis and Athanassoulis (2006). This method is based on a local 
vertical expansion of the wave potential in terms of hydroelastic eigenmodes, extending earlier 
approaches for the propagation of water waves in variable bathymetry regions (Athanassoulis & 
Belibassakis, 1999). 

Several attempts have been made to study the dynamic response of floating plates within the scope 
of shallow water models; notably in Sturova et al. (2010) the linear plate is coupled with two 
Boussinesq-type models, and the Green-Naghdi equations, while in Hegarty and Squire (2004) nonlinear 
models are developed for the study of the hydroealstic interaction between large amplitude ocean waves 
and a thin ice floe. In this latter work, nonlinear terms are introduced in both the equations for the fluid 
and the plate model. 

In the present contribution, the finite element method is employed for the solution of the transient 
1D hydroelastic problem over variable, shallow bathymetry. At first, nonlinear effects are incorporated 
in the simplified elasticity model, while the linearized shallow water equations are employed for the 
hydrodynamic modeling. Considering large deflections and non-negligible lateral stress variation, the 
nonlinear beam introduced by Gao (1996), is considered. Next, nonlinearity is also incorporated in the 
hydrodynamic modeling through the employment of the full Shallow Water equations. The derived 
nonlinear models are compared against the Euler-Bernoulli floating beam model presented in 
Papathanasiou et al. (2015 (b)) 

In Sect. 2, after presenting the governing equations and the aforementioned nonlinear models, the 
corresponding initial-boundary value (IBV) hydroelastic problems are defined. Subsequently, in Sect. 3 
the variational equivalent of the IBV problems will be derived, while the higher-order finite element 
scheme used for the solution of these problems is presented. In Sect. 4 the solutions given by the 
nonlinear models are examined in a numerical example featuring variable bathymetry. Different 
excitation steepness values are considered in order to examine the dominance of the incorporated 
nonlinear terms.  

2 Governing Equations 
In the present section the mathematical formulation of the 1D hydroelastic model is presented. 

Consider a layer of inviscid and irrotational fluid of density w , confined in the domain  (see Figure 

1) in the xz  plane. The domain is decomposed into three regions, namely 1 ( ,0) , 0 (0, )L  and 

2 ( , )L , where L  is the length of the strip. Due to the fluid assumptions, a velocity potential 

function  can be defined as xu where u  denotes the horizontal fluid velocity. The floating plate 

is assumed to extend infinitely in the y  direction, vertical to the page, corresponding to a beam under 

normal incident wave loading. The beam deflection and the fluid upper surface elevation are assumed 
to coincide at all times. Additionally, the floating strip features uniform thickness  and density e .The 

bathymetry function is given as ( ) ( )b x h x d , where ( )h x  is the local depth and 1
w ed  is the 

plate draft, which is non-zero only at the region of the hydroelastic coupling. At the free water surface 
regions, the Shallow Water Equations (SWE) are considered, 
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0,t x xu u u g                                                                                                  (1) 

[ ( ) ] 0t x xb x                                                                                                            (2) 

With the added assumption of small steepness waves, the linearised Shallow Water Equations 
(LSWE) are straightforwardly derived by excluding the nonlinear terms in Eqs. (1) and (2).  In the 
hydroelasticity dominated region the coupling is accomplished through the dynamic pressure applied at 
the floating strip, given by 

 
2

2
w

w w t xp g                                                                                                           (3) 

 For the floating body, the nonlinear elastic beam model introduced by Gao (Gao, 1996) will be 
examined in the following analysis, while the floating Euler-Bernoulli beam (EB) will provide a linear 
benchmark solution.  In the classical beam theory, the deflection of a thin, elastic and homogeneous 
floating body under vertical loading, denoted by ( , )q x t ,and pressure forcing given by the linearized Eq. 

(3), is given by 

2 4 ( , )t x w w tm D g q x t                                                                                       (4) 

The fully linear EB-LSW model, presented in Papathanasiou et al. (2015 (b)) will provide the basis for 
the assessment of the incorporated nonlineariaty. The first term (LHS) in Eq. (4) accounts for inertial 
effects, where m is the mass per unit length of the floating body, while the second term accounts for 
flexural effects and D denotes the bending rigidity of the beam. The Gao beam (GB) model (Gao, 1996) 
accounts for moderately large deflections, where the deflection is assumed to be of the same order of 
magnitude as the strip slenderness ratio L  , and non-negligible normal stress variation in the lateral 

(axial) direction. In GB, with zero axial loading present, the deflection of the floating beam over shallow 
water is given by, 

22 2 2 4 2 2( ) ( , )
2

w
t r t x x x x w w t xm I D s g q x t                      (5) 

In addition to the inertial and bending rigidity terms, which are similar to EB, rotary inertia effects are 
accounted through the term 2 2

r t xI , where rI is the rotary stiffness coefficient. The nonlinear term
2 2( )x xs , with 2 13 (1 ) / 2s E v , is a product of the large deflection assumption, where up to 

second order strain terms are kept in the Green-St. Venant strain tensor.   

2.1 Initial Boundary Value problems 
In the following section, the IBV problems of a freely-floating nonlinear strip, interacting with a 

surface wave propagating in a shallow water environment, modeled first by the linearized and then by 
the full shallow water equations, are formulated. 

 The horizontal velocity vanishes at infinity, hence it holds  

1 2(| | , ) (| | , ) 0x xx t x t                                                                                           (6) 

The unconstrained floating body configuration results in vanishing conditions for the shear stress 
and bending moments at the beam edges, 

(0, ) (0, ) (1, ) (1, ) 0b bM t V t M t V t (0, ]t T                                                                        (7) 
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Figure 1 1D hydroelastic domain configuration 

Introducing the non-dimensional quantities 1x L x , 1/2 1/2t g L t , 1L and 1/2 3/2 ,g L
and considering the corresponding  non dimensional forms of the equations (1)-(5), two IBVPs can be 
defined. The problem defined by the weekly nonlinear GB-LSW model is given as, 

2
1 1( ) 0t x xB x   in 1 ,                                                                                            (8) 

2 3 2 2 3 4 2 2
0 0 0 0 0

0 0

( )

                                                 ( , )
t R t x x x x

t

M I K S

Q x t
                                                        (9a)               

0( ) 0t x xB x    in 0 ,                                                                                                       (9b) 

2
2 2( ) 0t x xB x  in 2 .                                                                                                             (10)               

with ,i t i 1,2i , /e wM , 1( ) ( )B x L b x , / 1L  and
1

( , ) ( , ) wQ x t q x t gL . 

At the interfaces, appropriate mass and momentum conservation conditions are expressed as 

1 00 0
(0 ) (0 ) ,x xx x

B B 1 00 0t tx x , (0, ]t T                                                      (11a) 

0 21 1
(1 ) (1 ) ,x xx x

B B 0 21 1t tx x (0, ]t T                                              (11b) 

Finally, the GB-SW hydroelastic model, where nonlinear terms are included in both hydrodynamic 
and elasticity models constitutes the following IBV problem, 

        
2 32 1

1 1 1 1 1 1

1
2 ( ) 0

2t t x x x x x x t xB x , in 1                     (12)          

        

2 3 2 2 3 4 2 2
0 0 0 0 0

2

0 0 0

( )

1
                                                 ( , )

2

t R t x x x x

t x

M I K S

Q x t
                                       (13a) 

        0 0[ ( ) ] 0t x xB x  , in 0 ,                                                                                   (13b) 
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2 32

2 2 2 2 2 2

1 1
( ) 0

2 2t t x x x x x x t xB x , in 2 .                  (14) 

with 
21

2i t i x i  , 1,2i , 
12

e
R

w

I , 2

3

2(1 ) w

E
S

v gL
 and 

(1 )

12(1 )(1 2 ) w

E v
K

v v gL
. 

The interface conditions (11) are reformulated as 

1 1 0 00 0
(0 ) (0 , ) (0 ) (0 , )x xx x

B t B t 1 00 0t tx x
                    (15a) 

0 0 2 21 1
(1 ) (1 , ) (1 ) (1 , )x xx x

B t B t  0 21 1t tx x
                      (15b) 

Initially the plate and fluid are assumed to be at rest while an upper surface elevation is imposed at the 
right half strip, corresponding to the following initial conditions 

       0 0( ,0) ( ,0) 0x x in 0 ,  1 1( ,0) ( ,0) 0tx x  in 1  and                                      

            2 2( ,0) 0, ( ,0) ( )tx x G x in 2                                                                                (16) 

where G x  is an upper surface elevation imposed in subregion 2 . 

3 Variational formulation 
In the present section, the equivalent variational formulations of the IBVPs defined previously will 

be presented. First, the systems of Eqs. (8) - (10) and (12)-(14) are multiplied by the weight functions
1

1 1( )w H , 2
0( )v H  and 1

2 2( )w H accordingly. Then, performing integration by parts, 

adding the corresponding equations and applying the appropriate  interface and farfield conditions, 
yields the following variational problem, 

Find 0  and i , 0,1,2i , such that for every 1( )i iw H , 0,1,2i  and 2
0( )v H  it is 

0 32 2
1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 2 3 2 2 3
0 0 0 00

1 2

0 0 0 0 0 0 0 00

2
2 2

( )
2

( )
3

[ ( ) ]
2

t x tx x x x x x t x

t R x t x x x x x

t x t x x

t

w w w B x w w dx

S
M v I v K v v dx

v v v w w B x dx

w
32

2 2 2 2 2 2 2 2 2 21

1

0

( )
2

( , ) , , 0, 1

x tx x x x x x t xw w B x w w dx

vQ x t dx

        (17)  

and 1 1 1 0 0 0 2 2 2( ( ,0), ) ( ( ,0), ) ( ( ,0), ) 0x w x w x w , 0 0 0 1 1 1( ( ,0), ) ( ( ,0), ) 0tx w x w , 

2 2 22 2
( ,0), ( ),t x w G x w , with ( , )i , 0,1,2i  being the 2L -inner product in region i .     
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Setting  0  and 1retrieves the variational formulation of the GB-LSW IBV problem, while 

setting 1  and 1 results in the variational equivalent of the GB-SWE IBV problem. Notably, 

setting 0 0 , Εq. (17) reduces to the variational equivalent of the linear hydroelastic problem 

formulated by means of the EB-LSW model. 
 

3.1 Finite element formulation 
Next, the finite element method will be employed for the numerical solution of the variational 

problem described by Eq. (17). The velocity potential of the free water surface regions are approximated 
by quadratic Lagrange elements while a special, 5-node element is introduced for the hydroelasticity 
dominated region. The reader is directed to the work of Papathanasiou et al. (2015 (b)) for a more in 
depth analysis. The hydroelastic element incorporates 5th order Hermite polynomials for the 
interpolation of the beam deflection/upper surface elevation in the middle region and 4th order Lagrange 
polynomials for the interpolation of the velocity potential. Hence the approximate solutions are taken 

as, 
6

1

h h
i i

i
H x t  for the middle region and 

5

1
, 1,2h h

j i ij
i

L x t j for the free water surface 

regions. A second order system of ordinary differential equation is derived when the approximate 
solutions are substituted into a discretized Eq. (17). In the weakly nonlinear GB-LSW model case, the 

system is given as 0u u u uM C Κ , where u  is the vector of the nodal unknowns, while a system 

of the form 0u u u u uM C Κ is produced by the GB-SW model. After setting u y  and 

taking T[ ]u yz  , the previous is reduced to the first order system of nonlinear equations , 

( ) 0z z zA B . This last equation is integrated in time using a Crank-Nicolson time marching scheme.  

4 Numerical Results 
In the present section, the three hydroelastic models are compared in a numerical example featuring 

variable bathymetry (see Figure 2). An incoming elevation pulse, typical in long wave modeling 
(Tadepalli & Synolakis, 1996), provides the initial excitation. Since the scope of the present work is to 
give a preliminary assessment of the accounted nonlinear effects, a single slenderness ratio / L for 
the floating body is investigated .The wavelength for both examined excitation scenarios is set at 

300W mand the amplitude is taken as 0.4A and 0.8m , thus the examined wave steepness ratios 

are set to 0.0013and0.0027.A W   

 

 
Figure 2 Numerical example configuration 
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Figure 3 Space time plot of the elevation pulse propagation 

The incoming forcing initially transverses over a flat bottom, set at a depth of 15 m, until it reaches 
a shoaling region where the depth is assumed to decrease linearly to 8 m, where it is kept constant 
(Figure 2). The strip is assumed to be floating over the shoaling region. The uniform thickness of the 
body is set at 3m , while its length was taken as 500L m , resulting in a slenderness ratio of 

0.006 . Finally, the material constants selected are; density 3922.5 /e kg m , water density
31025 /w kg m , Young’s modulus 95 10E Pa  and Poisson’s ratio 0.3v .  

For the given analysis, 150 special hydroelastic elements and 10000 time steps were employed for 
the approximation of the middle region and the calculation of the transient strip response. In Figure 3 a 
space time plot illustrating the propagation of the imposed upper surface elevation in 2  is shown. The 

initial pulse in split into two propagating waves, travelling in opposite directions. As the wave travelling 
towards the negative x-axis reaches the shoaling region it is partially reflected. When the wave impacts 
the free edge of the floating strip, the hydroelastic pulse begins to propagate showing dispersive 
characteristics. A reflected wave back propagating in 2 is formed at impact. 

In Figure 4 and Figure 5 , the solutions obtained by means of the fully linear (EB-LSW) and the two 
non-linear models are compared. The comparison is shown at three distinct moments in time 
representing the phases of wave impact, hydroelastic wave propagation and wave exit from the middle 
region. On the left column of the figures, the calculated strip responses are shown, while on the right 
the corresponding deviations from the linear model solution are presented. It is observed that the 
nonlinearity introduced by the GB-LSW is rather weak, since the strip response is essentially reduced 
to the EB-LSW solution for the examined excitation scenarios. The deviation between the GB-LSW and 
the EB-LSW models is kept under 10% in both cases. Moreover, the deviation increase with increasing 
excitation steepness is minimal. This is attributed to the fact that the floating strip is considered thin in 
this case. Since, 1 , the rotary inertia and nonlinear terms of the Gao beam model are rather weak 
(see Eq 9(a)) and the solution is reduced to the one calculated by the classical thin beam theory. The 
limitations posed by the linear model would become evident with increasing dimensionless parameter

.  On the other hand, the deviations between the GB-SW and the EB-LSW solutions seem to increase 
proportionally with excitation steepness. In Figure 4 the maximum deviation is seen to exceed 20 % 
while in Figure 5 it exceeds 40%. Hence, the nonlinearity introduced in the hydrodynamic modeling is 
dominant over the nonlinear effects incorporated by the large deflections assumption of the strip model. 
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Figure 4 (Left)Strip response at given moments in time, calculated by the EB-LSW , GB-LSW and GB-SW  

models  for an elevation pulse with a steepness ratio of 0.0013 .(Right) Deviations between the calculated solutions 
by the GB-LSW and GB-SW models and the fully linear EB-LSW model. 

 
Figure 5 (Left)Strip response at given moments in time, calculated by the EB-LSW , GB-LSW  and GB-SW  

models  for an elevation pulse with a steepness ratio of 0.0027 .(.  (Right) Deviations between the calculated 
solutions by the GB-LSW and GB-SW models and the fully linear EB-LSW model. 
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5 Conclusions 
 
In this contribution, a higher-order finite element scheme is employed for the solution of the 1D 

hydroelastic problem of a floating nonlinear strip in shallow water conditions. Two nonlinear 
hydroelastic models were considered. The Gao nonlinear beam is initially coupled with the linearized 
shallow water equations (GB-LSW model) and subsequently with the full nonlinear equations (GB-SW 
mode).  The variational equivalent of the defined IBV problems were solved by mains a special 5-node 
hydroelastic element, featuring 5th order Hermite polynomials for the interpolation of the upper surface 
elevation/strip deflection in the middle region, and 4th order Lagrange polynomials for the interpolation 
of the velocity potential function in the same region. The higher-order finite element scheme was first 
applied in the solution of the hydroelastic problem of a floating, linear, elastic strip under the classical 
beam theory assumptions in Papathanasiou et al. (2015 (b)) and is now extended to nonlinear strip 
modeling. 

In the present work, the nonlinear effects incorporated by the GB-LSW and GB-SW models were 
examined for a given floating body slenderness ratio and varying excitation steepness. When compared 
with the aforementioned linear model, the deviation between the calculated GB-SW and EB-LSW model 
solutions increases proportionally with increasing initial excitation steepness. In the case of the GB-
LSW, the obtained strip responses under the examined excitations were essentially reduced to the ones 
calculated by the fully linear model, with the deviation between the solutions being kept under 10%. 
Hence, the nonlinearity in the hydrodynamic equations appeared to be dominant over the nonlinear 
effects introduced by the large deflections assumption in the strip model, for the examined non-
dimensional slenderness parameter . 

The present contribution is a first step in the implementation of higher-order finite element schemes 
in the solution of the hydroelastic problem with incorporated nonlinearity. Although the presented 
results give a clear indication of the strength of the accounted nonlinear effects, further investigation is 
required in order to establish the range of validity for the presented nonlinear hydroelastic models. 
Possible future extensions include the study of higher order shallow water wave and plate models in a 
general bathymetry. 
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